
✐

✐

“2-Angella” — 2023/2/25 — 0:05 — page 961 — #1
✐

✐

✐

✐

✐

✐

Communications in
Analysis and Geometry
Volume 30, Number 5, 961–1006, 2022

On Gauduchon connections with

Kähler-like curvature

Daniele Angella, Antonio Otal, Luis Ugarte,
and Raquel Villacampa

We study Hermitian metrics with a Gauduchon connection be-
ing “Kähler-like”, namely, satisfying the same symmetries for cur-
vature as the Levi-Civita and Chern connections. In particular,
we investigate 6-dimensional solvmanifolds with invariant complex
structures with trivial canonical bundle and with invariant Her-
mitian metrics. The results for this case give evidence for two
conjectures that are expected to hold in more generality: first, if
the Strominger-Bismut connection is Kähler-like, then the metric
is pluriclosed; second, if another Gauduchon connection, different
from Chern or Strominger-Bismut, is Kähler-like, then the metric
is Kähler. As a further motivation, we show that the Kähler-like
condition for the Levi-Civita connection assures that the Ricci flow
preserves the Hermitian condition along analytic solutions.
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Introduction

We study Hermitian manifolds whose curvature tensor, with respect to a
“canonical” connection, satisfies further symmetries, as initiated by A. Gray
[Gra76], and by B. Yang and F. Zheng [YZ16]. Symmetries clearly include
the case of flat curvature [Boo58, WYZ16, GK06, DSV11, YZ17, VYZ18,
HLY18]. This is ultimately related to Yau’s Problem 87 [Yau93] concerning
compact Hermitian manifolds with holonomy reduced to subgroups of U(n).

The setting is the following. Let X be a complex manifold endowed with
a Hermitian metric. One may wonder which connection is more “natural”
to investigate the complex geometry of X.

On the one side, the Levi-Civita connection ∇LC is the only torsion-free
metric connection. In general, it does not preserve the complex structure,
this condition forcing the metric to be Kähler. The absence of torsion yields
that its curvature tensor RLC satisfies the symmetry called first Bianchi
identity:

∑

σ∈G
RLC(σx, σy)σz = 0.

On the other side, the Chern connection ∇Ch is another tool to investi-
gate the differential complex geometry of X. It is the only Hermitian con-
nection (namely, that preserves both the metric and the complex structure,)
being compatible with the Cauchy-Riemann operator on the holomorphic
tangent bundle. This yields that its curvature tensor RCh satisfies the type
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condition symmetry:

RCh ∈ ∧1,1(X; End(T 1,0X)).

The condition RCh = RLC forces the metric to be Kähler, as proven in
[YZ16, Theorem 1.1]. In the same spirit, in [LY17, Corollary 4.5], the authors
prove that if the total scalar curvatures sCh = sLC , then the metric is bal-
anced. Notwithstanding, there are plenty of non-Kähler Hermitian metrics
such that either RLC or RCh satisfies both the symmetries of the Levi-
Civita curvature and the symmetries of the Chern curvature. Such metrics
are called G-Kähler-like, respectively Kähler-like by B. Yang and F. Zheng
[YZ16].

Notice that no locally homogeneous examples of compact complex Her-
mitian surfaces with odd first Betti number exist such that the Levi-Civita
connection is Kähler-like, thanks to a result by Muškarov [Mus01] that pre-
vents J-invariant Ricci tensor.

We point out three remarks that motivate the (G-)Kähler-like condi-
tions. First, they imply the cohomological property of the metric being bal-
anced in the sense of Michelsohn [Mic82], as proven in [YZ16, Theorem 1.3].
This property plays a role in the Strominger system, and this is a first moti-
vation in [YZ16]. Second, symmetries are clearly satisfied by zero curvature:
classification results in case of certain specific connections are investigated in
[Boo58, WYZ16, GK06, YZ17, VYZ18]. This is related to Yau’s Problem 87
in [Yau93] on compact Hermitian manifolds with holonomy reduced to a
subgroup of U(n) (here the connection needs not to be the Levi-Civita con-
nection). Third, we prove that the Kähler-like condition for the Levi-Civita
connection assures that the Ricci flow preserves the Hermitian condition
along (analytic, compare [Kot15]) solutions:

Theorem 33. Let g0 be a Hermitian metric on a compact complex man-
ifold, and consider an analytic solution (g(t))t∈(−ε,ε) for ε > 0 of the Ricci
flow

(RF)
d

dt
g(t) = −Ric(g(t)), g(0) = g0.

If the Levi-Civita connection of g0 is Kähler-like, then g(t) is Hermitian for
any t.
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In fact, there are infinitely-many Hermitian connections, namely, pre-
serving both the metric and the complex structure, but possibly having tor-
sion. Prescribing components of the torsion selects a special family of Hermi-
tian connections ∇ε called canonical connections in the sense of Gauduchon
[Gau97], varying ε ∈ R. Such family includes and interpolates the Chern
connection ∇Ch = ∇0 and the Strominger-Bismut connection ∇+ = ∇1/2,
both of which have a role in complex geometry and heterotic string theory
[Str86]. In this note, we extend the notion of Kähler-like (Definition 4) to
the family {∇ε}ε∈R of Gauduchon connections.

Whereas the balanced condition is related to the Bott-Chern cohomology
and to the Chern connection, the Strominger-Bismut connection is related to
the Aeppli cohomology and to the notion of pluriclosed metrics (also known
as SKT), see e.g. [Bis89]. Therefore, as a Strominger-Bismut counterpart of
[YZ16, Theorem 1.3] (see Theorem 8), the following conjecture is suggested:

Conjecture 1. Consider a compact complex manifold endowed with a Her-
mitian metric. If the Strominger-Bismut connection is Kähler-like, then the
metric is pluriclosed.

Notice that the particular case of Strominger-Bismut-flat metrics is stud-
ied in [WYZ16], where it is proven that a compact Hermitian manifold whose
Strominger-Bismut connection is flat admits, as finite unbranched cover, a
local Samelson space, given by the product of a compact semisimple Lie
group and a torus, [WYZ16, Theorem 1].

Moreover, they prove in [WYZ16, Theorem 2] that a balanced
Strominger-Bismut-flat metric is actually Kähler. It is known that Hermi-
tian metrics that are both pluriclosed and balanced are in fact Kähler, see
e.g. [AI01, Remark 1] or [FPS04, Proposition 1.4]. In fact, it is conjectured
that no compact non-Kähler complex manifold can admit at the same time
a balanced metric and a pluriclosed metric, see [FV15, Problem 3]. This
conjecture has proven to be true, for example, for the twistor spaces of
compact anti-self-dual Riemannian manifolds [Ver14], for compact complex
manifolds in the Fujiki class C [Chi14], for ♯kS

3 × S3 for k ≥ 2 endowed with
the complex structures constructed from the conifold transition [FLY12],
for nilmanifolds with invariant complex structures [FPS04, FV15, FV16].
So this last theorem of Wang, Yang, and Zheng is explained by the fact that
the flatness of the Strominger-Bismut connection implies that the metric is
pluriclosed, which gives a partial evidence for the above Conjecture 1 (see
Section 1.5 for details).
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The canonical connections by Gauduchon allow to tie the Chern and
Strominger-Bismut connections. So, one may claim that a generic canonical
connection shares properties with both of them. Again since no non-Kähler
metric can be both balanced and pluriclosed, we conjecture the following,
that extends [YZ17, Conjecture 1.3] on Gauduchon-flat connections.

Conjecture 2. Consider a compact complex manifold endowed with a Her-
mitian metric. Consider a canonical connection in the Gauduchon family,
different from the Strominger-Bismut connection and the Chern connection.
If it is Kähler-like, then the metric is Kähler.

We test these conjectures on a class of compact complex manifolds of
complex dimension three given by quotients of Lie groups1. More precisely,
we restrict to Calabi-Yau solvmanifolds, that is, compact quotients of solv-
able Lie groups by discrete subgroups, endowed with an invariant complex
structure having a non-zero invariant closed (3,0)-form, which implies that
the canonical bundle is holomorphically-trivial. We choose this class because
of their role e.g. in constructing explicit invariant solutions to the Strominger
system with respect to a Gauduchon connection [FY15, OUV17]. They will
be equipped with an invariant Hermitian metric. When the group is nilpo-
tent, we get nilmanifolds and they always satisfy the latter condition on triv-
iality of the canonical bundle by [Sal01, BDV09]. Invariant complex struc-
tures on 6-dimensional nilmanifolds are ultimately classified by [COUV16],
see also the references therein, and they never admit Kähler metrics, un-
less the nilmanifold be a torus, by topological obstructions [BG88, Has89].
Invariant complex structures on 6-dimensional solvmanifolds with trivial
canonical bundle are classified by [FOU15].

The following theorem is a consequence of direct inspection performed
with the help of the symbolic computation softwares, Sage [S+09] and Math-
ematica.

Theorem 11. Consider the class of compact 6-dimensional solvmanifolds
endowed with an invariant complex structure with holomorphically-trivial
canonical bundle and with an invariant Hermitian metric.

• If the Strominger-Bismut connection is Kähler-like, then the metric is
pluriclosed.

1After the appearence of our note, recent progress on the Conjectures 1 and 2
has been made by Zhao and Zheng [ZZ19] and by Fu and Zhou [FZ19], respectively.
Moreover, at the time of the correction of the proofs of the article, we have also
added the references [LS22] and [ZZ22] for further progress on the subject.
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• If a canonical connection in the Gauduchon family, different from the
Strominger-Bismut connection and the Chern connection, is Kähler-
like, then the metric is Kähler.

Therefore, Conjectures 1 and 2 are satisfied for this class of manifolds.

A more detailed statement can be found in Theorem 13, and Proposi-
tion 34 finalizes the study showing that, on six-dimensional solvmanifolds
with holomorphically-trivial canonical bundle endowed with an invariant
Hermitian non-Kähler metric, the Levi-Civita connection is never Kähler-
like.

In particular, we observe here some evidence following from the per-
formed study.

Holomorphically-parallelizable complex structures are Chern-flat and
then their Chern connection is clearly Kähler-like. Conversely, by [Boo58],
compact Hermitian Chern-flat manifolds are given by quotients of com-
plex Hermitian Lie groups. We have examples of non-Strominger-Bismut-flat
metric whose Strominger-Bismut connection is Kähler-like.

The examples here confirm [YZ17, Conjecture 1.3], stating that com-
pact Hermitian manifolds with a flat Gauduchon connection (different from
Chern or Strominger-Bismut) must be Kähler. The analogous question for
invariant Hermitian structures on Lie groups is asked and investigated in
[VYZ18, Question 1.1], and our result gives further evidence for a positive
answer, since our computations are also valid on Lie groups endowed with
left-invariant structures (see Remark 14).

On a compact complex manifold, being balanced is a necessary condi-
tion for either the Levi-Civita or the Chern connections being Kähler-like,
thanks to [YZ16, Theorem 1.3], but the converse does not hold true, as
many examples below also show. It is expected that compact complex man-
ifolds satisfying the ∂∂-Lemma admit balanced metrics. We ask whether the
∂∂-Lemma property has any relation with the Kähler-like property.

