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We study near-alternating links whose diagrams satisfy conditions
generalized from the notion of semi-adequate links. We extend
many of the results known for adequate knots relating their colored
Jones polynomials to the topology of essential surfaces and the hy-
perbolic volume of their complements: we show that the Strong
Slope Conjecture is true for near-alternating knots with spanning
Jones surfaces, their colored Jones polynomials admit stable coeffi-
cients, and the stable coefficients provide two-sided bounds on the
volume of the knot complement.
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1. Introduction

Since the discovery of the Jones polynomial and related quantum knot invari-
ants, a central problem in quantum topology has been to understand the con-
nection between those invariants and the geometry of the knot complement.
An important example of these quantum invariants is the colored Jones
polynomial, which assigns a sequence {JK(v, n)}∞n=2 of Laurent polynomials
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from the representation theory of Uq(sl2) to a link K ⊂ S3, and contains
the Jones polynomial as the first term of the sequence, see Definition 2.2.
Conjectures such as the Volume Conjecture [Kas97, MM01, MMO+02] and
the Strong Slope Conjecture [Gar11, KT15] predict that the colored Jones
polynomial is closely related to the hyperbolic geometry and topology of
surfaces in the knot complement.

Much evidence for this relationship comes from the class of semi-adequate
links. They are a class of links satisfying a diagrammatic condition, see Defi-
nition 1.7. An adequate knot satisfies the Strong Slope Conjecture, see Con-
jecture 1.5, and certain stable coefficients of its colored Jones polynomial
give volume bounds on the complement of an adequate knot [DL07, FKP08,
FKP11, FKP13]. For these results, a key ingredient is the existence of essen-
tial spanning surfaces, see Definition 1.4, along which the complement may
be decomposed into simpler geometric components. Such surfaces have also
been shown to be fundamental to the characterization of alternating knots
[Gre17, How17] and adequate knots [Kal18].

In this paper, we are motivated by the question of when we can ex-
pect the Strong Slope Conjecture to be realized by spanning surfaces from
state surfaces of the knot diagram beyond semi-adequate knots, and when
we can expect the Coarse Volume Conjecture to be satisfied outside the
class of adequate links. Our answer to this question in this paper is the
introduction of the class of near-alternating links, to be defined below in
Definition 1.1. For a near-alternating knot, we find its Jones slopes, and
show that there exist essential spanning surfaces in its exterior realizing the
Strong Slope Conjecture. For a near-alternating link, we prove that the first,
second, penultimate, and the last coefficient of its colored Jones polynomial
are stable. If the near-alternating link diagram is prime, twist-reduced, and
highly twisted with more than 7 crossings in each twist region, then the link
is hyperbolic by [FKP08], and we show that these stable coefficients pro-
vide coarse volume bounds for the link exterior. These results closely mirror
those for adequate links. However we show that near-alternating knots are
not adequate, thus they give a new class of links satisfying the above con-
jectures.

We give the necessary definitions in order to state the main results be-
low. We shall always consider a knot or a link K ⊂ S3. The theorems and
conjectures will be stated in the fullest generality possible, where it will be
indicated whether we are considering a knot or a link. The indices i, j, k
should be considered independently in each instance unless explicitly stated
otherwise.
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1.1. Near-alternating link

Let G be a finite, weighted planar graph in S2. For each edge e of G let ωe ∈
Z \ 0 be the weight. We may replace each vertex v of G with a disk D2 and
each edge e with a twisted band B consisting of |ωe| right-handed (positive)
or left-handed (negative) half twists if ωe > 0, or if ωe < 0, respectively.
See Figure 1 for the definition of right-handed and left-handed half twists
in this paper. Note that this is opposite of the convention where right-
handed half twists are negative and left-handed half-twists are positive, see
for example [Con70]. We denote the resulting surface by FG and consider
the link diagram D = ∂(FG). Every link diagram D may be represented as
∂(FG) for some finite, weighted planar graph G.

A path in a weighted graph G with vertex set V and a weighted edge set
E is a finite sequence of distinct vertices v1, v2, . . . , vk such that (vi, vi+1) ∈ E
for i = 1, 2, · · · , k − 1. We define the length of a path W as

(1) ℓ(W ) := 2 +

k−1∑

i=1

(|ωi| − 2),

where ωi is the weight of the edge (vi, vi+1) in W .
A graph G is said to be 2-connected if it does not have a vertex whose

removal results in a disconnected graph. Such a vertex is called a cut vertex.

Definition 1.1. LetD be a non-split link diagramD = ∂(FG), whereG is a
2-connected, finite, weighted planar graph without one-edged loops (an edge
between the same vertex) with a single negative edge e = (v, v′) of weight
r < 0 and |r| ≥ 2. Let G \ e be the graph obtained from G by deleting the
edge e and let G/e be the graph obtained from G by contracting G along
e. We say that D is near-alternating if the graph G satisfies the following
conditions.

1) Let ω be the minimum of ℓ(W ) taken over all pathsW in G \ e starting
at v and ending at v′, and let t be the total number of such paths. Then
t > 2, and

ω

t
> |r|.

2) The graph G \ e remains 2-connected, and the diagram De = ∂(FG\e)
is prime and twist-reduced (see [Lac04] for a pictorial definition); the
diagram De = ∂(FG/e) is adequate, see Definition 1.7.
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Condition (2) is imposed to ensure that a near-alternating link is −-
adequate to reduce the technicalities in the conditions of the results. See
Definition 1.7 for the definition of +-or −-adequate links.

A link K is said to be near-alternating if it admits a near-alternating
diagram. See Figure 1 for an example and the conventions for a negative or
a positive twist region.

Example 1.2. A pretzel link P (t1, t2, . . . , tm) is near-alternating if m > 3,
t1 ≤ −2 < 0 < ti for all 1 < i ≤ m, and

min1<i≤m {ti}

m− 1
> |t1|.

Example 1.3.

G

−2
6

5
5

9 9

G
v

v′

6

5
5

9 9

v

v′

G \ e

Figure 1: An example of a near-alternating link diagram D = ∂(FG) with
the graph G shown in blue and the negatively-weighted edge e = (v, v′). For
this example, we have ω

t = 9
4 > 2.

1.2. The Strong Slope Conjecture

Let D be a link diagram. A Kauffman state σ is a choice of replacing every
crossing of D by the +- or −-resolution as in Figure 2, with the (dashed)
segment recording the location of the crossing before the replacement.

Applying a Kauffman state results in a set of disjoint circles called state
circles. We form a σ-state graph sσ(D) for each Kauffman state σ by letting
the resulting state circles be vertices and the segments be edges. The all-+
state graph s+(D) comes from the Kauffman state which chooses the +-
resolution at every crossing of D. Similarly, the all-− state graph s−(D)
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+

−

Figure 2: The +-and −-resolution of a crossing and the corresponding seg-
ments.

comes from the Kauffman state which chooses the −-resolution at every
crossing of D.

Let

(2) hn(D) = −(n− 1)2c(D)− 2(n− 1)|s+(D)|+ ω(D)(n2 − 1),

where c(D) is the number of crossings of D, and ω(D) = c+(D)− c−(D),
the difference between the number of positive crossings and the number
of negative crossings of D, is the writhe of D with an orientation. Lastly,
|s+(D)| is the number of vertices in the all-+ state graph. We can now state
the main result of this paper.

Let d(n) be the minimum degree of JK(v, n), the nth colored Jones poly-
nomial of K.

Theorem 1. Let K ⊂ S3 be a link admitting a near-alternating diagram D
with a single negative twist region of weight r < 0 and let hn(D) be defined
by (2), then

(3) d(n) = hn(D)− 2r(n2 − n).

This is the main result of the paper. The single negative twist region
of the near-alternating diagram is used to write a special state sum for the
colored Jones polynomial, that is particularly suited to finding the degree.

Now we consider the case when K is a knot. Note that the case for
3-tangle pretzel knots with a near-alternating diagram was already stud-
ied in [LvdV16], and the degree of the colored Jones polynomial was com-
puted in [HTY00] for a family of pretzel knots which are generally not
near-alternating.

Theorem 1 implies the Strong Slope Conjecture for near-alternating
knots which we now describe. Let N(K) be a tubular neighborhood of K
in S3. We will denote by S3 \K the closure of S3 \N(K). An orientable,
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connected, and properly embedded surface S ⊂ S3 \K is essential if it is
incompressible, boundary-incompressible, and non boundary-parallel. If S
is non-orientable, then S is essential if its orientable double cover in S3 \K
is essential.

Definition 1.4. Let S be an essential and orientable surface with non-
empty boundary in S3 \K. A fraction p

q ∈ Q ∪ {1
0} is a boundary slope of

K if pµ+ qλ represents the homology class of ∂S in H1(∂N(K)), where µ
and λ are the canonical meridian and longitude basis of H1(∂N(K)). The
boundary slope of an essential non-orientable surface is that of its orientable
double cover.

Let d∗(n) be the maximum degree in v of JK(v, n). Garoufalidis showed
in [Gar11] that since the colored Jones polynomial is q-holonomic [GL05], the
functions d(n) and d∗(n) are quadratic quasi-polynomials viewed as functions
from N → N. For a fixed knot K, this means that there exist integers pK ,
CK ∈ N and rational numbers aj , bj , cj , a

∗
j , b

∗
j , c

∗
j for each 0 ≤ j < pK , such

that for all n > CK ,

d(n) = ajn
2 + bjn+ cj if n = j (mod pK),

and

d∗(n) = a∗jn
2 + b∗jn+ c∗j if n = j (mod pK).

We consider the sets jsK := {aj} and js∗K := {a∗j}. An element p
q ∈

jsK ∪ js∗k is called a Jones slope. Similarly, define jxK := { bj
2 } and jx∗K :=

{
b∗j
2 }.
We may now state the Strong Slope Conjecture.

Conjecture 1.5. ([Gar11, KT15]) Let K be a knot. Given a Jones slope of
K, say p

q ∈ jsK , with q > 0 and gcd(p, q) = 1, there is an essential surface

S ⊂ S3 \K with |∂S| boundary components such that each component of ∂S
has slope p

q , and

−
χ(S)

|∂S|q
∈ jxK .

Similarly, given p∗

q∗ ∈ js∗K with q∗ > 0 and gcd(p∗, q∗) = 1, there is an es-

sential surface S∗ ⊂ S3 \K with |∂S∗| boundary components such that each
component of ∂S∗ has slope p∗

q∗ , and

χ(S∗)

|∂S∗|q∗
∈ jx∗K .
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An essential surface in S3 \K satisfying the conditions described in the
conjecture is called a Jones surface.

Normalization convention

The difference in our convention from [Gar11, KT15] is that in this paper
the asterisk ∗ indicates the corresponding quantity from the maximum de-
gree d∗(n), rather than the minimum degree, indicated by d(n), of the nth
colored Jones polynomial JK(v, n). Also, we substitute v = 1

A , where A is
the variable for the Kauffman bracket, for the colored Jones polynomial. See
Definition 2.2 for our choice of the normalization convention.

1.3. Known results

The Strong Slope Conjecture is currently known for alternating knots [Gar11],
adequate knots [FKP11, FKP13], which is a generalization of alternating
knots, see Definition 1.7, iterated (p, q)-cables of torus knots and iterated
cables of adequate knots [KT15], graph knots [MT17, BMT], and families
of 3-tangle pretzel knots [LvdV16], as well as families of 3-tangle Mon-
tesinos knots [LYL19]. It is also known for all knots with up to 9 crossings
[Gar11, KT15, How], and an infinite family of arborescent non-Montesinos
knots [HD]. The Slope Conjecture is also known for 2-fusion knots [GvdV16].

A major difficulty in studying the Conjecture is determining the Jones
slope of a knot. Compared to the approaches of the previous results, the
techniques developed in this paper does not rely on specific structure of the
graph G giving rise to D = ∂(FG). The choice of a single negative twist
region is made to simplify the exposition. With more work, it would be
possible to extend Theorem 1 to links with diagrams obtained fromMurasugi
sums of an adequate diagram with a non-adequate torus link diagram, and
highly twisted links with more than one negative twist region satisfying
additional graphical constraints.

Furthermore, preliminary evidence from pretzel links with an arbitrary
number of tangles suggests that the approach developed in this paper may
also be used to determine Jones slopes for links for which the conditions for
being near-alternating do not hold. In other words, if D = ∂(FG) is a link
diagram where G is a 2-connected, finite, weighted planar graph without
one-edged loops with a single negative edge of weight r < 0, so that the
quantities ω and t still make sense, we expect that ω

t ≤ |r| implies that
the Jones slope is non-integral, or, it is not realized by a state surface. We
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explore this in an up-coming paper on the Slope Conjecture for Montesinos
knots [GLvdV].

