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By using double branched covers, we prove that there is a 1-1
correspondence between the set of knotoids in S2, up to orien-
tation reversion and rotation, and knots with a strong inversion,
up to conjugacy. This correspondence allows us to study knotoids
through tools and invariants coming from knot theory. In particu-
lar, concepts from geometrisation generalise to knotoids, allowing
us to characterise reversibility and other properties in the hyper-
bolic case. Moreover, with our construction we are able to detect
both the trivial knotoid in S2 and the trivial knotoid in D2.
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1. Introduction

Knotoids were recently defined by V.Turaev [40] as a generalisation of knots
in S3. More precisely, knotoids are defined as equivalence classes of diagrams
of oriented arcs in S2 or in D2 up to an appropriate set of moves and
isotopies. Some examples of knotoids are shown in Figure 1.1

Figure 1.1: Two knotoids k, k′ and their rotations krot, k
′
rot.

Like knots, knotoids admit natural involutive operations such as mirror
reflection and reversion. In addition, it is possible to define a further mod-
ification for knotoids called rotation, formally defined in Section 2. As an
example, we show two knotoids k and k′ with their corresponding rotations
krot and k′rot in Figure 1.1. Several invariants for knotoids have been adapted
from classical knot theory, such as various versions of the bracket polynomial
(see e.g [40], [15]), and there are several well defined maps that associate
a classical knot to a knotoid (see e.g [40], [15], [26]). Often, non-equivalent
knotoids share the same image under these maps, and it is possible to exhibit
examples of non-equivalent knotoids with the same bracket polynomials.

Here we present a complete invariant, that associates a knot to a kno-
toid through a double branched cover construction. Knotoids admit a 3-
dimensional interpretation as equivalence classes of embedded oriented arcs
in R

3 with endpoints lying on two fixed vertical lines. In this setting, given a
knotoid k, its preimage in the double cover of R3 branched along these lines
is a simple closed curve, that can be viewed as giving a classical knot K
in S3. By construction, knots arising as pre-images of knotoids are strongly
invertible, that is, there exists an involution τ of S3 mapping the knot to
itself, preserving the orientation of S3 and reversing the one of the knot. We
exploit properties of strongly invertible knots to prove our main result in
Section 5.

Theorem 1.1. There is a 1-1 correspondence between unoriented knotoids,
up to rotation, and knots K with a strong inversion τ , up to conjugacy.
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As a corollary of Theorem 1.1, we have the following.

Corollary 1.2. Given any torus knot Kt there is exactly 1 knotoid as-
sociated to it, up to rotation and reversion. Given any strongly invertible
hyperbolic knot Kh there are either 1 or 2 knotoids associated to it up to
reversion and rotation, depending on whether or not Kh is periodic with pe-
riod 2. In general, given any strongly invertible knot K there are only finitely
many knotoids associated to it.

In particular, Corollary 1.2 implies that there are at most 4 oriented
knotoids associated to every torus knot, and at most 8 associated to ev-
ery hyperbolic knot. In fact, we will obtain more precise information about
these numbers of knotoids in Corollary 1.5 below. We emphasise that Theo-
rem 1.1 and Corollary 1.2 provide a powerful link between knot theory and
knotoids, allowing us to borrow all the sophisticated tools developed to dis-
tinguish knots to study knotoids. In particular, we can extend the concepts
from geometrisation to knotoids: we will call hyperbolic (respectively torus)
knotoids those lifting to hyperbolic (respectively torus) knots. Even if our
invariant can not distinguish between a knotoid k, its reverse −k and its
rotation krot, in the case of hyperbolic knotoids these symmetries are com-
pletely characterised. A knotoid k is called reversible (respectively rotatable)
if it is equivalent to −k (respectively krot).

Theorem 1.3. A hyperbolic, oriented knotoid k ∈ K(S2) is reversible if
and only if its double branched cover has cyclic period 2. Analogously, it is
equivalent to the reverse of its rotation if and only if its double branched
cover has free period 2.

Furthermore, hyperbolic knotoids are never rotatable.

Theorem 1.4. A hyperbolic knotoid is never rotatable.

As a consequence of these results we obtain the following.

Corollary 1.5. Given any strongly invertible hyperbolic knot K there are
exactly 4 oriented knotoids associated to it. Moreover, one of the following
holds.

• If K has cyclic period 2, these are two inequivalent reversible knotoids
k1, k2 and their rotations k1

rot
, k2

rot
;

• if K has free period 2, these are two inequivalent knotoids k1, k2 (each
equivalent to the reverse of its rotation) and their reverses −k1, −k2;
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• if K does not have period 2, these are a knotoid k, its reverse −k, its
rotation krot and its reverse rotation −krot.

As a further corollary, we are able to count the number of inequivalent
involutions in the symmetry group of some particular composite knot.

Proposition 1.6. Consider a knot K isotopic to the connected sum of
#n

i=1K
i
h, where n ≥ 2 and every Ki

h is a strongly invertible, hyperbolic knot.
Suppose that these hyperbolic knots are pairwise distinct. Then, the number
of non-equivalent strong involutions of K is equal to 4n−1(n!).

As there is an algorithm to decide whether two hyperbolic knots are
equivalent (see [33] and [27]) and there is an algorithm to decide whether
two involutions of a hyperbolic knot complement are conjugate (see e.g.
Theorems 8.2 and 8.3 of [29]), Theorem 1.1 implies the following stronger
result.