According to [FV15, Problem 3], no compact complex non-Kähler man-
ifold is expected to bear both a balanced metric and a pluriclosed met-
ric. Then, according to [YZ16, Theorem 1.3] and Conjecture 1, we expect
that a compact complex manifold admitting both a Hermitian metric with
Kähler-like Chern connection and a (possibly different) Hermitian metric
with Kähler-like Strominger-Bismut connection admits a Kähler metric. By
Theorem 11, this is obviously confirmed in the class of Calabi-Yau solvman-
ifolds of complex dimension 3. More in general, we ask whether it is possible
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to admit two different connections (with respect to possibly different metrics)
being both Kähler-like.

The Iwasawa manifold and its small deformations show that the property
of being Kähler-like with respect to the Chern connection is not open under
deformations of the complex structures. It is not even closed, i.e. the central
limit of a holomorphic family of compact Hermitian manifolds with the
Kähler-like property may not admit any Hermitian metric satisfying the
Kähler-like property with respect to the Chern connection, see Corollary 12.
We ask whether the Kähler-like property with respect to the Strominger-
Bismut connection (or, more generally, any other Gauduchon connection,)
is open and/or closed by holomorphic deformations of the complex structure.

Acknowledgments. This work has been written during several stays of
the first-named author at the Departamento de Matemáticas de la Universi-
dad de Zaragoza, which he thanks for the warm hospitality. He thanks also
Jose Fernando for his warm hospitality at the Facultad de Matemáticas of
the Universidad Complutense de Madrid. The authors would like to thank
Francesco Pediconi, Fabio Podestà, Cristiano Spotti, and Luigi Vezzoni for
several interesting discussions. Many thanks also to the anonymous Referees
for their useful comments and suggestions.

1. Kähler-like connections

1.1. Curvatures

Let X be a manifold endowed with a complex structure J and a Hermitian
structure h = g −

√
−1ω.

Let ∇ be any linear metric connection on X, that is, preserving the
Riemannian metric g, namely, ∇g = 0. (Denote with the same symbol its
C-bi-linear extension to TX ⊗R C.) Consider its curvature operator:

R∇(x, y) := ∇2(x, y) = [∇x,∇y]−∇[x,y],

and define also the (4, 0)-tensor

R∇(x, y, z, w) := g(R∇(x, y)z, w).

Notice that, by the very definition, respectively by the condition ∇g = 0,

R∇( , ) ∈ ∧2(X; End(TX)) and R∇( , , , ) ∈ ∧2X ⊗ ∧2X.
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The first Ricci curvature and the second Ricci curvature are, respectively,
the traces

Ric(i)(x, y) = trR∇(x, y) ∈ ∧2X,

Ric(ii)(z, w) = trgR
∇( , , z, w) ∈ ∧2X ⊂ End(TX).

The scalar curvature is

Scal = trgRic
(i) = trRic(ii) ∈ C∞(X;R).

1.2. Gauduchon connections

We focus on the canonical connections in the Gauduchon family as defined in
[Gau97, Definition 2]: for t ∈ R, the Hermitian connection ∇Gt =: ∇ 1−t

4
, 1+t

4

associated to (J, g) is defined by

g(∇Gt
x y, z) = g(∇LC

x y, z) +
1− t

4
T (x, y, z) +

1 + t

4
C(x, y, z),

where

T := Jdω := −dω(J , J , J ), C := dω(J , , ),

and ∇LC denotes the Levi-Civita connection, that we can compute by

g(∇LC
x y, z) =

1

2
(x g(y, z) + y g(x, z)− z g(x, y)

+g([x, y], z)− g([y, z], x)− g([x, z], y)) .

Note that, in the space of metric connections ∇ε,ρ as defined in [OUV17],
Gauduchon connections sit on the line ε+ ρ = 1

2 .
Other than

∇LC = ∇0,0,

special values are

∇Ch = ∇G1 = ∇0, 1
2 , ∇+ = ∇G

−1 = ∇ 1

2
,0, ∇− = ∇− 1

2
,0

corresponding to the Chern, Strominger-Bismut, and anti-Strominger-
Bismut connections, respectively. Moreover,

∇G0 = ∇ 1

4
, 1
4 =: ∇lv

is the first canonical connection, also called associated connection [Gau97,
GK06], namely the projection onto the holomorphic tangent bundle of the
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Levi-Civita connection. Another important connection is given by

∇G1/3 ,

called the minimal Gauduchon connection [Gau97, YZ17] because it is dis-
tinguished by the property that it has the smallest total torsion among
Gauduchon connections.

1.3. Symmetries of the curvature

If we focus on the Levi-Civita connection ∇LC , (namely, the unique met-
ric torsion-free connection on X,) respectively on the Chern connection
∇Ch, (namely, the unique Hermitian connection being compatible with the
Cauchy-Riemann operator ∂ on the holomorphic tangent bundle,) we have
further symmetries.

The Levi-Civita connection ∇ := ∇LC satisfies the first Bianchi identity:

(1Bnc)
∑

σ∈G
R∇(σx, σy)σz = 0.

(This follows by the Levi-Civita connection being torsion-free, where the
torsion is defined as

T∇(x, y) := ∇xy −∇yx− [x, y],

and by the Jacobi identity for the Lie bracket [ , ].) More in general, for a
metric connection ∇ with possibly non-zero torsion T∇, we have (compare
e.g. [Gau14, §1.16]):

∑

σ∈G
R∇(σx, σy)σz = d∇T (x, y, z).

The Chern connection ∇ := ∇Ch satisfies the type condition:

R∇ ∈ ∧1,1(X; End(T 1,0X)),

namely,

(Cplx) R∇(x, y, z, w) = R∇(x, y, Jz, Jw) = R∇(Jx, Jy, z, w) .

(The J-invariance in the third and fourth arguments, namely the property
R∇ ∈ ∧2(X; End(T 1,0X)), follows from ∇J = 0 and g(J , J ) = g( , ). The
conclusion follows from ∇0,1 = ∂ yielding (∇0,1)2 = 0 and by ∇ being real.)
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Remark 3. Condition (1Bnc) for a metric connection implies

(Symm) R∇ ∈ S2 ∧2 X,

namely, R∇(x, y, z, w) = R∇(z, w, x, y). In this case, the first Bianchi iden-
tity holds for the (4, 0)-tensor R∇ for permutations of any triple of indices. If
moreover R∇∈∧2(X; End(T 1,0X)), then actually R∇∈∧1,1(X; End(T1,0X)).

1.4. Kähler-like symmetries

On a Kähler manifold, we have

∇LC = ∇Ch ,

since ∇LCJ = 0. In particular, ∇ := ∇LC satisfies both (1Bnc) and (Cplx).

Definition 4. Let X be a complex manifold endowed with a Hermitian
structure. Let ∇ be a metric connection on it. We say that ∇ is Kähler-like
if it satisfies (1Bnc) and (Cplx).

Remark 5 (comparison with Yang and Zheng’s [YZ16]). We claim
that the above definition specializes to Yang and Zheng’s definitions in [YZ16]
in case of Chern connection and Levi-Civita connection. Recall that, in
[YZ16, page 2], B. Yang and F. Zheng call a Hermitian structure:

• Kähler-like (in the sense of [YZ16]) if, for any (1, 0)-tangent vector X,
Y , Z, and W , it holds

RCh(X, Ȳ , Z, W̄ ) = RCh(Z, Ȳ ,X, W̄ ) ;

• G-Kähler-like (in the sense of [YZ16]), in honour of Gray, if, for any
(1, 0)-tangent vector X, Y , Z, and W , it holds

RLC(X,Y, Z̄, W̄ ) = RLC(X,Y, Z, W̄ ) = 0 .

Then:

1) a Hermitian structure is Kähler-like in the sense of [YZ16] if and only
if its Chern connection is Kähler-like in the sense of Definition 4;

2) a Hermitian structure is G-Kähler-like in the sense of [YZ16] if and
only if its Levi-Civita connection is Kähler-like in the sense of Defini-
tion 4.
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Proof. (1) Assume that the Chern connection∇Ch is Kähler-like in the sense
of Definition 4. In particular, by (1Bnc), we get:

RCh(X, Ȳ , Z, W̄ ) = −RCh(Ȳ , Z,X, W̄ )−RCh(Z,X, Ȳ , W̄ )

= RCh(Z, Ȳ ,X, W̄ ) + g(RCh(X,Z)Ȳ , W̄ )

= RCh(Z, Ȳ ,X, W̄ ),

since g(RCh(X,Z)Ȳ , W̄ ) = 0.
Conversely, assume that the Hermitian structure is Kähler-like in the

sense of [YZ16]. We already noticed that the Chern connection satisfies
(Cplx). We prove (1Bnc). It suffices to prove it for

(x, y, z, w) ∈ {(X̄, Y, Z, W̄ ), (X, Ȳ , Z, W̄ ), (X,Y, Z̄, W̄ )},

where X, Y , Z, and W are (1, 0)-tangent vector fields. For example, in the
first case, we have:

R∇(X̄, Y, Z, W̄ ) +R∇(Y, Z, X̄, W̄ ) +R∇(Z, X̄, Y, W̄ )

= −R∇(Y, X̄, Z, W̄ ) +R∇(Z, X̄, Y, W̄ ) = 0,

where we used the skew-symmetries of R∇, the type properties of R∇, and
the condition of Kähler-like in the sense of [YZ16].

(2) Assume that the Levi-Civita connection ∇LC is Kähler-like in the
sense of Definition 4. In particular, by (Cplx), we get: for any (1, 0)-tangent
vector fields X, Y , Z, and W ,

RLC(X,Y, Z̄, W̄ ) = RLC(X,Y, JZ̄, JW̄ ) = −RLC(X,Y, Z̄, W̄ ),

whence

RLC(X,Y, Z̄, W̄ ) = 0 ;

moreover, by using (Symm), we get:

RLC(X,Y, Z, W̄ ) = RLC(Z, W̄ ,X, Y ) = RLC(Z, W̄ , JX, JY )

= −RLC(Z, W̄ ,X, Y ) = −RLC(X,Y, Z, W̄ ),

whence

RLC(X,Y, Z, W̄ ) = 0.

Conversely, assume that the Hermitian structure is G-Kähler-like in the
sense of [YZ16]. By [Gra76], we have also: for any (1, 0)-tangent vector fields
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X, Y , Z, and W ,

(Gray) RLC(X,Y, Z,W ) = 0.

We already noticed that the Levi-Civita connection satisfies (1Bnc). We
prove (Cplx). By (Symm), it suffices to show R(x, y, z, w) = R(z, y, Jz, Jw).
By the definition of G-Kähler-like and by (Gray), and up to conjugation and
(skew-)symmetries, we are reduced to the terms of curvatures:

R(X̄, Y, Z, W̄ ) = −R(Y, X̄, Z, W̄ ), R(X, Ȳ , Z, W̄ ),

R(X,Y, Z, W̄ ) = 0, R(X,Y, Z̄, W̄ ) = 0,

R(X̄, Y, Z̄, W̄ ) = 0, R(X, Ȳ , Z̄, W̄ ) = 0,

R(X̄, Ȳ , Z, W̄ ) = 0, R(X̄, Ȳ , Z̄, W̄ ) = 0,

whence to the case: (x, y, z, w) = (X, Ȳ , Z, W̄ ). Of course, in this case (Cplx)
holds. □

We will use also the following characterization of the Kähler-like condi-
tion.