Another difficulty in approaching Conjecture 1.5 is in finding surfaces
with boundary slopes equal to the Jones slopes and proving that they are
essential. In the context of the Conjecture, Theorem 1 says that jsK =
{−2c−(D)− 2r} and jxK = {c(D)− |s+(D)|+ r}. A surface realizing jsK
and jxK from Theorem 1 is a state surface corresponding to a Kauffman
state. In this case, we are fortunate that the criteria for essential spanning
surfaces by the works of Ozawa [Oza11] and Ozawa and Rubinstein [OR12]
readily apply to show that it is a Jones surface.

Definition 1.6. Given a Kauffman state σ on a link diagram D, we may
form the σ-state surface, denoted by Sσ(D), by filling in the disjoint circles
in sσ(D) with disks, and replacing each segment recording the previous
location of the crossing by a half-twisted band as shown in Figure 3.

+ −

Figure 3:

For a near-alternating knot K with ∂(FG) = a near-alternating diagram
D of K for some graph G, the surface FG is essential by [OR12, Theo-
rem 2.15] and is given by the state surface Sσ(D) where σ chooses the
−-resolution on the |r| crossings corresponding to the single edge with neg-
ative weight r in G, and the +-resolution everywhere else. This surface is
easily visualized from the knot diagram, see Figure 4 for an example.

Figure 4: The surface Sσ(D).
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Let |s+(D)| be the number of disjoint circles in s+(D). We show that
the boundary slope and Euler characteristic of this surface match with jsK
and jxK .

Theorem 2. Let K ⊂ S3 be a knot admitting a near-alternating diagram
D = ∂(FG) with a single negative twist region of weight r < 0. The surface
FG is essential with 1 boundary component with boundary slope −2c−(D)−
2r and

−χ(FG) = c(D)− |s+(D)|+ r.

To see the Jones surface S∗ ⊂ S3 \K with boundary slope p∗

q∗ matching

js∗K and χ(S∗)
|∂S∗|q∗ matching jx∗K , we use the fact that a near-alternating link

is −-adequate, see Lemma 4.3, as defined below. The notation of adequacy
is originally due to [LT88].

Definition 1.7. A link diagram D is +-adequate (resp. −-adequate) if its
all-+ (resp. all-−) state graph s+(D) (resp. s−(D)) has no one-edged loops.
A link K is semi-adequate (+-or −-adequate) if it admits a diagram that
is +-or −-adequate. If a link K admits a diagram that is both +-and −-
adequate, then we say that K is adequate.

Note that alternating links form a subset of adequate links.
Let

(4) h∗n(D) = (n− 1)2c(D) + 2(n− 1)|s−(D)|+ ω(D)(n2 − 1).

It is well known that for any link diagram D, we have hn(D) ≤ d(n),
d∗(n) ≤ h∗n(D) and the first equality is achieved when D is +-adequate,
while the second equality is achieved when D is −-adequate. This follows
from [LT88], [Lic97, Lemma 5.4], and [FKP11, FKP13]. Therefore, if K is
+-adequate (resp. −-adequate) then there is a single Jones slope in jsK
(resp. in js∗K).

If D admits a +-(resp. −-)adequate diagram, then [Oza11] implies that
the all-+ (resp. all-−) state surface is essential. An all-+ or all-− state sur-
face was shown by [FKP11, FKP13] to realize jsK , jxK , or js∗K , jx∗K , respec-
tively. We show that a near-alternating diagram is −-adequate in Lemma
4.3, so its all-− state surface realizes js∗K and jx∗K . Thus, the surface FG

and the all-− state surface of a near-alternating diagram verify the Strong
Slope Conjecture for these knots, see Corollary 4.4.
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As for the question of whether a near-alternating knot can admit a +-
adequate diagram, we show, using the Kauffman polynomial, that a near-
alternating knot cannot admit a diagram that is both +-and −-adequate.

Theorem 3. A near-alternating knot does not admit an adequate diagram.

Theorem 3 does not rule out the possibility that a near-alternating knot
admits a +-adequate diagram that is not also −-adequate. However, it seems
a very difficult problem to determine whether a knot admits a +-adequate
or −-adequate diagram, given a diagram that is not +- or −-adequate, re-
spectively. As far as the author knows, there is no characterization of semi-
adequacy that can be applied to decide if a near-alternating knot admits a
+-adequate diagram. It is an interesting question whether the colored Jones
polynomial can be used to develop such a characterization by obstructing
the existence of a +-adequate diagram for a near-alternating knot. The cri-
terion from [Lee19] may be applied if there is information restricting the
number of positive crossings in a diagram. We will pursue this question in
a future project.

Relation to almost alternating links

A diagram of a link is almost alternating if one crossing change makes the
diagram alternating. If a link admits an almost alternating diagram, then
it is said to be almost alternating. Almost alternating links forms another
interesting class of links that have nice topological and geometric properties
[ABB+92, AL17, DL18, Ito18, LS17].

Directly applying the proof of [ABB+92, Theorem 3.1] shows that near-
alternating links form a sub-class of almost alternating links. This may be
of independent interest.

Lemma 1.8. Every near-alternating link is almost alternating.

Proof. A near-alternating link admits a near-alternating diagram with a
single negative twist region. We isotope this diagram to be almost alternating
as shown in the following (local) picture. □
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wrap the strand below the diagram

≃
negative

twist
region

Figure 5: Local isotopy that turns a near-alternating diagram (left) into an
almost alternating diagram (right). The single crossing change to be made
in the resulting diagram to make it alternating is in the dashed circle on the
right. The two diagrams agree everywhere except for the portion shown.

1.4. Stable coefficients and Coarse volume

Let αi,n be the coefficient of vd(n)+4i of the reduced colored Jones polyno-

mial ĴK(v, n) := JK(v, n)/J (v, n), where J (v, n) is the nth colored Jones
polynomial of the unknot, and let α′

i,n be the coefficient of vd
∗(n)−4i, so that

α0,n, α1,n, α
′
1,n, α

′
0,n are the first, second, penultimate, and last coefficient of

ĴK(v, n), respectively.

Definition 1.9. Let i ≥ 0, the first ith coefficient (resp. last ith coefficient)
of the reduced colored Jones polynomial is stable if αi,j = αi,i+2 (resp. α

′
i,j =

α′
i,i+2) for all j ≥ i+ 2.

It is known that for an adequate knot, the first and last ith coefficients
are stable for all i ≥ 0 [Arm13]. The cases i = 0, 1, and 2 were first shown
by [Sto04, DL06]. They also gave explicit formulas for the stable coefficients
from the all-+ and all-− state graphs of an adequate diagram of a knot.
These results were used to give a two-sided volume bound for hyperbolic
alternating knots [DL07]. Futer, Kalfagianni, and Purcell used these coef-
ficients to give two-sided bounds on the volume of a hyperbolic, adequate
knot [FKP13]. These results establish that for an adequate knot that is hy-
perbolic, the stable coefficients of the colored Jones polynomial are coarsely
related to the volume as defined below.

Definition 1.10. Let f, g : Z → R+ be functions from some (infinite) set
Z to the non-negative real numbers. We say that f and g are coarsely related
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if there exist universal constants C1 ≥ 1 and C2 ≥ 0 such that

C−1
1 f(x)− C2 ≤ g(x) ≤ C1f(x) + C2 ∀x ∈ Z.

The Coarse Volume Conjecture [FKP13, Question 10.13] predicts the
existence of a function B(K) of the coefficients of the colored Jones poly-
nomial of a hyperbolic knot K, such that B(K) is coarsely related to the
hyperbolic volume vol(S3 \K). Here the infinite set Z is taken to be the set
of hyperbolic knots.

We show that a near-alternating knot has stable first, second, penulti-
mate, and last coefficients which are determined by state graphs of a near-
alternating diagram. We give a two-sided bound on the volume of a highly
twisted, near-alternating knot based on these coefficients.

Let G be a graph without one-edged loops, an edge e = (v, v′) is called
multiple if there is another edge e′ = (v, v′) in G. The reduced graph of G,
denoted by G′, is obtained from G by keeping the same vertices but replacing
each set of multiple edges between a pair of vertices v, v′ by a single edge. The
first Betti number of a graph, denoted by χ1(G), is the number v − e+ k,
where v is the number of vertices of G, e is the number of edges of G, and
k is the number of connected components of G.

Theorem 4. Let K be a link admitting a near-alternating diagram D =
∂(FG), where G is a finite 2-connected, weighted planar graph with a single
negatively-weighted edge of weight r < 0. Then

(1) the first and second coefficient, α0,n, α1,n, respectively, of the reduced

colored Jones polynomial ĴK(v, n) of a near-alternating link K are sta-
ble. The last and penultimate coefficient, α′

0,n, α
′
1,n, respectively, are also

stable.

(2) Write α = α0,n and β = α1,n, and write α′ = α′
0,n and β′ = α′

1,n for n >
3. We have |α| = 1 and |β| = χ1(sσ(D)′), where σ is the Kauffman state
giving the state surface FG and χ1(sσ(D)′) is the first Betti number
of the reduced graph of sσ(D). Similarly, we have |α′| = 1 and |β′| =
χ1(s−(D)′).

Furthermore, if the diagram D is also prime and twist-reduced with more
than 7 crossings in each twist region, then K is hyperbolic, and

.35367(|β|+ |β′| − 1) < vol(S3 \K) < 30v3(|β|+ |β′| − 2).
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Here v3 ≈ 1.0149 is the volume of a regular ideal tetrahedron. In other words,
there is a function on the stable coefficients of K which is coarsely related
to the volume of S3 \K.

The second stable coefficient β is given in terms of the Euler charac-
teristic of the state surface FG = Sσ(D) in a formula similar to those given
in [DL06, DL07] for adequate knots. Numerical experiments suggest that
more coefficients of the reduced colored Jones polynomial should be stable.
However, we do not pursue this question in this paper. For the two-sided
bound on volume, we use estimates based on the twist number of a knot dia-
gram developed in [FKP08] using the works of Adams, Agol, Lackenby, and
Thurston. For other examples of volume estimates based on link diagrams,
see [BMPW15] and [Gia15, Gia16].

Organization

In Section 2, we give a definition of the colored Jones polynomial in terms
of skein theory and summarize elementary results needed for Theorem 1,
which is proven in Section 3 by way of Theorem 5. In Section 4, we prove
Theorem 2 by computing the boundary slope and the Euler characteristic
of the surface FG. We show Theorem 3, which says that a near-alternating
knot is not adequate in Section 5. Finally, we compute stable coefficients
and give a coarse volume bound to prove Theorem 4 in Section 6.
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2. Graphical skein theory

We follow the approach of [Lic97] in defining the Temperley-Lieb algebra.
The original source of the formulas is [MV94]. Let F be an orientable surface
(with or without boundary) which has a finite (possibly empty) collection of
points specified on ∂F . A link diagram on F consists of finitely many arcs
and closed curves on F such that

• There are finitely many transverse crossings with an over-strand and
an under-strand.

• The endpoints of the arcs form a subset of the specified points on ∂F .

Two link diagrams on F are isotopic if they differ by a homeomorphism of
F isotopic to the identity. The isotopy is required to fix ∂F .

Definition 2.1. Let A be a fixed complex number. The linear skein module
S(F ) of F is the vector space of formal linear sums over C of isotopy classes
of link diagrams in F quotiented by the relations

(i) D ⊔ = (−A2 −A−2)D, and

(ii) = A−1 +A .

We consider the linear skein module S(D2, n) of the disc D2, visualized
as a square, with n points specified on its top and bottom boundary. For
D1, D2 ∈ S(D2, n), there is a natural multiplication operation D1 ·D2 de-
fined by identifying the top boundary ofD1 with the bottom boundary ofD2.
This makes S(D2, n) into an algebra TLn, called the Temperley-Lieb algebra.
The algebra TLn is generated by crossing-less matchings 1n, e

1
n, . . . , e

n−1
n of

2n points of the form shown in Figure 6.

i i+ 1

1n ein

Figure 6: An example of the identity element 1n and a generator ein of TLn

for n = 6 and i = 2.

Suppose that A4 is not a kth root of unity for k ≤ n. There is an element

n in TLn called the Jones-Wenzl idempotent, which is uniquely defined
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by the following properties. For the original reference where the idempotent
was defined and studied, see [Wen87].

(i) n · ein = ein · n = 0 for 1 ≤ i ≤ n− 1.