Theorem 1.7. Given two hyperbolic knotoids k1 and k2, there is an algo-
rithm to determine whether k1 and k2 are equivalent as oriented knotoids.

Our construction enables us to distinguish knotoids sharing the same
class in S2 that are inequivalent as knotoids in D2 (precise definitions are
given in Section 2). In particular, we can detect the trivial planar knotoid kpl0 .

Theorem 1.8. A planar knotoid k lifts to a knot isotopic to the core of the
solid torus if and only if k is the trivial planar knotoid kpl0 .

Structure of the paper

The paper is structured as follows. After recalling some basics on knotoids
in Section 2, we present the map defined by the double branched cover in
Section 3. We recall the 1-1 correspondence between knotoids and isotopy
classes of simple θ-curves, following [40], in Section 3. In Section 4, results
from [4] are translated in terms of knotoids. In particular, Theorem 4.4
allows us to detect the trivial knotoid k0 among all the other knotoids.
In Section 4.2 we prove a slightly more powerful version of Theorem 4.4,
Theorem 1.8, enabling the detection of the trivial planar knotoid kpl0 (see
Section 2 for the precise definitions). Section 5 is devoted to the proof of
Theorems 1.1 and 1.7. In Section 6 we prove Theorem 1.3 and Theorem 1.4
together with Corollary 1.5 and Proposition 1.6. In Section 7 we show that
our construction can be used to distinguish between planar knotoids that
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Double branched covers of knotoids 1011

are equivalent in S2. Finally, in Section 8 we describe an algorithm that
produces the Gauss code for the lift of a knotoid k given the Gauss code for
k.

All maps and manifolds are assumed to be smooth, and we use the
following notation:

• K(X) and K(X)/∼ are the sets of oriented and unoriented knotoid
diagrams, respectively, up to equivalence in X, where X = S2 or R2;

• K(X)/≈ is the set of unoriented knotoid diagrams up to equivalence
in X, where X = S2 or R2, and up to rotation;

• Θs is the set of simple labelled θ-curves in S3;

• Θs/∼ and Θs/≈ are the sets of simple labelled θ-curves in S3 up to
relabelling the vertices, and up to relabelling the vertices and the edges
e− and e+, respectively;

• K(Y ) is the set of knots in Y , where Y = S3 or S1 ×D2;

• KS.I.(S
3) is the subset of K(S3) consisting of knots that admit a strong

inversion;

• KSI(S3) is the set of strongly invertible knots (K, τ) in S3.

Acknowledgements. A.B. would like to thank D. Celoria, M. Golla and
M. Nagel for interesting conversations. A.B. is supported by the EPSRC
grant “Algebraic and topological approaches for genomic data in molecu-
lar biology” EP/R005125/1. D.B. gratefully acknowledges support from the
Leverhulme Trust, Grant RP2013-K-017. The authors are grateful to D.
Goundaroulis for providing us with the examples of Section 7. The authors
would like to thank the referees, whose helpful suggestions led to consider-
able improvements to the paper.

2. Preliminaries

A knotoid diagram in S2 is a generic immersion of the interval [0, 1] in
S2 with finitely many transverse double points endowed with over/under-
crossing data. The images of the points 0 and 1 are distinct from the other
points and from each other. The endpoints of a knotoid diagram are called
the tail and the head respectively, and denoted by v0 and v1. Knotoid dia-
grams are oriented from the tail to the head, see Figures 2.3 and 2.4.
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Definition 2.1. A knotoid is an equivalence class of knotoid diagrams on
the sphere considered up to isotopies of S2 and the three classical Reidemeis-
ter moves (see Figure 2.1), performed away from the endpoints.

It is not permitted to pull the strand adjacent to an endpoint over/under
a transversal strand as shown in Figure 2.2. Notice that allowing such moves
produces a trivial theory: namely, any knotoid diagram can be transformed
into a crossingless one by a finite sequence of forbidden moves.

Figure 2.1: The classical Reidemeister moves.

The trivial knotoid k0 is the equivalence class of the crossingless knotoid
diagram.

Figure 2.2: Forbidden moves.

Any knotoid k in S2 can be represented by several knotoid diagrams in
R
2, by choosing different stereographic projections. Two knotoid diagrams

in R
2 are said to be equivalent if they are related by planar isotopies and a

finite sequence of Reidemeister moves, performed away from the endpoints.
We will denote by kpl0 the equivalence class in R

2 of the crossingless knotoid
diagram.

Let us denote the set of oriented knotoids in the plane and in the sphere
by K(R2) and K(S2) respectively. We can define the map

ι : K(R2) −→ K(S2)

induced by the inclusion R
2 →֒ S2 = R

2 ∪∞. The map ι is surjective but
not injective (see Figure 2.3 for an example, or [15] for more details).
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Figure 2.3: The diagrams in the picture represent inequivalent knotoids
k1, k2 in K(R2), but they are both sent into the trivial knotoid in K(S2)
under the map ι.

There is a natural way to associate two different knots to any knotoid
through the underpass closure map and the overpass closure map, defined
in [40] and [15] and denoted by ω− and ω+ respectively. Given a diagram
representing a knotoid k, a diagram representing ω−(k) (respectively ω+(k))
is obtained by connecting the two endpoints by an arc embedded in S2 which
is declared to go under (respectively over) each strand it meets during the
connection.