Remark 6. A metric linear connection ∇ on a manifold endowed with a
Hermitian structure is Kähler-like in the sense of Definition 4 if and only if,
for any (1, 0)-tangent vector fields X, Y , Z, and W , for any tangent vector
fields x, y, z, and w,

(1Bnc’) B(X, Ȳ , Z, W̄ ) := R∇(X, Ȳ , Z, W̄ )−R∇(Z, Ȳ ,X, W̄ ) = 0,

(Cplx’) R∇(x, y, Z,W ) = R∇(X,Y, z, w) = 0.

Proof. Assume that ∇ is Kähler-like in the sense of Definition 4. Moreover,
we get also (Symm). Then:

R∇(x, y, Z,W ) = R∇(x, y, JZ, JW ) = −R∇(x, y, Z,W ) ,

R∇(X,Y, z, w) = R∇(z, w,X, Y ) = R∇(z, w, JX, JY )

= −R∇(z, w,X, Y ) = −R∇(X,Y, z, w) ,
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whence we get (Cplx’). Now, we have:

R∇(X, Ȳ , Z, W̄ ) = −R∇(Ȳ , Z,X, W̄ )−R∇(Z,X, Ȳ , W̄ )

= R∇(Z, Ȳ ,X, W̄ ) ,

that is, (1Bnc’).
On the other hand, up to anti-symmetries and conjugation, the only

non-zero terms of the curvature are

R∇(X, Ȳ , Z, W̄ ) .

Therefore, (Cplx) is satisfied. Also, it follows that (1Bnc’) yields (1Bnc). □

Remark 7. We notice that the possible several traces become equal as soon
as we assume further symmetries of the curvature tensor. In this direction,
compare the results by Liu and Yang in [LY17], comparing scalar curvatures.
In particular, [LY17, Corollaries 4.4 and 4.5] state conditions concerning
equalities between total scalar curvatures that force the metric to be Kähler,
respectively balanced.

1.5. Relations to special Hermitian metrics

A Hermitian metric ω on a complex manifold is called balanced [Mic82] if
d∗ωω = 0, where d∗ω denotes the adjoint operator of d with respect to the L2-
pairing induced by the metric associated to ω; in other words, dωn−1 = 0,
where n is the complex dimension of the manifold.

We recall the following obstruction to being Kähler-like, respectively
G-Kähler-like in the sense of [YZ16].

Theorem 8 ([YZ16, Theorem 1.3]). If a Hermitian metric on a compact
complex manifold has either Levi-Civita or Chern connection being Kähler-
like, then it is balanced in the sense of Michelsohn [Mic82].

A Hermitian metric ω on a complex manifold is called pluriclosed (also
known as SKT) if ∂∂ω = 0 [Bis89]. Using a result in [WYZ16], and inspired
by the argument in [YZ17], we show the following result for Strominger-
Bismut-flat Hermitian manifolds, which can be seen as an evidence for Con-
jecture 1 in the special case of flat connection.
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Theorem 9. Let X be a complex manifold of complex dimension n endowed
with a Hermitian metric. If the Strominger-Bismut connection is flat, then
the metric is pluriclosed.

Proof. Denote by ω the Strominger-Bismut-flat Hermitian metric on the
manifold X. The pluriclosed condition ∂∂ω = 0 is a local property. The
Strominger-Bismut connection ∇+ being flat, we can choose an unitary
parallel frame (ej , ēj)j in a neighbourhood of any point p of X, that is,
∇+ej = ∇+ēj = 0. Furthermore, by [WYZ16, Proof of Theorem 1, page 14],
it has (local) structure constants

[ei, ej ] = ckijek, [ei, ēj ] = cijkek − cjikēk,

where ckij ∈ C are constants satisfying the required identities, and i, j, k ∈
{1, . . . , n}. In addition, the metric satisfies

⟨[X,Y ], Z⟩ = −⟨[X,Z], Y ⟩,

for any X,Y, Z in (ej , ēj)1≤j≤n. Hereafter, we shorten e.g. eij̄ := ei ∧ ēj ,
where (ej , ēj)j is the dual coframe of (ej , ēj)j , and we use Einstein notation
on summation over repeated indices. In this notation, we have that with
respect to the unitary parallel frame (ej , ēj)j the metric ω is expressed locally
as

ω =

√
−1

2
ekk̄.

In other words, we are locally reduced to the Lie algebra case where the
complex structure and the metric are both left invariant, and moreover, the
metric is actually bi-invariant. In these conditions one has ∂∂ω = 0 [SSTV88]
(see also [Enr13, page 568]), so the metric ω is pluriclosed. □

2. Hermitian geometry on six-dimensional Calabi-Yau
solvmanifolds

We consider 6-dimensional solvmanifolds X = Γ\G , namely, compact quo-
tients of connected simply-connected solvable Lie groups by co-compact dis-
crete subgroups. In particular, we consider solvmanifolds endowed with in-
variant Hermitian structures (J, g), that is, structures whose lift to the uni-
versal cover is invariant under left-translations. Such structures are encoded
in the associated Lie algebra g. As a matter of notation, we will denote Lie
algebras in the concise form in [Sal01]: e.g. rh3 = (0, 0,−12, 0) means that



✐

✐

“2-Angella” — 2023/2/25 — 0:05 — page 975 — #15
✐

✐

✐

✐

✐

✐

On Gauduchon connections with Kähler-like curvature 975

the four-dimensional Lie algebra rh3 admits a basis (e1, e2, e3, e4) such that
[e1, e2] = e3, the other brackets being trivial. The notation actually refers
to the dual rh∗3: the dual basis (e1, e2, e3, e4) satisfies de1 = de2 = de4 = 0
and de3 = −e1 ∧ e2, where we will shorten e12 := e1 ∧ e2. Here, we use the
following formula to relate the differential d : g∨ → ∧2g∨ and the bracket
[ , ] : ∧2 g → g:

dα(x, y) = −α([x, y]).

2.1. Metric formulas

Let
(

φ1, φ2, φ3
)

be an invariant co-frame of (1, 0)-forms with respect to J . With respect to
the frame (φ1, φ2, φ3, φ̄1, φ̄2, φ̄3) dual to

(

φ1, φ2, φ3, φ̄1, φ̄2, φ̄3
)

, we first set
the structure constants

[φI , φH ] =: cKIHφK .

(Capital letters here vary in {1, 2, 3, 1̄, 2̄, 3̄} and refer to the corresponding
component; the Einstein summation is assumed.)

The generic invariant Hermitian structure ω = g( , J ) is given by

2ω =
√
−1r2 φ11̄ +

√
−1s2 φ22̄ +

√
−1t2 φ33̄(2.1)

+ uφ12̄ − ū φ21̄ + v φ23̄ − v̄ φ32̄ + z φ13̄ − z̄ φ31̄

where the coefficients satisfy [Uga07, page 189]

r2 > 0, s2 > 0, t2 > 0,

r2s2 > |u|2, r2t2 > |z|2, s2t2 > |v|2,
r2s2t2 + 2Re (

√
−1 ūzv̄) > t2|u|2 + r2|v|2 + s2|z|2.

(Hereafter, we shorten e.g. φ31̄ := φ3 ∧ φ̄1.) That is to say, the matrix
(gKL)K,L is positive-definite. Its inverse is denoted by

(gKL)K,L := (gKL)
−1
K,L.

Let Ω be the matrix associated to the Hermitian metric, i.e.

Ω =





√
−1 r2

2
u
2

z
2

−u
2

√
−1 s2

2
v
2

− z
2 −v

2

√
−1 t2

2




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Then,

8
√
−1 detΩ = r2s2t2 − r2|v|2 − s2|z|2 − t2|u|2(2.2)

+ 2Re (
√
−1 ūv̄z) > 0.

We can express the Christoffel symbols of ∇LC as

(ΓLC)KIH =
1

2
gKL (g([φI , φH ], φL)− g([φH , φL], φI)− g([φI , φL], φH))

=
1

2
cKIH − 1

2
gKAgBIc

B
HA − 1

2
gKAgBHcBIA.

Therefore, for (ε, ρ), we compute the Christoffel symbols of the ∇ε,ρ connec-
tion:

(Γε,ρ)KIH = (ΓLC)KIH + εgKLTIHL + ρgKLCIHL,

where

TIHL = −dω(JφI , JφH , JφL), CIHL = dω(JφI , φH , φL).

We can then express the (4, 0)-Riemannian curvature of ∇ε,ρ as

(Rε,ρ)IHKL = gAL(Γ
ε,ρ)BHK(Γε,ρ)AIB − gAL(Γ

ε,ρ)BIK(Γε,ρ)AHB

− gALc
B
IH(Γε,ρ)ABK .

2.2. Complex structures

We consider 6-dimensional Calabi-Yau solvmanifolds, meaning that they
are endowed with an invariant complex structure having a non-zero invari-
ant closed (3,0)-form, thus their canonical bundle is holomorphically-trivial.
This includes nilmanifolds [Sal01, Uga07, COUV16] and the solvmanifolds
in [FOU15]. We recall here their classification.

Six-dimensional nilpotent Lie algebras have been classified by Morozov
in 34 different classes, 18 of which admit invariant complex structures by
Salamon [Sal01]: they are h1, . . . , h16, h

−
19, h

+
26. The complex structures on

them are classified into four families in [COUV16]. We recall the complex
structure equations and the underlying Lie algebras in Table 1.

We also consider solvmanifolds other than nilmanifolds. Classification of
invariant complex structures in dimension 6 such that the canonical bundle is
holomorphically-trivial is obtained in [Ota14, FOU15]. We recall the complex
structure equations and the underlying Lie algebras in Table 2.
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Name Complex structure Lie algebra

(Np) dφ1 = dφ2 = 0, dφ3 = ρφ12, where ρ ∈ {0, 1}
ρ = 0 : h1 = (0, 0, 0, 0, 0, 0)

ρ = 1 : h5 = (0, 0, 0, 0, 13 + 42, 14 + 23)

(Ni)

dφ1 = dφ2 = 0,
h2 = (0, 0, 0, 0, 12, 34)

h3 = (0, 0, 0, 0, 0, 12 + 34)

dφ3 = ρφ12 + φ11̄ + λφ12̄ +Dφ22̄, h4 = (0, 0, 0, 0, 12, 14 + 23)

h5 = (0, 0, 0, 0, 13 + 42, 14 + 23)

where ρ ∈ {0, 1}, λ ∈ R≥0, D ∈ C with ImD ≥ 0 h6 = (0, 0, 0, 0, 12, 13)

h8 = (0, 0, 0, 0, 0, 12)

(Nii)

dφ1 = 0, dφ2 = φ11̄,

h7 = (0, 0, 0, 12, 13, 23)

h9 = (0, 0, 0, 0, 12, 14 + 25)

h10 = (0, 0, 0, 12, 13, 14)

dφ3 = ρφ12 +B φ12̄ + c φ21̄,
h11 = (0, 0, 0, 12, 13, 14 + 23)

h12 = (0, 0, 0, 12, 13, 24)

where ρ ∈ {0, 1}, B ∈ C, c ∈ R≥0, with (ρ,B, c) ̸= (0, 0, 0)

h13 = (0, 0, 0, 12, 13 + 14, 24)

h14 = (0, 0, 0, 12, 14, 13 + 42)

h15 = (0, 0, 0, 12, 13 + 42, 14 + 23)

h16 = (0, 0, 0, 12, 14, 24)

(Niii)
dφ1 = 0, dφ2 = φ13 + φ13̄, h−19 = (0, 0, 0, 12, 23, 14− 35)

dφ3 =
√
−1ρφ11̄ ±

√
−1(φ12̄ − φ21̄), where ρ ∈ {0, 1} h+26 = (0, 0, 12, 13, 23, 14 + 25)

Table 1: Invariant complex structures on six-dimensional nilmanifolds up to
linear equivalence, see [ABD11, UV14, COUV16].