(ii) n − 1n belongs to the algebra generated by {e1n, e
2
n, . . . , e

n−1
n }.

(iii) n · n = n,

(iv) Let S(R) be the linear skein of the plane. The image of n in S(R)
obtained by joining the n boundary points on the top with the those
at the bottom is equal to

△n = (−1)n[n] · the empty diagram on R,

where [n] is the quantum integer defined by

[n] :=
A2(n+1) −A−2(n+1)

A2 −A−2
.

From the defining properties, the Jones-Wenzl idempotent also satisfies
a recursion relation and two other identities as indicated in Figures 7 and 8.

(5)

=
[n− 1]

[n]
n 1n+ 1 1n

n− 1

n 1
+

Figure 7: A recursive relation for the Jones-Wenzl projector.

Definition 2.2. Let D be a diagram of a link K ⊂ S3 with k components.
For each component Di for i ∈ {1, . . . , k} of D take an annulus Ai via the
blackboard framing. Let

fD : S(S1 × I)× · · · × S(S1 × I)︸ ︷︷ ︸
k times

→ S(R2),

be the map which sends a k-tuple of elements (s1, . . . , sk) to S(R2) by im-
mersing the collection of annuli containing the skeins in the plane such that
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(6)

i

i
j

=

i+ j i+ j

Figure 8: The larger projector absorbs the smaller one.

the over- and under-crossings of D are the over- and under-crossings of the
annuli.

The Kauffman bracket ⟨S⟩ of a skein element S in S(R2) is the poly-
nomial multiplying the empty diagram after reducing by the skein relation
of Definition 2.1. The nth unreduced colored Jones polynomial JK(v, n) may
be defined as

JK(v, n) := ((−1)n−1vn
2−1)ω(D)

×

〈
fD


 , , · · · ,




︸ ︷︷ ︸
k times

〉
|A=v−1 .

Note that this gives J (v, n+ 1) = (−1)n v−2(n+1)−v2(n+1)

v−2−v2 as the normal-
ization for the colored Jones polynomial of the unknot.

We will denote the skein

fD


 , , · · · ,




by Dn−1 from now on.

Let

=

a b

c

x

yz

a b

c
,

with x = a+b−c
2 , z = a+c−b

2 , and y = b+c−a
2 .
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We will use the identities indicated in Figure 9 to simplify ⟨Dn ⟩.

Definition 2.3. A triple of non-negative integers a, b, c is called admissible
if a, b, and c are even and |a− b| ≤ c ≤ a+ b.

(7)

=

∑
c : a,b,c

admissible

a b a b

c

a b

△c

θ(a,b,c)

a b

c

a b

c

=(−1)
a+b−c

2 A
a+b−c+

a2+b2−c2

2and

.

Figure 9: The fusion and untwisting formulas.

For admissible a, b, c, let θ(a, b, c) be the Kauffman bracket of the skein
shown in Figure 10.

a b c

Figure 10.

Lemma 2.4. [Lic97, Lemma 14.5]. Let △n! := △1 · △2 · · · ·△n and △0! =
1. Also let x = a+b−c

2 , z = a+c−b
2 , and y = b+c−a

2 , then θ(a, b, c) is given ex-
plicitly by the following formula.

(8) θ(a, b, c) =
△x+y+z!△x−1!△y−1!△z−1!

△y+z−1!△z+x−1!△x+y−1!
.

Let f be a rational function of A, and let deg f be the maximum degree of
a Laurent series expansion of f where the maximum power of A is bounded.
For convenience, we will list the degrees of △c and θ(a, b, c) here. They are
obtained by examining the formulas.

deg△c = 2c, and

deg θ(a, b, c) = a+ b+ c.(9)

We will be using the following lemma from [Arm13].
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Definition 2.5. Let S be a crossing-less skein in S(R) decorated by Jones-
Wenzl idempotents n, and consider the skein S obtained from S by re-
placing each of the idempotents by the identity 1n, so S consists of disjoint
circles. The skein S is called adequate if no circle in S passes through any
of the regions previously decorated by an idempotent more than once.

Lemma 2.6 ([Arm13, Lemma 4]). Let S ∈ S(R2) be a skein decorated
by Jones-Wenzl idempotents n, and S be the skein obtained by replacing
each Jones-Wenzl idempotent by the identity element 1n, then

deg⟨S⟩ ≤ deg⟨S⟩.

If S is a crossing-less skein that is adequate, then

deg⟨S⟩ = deg⟨S⟩.

We also use an additional identity from [MV94].

Lemma 2.7 ([MV94, Lemma 4]). For y ≥ 1,

(10)

x

y

z

1

x

y − 1

z

= − [x+y+z][y−1]
[x+y−1][z+y−1]

The slight difference with [MV94] in the coefficient multiplying the right-
hand side is due to our slightly different convention for the quantum integer.
Their [n] is [n− 1] in this paper.

3. Jones slopes

We prove Theorem 1 in this Section. Let Hn(D) = −hn+1(D) + ω(D)(n2 +
2n). We will only deal with the Kauffman bracket from now on with the
variable A. Theorem 1 then follows from the following theorem.

Theorem 5. If D is a near-alternating link diagram with a single negative
twist region of weight r < 0, then

(11) deg⟨Dn ⟩ = Hn(D) + 2r(n2 + n).
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3.1. Overview

Our main strategy is to find a suitable state sum for ⟨Dn ⟩ which has a

degree-dominating term. If D is near-alternating, we may simplify the sum
and disregard many of the terms whose skeins evaluate to zero. This is
done in Section 3.2. In Section 3.3, we highlight the term in the state sum
which will be shown to be degree-dominating. The most laborious step of the
proof comes from bounding the degree of a term coming from another state
σ. We do this in Section 3.4, where we characterize the crossings on which σ
chooses the −-resolution by Lemma 3.7. The reason why this gives a bound
on the degree is given by Lemma 3.4. This leads to the important corollary,
Lemma 3.10, which we can apply to the case where D is a near-alternating
diagram to bound the degree of the term in the state sum corresponding to
σ. Finally in Section 3.5 we put the estimates together to finish the proof of
Theorem 5. Upon first reading the reader may skip the proof of Lemma 3.7
to get a sense of how it is applied.

3.2. Simplifying the state sum

Let D be a near-alternating link diagram, which means that it has a single
negative twist region of weight r < 0. We fix n. Given the skein Dn , slide

the idempotents along the link strands and make copies until there are four
idempotents framing the negative twist region. See Figure 11 below.

r r

⇝

Figure 11: Framing the negative twist region with r = −3.

By the fusion and untwisting formulas (7), we may fuse the two strands
of the negative twist region and get rid of the crossings. This results in a
sum over the fusion parameter a such that the triple a, n, n is admissible.
For a fixed a consider a Kauffman state σ on the set of remaining crossings.
Applying σ results in a skein Sa

σ that is the disjoint union of a connected
component Ja

σ decorated by Jones-Wenzl idempotents with circles as shown
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in Figure 12. Let

sgn(σ) = # of crossings on which σ chooses the +-resolution

−# of crossings on which σ chooses the −-resolution.

We have

⟨Dn ⟩ =
∑

σ, a : a, n, n admissible

△a

θ(n, n, a)
((−1)n−

a

2A2n−a+n2− a2

2 )rAsgn(σ)⟨Sa
σ⟩.

(12)

To simplify notation let d(a, r) = r(2n− a+ n2 − a2

2 ), and we write

⟨Dn ⟩ =
∑

σ, a : a, n, n admissible

△a

θ(n, n, a)
(−1)rn−r a

2Ad(a,r)+sgn(σ)(13)

× ⟨Ja
σ ⊔ disjoint circles⟩.

After isotopy, we may assume that Ja
σ has the form shown in Figure 12,

since other states evaluate to 0 by the Kauffman bracket with a cup/cap
composed with an idempotent.

ac c

Figure 12: Let 0 ≤ c ≤ n, the skein Ja
σ , which is the connected component

decorated by the Jones-Wenzl idempotents is shown, where σ has 2c split
strands. The rest are disjoint circles.

Definition 3.1. We say that the Kauffman state σ has 2c split strands, if
after isotoping the connected component Ja

σ in Sa
σ to the form in Figure 12,

there are 2c split strands connecting the top and bottom pairs of Jones-
Wenzl idempotents.

To further reduce the number of terms to consider in the sum of (13),
we prove the following lemma.
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Lemma 3.2. Consider a skein S with the following local picture.

n− c

x

c c

yz

a

The skein is zero if a
2 − c > 0.

Proof. Note that y = z = n− x. If a
2 − c > 0, then n− c− x > 0, and the

skein S is not adequate since we have a circle passing through the same
idempotent twice, see Figure 13 for an example of the circle.

n− c− x

x

c c

yy

a

x

Figure 13: The circle passing through the same idempotent twice is shown
in blue.

Now if x is zero, we can slide the top two idempotents down to the
bottom one by (6) and get a cap composed with a idempotent which gives
0 for the skein. When x ̸= 0, we show by induction on x that every term in
the sum of the skein from repeatedly expanding the idempotent via (5) has
a cap composed with an idempotent after sliding by (6). Thus, every term
in the sum is zero and ⟨S⟩ is zero. Suppose x = 1, there are two idempotents
and therefore four terms in the sum from expanding via (5), see Figure 14.
This takes care of the base case: For any n, c such that n− c− 1 > 0, we
have that ⟨S⟩ = 0.

Now suppose that x = k + 1 and we have that every term in the expan-
sion of S with n− c− x > 0 evaluates to 0 by the induction hypothesis for
x = k. We expand the pair of idempotents to get the panel of four figures in
Figure 15.
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n− c− 1

c1

a

n− c− 1

c1

a

n− c− 1

c1

a

n− c− 1

c
1

a

1

n− 1

n− 1

n− 1 n− 1

n− 2

c

n− 1

n− 2

c c

n− 1 n− 1

n− 2

n− 1

n− 2

c

Figure 14: The 4 terms in the expansion of S via the recursion relation (5)
when x = 1.

n− c− x

c

a

n− c− x

c

1

a

n− c− x

c

1

a

x− 1 x− 1 x− 1

1

n− c− x

c
1

a

1

x− 1

x− 1 x− 1

n− x
n− x

n− 2

x− 1

n− 2

n− x

c c c

n− x n− x

n− 2 n− 2

c

n− xn− xn− x

Figure 15: If x = k + 1, expand and then apply the induction hypothesis
to the first 3 figures.

The first three figures clearly reduce to that of the case x = k and n−
1− c− (x− 1) > 0. We simplify the last figure by applying Lemma 2.7. This
is shown in Figure 16.

= − [2n−x−1][x−2]
[n−2]2

n− x n− x

n− c− x

c
1

a

1

x− 1 n− x

n− c− x

c

a

x− 2 n− x

1
c c

n− 2 n− 2 n− 2 n− 2

Figure 16.

If x− 2 = 0, then we are done. Otherwise, we again expand the top pair
of idempotents to get another panel of 4 figures as shown in Figure 17.
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n− c− x

c

a

x− 2n− x

x− 2

n− c− x

n− x

c

a

x− 2

x− 2

1

n− c− x

n− x

c

a

x− 2

x− 2

1

n− c− x

c

a

x− 2n− x

x− 2

1

1

1 n− 2n− 2

n− x

c

n− 3

n− 2n− 2

n− x

n− 3

n− x

n− 2 n− 2

c c c

n− 3 n− 3

n− x

Figure 17.

The first three cases reduce to the case x = k − 1 with n− 2− c− (x−
2) > 0. For the last one we repeat the step of Figure 16 using Lemma 2.7 to
keep reducing x until it is 0. Repeat with the step of expanding the top pair
of idempotents as in Figure 17 and the step of Figure 16 as needed. □

By Lemma 3.2, we have that (13) becomes

⟨Dn ⟩ =
∑

σ, a : a, n, n, admissible

△a

θ(n, n, a)
(−1)rn−r a

2Ad(a,r)+sgn(σ)(14)

× ⟨Ja
σ ⊔ disjoint circles⟩

=
∑

σ, a : a, n, n, admissible, a

2
≤c

△a

θ(n, n, a)
(−1)rn−r a

2Ad(a,r)+sgn(σ)(15)

× ⟨Ja
σ ⊔ disjoint circles⟩.

Now let

deg(σ, a) := deg

(
△a

θ(n, n, a)
(−1)rn−r a

2Ad(a,r)+sgn(σ)⟨Ja
σ ⊔ disjoint circles⟩

)
.