Remark 2.2. Different knotoids may have the same image under ω+ and
ω−, see for example the knotoids in Figure 2.4. In Section 3 we are going to
present a more subtle way to associate a knot to a knotoid, which allows for
a finer classification.

Figure 2.4: The images under ω− of the two knotoids in the figure are both
the trefoil knot, and the images under ω+ are both the trivial knot, but the
knotoids are not equivalent.

Moreover, every knot K ⊂ S3 arises as the image under ω± of a knotoid
diagram. Indeed, choose any diagram representing K, and cut out an arc
that does not contain any crossings, or that contains only crossings which
are overcrossings (respectively undercrossings). This results in creating a
knotoid diagram, whose image under ω+ (respectively ω−) is the starting
knot K. It is important to notice that different choices of arcs in K may
result in non-equivalent knotoid diagrams. However, choosing the arc to be
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crossingless induces a well defined injective map α from the set of knots in
S3 to K(S2) (see [40], [15] for more details).

Definition 2.3. Knotoids in K(S2) that are contained in the image of α
are called knot-type knotoids. Equivalently, a knotoid is a knot-type knotoid
if and only if it admits a diagram in which the endpoints lie in the same
region (see Figure 2.3). The other knotoids are called proper knotoids (see
Figure 1.1).

There is a 1-1 correspondence between knot-type knotoids and classical
knots: knot-type knotoids may be thought as long knots, and (see e.g. [6])
closing the endpoints of a long knot produces a classical knot carrying the
same knotting information. Thus, we can conclude that a knot-type knotoid
can be considered the same as the knot it represents.

2.1. Involutions

Turaev [40] defines three commuting involutive operations on knotoids in
K(S2). These operations are called reversion, mirror reflection and sym-
metry. The first two operations are borrowed from knot theory: reversion
has the effect of changing the orientation of a knotoid, or, in other words,
of exchanging the labels of the endpoints, and mirror reflection transforms
a knotoid into a knotoid represented by the same diagrams with all the
crossings changed. The third involution is defined by the extension to S2 of
the reflection of the plane R

2 along the horizontal line passing through the
endpoints, see Figure 2.5.

Figure 2.5: From left to right, a knotoid k, its reverse −k, its mirror image
km and its symmetric sym(k).

We will find it useful to define the involution obtained as the composition
of symmetry and mirror reflection.
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Definition 2.4. Two knotoids k and krot ∈ K(S2) differ by a rotation if
they have diagrams that are obtained from each other by reflecting the sphere
of the diagram in a line through the endpoints of the knotoids, followed by
a mirror reflection, see Figure 1.1. If a knotoid is unchanged by a rotation,
we say that it is rotatable.

Remark 2.5. Note that for knot-type knotoids symmetry and mirror re-
flection coincide (see [40]). In particular, every knot-type knotoid is rotat-
able.

2.2. Multiplication of Knotoids

In [40] an analogue for the connected sum of knots is defined: the multipli-
cation of knotoids. Note that each endpoint of a knotoid diagram k in S2

admits a neighbourhood D such that k intersects it in exactly one arc (a
radius) of D. Such a neighbourhood is called a regular neighbourhood of the
endpoint. Given two diagrams in S2 representing the knotoids k1 and k2,
equipped with a regular neighbourhood D1 for the head of k1 and D2 for the
tail of k2, the product knotoid k = k1 · k2 is defined as the equivalence class
in K(S2) of the diagram obtained by gluing S2 \ int(D1) to S2 \ int(D2)
through an orientation-reversing homeomorphism ∂D1 −→ ∂D2 mapping
the only point in ∂D1 ∩ k1 to the only point in ∂D2 ∩ k2. Note that this
operation is not commutative (see [40], Section 4).

Definition 2.6. A knotoid k in K(S2) is called prime if it is not the trivial
knotoid and k = k1 · k2 implies that either k1 or k2 is the trivial knotoid.

This multiplication operation has been extensively studied in [40], where
the following result on prime decomposition is proven.

Theorem 2.7 (Theorem 4.2, [40]). Every knotoid k in K(S2) expands
as a product of prime knotoids.

Moreover, the expansion as a product is unique up to the identity

k · k′ = k′ · k

where k′ is a knot-type knotoid, and the multiplication operation turns
K(S2) into a semigroup.
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Remark 2.8. Since the surface in which the diagram of k = k1 · k2 lies is
the 2-sphere obtained as the connected sum between the 2-spheres containing
the diagrams of k1 and k2, the operation of multiplication is well defined only
in K(S2). A diagram in the plane for k can be obtained by drawing the tail
of k2 in the external region of the diagram, as shown in Figure 2.6.

Figure 2.6: On the bottom line, a diagram representing the product k1 · k2
of the knotoids in the upper line.

Note that the orientation is required in order to define the multiplication
operation. In particular, given a knotoid k ∈ K(S2), call −k the knotoid
represented by the same diagrams as k, but with opposite orientation. Then,
the following relations hold.