In particular, notice that the family (Np) and the family (Siv1) consist
of holomorphically-parallelizable structures, namely, such that the holomor-
phic tangent bundle is holomorphically-trivial. The case (Np) with ρ = 0
corresponds to the complex torus, the case (Np) with ρ = 1 corresponds
to the holomorphically-parallelizable Iwasawa manifold, and the case (Siv1)
corresponds to the holomorphically-parallelizable Nakamura manifold.

We recall that, by [Wan54, Theorem 1], holomorphically-parallelizable
manifolds can be regarded, up to a holomorphic homeomorphism, as quo-
tients of a connected simply-connected complex Lie group by a discrete
subgroup. Clearly, any invariant metric on a holomorphically-parallelizable
manifold is Chern-flat. (On the other side, by [Boo58], a compact complex
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Name Complex structure Lie algebra

(Si)

dφ1 = Aφ13 +Aφ13̄, g1 = (15,−25,−35, 45, 0, 0) when θ = 0

dφ2 = −Aφ23 −Aφ23̄, dφ3 = 0, gα2 = (α× 15 + 25,−15 + α× 25,−α× 35 + 45,−35− α× 45, 0, 0)

where A = cos θ +
√
−1 sin θ, θ ∈ [0, π) with α = cos θ

sin θ ≥ 0, when θ ̸= 0

(Sii)

dφ1 = 0, dφ2 = −1
2φ

13 −
(

1
2 +

√
−1x

)

φ13̄ +
√
−1xφ31̄,

g3 = (0,−13, 12, 0,−46,−45)dφ3 = 1
2φ

12 +
(

1
2 −

√
−1
4x

)

φ12̄ +
√
−1
4x φ21̄,

where x ∈ R>0

(Siii1)

dφ1 =
√
−1φ13 +

√
−1φ13̄

g4 = (23,−36, 26,−56, 46, 0)dφ2 = −
√
−1φ23 −

√
−1φ23̄

dφ3 = ±φ11̄

(Siii2)

dφ1 = φ13 + φ13̄

g5 = (24 + 35, 26, 36,−46,−56, 0)dφ2 = −φ23 − φ23̄

dφ3 = φ12̄ + φ21̄

(Siii3)

dφ1 =
√
−1φ13 +

√
−1φ13̄

g6 = (24 + 35,−36, 26,−56, 46, 0)dφ2 = −
√
−1φ23 −

√
−1φ23̄

dφ3 = φ11̄ + φ22̄

(Siii4)

dφ1 =
√
−1φ13 +

√
−1φ13̄

g7 = (24 + 35, 46, 56,−26,−36, 0)dφ2 = −
√
−1φ23 −

√
−1φ23̄

dφ3 = ±(φ11̄ − φ22̄)

(Siv1) dφ1 = −φ13, dφ2 = φ23, dφ3 = 0

g8 = (16− 25, 15 + 26,−36 + 45,−35− 46, 0, 0)

(Siv2)
dφ1 = 2

√
−1φ13 + φ33̄, x ∈ {0, 1}

dφ2 = −2
√
−1φ23 + xφ33̄, dφ3 = 0

(Siv3)

dφ1 = Aφ13 − φ13̄

dφ2 = −Aφ23 + φ23̄, dφ3 = 0

A ∈ C with |A| ≠ 1

(Sv)

dφ1 = −φ33̄

g9 = (45, 15 + 36, 14− 26 + 56,−56, 46, 0)dφ2 =
√
−1
2 φ12 + 1

2φ
13̄ −

√
−1
2 φ21̄

dφ3 = −
√
−1
2 φ13 +

√
−1
2 φ31̄

Table 2: Invariant complex structures on six-dimensional solvmanifolds non-
nilmanifolds with holomorphically-trivial canonical bundle up to linear
equivalence, see [Ota14, FOU15].

Hermitian manifold is Chern-flat if and only if its universal cover is holo-
morphically isometric to a complex Lie group endowed with an invariant
Hermitian metric.) In [YZ16, Theorem 1.2], the authors prove that, on a
compact complex manifold of complex dimension n ≥ 3, a metric such that
both its Levi-Civita and its Chern connection are Kähler-like is actually
Kähler. Recall that, by [Wan54, Corollary 2], holomorphically-parallelizable
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compact Kähler manifolds are complex torus. Then, on holomorphically-
parallelizable nilmanifolds and solvmanifolds different than tori, the Chern
connection associated to an invariant Hermitian structure is always Kähler-
like, while the Levi-Civita connection is never.

Note that this case also includes the case of the special Lie algebra
sl(2;C), with structure equations

(sl2C) dφ1 = φ23, dφ2 = −φ13, dφ3 = φ12,

other than the already mentioned Iwasawa manifold (Np) with ρ = 1, and
Nakamura manifold (Siv1).

2.3. Special Hermitian metrics

In view of [YZ16, Theorem 1.3] and Conjectures 1 and 2, we are particu-
larly interested on nilmanifolds and solvmanifolds admitting invariant com-
plex structures with holomorphically-trivial canonical bundle and (invariant)
balanced or pluriclosed metrics.

As for balanced, according to [Uga07], and [COUV16, UV14, UV15],
they are:

• either h1 with a holomorphically-parallelizable complex structure in
Family (Np) with ρ = 0; any Hermitian metric is in fact Kähler;

• or h2, . . . , h6 with a nilpotent complex structure in Family (Ni); a
generic Hermitian metric as in (2.1) is balanced if and only if r2 = 1,
v = z = 0, and s2 +D =

√
−1 ū λ;

• or h5 with a holomorphically-parallelizable complex structure in Fam-
ily (Np) with ρ = 1, corresponding to the Iwasawa manifold; in this
case, any invariant Hermitian metric is balanced;

• or h−19 with a non-nilpotent complex structure in Family (Niii); bal-
anced metrics in (2.1) are characterized by u = z = 0, and either t2 = 1
and v = 0, or t2 > 0 and v = 1;

• or g1 or gα2 with a splitting-type complex structure in Family (Si); a
generic metric as in (2.1) is balanced if and only if v = z = 0; they are
non-Kähler except for g02 with u = v = z = 0;

• or g3 (Sii) or g5 (Siii2) or g7 (Siii4); balanced metrics in (2.1) are
characterized by v = z = 0, and moreover in case g5 take u ∈ R, re-
spectively in case g7 take r2 = s2;
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• or g8 with a holomorphically-parallelizable splitting-type complex
structure in Family (Siv1): any metric is balanced; or with a splitting-
type complex structure in Family (Siv3): balanced metrics as in (2.1)
are characterized by v = z = 0.

As for pluriclosed metrics, they exist only on:

• h1 with a holomorphically-parallelizable complex structure in Family
(Np) with ρ = 0; any Hermitian metric is in fact Kähler;

• h2, h4, h5, h8 in Family (Ni), and in this case any Hermitian metric is
pluriclosed, see [FPS04, Theorems 1.2, 3.2];

• g02 in Family (Si) and g4 (Siii1); pluriclosed metrics are given by u = 0
in the form (2.1); see [FOU15, Theorem 4.1].

Finally, we review the existence of Kähler metrics. By [BG88] and, more
in general, [Has89], Kähler metrics do not exist on non-tori nilmanifolds
(with invariant or non-invariant complex structures). On the other side,
Kähler metrics exist on:

• h1, namely, the complex torus;

• g02 in Family (Si), and the Kähler metrics are given by the diagonal
ones, u = v = z = 0, see [Ota14, Theorem 5.1.3].

Remark 10. Observe that the Lie algebras h7, . . . , h16, h
+
26 and g9 do not

admit neither balanced nor pluriclosed metrics.

3. Kähler-like Gauduchon connections on six-dimensional
Calabi-Yau solvmanifolds

In this section we study the existence of Kähler-like connections on the class
of 6-dimensional Calabi-Yau solvmanifolds.

Let us denote the Gauduchon connections by ∇ε := ∇G1−4ε and by Rε

their corresponding curvature. We recall that with respect to this notation,
∇ε=0 = ∇Ch and ∇ε=1/2 = ∇+.

Theorem 11. Let X = Γ\G be a six-dimensional solvmanifold endowed
with an invariant complex structure J such that the canonical bundle is
holomorphically-trivial. Denote by g the Lie algebra associated to G and let
ω be the (1, 1)-form associated to any invariant J-Hermitian metric on X.
We have the following.
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• If the Chern connection ∇Ch is Kähler-like, then g is isomorphic to
h1, h5, g1, g

α≥0
2 , or g8, and the Hermitian metric ω is balanced.

• If the Strominger-Bismut connection ∇+ is Kähler-like, then g is iso-
morphic to h1, h2, h8, g

0
2, or g4, and the Hermitian metric ω is pluri-

closed.

• If a Gauduchon connection ∇ε is Kähler-like for some ε ∈ R \ {0, 12},
then g is isomorphic to h1 or g

0
2, and the Hermitian metric ω is Kähler.

Notice that Theorem 11 yields that Conjectures 1 and 2 are satisfied for
such class of six-dimensional Calabi-Yau solvmanifolds. It also shows that
the property of being Kähler-like for the Chern connection is neither open
nor closed under holomorphic deformations of the complex structure: as for
non-closedness, it follows by

Corollary 12. The Lie algebra g8 admits Chern-flat Hermitian metrics for
complex structures in Family (Siv3), which admit limits in Family (Siv1)
which are not even balanced [FOU15, Theorem 5.2].

The following result makes Theorem 11 more precise, in specifying the
complex structures J and the J-Hermitian metrics ω in each case when the
connections are Kähler-like.

Theorem 13. In the conditions of Theorem 11, we have the following.

• The Chern connection ∇Ch is Kähler-like precisely in the following
cases:
– h1, with J in Family (Np) with ρ = 0, with any ω given by (2.1),

which is in fact Kähler and Chern-flat;
– h5, with J in the holomorphically-parallelizable Family (Np) with

ρ = 1, with any ω given by (2.1), which is in fact Chern-flat;
– g1, with J in Family (Si) with θ = 0, with ω given by (2.1) with

u = v = z = 0, which is in fact Chern-flat;
– g02, with J in Family (Si) with θ = π

2 , with ω given by (2.1) with
u = v = z = 0, which is in fact Kähler and Chern-flat;

– gα2 with α > 0, with J in Family (Si) with θ ̸∈ {0, π2 }, with ω given
by (2.1) with u = v = z = 0, which is in fact Chern-flat;

– g8, with J in the holomorphically-parallelizable Family (Siv1), with
any ω given by (2.1), which is in fact Chern-flat;

– g8, with J in Family (Siv3), with ω given by (2.1) with u = v =
z = 0, which is in fact Chern-flat.
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In any case, the metric is balanced by [YZ16, Theorem 1.3].