3.3. The degree-dominating term in the state sum

Consider the state σ+ which chooses the +-resolution at all the crossings
that remain in Dn after getting rid of the negative twist region of weight

r < 0 using the fusion and the untwisting formulas. We have that Sa
σ+

has
0 split strands and thus ⟨Ja

σ+
⟩ = 0 for all values of a except a = 0. A simple

computation using Lemma 2.6 shows

(16) deg(σ+, 0) = Hn(D) + 2r(n2 + n).
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The strategy to prove Theorem 5 is then to show that

(17) deg(σ, a) < deg(σ+, 0)

for any other Kauffman state σ and a contributing to the state sum.
Given a and σ with 2c split strands such that a

2 ≤ c, the skein Ja
σ is

adequate, and thus by Lemma 2.6 and (9),

(18) deg(σ, a) = a− 2n+ d(a, r) + sgn(σ) + deg⟨Sa
σ⟩,

where Sa
σ is the skein obtained from Sa

σ by replacing all the idempotents with
the identity. From this we can see that if a

2 < c then Sa
σ has fewer circles

than S2c
σ , thus

deg(σ, a) < deg(σ, 2c),

and we may assume that a
2 = c, see Figure 18.

a cc

n− c

a
2

a
2

c− a
2

n− c

n− c

a
2

a
2

a
2 c− a

2

n− c
Ja
σ , where

a
2 ≤ c Ja

σ

a
2

Figure 18.

In order to compare deg(σ, 2c) with deg(σ+, 0), we use the concept of a
sequence of states.

3.4. Crossings on which a state σ ̸= σ+ chooses the −-resolution

In this section we characterize the set of crossings on which a state σ ̸=
σ+ with 2c > 0 split strands chooses the −-resolution. We describe this by
studying sequences of states from σ+ to σ. The terminology of a sequence
of states appears in [Lic97].

Definition 3.3. A sequence s of states starting at σ1 and ending at σf on
a set of crossings in a skein S ∈ S(R) is a finite sequence of Kauffman states
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σ1, . . . , σf , where σi and σi+1 differ on the choice of the +-or −-resolution
at only one crossing x, so that σi chooses the +-resolution and σi+1 chooses
the −-resolution at x.

Let s = {σ1, . . . , σf} be a sequence of states starting at σ1 and ending
at σf . Choosing the −-resolution at a crossing corresponds to locally

replacing by in the state graph. In each application from σi to σi+1

either two circles of Sσi
merge into one or a circle of Sσi

splits into two. When
two circles merge into one as the result of changing the +-resolution to the
−-resolution, the number of circles of the skein decreases by 1 while the sign
of the state decreases by 2. More precisely, let Sσ be the skein resulting from
applying the Kauffman state σ, we have

sgn(σi+1) + deg⟨Sσi+1
⟩ = sgn(σi) + deg⟨Sσi

⟩ − 4,

when a pair of circles merges from σi to σi+1.
When a pair of circle is split from σi to σi+1 in the sequence, we get

instead

sgn(σi+1) + deg⟨Sσi+1
⟩ = sgn(σi) + deg⟨Sσi

⟩.

The above reasoning gives the following lemma which allows us to bound
the degree sgn(σf ) + deg⟨Sσf

⟩ from applying a Kauffman state σf to the
crossings of a skein S, by considering the number of pairs of circles that are
merged in a sequence of states from σ1 = σ+ to σf .

Lemma 3.4. Let S be a skein with crossings and s = {σ1, . . . , σf} be a
sequence of Kauffman states on the crossings of S. If g is the number of
pairs (σi, σi+1) in s such that σi+1 merges a pair of circles in σi, then

(19) sgn(σf ) + deg⟨Sσf
⟩ = sgn(σ1) + deg⟨Sσ1

⟩ − 4g.

We use this to obtain an upper bound of deg(σ, 2c) by considering a
sequence starting at σ+ and ending at σ. We use the technical concept of
the flow of a Kauffman state through a set of crossings.

Definition 3.5. Let x be a crossing and xn be the n-cable. Represent xn so
that it is a skein in S(D2, 2n) and oriented as in the first figure of Figure 19.
Consider a Kauffman state σ on xn, and denote the skein resulting from
applying σ to xn by xnσ. We say that σ has 2k strands flowing through the
crossing x if xnσ has 2k arcs connecting 2k points on the top and the bottom.
See Figure 19 for an example.
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Note that since 2n is even, there is always an even number of through
strands.

All-+ σ

n = 3 n = 3

xn

Figure 19: Left: The 3-cabled crossing x3. Middle: the all-+ state has 0
strands flowing through x. Right: a Kauffman state σ here has 2 strands
flowing through x.

Remark 3.6. This is not a new concept. Works involving the Temperley-
Lieb algebra have defined for an arbitrary crossing-less element of TLm,n

(the algebra of skeins in a disk with m points on top and n points on the
bottom) the quantity which counts the number of strands that connect k
points from the top to k points on the bottom and called this quantity
different names. For example, see [Hog19] where the quantity is called the
through-degree, and [Roz14], where the quantity is called the width-deficit.
As far as the author is aware there does not seem to be standard terminology
for this quantity. The focus in this paper with Definition 3.5 is on the skeins
from Kauffman states on a set of n2 crossings, cabled from a single crossing.

Notation and convention for graphical representation

The following technical lemma, Lemma 3.7, allows us to understand a se-
quence s from σ+ to σ, if σ flows through a crossing with a certain number of
strands. We essentially characterize the set of crossings on which σ chooses
the −-resolution. It is necessary to first establish some notations and labeling
conventions.

Firstly, we orient the disk D2 with 2n points on the top and bottom
containing an n-cabled crossing xn as shown in Figure 20 and identify it with
[−1, 1]× [−1, 1]. Let U1, . . . , Un be the set of arcs between the 2n points in
the top half of the disk, innermost first, from applying the all-+ state on
the set of crossings xn. Similarly we have the lower arcs L1, . . . , Ln. The
arcs cut up the disk into regions containing segments, which correspond
to crossings in xn before taking the all-+ resolution. Let Cu

i be the set of
crossings whose corresponding segments in the all-+ state are between Ui

and Ui+1. Similarly, we have Cℓ
i , and the set of crossings corresponding to



✐

✐

“7-Lee” — 2023/1/9 — 0:45 — page 917 — #27
✐

✐

✐

✐

✐

✐

Jones slopes and coarse volume of near-alternating knots 917

edges between Un and Ln is denoted by Cu
n = Cℓ

n. See Figure 20 for an
illustration of these markings.

n n

xn

U3

L3

U1

L1

Cu
3 = Cℓ

3

C
u

2

C
ℓ

1

C
u

1

C
ℓ

2

n n

Left Right

Figure 20: We indicate the division of the crossings into subsets deliminted
by the regions and the orientation on the square.

We will represent a Kauffman state σ on xn, xnσ, by taking the all-+ state
of xn. Recall that this consists of the all-+ state circles and edges (dashed
segments) corresponding to taking the +-resolution at every crossing. We
make the following modification in order to represent an arbitrary Kauffman
state σ on xn:

1) If σ chooses the −-resolution at a crossing, replace the corresponding
segment in the all-+ state by a solid red edge.

2) Remove all other edges from the state.

This representation will allow us to consider intersections of arcs in the
disk D2 with xnσ. In particular, in this graphical representation of the Kauff-
man state σ consisting of black arcs and red edges, intersection of an arc with
a black arc counts as one intersection with the skein, and an intersection of
an arc with a red edge counts as two.
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↔

Figure 21: The correspondence of a red edge with a Kauffman state choosing
the −-resolution at a crossing corresponding to the red edge.

The graphical representation of σ The actual skein xnσ

Figure 22: The picture shows an example of how one can recover the skein
resulting from the application of a Kauffman state σ from a representation
of black arcs and red edges. Note how the intersection of the blue arc with
the red edge counts as two intersections of the blue arc with the skein xnσ.

With the orientation on the disk D2 shown as a square, it should be
clear what we mean by an edge being on the left/right of another edge. This
also explains what it means for a crossing in xn to be on the left/right of
another crossing. We will frequently not distinguish between a crossing and
its corresponding edge in the all-+ state whenever we are merely concerned
with their relative positions.

Lemma 3.7. Let S be a skein with crossings, but without Jones-Wenzl
idempotents, σ be a Kauffman state on S, and let xn be an n-cabled crossing
contained in S, with xnσ the result of applying σ to the crossings in xn.

(a) If σ has 2k strands flowing through x, then σ chooses the −-resolution
on a set of k2 crossings Cσ of xn, where Cσ = ∪n

i=n−k+1(ui ∪ ℓi) is a

union of crossings ui ⊆ Cu
i and ℓi ⊆ Cℓ

i , such that
• ui, ℓi each has k − n+ i crossings for n− k + 1 ≤ i ≤ n.
• For each n− k + 2 ≤ i ≤ n, and a pair of crossings c, c′ in ui (resp.
ℓi) whose corresponding red edges in the all-+ state of xn are adja-
cent, there is a crossing c′′ in ui−1 (resp. ℓi−1), where the end of the
red edge corresponding to c′′ on Ui (resp. Li) lies between the ends of
c and c′.
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(b) Consider a sequence s = {σ+, . . . , σf = σ} of Kauffman states on the
crossings of S and let xn be a set of n-cabled crossings in S. Let σ+ be
the Kauffman state which chooses the +-resolution at every crossing in
xn, but agrees with σ on all other crossings of S. Suppose that in Sσ+

,
the n arcs joining the top 2n points belong to n circles disjoint from
the n arcs joining the bottom 2n points, which also belong to n disjoint
circles. Let σ flow through x with 2k through strands. Then sequence s
contains a subsequence σ+, . . . , σ

′
f with length k2 such that Sσ′

f
has n

fewer circles than Sσ+
.

As an example, if n = 3 and σ flows through a crossing x with 4 strands,
then σ chooses the −-resolution on a subset of crossings of xn of the form as
shown in Figure 23. There may be other crossings on which σ chooses the
−-resolution, but the claim is that there must be a subset of crossings on
which σ chooses the −-resolution of the form as described in Lemma 3.7.

n = 3

xn

n = 3 n = 3

xn

n = 3n = 3

xnσ

Figure 23: A subset of crossings on which σ chooses the −-resolution sat-
isfying the conditions of Lemma 3.7 is marked red in the second figure from
the left.

In Cσ = ∪3
2(ui ∪ ℓi), we have that u3 = ℓ3 contains 2 crossings and u2, ℓ2

each contains 1 crossing. The red edge in the all-+ state of xn corresponding
to the crossing in u2 has an end on U3 between the ends of the red edges
corresponding to the two crossings in u3. The same is true of the edge
corresponding to the crossing in ℓ2. The total number of crossings in Cσ is
then = 4 = 22, which makes the total number of crossings of xn on which σ
chooses the −-resolution to be ≥ 4.

Proof of (a). For a Kauffman state σ which has 2k strands flowing
through a crossing x, we first show that there are k2 crossings on which
σ chooses the −-resolution. If we draw a line from the left end of the square
to the right end, it must have ≥ 2k intersections with the curves of the
skein resulting from applying the state. Isotope link strands so that the
set of crossings Cℓ

i for 1 ≤ i < n is between the horizontal lines at height
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h = −n−i
n and h = −n−i+1

n (Recall that we identify the disk containing xn

with [−1, 1]× [−1, 1]). Similarly, isotope link strands so that the set of cross-
ings Cu

i for 1 ≤ i < n is between the horizontal lines at height h = n−i
n and

h = n−i+1
n . Now we isotope the crossings of Cu

n = Cℓ
n so that it is between

h = − 1
n and h = 1

n , see Figure 24.
Beginning with the set of crossings Cu

n = Cℓ
n, we see that σ must choose

the −-resolution on k crossings, since the horizontal line H at h = 0 must
intersect the resulting skein at least 2k times. Now isotope H so that it
enters and exits the region containing the crossings in Cu

n−1. Then for Cu
n−1,

σ must choose the −-resolution on a set of k − 1 crossings in 1
n < h < 2

n ,
since a pair of vertical lines provides 2 intersections with H between the
two heights bounding the set of crossings in Cu

n−1. We repeat this argument
for Cu

i for n− k + 1 ≤ i ≤ n− 1, isotoping H to enter and exit the region
bounding crossings of Cu

i each time and noting that H would already have
2(n− i) intersections with the strands of the skein. Then for each i, σ must
choose the −-resolution on k − (n− i) crossings in Cu

i .

h = 1
n

h = − 1
n

h = 2
n

H

h = 1
n

h = − 1
n

h = 2
n

H

Figure 24: The horizontal regions containing the crossings, the horizontal
line H (in blue) and the isotopies are shown for Cu

n and Cu
n−1.