• k1 · k2 = −(−k2 · −k1)

• −k1 · k2 = −(−k2 · k1)

• k1 · −k2 = −(k2 · −k1)

• k2 · k1 = −(−k1 · −k2)

We will sometimes find it useful to suppress the orientation. To this
end, we will call K(S2)/∼ and K(R2)/∼ the sets of unoriented knotoids in
the sphere and in the plane, respectively. Note that, in general, the prod-
ucts k1 · k2, −k1 · k2, k1 · −k2 and k2 · k1 represent non-equivalent classes of
unoriented knotoids.
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2.3. Bracket polynomial

The bracket polynomial of oriented knotoids in K(S2) or in K(R)2 was de-
fined in [40], by extending the state expansion of the bracket polynomial
of knots. The definition can be given in terms of a skein relation, with the
appropriate normalisation, as for the bracket polynomial of knots. A normal-
isation of the bracket polynomial of knotoids gives rise to a knotoid invariant
generalising the Jones polynomial of knots (after a change of variable). A
version of the bracket polynomial (extended bracket polynomial, defined in
[40]) is used in [2] to distinguish knotoids taken from a list containing dia-
grams with up to 5 crossings.

Although bracket polynomials are useful invariants, it is fairly simple to
produce examples of oriented knotoids that cannot be distinguished by them.
One way to construct such examples is by using the concept of mutation.
Recall that the mutation of an oriented knot K can be described as follows.
Consider a diagram for K, and a 2-tangle R as in Figure 2.7. New knots K ′

i

can be formed by replacing the tangle R with the tangle R′ = ρi(R) given by
rotating R by π in one of three ways described on the right side of Figure 2.7.
Each of these three knots is called a mutant of K.

Figure 2.7: A portion of a knot diagram for K contained in the 2-tangle R.
By rotating R as in the right side of the picture, we obtain new knots K ′

1,
K ′

2 and K ′
3. Each of these knots is called a mutant of K.

The probably best known example of non-equivalent mutant knots is the
Conway and Kinoshita-Teresaka pair shown in Figure 2.8.

Mutation can be generalised to knotoids, by requiring that both the
endpoints of a knotoid k lie outside of the tangle R that is rotated.

Remark 2.9. It is well known that mutant knots share the same bracket
and Jones polynomial. The same result also holds for knotoids, and a proof
can be produced in exactly the same way as for knots by using Conway’s
linear skein theory (see e.g. [32] and [31]).
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Figure 2.8: The Kinoshita-Teresaka knot KT (on the left) and the Conway
knot C (on the right). It was shown by Gabai ([13]) that the genus of KT
is 2 while C has genus 3, thus, they are inequivalent.

Consider knot-type knotoids associated to the knots KT and C shown in
Figure 2.8; by construction they are non-equivalent, and Remark 2.9 implies
that they share the same bracket polynomials. By taking the products k1 =
KT · k, k2 = C · k, where k is any proper knotoid (see Figure 2.9) we obtain
two proper knotoids1 with the same bracket polynomials. We will prove in
Section 4 that k1 and k2 are non-equivalent.

3. Double branched covers

As described in [15], it is possible to give a 3-dimensional definition of kno-
toids, as embedded arcs in R

3, up to a particular isotopy notion.

3.1. Knotoids as embedded arcs

Consider a knotoid diagram k in R
2, and identify the plane of the diagram

with R
2 × {0} ⊂ R

3. We can embed k in R
3 by pushing the overpasses of

the diagram into the upper half-space, and the underpasses into the lower
one. The endpoints v0 and v1 of k are attached to two lines t× R, h× R

perpendicular to the xy plane.
Two embedded arcs in R

3 with endpoints lying on these two lines are
said to be line isotopic if there is a smooth ambient isotopy of the pair
(R3, t× R ∪ h× R) taking one curve to the other, endpoints to endpoints,
and leaving each one of the special lines invariant. Conversely, an embedded
curve in R

3 whose projection on the xy-plane is generic (plus the additional
data of over and under passings) defines a knotoid diagram (see Figure 3.1).

1As a consequence of [40], Theorem 4.2, the product of two knotoids k1 and k2
is a knot-type knotoid if and only if both k1 and k2 are knot-type knotoids.
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Figure 2.9: The mutant knotoids k1 = KT · k and k2 = C · k share the same
bracket polynomials.

There is a 1-1 correspondence (see [15], Theorem 2.1 and Corollary 2.2)
between the set of oriented knotoids in R

2 and the set of line-isotopy classes
of smooth oriented arcs in R

3, with endpoints attached to two lines perpen-
dicular to the xy plane.

Similarly, given a knotoid k in K(S2) we can construct an embedded arc
in S2 × I with the same procedure. Now the endpoints are attached to two
lines perpendicular to the sphere S2 × {pt}. Theorem 2.1 and Corollary 2.2
in [15] extend naturally to this setting.

Remark 3.1. The notion of line isotopy between open arcs is explored
also in [24], where rail knotoids are introduced. As for line isotopy classes of
embedded arcs, rail knotoids corresponds bijectively with planar knotoids.
Moreover, the rail knotoid approach is related to the study of genus 2 han-
dlebodies.

Remark 3.2. There is an easy way to visualise rotation of knotoids in this
setting. Indeed, consider a knotoid k and its rotation krot. If we view the
knotoids as embedded arcs in R

3 with endpoints in t× R, h× R, then they
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Figure 3.1: On the top, the curve in R
3 obtained from the knotoid diagram

on the bottom.

differ from each other by applying a rotation through an angle π along a
horizontal line going through t× R and h× R.