• The Strominger-Bismut connection ∇+ is Kähler-like precisely in the
previous Kähler cases (see h1 and g02) and in the following cases:
– h2, with J in Family (Ni) with ρ = λ = 0 and D =

√
−1, with ω

given by (2.1) with r2 = 1, u = v = z = 0 (not Strominger-Bismut-
flat);

– h8, with J in Family (Ni) with ρ = λ = D = 0, with any ω given
by (2.1) (not Strominger-Bismut-flat);

– g4, with J in Family (Siii1), with ω given by (2.1) with u = v =
z = 0 (not Strominger-Bismut-flat).

In any case, the metric is pluriclosed.

• The Gauduchon connection ∇ε for some ε ∈ R \ {0, 12} is Kähler-like
precisely in the previous Kähler cases (see h1 and g02).

The rest of the section is devoted to the proofs of Theorems 11 and 13.
Recall that by Remark 6 we know that ∇ε is Kähler-like if and only if the
identities (1Bnc’) and (Cplx’) hold; more concretely,

Rε
ij•• = Rε

••kℓ = 0, and Bε
ij̄kℓ̄ := Rε

ij̄kℓ̄ −Rε
kj̄iℓ̄ = 0,

for any i, j, k, ℓ ∈ {1, 2, 3}, where for instance Bε
12̄31̄

denotes Bε(X1, X̄2,
X3, X̄1). Throughout this section, and also Section 4.2, we make use of this
notation.

Remark 14. We remark that we are doing calculations at the level of the
Lie algebra, equivalently, on invariant objects on the Lie group. In particu-
lar, this means that our results hold true also at the level of the non-compact
Lie group. Compare also [VYZ18, Theorem 1.3], where no compactness as-
sumptions is supposed, but the extra assumption on invariant parallel frame,
to study flat Gauduchon connections on Lie groups.

3.1. Nilmanifolds

3.1.1. Holomorphically-parallelizable nilmanifolds in Family (Np).
Consider the complex structure equations

dφ1 = dφ2 = 0, dφ3 = φ12,

and a generic (balanced) Hermitian metric given by (2.1). Let {X1, X2, X3}
be the (1,0)-basis of vectors dual to {φ1, φ2, φ3}, that is, [X1, X2] = −X3.
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Proposition 15. The Gauduchon connection ∇ε is never Kähler-like un-
less ε = 0.

Proof. A direct calculation shows that Rε
ij•• = Rε

••kℓ = 0 for any i, j, k, ℓ ∈
{1, 2, 3}. On the other hand, what symmetries of Bianchi-type concerns, we
can observe that:

Bε
11̄33̄ =

2ε2t4(r2t2 − |z|2)
8
√
−1 detΩ

= 0 ⇐⇒ ε = 0.

Moreover, B0 ≡ 0, i.e. ∇Ch is Kähler-like; in fact, this is true for any
holomorphically-parallelizable manifold. □

3.1.2. Nilmanifolds in Family (Ni). According to [UV15, equations
(2.4)–(2.5)], any Hermitian structure can be expressed as:

dφ1 = dφ2 = 0, dφ3 = ρφ12 + φ11̄ + λφ12̄ +Dφ22̄,(3.1)

2ω =
√
−1(φ11̄ + s2 φ22̄ + t2 φ33̄) + uφ12̄ − ū φ21̄,

where ρ ∈ {0, 1}, λ ≥ 0, ImD ≥ 0, and s2 > |u|2, t2 > 0; i.e. we can take v =
z = 0 and r2 = 1 in the generic expression (2.1).

Lemma 16. In the notation as above, if ∇ε is Kähler-like, then ε = 1
2 ,

ρ = 0 and ω is pluriclosed.

Proof. Let us take the element Rε
2313̄

= 2ε2ρs2t6

8
√
−1 detΩ

. It vanishes if and only if

ερ = 0. If ε = 0, then B0
11̄33̄

= − s2t4

2(s2−|u|2) ̸= 0, hence ρ = 0.
Now, substituting ρ = 0 we find:

Bε
11̄21̄ =

−λ(1− 2ε)2t2

2
= 0 ⇐⇒ ε =

1

2
or λ = 0.

Finally, if λ = 0, then Bε
13̄31̄

= s2t4ε(2ε−1)
s2−|u|2 ̸= 0, hence ε = 1

2 .

For the last statement, according to [FPS04, equation (3)], the Hermitian
metric ω is pluriclosed if and only if the parameters in the complex structure
(Ni) satisfy

ρ+ λ2 − (D + D̄) = 0.

Now, in the case ρ = 0, we have that:

B
1

2

11̄22̄
=

−t2

2
(λ2 − (D + D̄)),
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whence the statement. □

Proposition 17. In the notation as above, ∇ε is Kähler-like if and only if
ε = 1

2 and

• either the Lie algebra is h2 and the Hermitian structure is given by
(ρ, λ,D) = (0, 0,

√
−1) and u = 0,

• or the Lie algebra is h8 and the Hermitian structure is anyone defined
on the complex structure (ρ, λ,D) = (0, 0, 0).

Proof. In [Uga07], it is shown that the only Lie algebras underlying equa-
tions (3.1) with ρ = 0 admitting a Hermitian pluriclosed metric are h2 and
h8. Moreover, ReD = λ2

2 . Taking into account the classification of complex
structures up to equivalence [COUV16], λ can take only the value 0, so we
are forced to:

• (ρ, λ,D) = (0, 0,
√
−1), namely, the Lie algebra h2;

• (ρ, λ,D) = (0, 0, 0), namely, the Lie algebra h8.

We are going to study the two cases above. First, the computation of the cur-
vature elements for ρ = 0 and ε = 1/2 yields that, for any i, j, k, ℓ ∈ {1, 2, 3},

R
1

2

ij•• = R
1

2

••kℓ = 0.

With respect to the relations coming from the Bianchi identity, we sum-
marize the results of the computations in Appendix I. In particular, ε = 1

2 ,
ρ = 0, λ = 0, and ReD = 0 yield that

B
1

2 ≡ 0 ⇐⇒ B
1

2

13̄32̄
=

t4u(D − D̄)

16 detΩ
= 0 ⇐⇒ u ImD = 0.

□

Remark 18. In the cases above, the Strominger-Bismut connection is not
flat. In fact, R+

11̄11̄
= R+

22̄22̄
= t2 ̸= 0 for h2, and R+

11̄11̄
= t2 ̸= 0 for h8, the

other components of the curvature being zero.

3.1.3. Nilmanifolds in Family (Nii). Consider the complex structure
equations

dφ1 = 0, dφ2 = φ11̄, dφ3 = ρφ12 +Bφ12̄ + c φ21̄,

where ρ ∈ {0, 1}, c ≥ 0, B ∈ C satisfying (ρ,B, c) ̸= (0, 0, 0).
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Proposition 19. For nilmanifolds in Family (Nii), the Gauduchon con-
nection ∇ε is never Kähler-like.

Proof. For the Chern connection, i.e. ε = 0, the result follows directly from
the fact that ω is never balanced and by [YZ16, Theorem 1.3].

As a consequence, we consider ε ̸= 0 and the following elements:

Bε
32̄23̄ = − t4(s2t2 − |v|2)

4
√
−1 detΩ

(

ε2ρ2 − 2|B|2
(

ε− 1

2

)(

ε− 1

4

))

,

Bε
33̄22̄ =

ε t4(s2t2 − |v|2)
4
√
−1 detΩ

(

εc2 − 2|B|2
(

ε− 1

4

))

,

where recall the expression for detΩ as in (2.2).

Observe first that Rε
2323̄

= 2ε2ρB̄(s2t2−|v|2)t4
8
√
−1 detΩ

= 0 if and only if ρB = 0. If

B = 0, then

(Bε
32̄23̄, B

ε
33̄22̄) = (0, 0) ⇐⇒ (ρ, c) = (0, 0)

which is a contradiction. Therefore, we may assume B ̸= 0 and ρ = 0. Now,

Bε
32̄23̄ = 0 ⇐⇒ ε =

1

2
or ε =

1

4
.

If ε = 1
4 , then

B
1

4

33̄22̄
= 0 ⇐⇒ c = 0

but in this case one can check that B
1

4

21̄12̄
= |B|2t2

4 ̸= 0.

If ε = 1
2 , then R

1

2

2312̄
= c(s2t2−|v|2)2

16
√
−1 detΩ

and R
1

2

2321̄
= −B̄(s2t2−|v|2)2

16
√
−1 detΩ

, therefore

(R
1

2

2312̄
, R

1

2

2321̄
) = (0, 0) ⇐⇒ (B, c) = (0, 0),

providing a contradiction. □

3.1.4. Nilmanifolds in Family (Niii). Consider the complex structure
equations

dφ1 = 0, dφ2 = φ13 + φ13̄, dφ3 =
√
−1ν φ11̄ +

√
−1 δ (φ12̄ − φ21̄),

where ν = {0, 1} and δ = ±1.

Proposition 20. For nilmanifolds in Family (Niii), the Gauduchon con-
nection ∇ε is never Kähler-like.
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Proof. Consider the Bianchi identity relation Bε
33̄23̄

. Now,

Bε
33̄23̄ =

(4ε2 + 4ε− 1)(−
√
−1s2 + δt2)(s2t2 − |v|2)v

16
√
−1 detΩ

= 0

⇐⇒
{

v = 0,

ε = −1±
√
2

2 .

We start supposing v = 0. Now, Bε
32̄12̄

= 2ε2z̄(
√
−1s2+δt2)s4

8
√
−1 detΩ

= 0 if and only

if zε = 0. In the case ε = 0, one can check that B0
33̄22̄

= −s4t2(s2+δ
√
−1t2)

16
√
−1 detΩ

is

always a non-zero element. On the other hand, if z = 0, just take

Bε
22̄33̄ =

s2t2(s2 +
√
−1δt2)

(

2εs2 +
√
−1(1− 2ε)δt2

)

(4ε− 1)

16
√
−1 detΩ

.

One has Bε
22̄33̄

= 0 ⇐⇒ ε = 1
4 . But in this case, B

1

4

11̄33̄
= −s2

2 ̸= 0.

Finally, if ε0 =
−1±

√
2

2 is a root of the polynomial 4ε2 + 4ε− 1, then:

Bε0
33̄22̄

= 0

⇐⇒ (s2t2 − |v|2)
(

(s2 +
√
−1 δt2)

[

(∓7 + 5
√
2)s2 ±

√
−1t2(4± 3

√
2)
]

−
√
−1 δ|v|2(∓3 + 2

√
2)
)

= 0,

but the last expression is always non-zero. □

3.2. Solvmanifolds

3.2.1. Solvmanifolds in Family (Si). By Section 2.2, for this family of
complex structures the underlying Lie algebras are g1 or gα2 with α ≥ 0.

Proposition 21. The Chern connection ∇Ch is Kähler-like if and only ω
given by (2.1) satisfies u = v = z = 0. Moreover, in these cases, the Chern
curvature vanishes identically.