The same argument works by symmetry when we consider lines inter-
secting the lower crossings Cℓ

i . Taking the sum over n− k + 1 ≤ i ≤ n, the
total number of these crossings on which σ has to choose the −-resolution
is

k + 2

k−1∑

i=1

i = k2.

For the second part of (a) which specifies the structure of Cσ, we first
prove that we can find a set of crossings C ′

σ of xn on which σ chooses the
−-resolution, where C ′

σ = ∪n
i=n−k+1(u

′
i ∪ ℓ′i) is a union of crossings u′i ⊆ Cu

i

and ℓ′i ⊆ Cℓ
i , such that

* u′i, ℓ
′
i each has two crossings for n− k + 1 < i < n, and one crossing for

i = n− k + 1. When i = n and k = 1, then u′n = ℓ′n has one crossing.
Otherwise, u′n = ℓ′n and it has two crossings.
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* The two crossings in u′n = ℓ′n are furtherest possible in the sense that
the two segments corresponding to the crossings in the all-+ state are
furtherest possible. i.e., every segment corresponding to a crossing in
Cu
n = Cℓ

n on which σ chooses the −-resolution lies between.

* For each n− k + 1 ≤ i < n, the end(s) of the segment(s) corresponding
to the crossing(s) in u′i (resp. ℓ

′
i) on Ui+1 (resp. Li+1) lie(s) between

the two segments corresponding to the crossings in u′i+1 (resp. ℓ′i+1).
If there are two crossings in u′i (resp. ℓ

′
i), then they are the furtherest

possible satisfying this condition.

See Figure 25 for an illustration of these requirements.

Figure 25: The red edges correspond to the crossings in C ′
σ.

Proof. For i = n, we know that a horizontal line H in D has to intersect with
xnσ in at least 2k points. Therefore, the number of crossings in Cu

n = Cℓ
n on

which σ chooses the −-resolution is at least k, and we may take the two
furtherest crossings for the set u′n = ℓ′n. (There is nothing to prove if k = 1,
because then we can just take one crossing for u′n = ℓ′n and we have the
set C ′

σ, which will also satisfy the conditions for Cσ.) For i = n− 1, n−
2, . . . n− k + 1, if there are not two crossings in Cu

i for which the ends of the
corresponding segments on Ui+1 lie between the segments from the crossings
of u′i+1, then we can isotope H such that it has fewer than 2k intersections
with the skein xnσ, see Figure 26 below.
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C u
i+
1

C u
i

H

Figure 26: The red segments correspond to the crossings in C ′
σ. If all the

red edges in Cu
i lie outside of the two red segments in Cu

i+1, then we can
draw the blue arc as shown to have only two intersections with xnσ while
entering and exiting the region between Ui and Ui+1 containing Cu

i .

We argue by assuming that u′i+1 is already inductively constructed, and
we would like to pick a set of crossings in Cn

i to construct u′i. Assuming
that there are no crossings in Cu

i on which σ chooses the −-resolution, and
whose corresponding segments lie between those of the crossings in u′i+1,
Figure 26 shows an isotopy that will result in fewer than 2k intersections
between H and xnσ. For i ≥ n− k + 2, there has to be at least 4 intersections
of H with xnσ in the region between Ui and Ui+1, since H will have at
most 2(n− i) intersections before entering/exiting. This gives at least two
crossings in Cu

i on which σ chooses the −-resolution whose corresponding
segments are between those of u′i+1 . If i = n− k + 1 then we require at least
two intersections, hence the single crossing that we can pick for u′n−k+1. The
argument for constructing ℓ′i is completely symmetric.

□

To complete the rest of the proof of (a), we add crossings to C ′
σ induc-

tively to get a set Cσ which satisfies the remaining requirements. Let |u′i|
and |ℓ′i| denote the number of crossings in u′i and ℓ′i, respectively. Let u′i
(resp. ℓ′i) be such that |u′i| ≥ 2 (resp. |ℓ′i| ≥ 2). Dividing the disc in half with
a vertical line 0× h, we label the crossings in u′i (resp. ℓ

′
i)to the left of the

vertical line by − and the crossings to the right of the vertical line by +,
so −x denotes a left crossing and −u′i (resp. −ℓ′i) denotes the entire set of
crossings in u′i (resp. ℓ

′
i) to the left of the vertical line.
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Algorithm for constructing Cσ

We start with the constructed set C ′
σ that satisfies the three conditions

marked by *.

1) Consider the difference k − |u′n|, if this difference is 0 then terminate.
C ′
σ is already a set of edges which satisfies the assumptions of part (a)

of the lemma. Set Cσ = C ′
σ.

2) Otherwise, for i = n, n− 1 . . ., n− k + 1, set C = k − n+ i− |u′i|. We
assume inductively that C ′

σ satisfies the following for n− k + 1 ≤ i ≤
n:
(i) An edge in −u′i with two edges above and below to the left of it,

is the leftmost possible for all edges to the right of the two edges.
Similarly, An edge in +u′i with two edges above and below to the
right of it, is the rightmost possible for all edges to the left of the
two edges. We assume the same with u′i replaced by ℓ′i.

(ii) Let ±p be the midpoint of an edge whose corresponding crossing,
say ±x, is in ±u′i , then there are two arcs H±, where H− starts
at (-1, 0) and ends at −p, and H+ starts at p and ends at (1, 0),
such that the numbers of intersections of H+ and H− with xnσ
are given by (not counting the intersections with −p and p):

If x ∈ −u′i, |H
− ∩ xσ| = 2

(
# of crossings to the left of −x in u′i

)
+ (n− i).

(20)

If x ∈ +u′i, |H
+ ∩ xσ| = 2

(
# of crossings to the right of +x in u′i

)
+ (n− i).

(21)

That these assumptions are valid through every iteration of i follows
from Lemma 3.8. Before we prove the lemma, we proceed with the
algorithm with those assumptions.

If C = 1: Let −x be the rightmost edge in −u′i. There is an edge x′ in C ′
σ

above in u′i−1 and another edge x′′ below it in u′i+1, both to the
right of −x. There are only a few possibilities for the edges in Cu

i

on which σ chooses the −-resolution (shown in red) to the right of
−x, whose ends on Ui and Ui+1 are not to the right of both x′ and
x′′, respectively. They are shown as slanted dashed edges in Figure
27.
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or−x

x′

x′′

−x

x′

x′′

Cu
i Cu

i

Figure 27: The thickened dashed edges indicate possible multiple edges.

Let −p be the midpoint of −x and −p′ be a point between U i and
U i+1 immediately to the right of both x′ and x′′ and to the left
of any crossings in Cu

i on which σ chooses the −-resolution to the
right of both x′ and x′′. Either we can draw an arc from the left
of −p to −p′ that only has 2 intersections with xnσ, see Figure 28,
or, there are two choices for the existence of a red edge y in either
Cu
i+1 or Cu

i−1. This is shown in Figure 29.

or−p
−p′ −p′

−p

x′

x′′

x′

x′′

Cu
i Cu

i

Figure 28: The point −p is marked with a red dot and the point −p′ is
marked with a black dot.

−p −p′
−p1 −p′1y −p −p′

−p1 −p′1
y

or
Cu
i

Cu
i+1

Cu
i

Cu
i−1

Figure 29: The edges y for both of these cases prevent the arcs as in Fig-
ure 28 from being drawn without two more intersections with xnσ.

Without loss of generality we will just assume that it is in Cu
i−1

where we have the edge y, and we consider the rightmost such
edge. Now we consider −x1 which is the nearest edge in u′i−1 to
the left of y. Let −p1 be the midpoint of −x1 and −p′1 be the point
between y and the nearest edge −z1 = x′ in u′i−1 to the right of
y. Again, we see if we can draw an arc from the left of p1 to p′1
that only has 2 intersections with Ui−1. If not, there exists another
red edge y1 which obstructs this. We repeat the same steps with
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y1 to obtain a necessarily finite sequence of edges y, y1, . . . , ym. For
ym we draw an arc from the left of −pm to −p′m that has only 2
intersections with xnσ. Then, we connect −p′j with −p′j−1 for each j
with an arc that is parallel to the rest of yj ’s and to the left of the
−zj ’s, see Figure 30 below.

or

−pm−1 −p′m−1

ym−x1−pm
−p′m

ym−1

−p′m−1−pm−1

−pm ym−xm −pm

ym−1

−zm

−zm − 1

−zm

Figure 30: We extend to −p′m−1 the arc going from −pm to −p′m by another
arc parallel to ym−1.

There is only a single intersection of the arc between −p′j and −p′j−1

with xnσ because of assumption (i). Putting all these arcs together,
we get an arc from −p′m to −p′ that has m intersections with xnσ.
Now

# of edges in u′i−j to the left of −pj(22)

= (# of edges in u′i to the left of −p)−m.

Using assumption (ii) on −pm, we get an arc H− from (−1, 0) to
−p′ with the number of intersections with xnσ as follows. The arc
H− = H−

1 ∪H−
2 is the union of two arcs: The arc H−

1 from (−1, 0)
just to the left of −pm, and the arc H−

2 from −pm to −p′. Their
intersections with xnσ are respectively given by using (20).

|H−
1 ∩ xnσ| = 2

(
# of crossings to the left of −xm in u′i−m

)
+ n− (i−m),

and |H−
2 ∩ xnσ| = m, based on the preceding discussion.

Taking the intersections of H−
1 and H−

2 together, the number of
intersections between H− and xnσ is

|H− ∩ xnσ| = 2
(
# of crossings to the left of −x′ in u′i

)
+ n− i.

Similarly, with the same argument replacing − with +, “right”
with “left,” and “left” with “right”, we can get another arc H+

from (1, 0) to +p′ that has the number of intersections with xnσ
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given by

|H+ ∩ xnσ| = 2
(
# of crossings to the right of +p′ in u′i

)
+ n− i.

Now consider the straight line segment L from −p′ to +p′. If σ
does not choose the −-resolutoin on any crossing in Cu

i between
−p′ and +p′, then we get an arc H ′′ = H− ∪ L ∪H+ that has ≤
2(k − 1) < 2k intersections with xnσ, which is a contradiction. We
add this crossing to u′i and move on to the next i in the iteration.

If C > 1: This is similar to the case when C = 1. The arguments are the same
except that at the last stage we can add a furtherest pair of edges,
each marked with − and + for left and right, to u′i. After this we
move onto the next i in the iteration.

3) We repeat from Step (1) until k − |u′n| = 0.

Running the same algorithm for ℓ′n with the obvious adjustment by sym-
metry gives us Cσ.

Lemma 3.8. Every iteration of C ′
σ through the algorithm satisfies condi-

tions (i) and (ii).

Proof. For the first iteration of C ′
σ, condition (i) is vacuously true. For a

crossing in −u′i, the arc as shown satisfies condition (ii). The same arc by
reflection also works for a crossing in +u′i.

h = 0

p

Figure 31: There are no other intersections of the blue arc with xnσ other
than those shown because the initial construction of C ′

σ requires that each
pair in u′ are the furtherest possible, one of the conditions marked by ∗.

For each subsequent iteration of C ′
σ, the edges added are specifically

chosen to satisfy both (i) and (ii). □

Proof of (b). This is immediate by considering the sequence of states
σ1 = σ+, σ2, . . . , σ

′
f , . . . , σf = σ where the first part of the sequence from σ+

to σ′
f comes from changing the resolution from + to − on the set of k2

crossings with structure as described in part (a), and counting the number
of circles in σ′

f . □
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σ′
f Sσ1=σ+

Sσ2
Sσ3

Sσ4=σ′

f

Figure 32: In this example, n = 3 and we show σ′
f as well as the skeins of a

sequence of states from σ+ to σ′
f . The number of through strands here is 4,

thus k = 2 and we change the resolutions on 22 = 4 crossings, resulting in a
sequence of length 4.

Definition 3.9. Let D be a link diagram and G be a 2-connected, weighted
planar graph such that D = ∂(FG). For a positively-weighted edge ϵ of G
corresponding to a maximal positive twist region T in D = ∂(FG), orient the
n-cabled twist region Tn as an element in S(D2, 2n), so that all the crossings
are as in Figure 23. We say that a Kauffman state σ in the state sum of (13)
on Dn flows through ϵ with 2k strands if the skein in S(D2, 2n) resulting

from applying σ to the n-cabled twist region Tn has 2k arcs connecting 2k
points on the top and the bottom.

An immediate consequence of Lemma 3.7 is the following.