3.2. Knotoids and θ-curves

Consider a knotoid as an embedded curve in S2 × I, with endpoints attached
to the two special lines. We can compactify the manifold by collapsing S2 ×
∂I to two points, obtaining an embedded curve in S3 with endpoints lying
on an unknotted circle, as in Figure 3.2.

The union of the embedded curve with this unknotted circle is a θ-curve.

Definition 3.3. A labelled θ-curve is a graph embedded in S3 with 2 ver-
tices, v0 and v1, and 3 edges, e+, e− and e0, each of which joins v0 to v1.
The curves e0 ∪ e−, e− ∪ e+ and e0 ∪ e+ are called the constituent knots of
the θ-curve. We will call two labelled θ-curves isotopic if they are related
by an ambient isotopy preserving the labels of the vertices and the edges. A
θ-curve is called simple if its constituent knot e− ∪ e+ is the trivial knot.

Thus, we can associate a simple labelled θ-curve to a knotoid k ∈ K(S2),
whose vertices are the endpoints of k and with e0 = k. We label the remain-
ing edges of the θ-curve in the following way. The edge containing the image
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Figure 3.2: On the left, a knotoid seen as an embedded curve in S2 × I, with
endpoints lying on the dotted lines. By collapsing S2 × ∂I to two points, we
obtain an embedded arc in S3, with endpoints lying on a dotted circle (the
projection of the dotted lines).

of S2 × {1} under the collapsing map is labelled e+. The edge containing
the image of S2 × {−1} is labelled e−. We will call the unknotted circle
e− ∪ e+ the preferred constituent unknot of the θ-curve. It is shown in [40]
that this construction induces a well defined map t between the set of ori-
ented knotoids K(S2) and the set Θs of isotopy classes of simple labelled
θ-curves. Moreover, Θs endowed with the vertex-multiplication operation
(for a definition of vertex-multiplication see e.g. [38]) is a semigroup, and
the following theorem holds.

Theorem 3.4 (Theorem 6.2 in [40]). The map t : K(S2) −→ Θs is a
semigroup isomorphism.

The inverse map t−1 associates a knotoid in K(S2) to a labelled simple
θ-curve in the following way. Any element θ of Θs can be isotoped to lie
in R

3 ⊂ S3, with the edge e+ contained in the upper half-space, and e− in
the lower one, in such a way that they both project to a same arc a in R

2

connecting v0 to v1. We say that the θ-curve is in standard position. The
projection of the edge e0 to R

2 defines the associated knotoid (see [40] for
more details).

It should be clear that the θ-curves associated to a knotoid and its reverse
differ by exchanging the labels of the vertices. Consider now a knotoid k and
its rotation krot. Their θ-curves differ from each other simply by swapping
the labels on the e− and e+ edges, and leaving all other labels unchanged.
To see this, arrange the θ-curve t(k) in standard position. Suppose that we
swap the labels e− and e+. Then, we can isotope the θ-curve in a way that
reinstates e+ as lying above the horizontal plane and e− as lying below it.
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After projecting, we get the knotoid krot. Thus, swapping the labels of the
edges e− and e+ takes the θ-curve t(k) to t(krot), see Figure 3.3.

Figure 3.3: A knotoid and its rotation are associated with θ-curves differing
from each other by swapping the e− and e+ labels.

Call Θs/∼ the set of simple θ-curves up to relabelling the two vertices.
The isomorphism t of Theorem 3.4 gives a bijection

t∼ : K(S2)/∼ −→ Θs/∼

between unoriented knotoids and elements of Θs/∼. Furthermore, t also
induces a bijection

t≈ : K(S2)/≈ −→ Θs/≈

from the set of unoriented knotoids up to rotation and the set of θ-curves
up to relabelling the edges e− and e+ and the vertices. This latter bijection
will be the key element in proving Theorem 1.1.

3.3. Double branched covers

Consider a planar knotoid k, thought of as an embedded arc in the cylinder
D2 × I. The double cover of D2 × I branched along the special vertical arcs
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where the endpoints lie is the solid torus S1 ×D2. Denote the branched
covering map by

p : S1 ×D2 −→ D2 × I

Figure 3.4 shows how to construct this double branched cover by “cuts”.
More precisely, we can cut the cylinder D2 × I along two disks (these are the
two dashed arcs times I, shown in Figure 3.4), take two copies of the obtained
object, and then glue them as shown in the picture. For more details on how
to construct branched covers see e.g. [35, Chapter 10.B]. The pre-image
p−1(k) of the knotoid in the double branched cover is a knot inside the solid
torus S1 ×D2. The knot type of this branched cover is a knotoid invariant;
in particular by composing the branched covering construction with any
invariant of knots in the solid torus (see e.g. [30], [14] and [19]) we obtain
a new knotoid invariant. Note that by definition, the lifts of line-isotopic
embedded arcs are ambient isotopic knots, since isotopies of k preserving
the branching set lift to equivariant isotopies.

Remark 3.5. From the knotoid diagram obtained by projecting k, it is
possible to construct a diagram in the annulus S1 × I for p−1(k) by taking
the double cover of the disk D2 × {pt} branched over the endpoints of the
diagram, as shown in Figure 3.4.