Proof. Using [YZ16, Theorem 1.3], a necessary condition for ∇Ch to be
Kähler-like is that ω must be a balanced metric. According to [FOU15, The-
orem 4.5], ω is balanced if and only if v = z = 0. Now, with this restriction,
it is immediate to see that B0 ≡ 0 if and only if u = 0 (see Appendix II).
The last statement follows by direct inspection. □
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Remark 22. The previous result gives an example of a non-Kähler met-
ric with Kähler-like Chern connection on a solvmanifold endowed with a
left-invariant complex structure which does not admit any basis of (left-
invariant) holomorphic vector fields.

Note indeed that the above diagonal metrics are Kähler if and only
if the parameter satisfies A =

√
−1, corresponding to the Lie algebra g02.

Clearly, by [Boo58], the complex solvmanifold is in fact biholomorphic to
a holomorphically-parallelizable manifold. But it is presented in a different
way as quotient of a Lie group, and as such it is not parallelizable by left-
invariant holomorphic vector fields.

Proposition 23. For ε ̸= 0, the Gauduchon connection ∇ε is Kähler-like
if and only if g = g02 and ω is Kähler.

Proof. We prove firstly that the underlying Lie algebra must be g02, corre-
sponding to A =

√
−1 in family (Si), as:

Bε
11̄22̄ =

8 ε2(r2s2 − |u|2)
8
√
−1 detΩ

[

(ReA)2(r2s2 − |u|2) + |A|2|u|2
]

= 0,

implies A =
√
−1 and u = 0.

Now, as it is shown in Appendix III, Bε
11̄33̄

= Bε
22̄33̄

= 0 if and only if
(2ε− 1)v = (2ε− 1)z = 0.

If v = z = 0, in particular the metric ω is Kähler and one has that Bε ≡ 0
and Rε ≡ 0.

On the other hand, consider now the Strominger-Bismut connection, i.e.

ε = 1
2 . Then, B

1

2 ≡ 0 if and only if (B
1

2

13̄33̄
, B

1

2

23̄33̄
) = (

√
−1z
2 ,

√
−1v
2 ) = (0, 0),

which implies v = z = 0. □

3.2.2. Solvmanifolds in Family (Sii). By Section 2.2, the Lie algebra
underlying this family of complex structures is g3.

Proposition 24. For any solvmanifold in Family (Sii), the Gauduchon
connection ∇ε is never Kähler-like.

Proof. First let us suppose ε = 0. Using [YZ16, Theorem 1.3], a necessary
condition for ∇Ch to be Kähler-like is that ω must be a balanced metric.
According to [FOU15, Theorem 4.5], ω is balanced if and only if u = z = 0.



✐

✐

“2-Angella” — 2023/2/25 — 0:05 — page 988 — #28
✐

✐

✐

✐

✐

✐

988 Angella, Otal, Ugarte, and Villacampa

Now, with this restriction,

B0
12̄21̄ =

−(t2 − 2
√
−1s2x)(1 + 4x2)

32x2
̸= 0,

whence the statement.
In what follows, we will suppose that ε ̸= 0 and a generic Hermitian

metric ω. Consider the elements Rε
2323̄

and Rε
2333̄

:







Rε
2323̄

= ε(
√
−1+2x)(s2t2−|v|2)(−v2+2

√
−1s2t2x−4s4x2+2ε(t4+4s4x2)−2

√
−1|v|2x)

64x
√
−1 detΩ

,

Rε
2333̄

= ε(
√
−1+2x)(s2t2−|v|2)(v(

√
−1(−1+2ε)t2+4εs2x)+4

√
−1x(

√
−1εt2−s2x+2εs2x)v̄)

64x
√
−1 detΩ

.

Now:















Rε
2323̄

= 0 ⇐⇒ 2εt4 − v2 + 2
√
−1x(s2t2 − |v|2) + 4s4x2(2ε− 1) = 0,

Rε
2333̄

= 0 ⇐⇒ v
(

4
√
−1 εs2x− (2ε− 1)t2

)

−4xv̄
(√

−1 εt2 + (2ε− 1)s2x
)

= 0.

Adding and subtracting the two expressions above, we obtain the equivalent
system:







(2
√
−1 s2x+ 2ε(t2 − 2

√
−1 s2x)− v)(t2 + 2

√
−1 s2x+ v + 2

√
−1xv̄) = 0,

(2
√
−1 s2x+ 2ε(t2 − 2

√
−1 s2x) + v)(t2 + 2

√
−1 s2x− v − 2

√
−1xv̄) = 0.

As a matter of notation, let us write the first equation as AB = 0 and the
second as CD = 0.

Let us focus our attention in the first equation and consider the case
A = 0. We can express v as:

v = 2
√
−1 s2x+ 2ε(t2 − 2

√
−1 s2x).

Substituting this value in the second equation we obtain that:















C = 4(εt2 −
√
−1s2x(2ε− 1)) ̸= 0,

D = (1− 2ε)(t2 − 4s2x2) + 4
√
−1 εx(s2 − t2) = 0 ⇐⇒

{

ReD = 0,

ImD = 0,
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Now,

{

ReD = 0,

ImD = 0,
⇐⇒

{

(1− 2ε)(t2 − 4s2x2) = 0,

s2 − t2 = 0,

⇐⇒
{

(1− 2ε)(1− 4x2) = 0,

s2 − t2 = 0,

so, we obtain two different possibilities:

s2 = t2, ε =
1

2
, or s2 = t2, x =

1

2
.

If we consider A ̸= 0, then B = 0 and therefore v + 2
√
−1xv̄ = −t2 −

2
√
−1 s2x. Substituting this expression in D we get that

D = 2(t2 + 2
√
−1x2x) ̸= 0,

which implies that C = 0. Observe that system B = C = 0 is the same as
A = D = 0 just changing the sign of v. One get the same solutions as before.

To finish the proof, we study first the case s2 = t2 and ε = 1
2 . Directly,

R
1

2

1212̄
=

t2(2x−
√
−1)

16x
̸= 0.

On the other hand, if s2 = t2 and x = 1
2 , B

ε
22̄31̄

=
√
−1ε(2ε−1)t4

ū+
√
−1z̄

̸= 0. □

3.2.3. Solvmanifolds in Families (Siii1), (Siii3), (Siii4). Recall that
from Section 2.2, the Lie algebras underlying (Siii1), (Siii3), and (Siii4) are,
respectively, g4, g6, and g7. In order to give an unified argument, we will
gather the complex equations as follows:

dφ1 =
√
−1 (φ13 + φ13̄), dφ2 = −

√
−1 (φ23 + φ23̄),

dφ3 = xφ11̄ + y φ22̄,

where (x, y) = (±1, 0) for g4, (x, y) = (1, 1) for g6 and (x, y = −x) =
(±1,∓1) for g7. In particular, x ̸= 0.

Proposition 25. The Chern connection ∇Ch is never Kähler-like.

Proof. Using [YZ16, Theorem 1.3], a necessary condition for ∇Ch to be
Kähler-like is that ω must be a balanced metric. A direct computation shows
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that ω is balanced if and only if v = z = 0 and s2x+ r2y = 0. Observe that
this last equation has no solutions on g4 and g6, which implies that ∇Ch is
never Kähler-like for these algebras. On g7, since x = −y, the only option
is r2 = s2. Now, if we compute the Bianchi identity-symmetries B0, we get
that B0

11̄22̄
= t2

2 ̸= 0. □

Proposition 26. In the notation as above, consider ε ̸= 0. Then, ∇ε is
Kähler-like if and only if g is isomorphic to g4, ε =

1
2 , and u = v = z = 0 in

(2.1). In this case, the Strominger-Bismut connection is non-flat.

Proof. From now on, consider ε ̸= 0. Let us focus on Chern-symmetries Rε
1213̄

and Rε
1223̄

:

Rε
1213̄ =

−ε z

8
√
−1 detΩ

(

v
[√

−1 (2ε+ 1)uvx+ z
(

s2x(2ε+ 1)− r2y(2ε− 1)
)]

+
√
−1 (2ε− 1)yūz2

)

,

Rε
1223̄ =

ε v

8
√
−1 detΩ

(

v
[√

−1 (2ε− 1)uvx+ z
(

s2x(2ε− 1)− r2y(2ε+ 1)
)]

+
√
−1 (2ε+ 1)yūz2

)

.

Trivially, this two elements vanishes if v = z = 0. Suppose that vz ̸= 0.
Then, the system Rε

1213̄
= Rε

1223̄
= 0 is equivalent to























A := v
[√

−1 (2ε+ 1)uvx+ z
(

s2x(2ε+ 1)− r2y(2ε− 1)
)]

+
√
−1 (2ε− 1)yūz2 = 0,

B := v
[√

−1 (2ε− 1)uvx+ z
(

s2x(2ε− 1)− r2y(2ε+ 1)
)]

+
√
−1 (2ε+ 1)yūz2 = 0.

Consider the following homogeneous system, whose solutions are precisely
A = B = 0:







A(1 + 2ε) +B(1− 2ε) = 0,

A(1− 2ε) +B(1 + 2ε) = 0.
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This last system reduces to






8 ε v x (
√
−1uv + s2z) = 0,

8 ε
√
−1 z y (

√
−1r2v + ūz) = 0.

⇐⇒







√
−1uv + s2z = 0,

y (
√
−1r2v + ūz) = 0.

⇐⇒











u =

√
−1 s2 z

v
,

√
−1 y

v̄
(r2|v|2 − s2|z|2) = 0.

Moreover, substituting u =

√
−1 s2 z

v
in (2.2), we get:

8
√
−1 detΩ =

(s2t2 − |v|2)(r2|v|2 − s2|z|2)
|v|2 ̸= 0.

So, we are forced to consider y = 0. However, in this particular case, Rε
1232̄

=
4
√
−1 ε2s4z

s2t2−|v|2 ̸= 0.
Let us study now the case when vz = 0. Suppose first z = 0 and v ̸= 0.

Now, Rε
1212̄

= −ε2u2v2x
2 detΩ = 0 if and only if u = 0. But imposing this condition,

we get that Rε
2311̄

= −εvx ̸= 0.

On the other hand, if v = 0 and z ̸= 0, symmetry Rε
1213̄

= −ε(2ε−1)yz3ū
8 detΩ =

0 is equivalent to (2ε− 1)uy = 0. If ε = 1
2 (corresponding to the Strominger-

Bismut connection), then







R
1

2

1322̄
= yz

2 = 0,

R
1

2

1211̄
= s2z2xū

8
√
−1 detΩ

= 0,
⇐⇒ u = y = 0.

But now, R
1

2

1333̄
=

√
−1z
2 ̸= 0.

Suppose now ε ̸= 1
2 . If u = 0, directly from Rε

1322̄
= εyz one gets y = 0.

Analogously, if we suppose y = 0, then Rε
1211̄

= −
√
−1εs2z2ūx
4 detΩ implies u = 0.

So, if ε ̸= 1
2 we may assume u = y = 0. At this point, observe that Rε

1313̄
=

ε(2ε−1)(r2−
√
−1xt2)z2

8
√
−1 detΩ

= 0 if and only if ε = 1
2 .

Finally, if v = z = 0, then

Rε
1331̄ =

ε((−1 + 2ε)s2t4x2 + (8εr2u+ 2
√
−1t2ux)ū)

8
√
−1t2 detΩ

= 0

if and only if the complex number

(2ε− 1)s2t4x2 + 8εr2|u|2 +
√
−1(2t2x|u|2) = 0.
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Observe that the imaginary part vanishes if and only if u = 0. Furthermore,
one can check that if u = 0, then all the Chern-symmetries are zero if and
only if ε = 1

2 . As for Bianchi identity-symmetries, in the case u = v = z = 0

and ε = 1
2 , we have R

1

2

ij•• = R
1

2

••kℓ = 0 for any i, j, k, ℓ ∈ {1, 2, 3} if and only
if y = 0, so the Lie algebra is isomorphic to g4.