Lemma 3.10. Let D be a link diagram and G be a 2-connected, weighted
planar graph such that D = ∂(FG). Let ϵ = (v, v′) be an edge in G corre-
sponding to a maximal positive twist region with ω ≥ 2 crossings, and σ is
a Kauffman state from the state sum of (13) on Dn that flows through ϵ

with 2k strands. Let σ+ be the Kauffman state that chooses the +-resolution
all the crossings in Tn but agrees with σ everywhere else. Then the sequence
of states from σ+ to σf contains a subsequence σ+, . . . , σ

′
f of length ωk2 and

Sσ′

f
has (ω − 2)k fewer circles than Sσ+

.

Proof. If σ flows through the edge ϵ with 2k strands than it flows through
every crossing in T represented by ϵ with at least 2k strands. We apply
Lemma 3.7(a) and add up the number of crossings on which σ chooses the
−-resolution over each xn for a crossing x ∈ T . This gives that σ chooses the
−-resolution on at least ωk2 crossings. In a twist region with ω crossings we
have that in the all-+ state on Tn there are (ω − 1) sets of n disjoint circles.
Thus we can apply part (b) of Lemma 3.7 ω − 2 times. □
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3.5. Proof of Theorem 5

Now we complete the proof of Theorem 5. Recall that from Section 3.2 we
have

⟨Dn ⟩ =
∑

σ, a : a, n, n, admissible , a

2
≤c

△a

θ(a, n, n)
(−1)rn−r a

2Ad(a,r)+sgn(σ)

× ⟨Ja
σ ⊔ disjoint circles⟩,

and we would like to show that

deg(σ, a) < deg(σ+, 0),

where deg(σ+, 0) = Hn(D) + 2r(n2 + n), and deg(σ, a) is the maximum de-
gree of a term indexed by σ, a in the state sum of ⟨Dn ⟩. Recall also that

2c is the number of split strands of σ and that by (18), we need only to
consider states σ with parameter a such that a

2 = c.
If σ is a state with a = c = 0 that is not the all-+ state, then it must

choose the −-resolution at a crossing in a positive maximal twist region,
which will merge at least one pair of circles compared to the all-+ state.
Hence, a sequence s from σ+ to σ for a = 0 contains at least one pair of
states that merges a pair of circles. This implies that

deg(σ, 0) ≤ deg(σ+, 0)− 4,

so

deg(σ, 0) < deg(σ+, 0).

If σ is a state with c > 0, then the skein Ja
σ can be decomposed along

a square (D2, 2n) with 2n points marked above and below, containing the
Jones-Wenzl idempotents as shown in the following figure, so that we get
two skeins S1 and S2 in S(D2, 2n).

Now in S2 with σ applied we have at least 2c strands connecting the 2c
points at the top to the 2c points at the bottom on the boundary of the disk
D2.

LetD = ∂(FG) be a near-alternating link diagram andG \ e be the graph
obtained from G by deleting the single edge e = (v, v′) of negative weight r.
Let t be the total number of paths W1, . . . ,Wt from v to v′ in G \ e. Let 2ki
be the number of strands with which the state σ flows through a path Wi

for 1 ≤ i ≤ t, see Figure 34 for an example.
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S2

S1

n

Figure 33: The link diagram is obtained by composing two skeins in
S(D2, 2n). The skein S1 is enclosed by the square and the skein S2 is outside
of it.

We have
t∑

i=1

2ki ≥ 2c.

Without loss of generality we may assume

t∑

i=1

2ki = 2c,

since if
∑t

i=1 2ki > 2c for a state σ, then deg(σ, 2c) < deg(σ′, 2c) for another
state σ′ for which

∑t
i=1 2k

′
i = 2c.

We can construct a sequence s from σ+ to σ by changing the resolution
from +-to −- on the set of crossings xn for each crossing x in a maximal
positive twist region, beginning with the crossings in the twist regions in
W1, then W2, and so on until Wt. For each walk Wi with 2ki strands flowing
through we apply Lemma 3.10 to estimate deg(σ, 2c) relative to deg(σ+, 0).

Let

deg(σ+, 2c)

:= deg

(
△2c

θ(n, n, 2c)
(−1)rn−rcAd(2c,r)+sgn(σ+)⟨J2c

σ+
⊔ disjoint circles⟩

)
.
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n = 3
3

G

v

v′

W1 W2

W3

W4

a

e

Figure 34: There are four paths W1,W2,W3, and W4 from v to v′ in G \ e
in this example, where W1 and W2 share an edge. A skein Sa

σ is shown with
its connected component Ja

σ and disjoint circles with 6 split strands. The
state σ flows through path W1 with 2 strands, W2 with 2 strands, W3 with
0 strands, and W4 with 2 strands.

For each edge ϵ of a path Wi, σ flows through it with at least 2ki strands.
Thus, we can find a subsequence σ1, . . . , σf in a sequence from σ+ to σ
corresponding to changing the resolutions on the crossings in the n-cabled
twist region Tn

ϵ for this edge, that is of length ωϵk
2
i and with the skein

Sσf
having (ωϵ − 2)ki fewer circles than σ1. Recall that ωϵ is the number of

crossings in the twist region corresponding to ϵ. This implies a decrease of
degree by at least

−2ωϵk
2
i − 2(ωϵ − 2)ki.

We sum over all the edges in Wi to get the total amount of decrease in
degree for this path. Moving on to the next path for the sequence, it may
happen that multiple paths Wi1 , . . . ,Wip share the same edge, but then the
decrease in degree from this single edge would be

−2ωϵ




p∑

j=1

kij




2

− 2(ωϵ − 2)

p∑

j=1

kij ≤ −2ωϵ

p∑

j=1

k2ij − 2(ωϵ − 2)

p∑

j=1

kij .
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Thus without loss of generality, we may assume that none of the paths
share edges and sum the decrease in degree over the edges of each path to
get

deg(σ, 2c) ≤ deg(σ+, 2c)−

(
t∑

i=1

(ω − 2)(2k2i + 2ki) + 4k2i

)
(23)

where ω = min1≤i≤t {ℓ(Wi)}. Recall ℓ(Wi) is the length of a path defined by
(1). We get

deg(σ, 2c) ≤ deg(σ+, 0)−

(
t∑

i=1

(ω − 2)(2k2i + 2ki) + 4k2i

)
(24)

− 2c2r − 2cr.

Since
∑t

i=1 2ki = 2c, the ki’s form a partition of c. The following lemma
shows that we may replace it by a minimal partition.

Definition 3.11. Let P = {n1, . . . , nt} be a nonnegative integer partition
of n where the ni’s may be zero, so n = n1 + · · ·+ nt. We say that a partition
of n into t parts is a minimal partition, denoted by Pm, if it has the minimal
m = max1≤i≤t ni out of all partitions of n into t parts.

Lemma 3.12. Fix n and t. A minimal partition Pm = {m1, . . . ,mt} of n
into t parts is unique up to rearrangement of indices. If P = {n1, . . . nt} is
another partition of n into t parts, then

t∑

i=1

m2
i ≤

t∑

i=1

n2
i .

Proof. A minimal partition Pm may be constructed as follows. If n ≤ t then
the partition has m1 = m2 = · · · = mn = 1 and mn+1 = mn+2 = · · ·mt = 0.
If n > t, let j = n (mod t). The partition Pm has m1 = m2 = · · · = mj =
⌊n/t⌋+ 1 and mj+1 = mj+2 = · · · = mt = ⌊n/t⌋. The partition is minimal,
since we may obtain any other partition of n into t parts from Pm by sub-
tracting 1’s from a non-zero summand and adding 1 to any other. Similarly,
it is unique up to rearrangement.

For the statement that
∑t

i=1m
2
i ≤

∑t
i=1 n

2
i , there is nothing to prove if

P = Pm. Let m′ = max1≤i≤t ni and m = max1≤i≤tmi. Since Pm is minimal
and unique up to rearrangement we can assume that m′ > m, m′ = n1 in
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P , and m = m1 in Pm. Suppose m′ = m+ k for some integer k > 0. This
means that we may write

P = {m1 + k,m2 − k2, . . . ,mt − kt},

where k2, . . . , kt ≥ 0 and k = k2 + · · ·+ kt. Now we have

t∑

i=1

n2
i = (m1 + k)2 + (m2 − k2)

2 + · · ·+ (mk − kt)
2

=

(
t∑

i=1

m2
i

)
+ 2m1k + k2 +

t∑

i=2

(−2miki + k2i ).

Thus

2m1k + k2 +

t∑

i=2

(−2miki + k2i ) ≥ 2m1k + k2 − 2m1k +

t∑

i=2

(ki)
2 ≥ 0.

This concludes the proof of the lemma. □

Finally, replacing {ki} by a minimal partition Pm = {m1, . . . ,mt} using
Lemma 3.12, we have

deg(σ, 2c) ≤ deg(σ+, 0)−

(
t∑

i=1

(ω − 2)(2m2
i + 2mi) + 4m2

i

)
(25)

−
(
2c2r + 2cr

)
.

If |r| < ω
t with |r| ≥ 2 and t > 2, then the difference

(26) −

(
t∑

i=1

(ω − 2)(2m2
i + 2mi) + 4m2

i

)
−
(
2c2r + 2cr

)

is negative, so

deg(σ, 2c) < deg(σ+, 0)

for every other Kauffman state σ with 2c > 0 split strands. Since we also
know this inequality for σ with 2c = 0 split strands, this shows that
deg⟨Dn ⟩ = deg(σ+, 0) and finishes the proof of the theorem.
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4. Boundary slope and Euler characteristic

In this section, we prove Theorem 2 and verify that there exists an essen-
tial spanning surface which realizes the Jones slope jsK = {−2c−(D)− 2r}
and the quantity jxK = {c(D)− |s+(D)|+ r} of a near-alternating link K
determined in Section 3. Let D be a near-alternating diagram with surface
FG, such that D = ∂(FG) for a 2-connected, weighted planar graph G as in
Definition 1.1, is called a pretzel surface. It is shown to be essential under
certain conditions on the graph G in [OR12].

Theorem 6. [OR12, Theorem 2.15] Let G be a 2-connected planar graph
in S2 with edges e1, . . . , en having weights ω1, . . . , ωn ∈ Z.

1) If |ωi| ≥ 3 for all i, then the surface FG is essential.

2) If ω1 ≤ −2 and ωi ≥ 2 for i = 2, . . . , n, and the surface FG is not es-
sential, then G has an edge, say e2, that is parallel to e1 (i.e., e2 is
another edge on the same pair of vertices as e1) such that ω1 = −2
and ω2 = 2 or 3.

Remark 4.1. Note that the original wording of the theorem in [OR12]
says “algebraically incompressible and boundary incompressible” instead of
“essential.”

The surface FG is clearly also a state surface from the state that chooses
the −-resolution on all the crossings in the single negative twist region of
D, and the +-resolution on all the rest of the crossings. A formula for the
boundary slope of a state surface for a knot is given by the following lemma.

Lemma 4.2 ([FKP13]). Let D be a diagram of an oriented knot K, and
let σ be a Kauffman state of D. Then the state surface Sσ(D) has as its
boundary slope

2c−+(σ)− 2c+−(σ),

where c−+(σ) is the number of positive crossings where the −-resolution is
chosen, and c+−(σ) is the number of negative crossings where the +-resolution
is chosen.

If K is a near-alternating knot, we can apply Theorem 6 to show that FG

is an essential surface for K. If the maximal negative twist region of weight
r < 0 in a near-alternating diagram D of K has r = −2, the only way the
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surface FG is not essential via condition (2) of Theorem 6, is if G has an
edge e2, that is parallel to e1 corresponding to the negative twist region,
such that e2 has weight 2 or 3. However, the condition on the diagram being
near-alternating implies that if an edge is parallel to e1, then it must have
more than 6 crossings, since it would give a path in G \ e1 between v and v′

where e1 = (v, v′), and we require that the length of such a path be greater
than 2t, where t is the total number of paths, while t > 2.

We verify that FG is indeed a Jones surface realizing the Jones slope
jsK and jxK from Theorem 1 by computing its boundary slope and Euler
characteristic using Lemma 4.2.

Boundary slope. A pretzel surface comes from the state σ which chooses
the −-resolution at each crossing in the negative twist region of the near-
alternating diagram D, and this is the only difference between σ and the
all-+ state. Either all these crossings are positive, or they are all nega-
tive. We use Lemma 4.2 to compare the boundary slope of this state to
the boundary slope of the all-+ state which is 2c−+(σ+)− 2c+−(σ+) = 0−
2c+−(σ+) = −2c−(D). Suppose the crossings in the twist region are positive,
then we get 2c−+(σ)− 2c+−(σ) = 2(c−+(σ+)− r)− 2c+−(σ+) = −2c−(D)− 2r
as the boundary slope. If the crossings in the twist region are negative,
we also get

(27) 2c−+(σ)− 2c+−(σ) = 2c−+(σ+)− 2(c+−(σ+) + r) = −2c−(D)− 2r

for the boundary slope, and we are done.