Similarly, given a knotoid k ∈ K(S2) and the associated θ-curve t(k) in
S3, the pre-image of k under the double cover of S3 branched along the
preferred constituent unknot of t(k) is a knot in S3. Double branched covers
of simple θ-curves have been extensively studied in [4], whose main results
are discussed and used in Section 4.

Remark 3.6. Consider a diagram representing k ∈ K(S2): we can obtain
a diagram for the lift of k by taking the double cover of S2 branched along
the endpoints.

Call K(S1 ×D2) and K(S3) the sets of knots in the solid torus and in S3

respectively, taken up to the appropriate ambient isotopies. Thus, we have
the following maps induced by the double branched covers:

γT : K(R2) −→ K(S1 ×D2)

γS : K(S2) −→ K(S3)
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Figure 3.4: The two-fold branched cover of D2 × I by S1 ×D2 can be de-
scribed by “cuts” (see e.g. [35, Chapter 10.B] for a reference). The pic-
ture shows the product D2 × I seen from above. The red and blue circle in
D2 × {1} (the boundary of D2 × {1}) lifts to two parallel longitudes of the
solid torus.

Remark 3.7. Recall that two knotoids k and krot that differ by a rotation
lift to θ-curves differing from each other simply by swapping the labels on
the e− and e+ edges (see the discussion in Section 3.2). The double branched
covers of such θ-curves produce isotopic knots. Thus, k and krot have the
same image under the map γS . The same is true for a knotoid k and its
reverse −k.

Consider a circle in the boundary of D2 × {pt}, as the red and blue one
in Figure 3.4. This lifts to two parallel longitudes of the solid torus. We can
then define a natural embedding e of the solid torus in S3 by sending any
of these longitudes to the preferred longitude of the solid torus in S3 arising
as the neighbourhood of the standard unknot. By composing γT with e we
can associate to a knotoid in K(R2) a knot in S3.

Proposition 3.8. Given a knotoid k in K(R2), e(γT (k)) = γS(ι(k)). Sim-
ilarly, given k ∈ K(S2) take any planar representative kpl of k. Then, the
knot type of e(γT (k

pl)) does not depend on the particular choice of kpl.

In other words, the knot type in S3 of the lift a planar knotoid k depends
only on its class ι(k) ∈ K(S2).

Proof. Consider the diagram for k arising from the projection onto D2 ×
{pt}. The 2-fold cover of the disk branched along the endpoints can be
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viewed as the restriction of the 2-fold cover of a 2-sphere branched along the
endpoints, see Figure 3.5. Thus, isotopies on the sphere below translate into
isotopies on the sphere for the lifted diagram. □

Remark 3.9. Note that, as shown in Figure 3.6, non-equivalent knotoids
in K(R2) that are equivalent in K(S2) might lift to different knots in the
solid torus.

Figure 3.5: On the top, the annulus as double branched cover of the disk.
On the bottom, the extension of that cover to a double branched cover of the
2-sphere over the 2-sphere. Isotopies on the sphere on the left-side translate
into isotopies on the sphere for the lifted diagrams.

For knot type knotoids the behaviour under the maps γS and γT is
unsurprisingly trivial.

Proposition 3.10. Consider an oriented knot-type knotoid K. The lift
γS(K) is the connected sum K ′#rK ′, where K ′ is the knot naturally as-
sociated to K (with orientation induced by K) and rK ′ is its inverse.

Proof. Thanks to Proposition 3.8 we can choose a planar diagram for k in
which the endpoints lie in the external region of the disk, so that there are
no intersections (apart from the endpoints themselves) between the diagram
and the arc which define the cuts, and the statement is trivially true. □

3.4. Knotoids and strongly invertible knots

Consider a knotoid k ∈ K(S2) and its lift γS(k) in S3. The fact that S3 is
the double cover of itself branched along the preferred constituent unknot
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Figure 3.6: Two knotoid diagrams k1 and k2 that represent different classes
in K(R2) such that ι(k1) = ι(k2) lift to different knots in the solid torus.
γT (k2) is the core of the solid torus, while γT (k1) is the 23 knot in Gabrovsek
and Mroczkowski’s table for knots in the solid torus (see [14]), with winding
number equal to 3. However, e(γT (k1)) = e(γT (k2)) = ⃝.

U of t(k) defines an orientation preserving involution τ of S3, whose fixed
point set is precisely the unknot U . The involution τ reverses the orientation
of γS(k), and the fixed point set intersects γS(k) in exactly two points (the
lifts of the endpoints of k). A knot with this property is called a strongly
invertible knot (a precise definition will be given in Section 5).

Since not every knot in S3 is strongly invertible, this in particular implies
that the maps γS and γT are not surjective.

Remark 3.11. We could have inferred the non-surjectivity of the map γT
from the following observation.

The winding number [γT (k)] ∈ H1(S
1 ×D2;Z) of the lift γT (k) of a kno-

toid k is always odd. This is true since by construction the lifted knot inter-
sects the meridian disk containing the lifted branching points an odd number
of times.

In Section 5 we will use classical results on symmetry groups of knots
to better understand the map γS and to prove the 1-1 correspondence of
Theorem 1.1.

3.5. Behaviour under forbidden moves

A band surgery is an operation which deforms a link into another link.