Finally, note that R
1

2

11̄11̄
= t2, whence the last statement. □

Remark 27. We notice that any diagonal metric on g4 gives examples
of a non-flat Kähler-like Strominger-Bismut connection on a non-Kähler
manifold. (For the existence of lattices, see [FOU15, Proposition 2.10].)

3.2.4. Solvmanifolds in Family (Siii2). By Section 2.2, the underlying
Lie algebra is g5.

Proposition 28. The connection ∇ε is never Kähler-like.

Proof. Let us suppose ε = 0. Using [YZ16, Theorem 1.3], a necessary condi-
tion for∇Ch to be Kähler-like is that ω must be a balanced metric. According
to [FOU15, Theorem 4.5], ω is balanced if and only if v = z = 0 and u ∈ R.
Now, with these restrictions,

B0
11̄21̄ = −r2 ̸= 0,

whence the statement.
From now on, consider ε ̸= 0 and a generic Hermitian metric ω. Let us

focus on Chern-symmetries Rε
1213̄

and Rε
1223̄

and develop a similar argument
as that in Proposition 26:

Rε
1213̄ =

ε z

8
√
−1 detΩ

(√
−1

[

(2ε+ 1)r2v2 − z(2ε− 1)(
√
−1uv + s2z)

]

+(2ε+ 1)ūvz) ,

Rε
1223̄ =

−ε v

8
√
−1 detΩ

(√
−1

[

(2ε− 1)r2v2 − z(2ε+ 1)(
√
−1uv + s2z)

]

+(2ε− 1)ūvz) .

Clearly, this two elements vanishes if v = z = 0. Suppose that vz ̸= 0.
Then, the system Rε

1213̄
= Rε

1223̄
= 0 is equivalent to







A :=
√
−1

[

(2ε+ 1)r2v2 − z(2ε− 1)(
√
−1uv + s2z)

]

+ (2ε+ 1)ūvz = 0,

B :=
√
−1

[

(2ε− 1)r2v2 − z(2ε+ 1)(
√
−1uv + s2z)

]

+ (2ε− 1)ūvz = 0.
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Consider the following homogeneous system, whose solutions are precisely
A = B = 0:







A(1 + 2ε) +B(1− 2ε) = 0,

A(1− 2ε) +B(1 + 2ε) = 0.

This last system is equivalent to







√
−1uv + s2z = 0,

√
−1r2v + ūz = 0.

⇐⇒ v = z = 0,

which contradicts our initial hypothesis.
We can suppose now that vz = 0. In fact, in this case v = z = 0 (use

Rε
1222̄

=
√
−1ε2s4z2

2 detΩ = 0 when v = 0 and Rε
1211̄

=
√
−1ε2r4v2

2 detΩ if z = 0). Now,

Bε
11̄21̄

= (4ε− 1)r2 = 0 if and only if ε = 1
4 but now B

1

4

11̄33̄
= −r2 ̸= 0. □

3.2.5. Solvmanifolds in Families (Siv1), (Siv2), and (Siv3). Recall
that by Section 2.2, the underlying Lie algebra to these complex structures
is g8.

Proposition 29. For the holomorphically-parallelizable structure in Family
(Siv1), we have that the Chern connection ∇Ch is flat and ∇ε ̸=0 is never
Kähler-like.

Proof. The result about Chern connection comes from the fact that the
structure is complex-parallelizable. When ε ̸= 0, one can see that Rε

ij•• =
Rε

••kℓ ≡ 0 for any i, j, k, ℓ ∈ {1, 2, 3} if and only if ε = 1
2 (see for example

Rε
1331̄

= −(2ε− 1)εr2). But now, B
1

2

11̄22̄
= r4s4−|u|4

16
√
−1 detΩ

if and only if r4s4 −
|u|4 = 0 which is a contradiction. □

Proposition 30. For the complex structures in Family (Siv2), ∇ε is never
Kähler-like.

Proof. The result for the Chern connection (namely ε = 0) follows directly
observing that complex structures in Family (Siv2) do not admit balanced
metrics and by [YZ16, Theorem 1.3].
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If ε ̸= 0, then

Rε
1231̄ = −ε2(r2s2 − |u|2)(xr2s2 + x|u|2 + 2

√
−1r2ū)

2 detΩ
,

and

Rε
1232̄ = −ε2(r2s2 − |u|2)(r2s2 − 2

√
−1xs2u+ |u|2)

2 detΩ
.

Hence, Rε
1231̄

= Rε
1232̄

= 0 if and only if

xr2s2 + x|u|2 + 2
√
−1r2ū = 0, r2s2 + |u|2 − 2

√
−1xs2u = 0.

If x = 1, these equations imply Reu = 0, Imu = −r2, and r2 = s2, which is
a contradiction to the positive definiteness of the metric. Hence, x = 0 and
Rε

1232̄
is always different from zero. □

Proposition 31. For the complex structures in Family (Siv3), ∇ε is Kähler-
like if and only if ε = 0 and ω is diagonal. Moreover, in these cases, ∇Ch is
flat.

Proof. Let us start with the case ε = 0 and imposing ω to be balanced.
In this situation, v = z = 0. Moreover, B0 ≡ 0 if and only if u = 0 (see for

example B0
13̄31̄

= 2r2|u|2
r2s2−|u|2 ). Observe that we do not get restriction on the

parameter A.
Finally, if ε ̸= 0, we focus on Bianchi identity-symmetry Bε

11̄22̄
. Observe

that

Bε
11̄22̄ =

2ε2(r2s2 − |u|2)(r2s2|A− 1|2 + |u|2|A+ 1|2)
8
√
−1 detΩ

̸= 0,

whence the statement. □

3.2.6. Solvmanifolds in Family (Sv). By Section 2.2, the underlying
Lie algebra is g9.

Proposition 32. The connection ∇ε is never Kähler-like.

Proof. If ε = 0, then the result follows directly by observing that g9 does
not admit balanced metrics and by [YZ16, Theorem 1.3].
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From now on, consider ε ̸= 0. Let us focus on the Chern-symmetry Rε
1212̄

:

Rε
1212̄ =

v̄
[

(2r2s2 − |u|2)v − (
√
−1s2ū)z

]

32
√
−1 detΩ

.

Hence,

Rε
1212̄ = 0 ⇐⇒ v̄

[

(2r2s2 − |u|2)v − (
√
−1s2ū)z

]

= 0.

Suppose first that v ̸= 0. Then, we can express

v =

√
−1s2ūz

2r2s2 − |u|2 .

Observe that, since v ̸= 0, also uz ̸= 0. Using this particular value for v,

Rε
1221̄

= ε(1−2ε)s2ū2

4(rs2−|u|2) = 0 if and only if ε = 1
2 , but now R

1

2

1312̄
= s2uz̄

4(r2s2−|u|2) ̸= 0.

On the other hand, if v = 0, then Rε
1223̄

= ε(1−2ε)s2zū2

16
√
−1 detΩ

= 0 holds if and

only if (2ε− 1)uz = 0. None of the three cases leads to Kähler-like con-

nections: if ε = 1
2 , then R

1

2

2333̄
= s4|z|2

32
√
−1 detΩ

= 0 to conclude that z = 0 but

then R
1

2

1231̄
= −(r2s2−|u|2)

4t2 ̸= 0; if z = 0, then Rε
1313̄

= ε(2ε−1)r4

t2 vanishes if and

only if ε = 1
2 , that has already been studied; finally, if u = 0, then take

Rε
1211̄

= −εr2s2z
4(r2s2−|z|2) . This element is zero if and only if z = 0, which has al-

ready been analysed. □

4. Kähler-like Levi-Civita connection

4.1. Hermitian condition along the Ricci-flow

In this section, we prove that the Kähler-like condition for the Levi-Civita
connection assures that the Ricci flow preserves the Hermitian condition of
the initial metric along analytic solutions. We wonder whether, as an appli-
cation, one may prove that non-toral nilmanifolds do not admit invariant
Hermitian metrics whose Levi-Civita connection is Kähler-like, thanks to
the results by Lauret [Lau11] on the Ricci flow for nilpotent Lie groups. In
fact, we will prove that this is true in dimension six, see Proposition 34.

Theorem 33. Let g0 be a Hermitian metric on a compact complex man-
ifold, and consider an analytic solution (g(t))t∈(−ε,ε) for ε > 0 of the Ricci
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flow

(RF)
d

dt
g(t) = −Ric(g(t)), g(0) = g0.

If the Levi-Civita connection of g0 is Kähler-like, then g(t) is Hermitian for
any t.

Proof. The proof follows by the evolution equation for the curvatures along
the Ricci flow in [Ham82, Corollary 7.3 and Theorem 7.1]:

d

dt
Ric(t)JK = ∆tRic(t)JK + 2g(t)PQg(t)RSR(t)PJKRRic(t)QS

− 2g(t)PQRic(t)JPRic(t)QK ,

d

dt
R(t)IJKL = ∆tR(t)IJKL

+ 2
(

g(t)PRg(t)QSR(t)IPJQR(t)KRLS

−g(t)PRg(t)QSR(t)IPJQR(t)LRKS

−g(t)PRg(t)QSR(t)IPLQR(t)JRKS

+g(t)PRg(t)QSR(t)IPKQR(t)JRLS

)

− g(t)PQ (R(t)PJKLRic(t)QI +R(t)IPKLRic(t)QJ

+R(t)IJPLRic(t)QK +R(t)IJKPRic(t)QL) .

Here, capital letters I, J , . . . vary in {1, . . . , n, 1̄, . . . , n̄} while small letters i,
j, . . . vary in {1, . . . , n}, and for simplicity we just write the dependence in
t meaning to refer to the quantities for g(t). The dot denotes the derivative
at zero, e.g. Ṙicjk = d

dt

⌊

t=0
Ricjk(t).

The Kähler-like condition assures that

RijKL(0) = 0, Ricij(0) = 0.

This, together with the formula for the evolution of the Ricci curvature
tensor, whence

Ṙicjk = 0,

yields that

ġjk = g̈jk = 0.

Moreover, notice that the Kähler-like assumption forces RIJKL(0) to be
zero whenever three or more of the indices in (I, J,K,L) have the same
type. The same holds for the tensor g(0)PRg(0)QSR(0)PIQJR(0)RKSL, that
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appears in the right-hand-side for Ṙ. From the evolution equation of the
Riemann curvature tensor, we get the same property also for ṘIJKL. Then
we get

...
g jk = 0

by straightforward computations.
Further derivatives behave similarly. Indeed, the only remark to be no-

ticed is that ṘIJKL involves the tensors R••••(0), Ṙ••••, Ric••(0), Ṙic••,
other than the Hermitian metric g••(0) and its time-derivative ġ••, whence
it still satisfies the property to vanish whenever three out of (I, J,K,L) have
the same type.