Euler characteristic. It is clear that the Euler characteristic of the sur-
face is

(28) χ(S+(D))− r = (|s+(D)| − r)− c(D) = −(c(D)− |s+(D)|+ r).

Proof of Theorem 2. We obtain the degree d(n) of the nth colored
Jones polynomial JK(v, n) by adjusting the degree of the Kauffman bracket
from Theorem 5 by the writhe. The essential surface of Theorem 6 realizes
jsK and jxK by the preceding computation of boundary slope and Euler
characteristic of this surface.

Lemma 4.3. A near-alternating link is −-adequate.
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Proof. Applying the −-resolution to all the crossings in a near-alternating
diagram D, we see that the all-− state graph of D is given by the dual
graph of G \ e with |r| − 1 vertices attached from the single negative twist
region. Since |r| ≥ 2, each of the segments resulting from applying the −-
resolution to the crossings in the negative twist region connects a pair of
distinct vertices in s−(D), so if D is not −-adequate, then De = ∂(FG\e) is
not −-adequate. Note that De is an alternating diagram, and De is reduced
because the graph G \ e is required to be 2-connected from the assumption
on a near-alternating diagram. Otherwise, a vertex of the edge corresponding
to the nugatory crossing would be a cut vertex, contradicting the assumption
that G \ e is 2-connected by condition (2) of Definition 1.1. Thus, De is
adequate by [Lic97, Proposition 5.3] since it is reduced and alternating.
This implies that D is −-adequate. □

Corollary 4.4. Near-alternating knots satisfy the Strong Slope Conjecture.

Proof. By Theorem 1, which is directly implied by Theorem 5 by substitut-
ing A = v−1 and adding the writhe term, the minimum degree of the nth
colored Jones polynomial is

d(n) = −(n− 1)2c(D)− 2(n− 1)|s+(D)|+ ω(D)(n2 − 1)− 2r(n2 − n).

Expanding and gathering terms of n with the same powers, we get

d(n) = n2(−c(D)− 2r + ω(D)) + n(2c(D)− 2|s+(D)|+ 2r)

+ (−c(D) + 2|s+(D)| − ω(D)).

Since c(D) = c−(D) + c+(D) and ω(D) = c+(D)− c−(D), we get

d(n) = n2(−2c−(D)− 2r) + n(2c(D)− 2|s+(D)|+ 2r)

+ (−c(D) + 2|s+(D)| − ω(D)).

This means that

jsK = {−2c−(D)− 2r}, and jxK = {c(D)− |s+(D)|+ r}.

These match the boundary slope of FG computed by (27) and the negative
of the Euler characteristic of FG computed by (28), respectively. As for js∗K
and jx∗K , Lemma 4.3 and [FKP11] prove the existence of an essential surface
realizing the statement of Theorem 2 concerning the quadratic and linear
growth rates of d∗(n). This concludes the proof of Theorem 2. □
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5. Near-alternating knots are not adequate

We show that a near-alternating knot does not admit an adequate diagram.
The criterion for an adequate knot from the colored Jones polynomial is the
following result due to Kalfagianni [Kal18]. For large enough n let

s1(n)n
2 + s2(n)n+ s3(n) = d∗(n)− d(n)

= (a∗j − aj)n
2 + (b∗j − bj)n+ (c∗j − cj).

Theorem 7 ([Kal18, Theorem 4.2]). For a knot K let c(K) and gT (K)
denote the crossing number and the Turaev genus of K, respectively. The
knot K is adequate if and only if for some n > nK , we have

(29) s1(n) = 2c(K), and s2(n) = 4− 4gT (K)− 2c(K).

Furthermore, every diagram of K that realizes c(K) is adequate and it also
realizes gT (K).

We will begin by proving the analogue of [LT88, Lemma 8] concern-
ing the Kauffman polynomial for a near-alternating knot. Recall that for a
link diagram D, the Kauffman two-variable polynomial ΛD(a, z) is defined
uniquely by the following [Lic97, Theorem 15.5]

• Λ (a, z) = 1, where is the standard diagram of the unknot.

• ΛD(a, z) is unchanged by Reidemeister moves of Type II and III on
the diagram D.

• Λ (a, z) = aΛ (a, z). The kink in the diagram D is locally
straightened out by a Reidemeister move of Type I at the expense
of multiplying by a.

• The Kauffman polynomials of diagrams locally differing in the follow-
ing pictures are related as follows.

(30) Λ (a, z) + Λ (a, z) = z
(
Λ (a, z) + Λ (a, z)

)
.

Diagrams which locally differ in one of the four pictures in (30) are denoted
by D+, D−, D0, and D∞, respectively.

We will need the following useful results by Thistlethwaite [Thi88] with
a minor change of notation.
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Theorem 8 ([Thi88, Theorem 4]). Let D be a c(D)-crossing link dia-
gram which is a connected sum of link diagrams D1, . . . , Dk. Let Λ(a, z) =∑

r,s ur,sa
rzs for D, and let b1, . . . , bk be the lengths of the longest bridges

of D1, . . . , Dk, respectively. Then for each non-zero coefficient ur,s, |r|+ s ≤
c(D) and s ≤ c(D)− (b1 + · · ·+ bk).

Theorem 9 ([Thi88, Theorem 5]). Let D be a connected, alternating
diagram with c(D) ≥ 3 crossings, and let G be the graph associated with the
black-and-white coloring of the regions of D for which the crossings of D all
have positive sign. Let ΛD(a, z) =

∑
ps(a)z

s, and let χG(x, y) =
∑

vr,sx
rys.

(Here χG(x, y) is the Tutte polynomial of G.) Then

pc(D)−1(a) = v1,0a
−1 + v0,1a, and

pc(D)−2(a) = v2,0a
−2 + (v2,0 + v0,2) + v0,2a

2.

In fact, Thistlethwaite remarks immediately following this theorem in
[Thi88] that the coefficient pc(D)−1(a) may be written as κ(a+ a−1) with
κ > 0 if D is a prime, alternating diagram with at least two crossings.

We prove a mild generalization of [LT88, Lemma 8] using the same
argument which applies in the setting of near-alternating diagrams.

Lemma 5.1. Let D be a near-alternating diagram of a link with a maxi-
mal negative twist region of weight r < 0 with |r| ≥ 2. Then, the z-degree of
ΛD(a, z) is c(D)− 2.

Proof. We induct on |r| ≥ 2. Note that if D is a near-alternating diagram
with a negative twist region of weight r < 0 and |r| ≥ 2, then the same
diagram with the maximal negative twist region replaced by a negative twist
region of 2 crossings is still near-alternating. Thus it is valid to consider
the base case with |r| = 2 fixing the rest of the diagram D. For |r| = 2,
switching the top crossing in the twist region with weight r results in an
alternating diagram D− isotopic to one with c(D)− 2 crossings by a Type
II Reidemeister move. By Theorem 8, we see that the z-degree of ΛD−

(a, z)
is strictly less than c(D)− 2. One of the nullifications of this crossing results
in a non-alternating diagram D0, with c(D)− 1 crossings and a bridge of
length 3. Thus by Theorem 8, the z-degree of ΛD0

(a, z) is at most c(D)− 4.
The other nullification produces a removable kink and results in a prime
(c(D)− 2)-crossing alternating diagram D∞, as required by condition (2)
in Definition 1.1 defining a near-alternating diagram. Applying Theorem 9
and the subsequent remark, we get that the zc(D)−3 term of ΛD∞

(a, z) has
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coefficient κa−1(a−1 + a) with κ > 0. Plugging this into the defining relation
(30) with D+ = D, D−, D0, and D∞, we get that the coefficient of zc(D)−2

in ΛD(a, z) is the same as the coefficient of zc(D)−3 in ΛD∞
(a, z), which is

nonzero. This takes care of the base case. For |r| > 2,D0 is a near-alternating
diagram with |r| − 1 negative crossings in the negative twist region, and that
is where we apply the inductive hypothesis. We get

ΛD+
(a, z) + ΛD−

(a, z)︸ ︷︷ ︸
z-degree ≤ c(D)− 3

= z( ΛD0
(a, z)︸ ︷︷ ︸

z-degree = c(D)− 3

+ ΛD∞
(a, z)︸ ︷︷ ︸

z-degree ≤ c(D)− 4

).

This shows that the z-degree of ΛD(a, z) = ΛD+
(a, z) is determined by the

z-degree of ΛD0
(a, z) with the same coefficient. After multiplying ΛD0

(a, z)
by z, we finish the proof of the theorem. □

Using Theorem 7, 8, 9, and Lemma 5.1, we prove Theorem 3, which we
restate here.

Theorem 3. A near-alternating knot does not admit an adequate diagram.

Proof. Given a knot K with a near-alternating diagram D having a negative
twist region of weight r < 0 such that |r| > 2, suppose that K also admits a
non-alternating, adequate diagram DA. Then DA has a bridge of length ≥ 2
and c(DA) = c(D) + r by Theorem 1 and 7. But this contradicts Lemma 5.1
by Theorem 8, since Lemma 5.1 implies that the z-degree of ΛD(a, z) for
D is c(D)− 2, but Theorem 8 applied to DA would imply that ΛDA

(a, z)
has z-degree ≤ c(D) + r − 2. This is because D and DA are related by a
sequence of Type I, II, and III Reidemeister moves. A Type I Reidemeister
move only affects the a-degree of ΛD(a, z), while the Type II and III moves
leave ΛD(a, z) invariant. Thus the only other possibility is that it admits a
reduced, alternating diagram with c(D) + r, with |r| = 1 imposed by Lemma
5.1, but this contradicts the assumption that |r| > 2. □

6. Stable coefficients and volume bounds

In this section we prove Theorem 4, which we reprint here for reference.

Theorem 4. Let K be a link admitting a near-alternating diagram D =
∂(FG), where G is a finite 2-connected, weighted planar graph with a single
negatively-weighted edge of weight r < 0. Then
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(1) the first and second coefficient, α0,n, α1,n, respectively, of the reduced

colored Jones polynomial ĴK(v, n) of a near-alternating link K are sta-
ble. The last and penultimate coefficient, α′

0,n, α
′
1,n, respectively, are also

stable.

(2) Write α = α0,n and β = α1,n, and write α′ = α′
0,n and β′ = α′

1,n for n >
3. We have |α| = 1 and |β| = χ1(sσ(D)′), where σ is the Kauffman state
giving the state surface FG and χ1(sσ(D)′) is the first Betti number
of the reduced graph of sσ(D). Similarly, we have |α′| = 1 and |β′| =
χ1(s−(D)′).

Furthermore, if the diagram D is also prime and twist-reduced with more
than 7 crossings in each twist region, then K is hyperbolic, and

.35367(|β|+ |β′| − 1) < vol(S3 \K) < 30v3(|β|+ |β′| − 2).

Here v3 ≈ 1.0149 is the volume of a regular ideal tetrahedron. In other words,
there is a function on the stable coefficients of K which is coarsely related
to the volume of S3 \K.

Recall the nth-reduced colored Jones polynomial is defined as

(31) ĴK(v, n) = JK(v, n)/J (v, n).

Note that since a near-alternating link K with a near-alternating diagram
D is −-adequate, if we write

(32) ĴK(v, n) = αnv
d̂(n) + βnv

d̂(n)+4 + · · ·+ β′
nv

d̂∗(n)−4 + α′
nv

d̂∗(n),

where d̂(n) is the minimum degree and d̂∗(n) is the maximum degree of
ĴK(v, n), respectively, then |β′

n| = χ(s−(D)′) and |α′
n| = 1 by [DL06, Theo-

rem 3.1]. So what we need to determine is |αn| and |βn|.
We will first establish the stability of coefficients in Section 6.1, then

prove the two-sided volume bounds in Section 6.2.

6.1. Stability of coefficients

We shall apply the following result from [DL06] to a +-adequate diagram
approximating the alternating link diagram D.

Theorem 10. [DL06, Theorem 3.1] Let D be a +-adequate link diagram
and K be the link with diagram D. Write ĴK(v, n) as in (32). Then we have
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for all n,

|αn| = 1 and |βn| = χ1(s+(D)′).