Definition 3.12. Let L be a link and b : I × I −→ S3 an embedding such
that L ∩ b(I × I) = b(I × ∂I). The link L1 = (L \ b(I × ∂I)) ∪ b(∂I × I) is
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said to be obtained from L by a band surgery along the band B = b(I × I),
see Figure 3.7

Performing a band surgery on a link L may change its number of com-
ponents; band surgeries which leave unchanged the number of components
are called H(2)-moves (see e.g. [1], [20]).

Figure 3.7: Band surgery.

An H(2)-move is an unknotting operation, that is, any knot may be
transformed into the trivial knot by a finite sequence of H(2)-moves. Con-
sider two knotoids that differ by a forbidden move, as on the top of Fig-
ure 3.8: it is easy to see that their lifts are related by a single H(2)-move
(see the bottom part of Figure 3.8).

Figure 3.8: Two knotoids that differ by a forbidden move have lifts related
by a single band surgery.

4. Multiplication and trivial knotoid detection

In this section we will first discuss the behaviour of γS under multiplication
of knotoids. We will then prove two different results on the detection of the
trivial knotoid.

4.1. Behaviour under multiplication

Double branched covers of simple θ-curves have been extensively studied in
[4].
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Definition 4.1. A θ-curve is said to be prime if:

• it is non-trivial;

• it is not the connected sum of a non trivial knot and a θ-curve (see the
top part of Figure 4.1);

• it is not the result of a vertex-multiplication (for a definition of the
vertex-multiplication operation see e.g. [40], Section 5) of two non-
trivial θ-curves (see the bottom part of Figure 4.1).

Figure 4.1: On the top, the result of a connected sum between a knot and a
θ-curve. On the bottom, the result of a vertex-multiplication of two θ-curves.

According to Definition 4.1, if K is a knot-type knotoid, then t(K) is
the vertex multiplication of a non trivial knot and a θ-curve, thus, it is
not prime. The following result is attributed to Thurston by Moriuchi ([34],
Theorem 4.1), and it has been proven in [4].

Theorem 4.2 (Main Theorem in [4]). Consider a simple θ-curve a, with
unknotted constituent knot a1, and let K be the closure of the pre-image of
a \ a1 under the double cover of S3 branched along a1. Then K is prime if
and only if a is prime.

Theorem 4.2 together with Theorem 3.4 directly imply the following
result on knotoids.

Theorem 4.3. The lift γS(k) of a proper knotoid k is prime if and only if
k is prime. In particular γS(k1 · k2) = γS(k1)#γS(k2).

Note that even if the products k1 · k2 and k2 · k1 are in general distinct
both as oriented and unoriented knotoids (see the relations described in
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Section 3.3), their lift are equivalent as knots in S3. This seems to imply
that γS can not tell apart k1 · k2 and k2 · k1. Indeed, to distinguish them it
is necessary to use the information on the involution defined by the double
branched cover construction, as we will see in Section 5.2.

Consider the mutant knotoids k1 and k2 of Figure 2.9; Proposition 3.10
and Theorem 4.3 imply that:

γS(k1) = KT # KT # γS(k)

γS(k2) = C # C # γS(k)

Since γS(k) is isotopic to the trefoil knot 31 (see e.g. Figure 8.4), and since
the genus of a knot is additive under connected sum, it follows that:

g(γS(k1)) = 2 + 2 + 1 = 5 g(γS(k2)) = 3 + 3 + 1 = 7

Thus, γS(k1) and γS(k2) are different knots. Moreover, by letting k vary in
the set of proper knotoids, we obtain an infinite family of pairs of knotoids
sharing the same polynomial invariants whose images under γS are different.

4.2. Trivial knotoid detection

The double branched cover of knotoids provides a way to detect the trivial
knotoid, thanks to the following result.

Theorem 4.4 (Lemma 2.3 in [4]). A knotoid k ∈ K(S2) lifts to the trivial
knot in S3 if and only if k is the trivial knotoid k0 in K(S2).

Theorem 4.4 is proven for θ-curves. In the setting of knotoids, a slightly
more powerful version of this result holds, allowing for the detection of the
trivial planar knotoid kpl0 ∈ K(R2) as well.

Theorem 4.5. A knotoid k ∈ K(R2) lifts to a knot isotopic to the core of
the solid torus if and only if k = kpl0 in K(R2).

Proof. If k is the trivial knotoid, then its lift is a knot isotopic to the core
of the solid torus (see e.g. the right side of Figure 3.6). Conversely, suppose
that γT (k) is isotopic to the core C of the solid torus S1 ×D2. Then, its
complement in the solid torus is homeomorphic to the product T 2 × I. Since
T 2 × I arises as a double branched cover, there is an involution τ of T 2 × I
with 4 disjoint arcs as fixed set (see Figure 4.2).
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Figure 4.2: T 2 × I admits an involution with fixed set the union of 4 arcs.
These arcs are the intersection between the lines defining the cover and the
complement of a tubular neighbourhood of the lifted knot (the core of the
solid torus).

Thanks to the following result we know that the involution defined by
the double branched cover respects the product structure on T 2 × I.

Theorem 4.6 (Theorem A of [21]). Let h be a PL involution of F × I,
where F is a compact surface, such that h(F × ∂I) = F × ∂I. Then, there
exist an involution g of F such that h is equivalent (up to conjugation with
homeomorphisms) to the involution of F × I defined by (x, t) 7→ (g(x), λ(t))
for (x, t) ∈ F × I, and where λ : I −→ I is either the identity or t 7→ 1− t.