So we get that the solution g(t)jk has vanishing time-derivatives of any
order at 0. Being analytic, it is constant, so g(t)jk = g(0)jk = 0, that is, g(t)
is still Hermitian. □

4.2. Kähler-like Levi-Civita connection on six-dimensional
Calabi-Yau solvmanifolds

In this section, we prove the following:

Proposition 34. Let (X, J, g) be a complex six-dimensional solvmanifold
with holomorphically-trivial canonical bundle endowed with an invariant Her-
mitian metric. The Levi-Civita connection is Kähler-like if and only if the
metric is Kähler.

Proof. First, consider the nilpotent case. We provide explicit computations.
Without loss of generality, we can reduce to the case when the Hermi-
tian metric is balanced, thanks to [YZ16, Theorem 1.3], and we can ex-
clude the holomorphically-parallelizable case (Np) thanks to the fact that
holomorphically-parallelizable manifolds are Chern-flat and to [YZ16, The-
orem 1.2]. So we only remain with Family (Ni) with the exception of Lie
algebra h8, and the Family (Niii) in fact only for h−19. We distinguish com-
plex structures of nilpotent, respectively non-nilpotent type, see [UV15].

For nilpotent complex structures on nilpotent Lie algebras, argue as
follows. First of all, the generic Hermitian metric as in (2.1) is balanced if
and only if it is equivalent to one with parameters r2 = 1, v = z = 0, and also
s2 +D =

√
−1ūλ, see [UV15]. We compute, for example, RLC

11̄12
= −3

8 ρ t
2.

So the Levi-Civita connection of a balanced metric on a nilmanifold with
complex structure in Family (Ni) with ρ = 1 is never Kähler-like. This forces
ρ = 0, and the Lie algebra to be either h3 (with λ = 0 and D = −1) or h5
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(with λ = 1 andD ∈ [0, 14)). Moreover, since RLC
32̄13

= 1
8

√
−1 t4 u D̄
s2−|u|2 , then either

u = 0 (case h3) or D = 0 (case h5).
In the first case, that is, when ρ = λ = 0 and D = −1, we compute

BLC
11̄33̄

=
(λ2+ρ2+s2+

√
−1λu−

√
−1λu)t4

8 (s2−uu) that reduces to BLC
11̄33̄

= s2t4

8 (s2−uu) ̸= 0, in

fact, BLC
11̄33̄

= t4

8 ̸= 0, by using s2 = 1 and u = 0. Therefore, in this case, the
Levi-Civita connection is not Kähler-like.

In the second case, that is, when ρ = D = 0 and λ = 1, we compute
BLC

11̄22̄
= −1

8

(

λ2 + 2 ρ2 −D −D
)

t2 that reduces toBLC
11̄22̄

= −1
8 t

2 ̸= 0. There-
fore, also in this second case, the Levi-Civita connection is not Kähler-like.

Finally, for non-nilpotent complex structure on nilpotent Lie algebras,
argue as follows. The generic Hermitian balanced metric as in (2.1) forces
ν = 0 (case h−19) and can be reduced to parameters u = z = 0, (and moreover
either v = 1, or v = 0 and t2 = 1,) see [UV15]. We compute, for example,
RLC

32̄23̄
= − s4+t4

8r2 ̸= 0 and RLC
22̄33̄

= 0. Therefore the Levi-Civita connection is
not Kähler-like.

We restrict now our attention to the solvable non-nilpotent case.
We remind that by [YZ16, Theorem 1.3], the Levi-Civita connection be

Kähler-like implies that the metric is balanced. Hence and by [FOU15] we
restrict our attention to the Lie algebras g1, g

α
2 , g3, g5, g7, and g8.

If the Lie algebra is isomorphic to g1 or gα2 (case (Si)) then:

RLC
121̄2̄ =

(A2 + Ā2)(r2s2 − |u|2) + 2|A|2(r2s2 + |u|2)
4t2

= 0

⇔ (ReA)2r2s2 + (ImA)2|u|2 = 0,

⇔ ReA = 0, u = 0,

⇔ A =
√
−1, u = 0.

That is, the Lie algebra is g02 and ω is Kähler.
If the Lie algebra is isomorphic to g3 (case (Sii)) then:

RLC
232̄3̄ =

(1 + 4x2)(t4 + 4s4x2)

128r2x2
̸= 0.

If the Lie algebra is isomorphic to g5 (case (Siii2)) then:

RLC
132̄3̄

= −
√
−1(4r2s2+t4)u
8(r2s2−u2) = 0 ⇔

√
−1(4r2s2 + t4)u = 0 ⇔ u = 0.

But u = 0 implies RLC
2331̄

= −t2

2 ̸= 0.
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If the Lie algebra is isomorphic to g7 (case (Siii4)) then:

RLC
232̄3̄ =

s2(t4 + 4|u|2)
8(s4 − |u|2) ̸= 0.

If the Lie algebra is isomorphic to g8, then the complex structure belongs to
Families (Siv1) or (Siv3). In the first case we directly find that RLC

1331̄
= r2

8 ̸=
0. In the second case the Kähler-like condition implies the following system:

RLC
1331̄ =

r2
[

(A− 1)2r2s2 − (A2 − 6A+ 1)|u|2
]

8(r2s2 − |u|2) = 0,

RLC
1332̄ =

−
√
−1u

[

(A2 + 6A+ 1)r2s2 − (A+ 1)2|u|2
]

8(r2s2 − |u|2) = 0.

If u = 0 then the first equation implies (A− 1)2r2s2 = 0 which is not pos-
sible. On the other hand if u ̸= 0 then the vanishing of the brackets corre-
sponds to a homogeneous linear system in r2s2 and |u|2. The equations are
linear dependent if and only if A = 0, but in this case the second equation
reduces to r2s2 − |u|2 = 0. □

Appendix I. Bianchi and Chern symmetries for the
Gauduchon connections on nilmanifolds

in Family (Ni)

Rε
1211̄ = 2 t2 ε(1− ε)ρ,

Rε
1221̄ = λRε

1211̄,

Rε
1222̄ = D̄ Rε

1211̄,

Rε
1233̄ =

t4 ε

s2 − |u|2 ρ(2ε− 1)(s2 +
√
−1λu+ D̄),

Rε
1313̄ =

−2
√
−1 t4 ε2

s2 − |u|2 ρ u,

Rε
1323̄ =

−2 t4 ε2

s2 − |u|2 ρ (
√
−1λu+ D̄),

Rε
1331̄ =

−t4 ε

s2 − |u|2 (2ε− 1)(s2 +
√
−1λu),
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Rε
1332̄ =

−
√
−1 t4 ε

s2 − |u|2 (2ε− 1)u D̄,

Rε
2313̄ =

2 s2 t4 ε2

s2 − |u|2 ρ,

Rε
2323̄ =

2 t4 ε2

s2 − |u|2 ρ (λs
2 −

√
−1ūD̄),

Rε
2331̄ =

−t4 ε

s2 − |u|2 (2ε− 1)(λ(s2 +
√
−1λu+ D̄)−

√
−1ūD̄),

Rε
2332̄ =

−t4 ε

s2 − |u|2 (2ε− 1)D̄(
√
−1λu+ D̄).

Bε
11̄21̄ =

−t2

2
(2ε− 1)2 λ,

Bε
11̄22̄ =

−t2

2

[

2ε(λ2 −D + 4ρε) + D̄(4ε2 − 6ε+ 1)
]

,

Bε
11̄33̄ =

t4

2(s2 − |u|2)
[

4 ρε2 − s2(2ε− 1)(4ε− 1)
]

,

Bε
12̄21̄ =

t2

2

[

2ε(4ρε− D̄) + (D − λ2)(4ε2 − 6ε+ 1)
]

,

Bε
12̄22̄ = D̄Bε

11̄21̄,

Bε
12̄33̄ =

−t4

2(s2 − |u|2)
[

4
√
−1 ρuε2 + (2ε− 1)(4ε− 1)(λs2 +

√
−1uD)

]

,

Bε
13̄23̄ =

2 t4 ε2

s2 − |u|2 ρ(D + s2 −
√
−1λū),

Bε
13̄31̄ =

−t4 ε

s2 − |u|2
[

s2 + 2ε(λ2 − s2 − 2λImu)
]

,

Bε
13̄32̄ =

t4 ε

s2 − |u|2
[

(4ε− 1)(λs2 +
√
−1uD)− 2εD̄(λ+

√
−1u)

]

,

Bε
21̄33̄ = Bε

12̄33̄
,

Bε
22̄33̄ =

−t4

2(s2 − |u|2)
[

(2ε− 1)(4ε− 1)(λ2s2 − 2λIm (uD) + |D|2)− 4s2ρε2
]

,

Bε
23̄31̄ = Bε

13̄32̄
,
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Bε
23̄32̄ =

t4 ε

s2 − |u|2
[

(2ε− 1)|D|2 + (4ε− 1)λ(λs2 − 2Im (uD))
]

.

Appendix II. Bianchi symmetries for the Levi-Civita
connection on solvmanifolds g1 and g

α

2
in

Family (Si)

B0
13̄31̄ =

2 r2|u|2
r2s2 − |u|2 , B0

13̄32̄ =
−2

√
−1 r2s2u

r2s2 − |u|2 ,

B0
23̄31̄ = B0

13̄32̄
, B0

23̄32̄ =
2 s2|u|2

r2s2 − |u|2 .

Appendix III. Bianchi and Chern symmetries for the
Gauduchon connections on solvmanifolds

g
0

2
in Family (Si)

Rε
1313̄ =

ε(2ε− 1)r2s2z2

8
√
−1 detΩ

,

Rε
1323̄ =

−ε(2ε− 1)r2s2vz

8
√
−1 detΩ

,

Rε
1333̄ =

ε z

8 detΩ

[

r2s2t2 − 2εr2|v|2 + 2(ε− 1)s2|z|2
]

,

Rε
2313̄ = −Rε

1323̄,

Rε
2323̄ =

ε(2ε− 1)r2s2v2

8
√
−1 detΩ

,

Rε
2333̄ =

ε v

8 detΩ

[

r2s2t2 + 2(ε− 1)r2|v|2 − 2εs2|z|2
]

.

Bε
11̄33̄ =

−ε(2ε− 1)r2s2|z|2
8
√
−1 detΩ

,

Bε
12̄33̄ =

ε(2ε− 1)r2s2v̄z

8
√
−1 detΩ

,

Bε
13̄31̄ =

(2ε− 1)(4ε− 1)r2s2|z|2
16
√
−1 detΩ

,
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Bε
13̄32̄ =

−(2ε− 1)(4ε− 1)r2s2v̄z

16
√
−1 detΩ

,

Bε
13̄33̄ =

z

16 detΩ

[

(4ε− 1)r2s2t2 + 2(2ε2 − 4ε+ 1)r2|v|2 − 4ε2s2|z|2
]

,

Bε
21̄33̄ = Bε

12̄33̄
,

Bε
22̄33̄ =

−ε(2ε− 1)r2s2|v|2
8
√
−1 detΩ

,

Bε
23̄31̄ = Bε

13̄32̄
,

Bε
23̄32̄ =

(2ε− 1)(4ε− 1)r2s2|v|2
16
√
−1 detΩ

,

Bε
23̄33̄ =

v

16 detΩ

[

(4ε− 1)r2s2t2 − 4ε2r2|v|2 + 2(2ε2 − 4ε+ 1)s2|z|2
]

.
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