Lemma 6.1. Let D be a near-alternating link diagram and K be the link
with diagram D. Write ĴK(v, n) as in (32). Then we have for all n,

|αn| = 1 and |βn| = |χ1(sσ(D)′)|,

where σ is the Kauffman state that chooses the −-resolution on crossings in
the negative twist region of D and the +-resolution for all other crossings.

Proof. From the proof of Theorem 5 we see that the skein in the state
sum realizing the degree comes from the state σ+ which restricts to the +-
resolution on crossings outside of the maximal negative twist region. The last
coefficient αn is just the last coefficient of ⟨S0

σ+
⟩ from ⟨Dn ⟩ of (12) realizing

the degree, so |αn| = 1. For the penultimate coefficient βn, as long as ω
t > |r|

with |r|, t ≥ 2, the inequality (26) implies that no skein Sa
σ from another

state σ with c > 0 split strands contributes to the penultimate coefficient.
Therefore, we need only to consider the contribution of other skeins σ with
c = 0 split strands.

For a skein σ with 0 split strands we may remove the r half twists on n
strands on the portion of the skein decorated by idempotents by reversing
the fusion and untwisting of the maximal negative twist region, so

∑

a : a, n, n admissible

⟨Sa
σ⟩ = (−1)nrAr(n2+2n)⟨Sσ⟩,

where Sσ is the new skein without the r half twists on n strands. In a pro-
cess similar to that in [DL06], we consider Kauffman states (now on all the
crossings of Sσ) which chooses the −-resolution on a single crossing corre-
sponding to a segment between a pair of circles in the state graph s+(Sσ).
They determine the penultimate coefficient of ⟨Dn ⟩ since all other terms

have lower degree. LetDe be the reduced, alternating diagram obtained from
D by removing from s+(D) the edges corresponding to the crossings in the
negative twist region of D, then recovering a link diagram by reversing the
application of the all-+ Kauffman state. See Figure 35 below for an example.
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DeD

Figure 35.

We know De is reduced because of condition (2) on D in Definition 1.1
of a near-alternating diagram, since De = ∂(FG/e) where G/e is the graph
G with the negative edge e contracted. There is a bijection between the
set of Kauffman states of De which contribute to the last and penultimate
coefficients of ⟨De⟩ and the set

SC := {Sσ : σ chooses the −-resolution on a single crossing of c(Dn) \ rn}

by

σ ∈ SC 7→ σ on De.

This implies that the penultimate coefficient of the sum

∑

σ with c=0, σ∈SC

⟨Sa
σ⟩ =

∑

σ with c=0, σ∈SC

(−1)nrAr(n2+2n)⟨Sσ⟩

is equal to the 2nd coefficient of the colored Jones polynomial of the link
with the diagram De. Thus, they also have the same 2nd coefficient for the
reduced polynomial. Since De is adequate, we may apply Theorem 10 to De.
This gives that the 2nd coefficient of its reduced colored Jones polynomial
is e′r − vr + 1, where e′r is the number of edges in the reduced all-+ state
graph s+(De)

′ and vr is the number of vertices of s+(De)
′. We compare this

to the data from D, where e′ is the number of edges of the reduced graph
sσ(D)′ and v is the number of vertices in sσ(D)′. We get

(33) |βn| = e′r − vr + 1 = e′ + r − (v + r) + 1 = e′ − v + 1 = |χ1(sσ(D)′)|
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The stability of these coefficients follows from the stability of the lst and
2nd coefficient of the colored Jones polynomial of the link represented by
De since the computation was done independent of n. □

6.2. Two-sided volume bounds from stable coefficients
α, β, α′, and β′

The following theorem from [FKP08] provides volume bounds on a hyper-
bolic link complement based on the number of twist regions in a diagram of
the link.

Theorem 11 ([FKP08, Theorem 1.2]). Let K ⊂ S3 be a link with a
prime, twist-reduced diagram D. Assume that D has tw(D) > 2 twist re-
gions, and that each region contains at least 7 crossings. Then K is a hy-
perbolic link satisfying

0.70735(tw(D)− 1) < vol(S3 \K) < 10v3(tw(D)− 1),

where v3 ≈ 1.0149 is the volume of a regular ideal tetrahedron.

Theorem 12 ([FKP08, Theorem 1.5]). Let K be a link in S3 with an
adequate diagram D such that every twist region of D contains at least 3
crossings. Then

1

3
tw(D) + 1 ≤ |β|+ |β′| ≤ 2tw(D).

We use Theorem 11 and Theorem 12 to relate the number of twist regions
tw(D) of a link diagram D to the stable coefficients α, β, α′, and β′, obtained
in the previous section. In particular we show the following:

Lemma 6.2. Let K be a link with a near-alternating diagram that is prime
and twist-reduced with at least 3 crossings in every positive twist region of
D. Then

|β|+ |β′| − 1 ≤ 2(tw(D)− 1), and |β|+ |β′| − 2 ≥
tw(D)− 1

3
.

Proof. Let De = ∂(FG\e) be the link diagram corresponding to G \ e as in
Definition 1.1, see Figure 36 for an example.
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D De

Figure 36.

We can immediately apply Theorem 12 to De. By assumption, De is
prime, alternating, and twist-reduced. Let e′+, v+ be the number of edges and
vertices in the reduced all-+ state graph of De, and e′−, v− be the number
of edges and vertices in the reduced all-− state graph of De. In particular
we get

tw(De)

3
+ 1 ≤ e′+ + e′− − v+ − v− + 2 ≤ 2tw(De).

Since D has one more twist region than De, this gives

tw(D)− 1

3
+ 1 ≤ e′+ + e′− − v+ − v− + 2 ≤ 2(tw(D)− 1).

Note that D is −-adequate and we assume that |r| > 2. Let e′ be the number
of edges in the reduced graph of sσ(D) and v = |sσ(D)|, and let e′D, vD be
the number of edges and the number of vertices in the reduced graph of
s−(D), respectively. Using the result (33) above on |β|, |β′| we get

|β|+ |β′| = e′ − v + 1 + e′D − vD + 1.

Substituting for quantities from s+(D
e)′ and s−(D

e)′ gives

|β|+ |β′| = e′+ + e′− − v+ − v− + 2 + 1.

So then

|β|+ |β′| − 1 ≤ 2(tw(D)− 1) and |β|+ |β′| − 2 ≥
tw(D)− 1

3
.
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□

Proof of Theorem 4. Lemma 6.2 combined with Theorem 11 then im-
plies that

.35367(|β|+ |β′| − 1) < vol(S3 \K) < 30v3(|β|+ |β′| − 2).

□
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function is q-holonomic, Geometry and Topology 9 (2005),
1253–1293.

[GLvdV] Stavros Garoufalidis, Christine Ruey Shan Lee, and Roland
van der Veen, The Slope Conjecture for Montesinos knots,
arXiv:1807.00957.

[Gre17] Joshua Evan Greene, Alternating links and definite surfaces,
Duke Math. J. 166 (2017), no. 11, 2133–2151.

[GvdV16] Stavros Garoufalidis and Roland van der Veen, Quadratic inte-
ger programming and the Slope Conjecture, New York Journal
of Mathematics 22 (2016), 907–932 (electronic).

[HD] Joshua Howie and Norm Do, in preparation.

[Hog19] Matthew Hogancamp, A polynomial action on colored sl2 link
homology, Quantum Topol. 10 (2019), no. 1, 1–75.



✐

✐

“7-Lee” — 2023/1/9 — 0:45 — page 946 — #56
✐

✐

✐

✐

✐

✐

946 Christine Ruey Shan Lee

[How] Joshua Howie, Coiled Surfaces and the Slope Conjectures, in
preparation.

[How17] , A characterisation of alternating knot exteriors, Geom-
etry & Topology 21 (2017), 2353–2371.

[HTY00] Masao Hara, Sei’ichi Tani, and Makoto Yamamoto, Degrees of
the Jones polynomials of certain pretzel links, Journal of Knot
Theory and Its Ramifications 9 (2000), no. 7, 907–916.

[Ito18] Tetsuya Ito, A characterization of almost alternating knots, J.
Knot Theory Ramifications 27 (2018), no. 1, 1850009, 13.

[Kal18] Efstratia Kalfagianni, A Jones slopes characterization of ad-
equate knots, Indiana Univ. Mathematics Journal 67 (2018),
no. 1, 205–219.

[Kas97] R. M. Kashaev, The hyperbolic volume of knots from the quan-
tum dilogarithm, Lett. Math. Phys. 39 (1997), no. 3, 269–275.

[KT15] Efstratia Kalfagianni and Anh T. Tran, Knot cabling and the
degree of the colored Jones polynomial, New York Journal of
Mathematics 21 (2015), 905–941.

[Lac04] Marc Lackenby, The volume of hyperbolic alternating link com-
plements, Proc. London Math. Soc. (3) 88 (2004), no. 1, 204–
224, With an appendix by Ian Agol and Dylan Thurston.

[Lee19] Christine Ruey Shan Lee, Stability properties of the colored
Jones polynomial, J. Knot Theory Ramifications 28 (2019),
no. 8, 1950050, 20.

[Lic97] W. B. Raymond Lickorish, An Introduction to Knot Theory,
Graduate Texts in Mathematics, vol. 175, Springer-Verlag, New
York, 1997.

[LS17] Adam M. Lowrance and Dean Spyropoulos, The Jones polyno-
mial of an almost alternating link, New York J. Math. 23 (2017),
1611–1639.

[LT88] W. B. R. Lickorish and M. B. Thistlethwaite, Some links with
non-trivial polynomials and their crossing-numbers, Commen-
tarii Mathematici Helvetici 63 (1988), no. 1, 527–539.

[LvdV16] Christine Ruey Shan Lee and Roland van der Veen, Slopes for
pretzel knots, New York Journal of Mathematics 22 (2016),
1339–1364.



✐

✐

“7-Lee” — 2023/1/9 — 0:45 — page 947 — #57
✐

✐

✐

✐

✐

✐

Jones slopes and coarse volume of near-alternating knots 947

[LYL19] Xudong Leng, Zhiqing Yang, and Ximin Liu, The slope con-
jectures for 3-string Montesinos knots, New York J. Math. 25
(2019), 45–70.

[MM01] Hitoshi Murakami and Jun Murakami, The colored Jones poly-
nomials and the simplicial volume of a knot, Acta Math. 186
(2001), no. 1, 85–104.

[MMO+02] Hitoshi Murakami, Jun Murakami, Miyuki Okamoto, Toshie
Takata, and Yoshiyuki Yokota, Kashaev’s Conjecture and the
Chern-Simons Invariants of Knots and Links, Experiment.
Math. 11 (2002), no. 3, 427–435.

[MT17] Kimihiko Motegi and Toshie Takata, The slope conjecture for
graph knots, Math. Proc. Cambridge Philos. Soc. 162 (2017),
no. 3, 383–392.

[MV94] G. Masbaum and P. Vogel, 3-valent graphs and the Kauffman
bracket, Pacific J. Math. 164 (1994), no. 2, 361–381.

[OR12] Makoto Ozawa and Joachim Hyam Rubinstein, On the Neuwirth
conjecture for knots, Comm. Anal. Geom. 20 (2012), no. 5,
1019–1060.

[Oza11] Makoto Ozawa, Essential state surfaces for knots and links, J.
Aust. Math. Soc. 91 (2011), no. 3, 391–404.

[Roz14] Lev Rozansky, Khovanov homology of a unicolored B-adequate
link has a tail, Quantum Topology 5 (2014), no. 4, 541–579.

[Sto04] Alexander Stoimenow, The second coefficient of the Jones poly-
nomial, Proceedings of the conference “Intelligence of Low Di-
mensional Topology” (2004), Osaka City University Oct. 25–27,
2004.

[Thi88] Morwen B. Thistlethwaite, Kauffman’s polynomial and alternat-
ing links, Topology 27 (1988), no. 3, 311–318.

[Wen87] Hans Wenzl, On sequences of projections, C. R. Math. Rep.
Acad. Sci. Canada 9 (1987), no. 1, 5–9.



✐

✐

“7-Lee” — 2023/1/9 — 0:45 — page 948 — #58
✐

✐

✐

✐

✐

✐

948 Christine Ruey Shan Lee

Department of Mathematics and Statistics

University of South Alabama

Mobile, AL 36688, USA

E-mail address: crslee@southalabama.edu

Received May 22, 2017

Accepted August 12, 2019


	Introduction
	Graphical skein theory
	Jones slopes
	Boundary slope and Euler characteristic
	Near-alternating knots are not adequate
	Stable coefficients and volume bounds
	References