The intersection between the fixed set Fix(τ) and every torus T 2 × {pt}
consists of 4 isolated points, as highlighted in Figure 4.2. Involutions of
closed surfaces are completely classified; the following result is well known,
and it probably should be attributed to [22], but we refer to [9] for a more
modern and complete survey.

Theorem 4.7 (Theorem 1.11 of [9]). There is only one involution τ̄ , up
to conjugation with homeomorphisms, for the torus S1 × S1 with 4 isolated
fixed points. This involution is shown in Figure 4.3; it is orientation pre-
serving and it is induced by a rotation of π about the dotted line indicated
in the picture.

With an abuse of notation, call τ̄ the involution of T 2 × I obtained as
the product τ̄ × IdI . Since conjugated involutions produce homeomorphic
quotient spaces, thanks to the previous two results we can say that the
complement of the trivial knot in the solid torus projects to a homeomorphic
copy of the complement of the trivial knotoid in the three-ball. In other
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Figure 4.3: The involution of the torus with 4 fixed points, indicated with
the red stars.

words, our quotient space T 2 × I/τ is homeomorphic to T 2 × I/τ̄ , the last
one being precisely the complement of the trivial knotoid, as in Figure 4.4.

Figure 4.4: The quotient space under the involution is homeomorphic to the
complement of the trivial knotoid in the cylinder.

We will be done once we prove that the line isotopy class of the curve
in Figure 4.4 is not affected by the action of homeomorphisms; this is a
consequence of the following proposition. Let Y be the cylinder D2 × I,
and call MCG(Y ; p, q) the group of isotopy-classes of automorphisms of Y
that leave p× I and q × I invariant, where p, q are points in the interior of
D2 × {pt}.

Proposition 4.8. MCG(Y ; p, q) is isomorphic to Z, and it is generated by
a Dehn-twist along the blue rectangle in Figure 4.5.

The proof of Proposition 4.8 requires a couple of preliminary results.
First, note that removing the two lines yields a 3-dimensional genus 2 han-
dlebody H. The homeomorphisms of a handlebody are determined by their
behaviour on the boundary; more precisely, the mapping class group of a
handlebody can be identified with the subgroup of the mapping class group
of its boundary, consisting of homeomorphisms that can be extended to the
handlebody due to the following lemma.
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Figure 4.5: MCG(Y ; p, q) is generated by a Dehn twist along the boundary
of the blue rectangle.

Lemma 4.9. Let H be a genus 2 handlebody. Any homeomorphism ϕ :
H −→ H such that ϕ

∣

∣

∂H
is isotopic to Id∂H is isotopic to IdH .

The previous lemma is well known, and a proof may be found e.g. in
Chapter 3 of [12].

Remark 4.10. Recall that a self homeomorphism of the boundary of a
handlebody can be extended to the handlebody if and only if the image of
the boundary of every meridian disc is contractible in the handlebody. In
particular, Dehn twists along the blue curves in Figure 4.6 do not extend to
the handlebody.

Now, cutting the boundary of the handlebody H along the blue curves,
as in Figure 4.6, produces a sphere with 4 holes S.

Figure 4.6: Cutting the boundary of the handlebody along the blue curves
gives back the sphere with 4 holes S.
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A proof for the following lemma can be deduced from e.g. the proof
of Proposition 2.7, Chapter 2, [11]. Given a surface S with boundary, de-
note by MCG(S, ∂S) the group of isotopy classes of orientation-preserving
homeomorphisms of S that leave each boundary component invariant.

Lemma 4.11. Let S be the sphere with 4 holes. Then, MCG(S, ∂S) is
isomorphic to a subgroup of MCG(T 2)/− Id ∼= PSL(2,Z).

Figure 4.7: ϕ : S −→ S in MCG(S, ∂S) is completely determined by the
images of the curves ν and λ.

Thus, we defined a homomorphismMCG(Y ; p, q) −→ MCG(S, ∂S), and
an injective homomorphism MCG(S, ∂S) −→ PSL(2,Z). An element in the
kernel of the composition of these two homomorphisms is then an automor-
phism of ∂H that leaves the two blue curves in the left side of Figure 4.6
invariant and that is isotopic to the identity on S. Such an element is a
product of Dehn twists about the two blue curves of Figure 4.6, but thanks
to Remark 4.10, the only element in MCG(Y ; p, q) of that form is the trivial
element. Moreover, Lemma 4.11 is proven by exhibiting a bijection between
homotopy classes of essential closed curves in T 2 and in S, and this in partic-
ular implies that any homeomorphism ϕ : S −→ S leaving each component
of ∂S invariant is completely determined by the images of the curves ν and
λ in Figure 4.7. Now, ϕ(ν) = ν, since ν is the only essential closed curve in S
which is trivial in H1(H); on the other hand, Remark 4.10 implies that ϕ(λ)
is the curve that results from λ by applying a Dehn twist along ν. Putting all
together, we obtain a proof for Proposition 4.8 and Theorem 4.5, as wanted.

□
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5. Knotoids and strongly invertible knots

5.1. Proof of the main theorem

This section is devoted to the proof of the main result, Theorem 1.1. We
should point out that the correspondence between knotoids and strongly
invertible knots is partially inspired by the construction in [42], Section 2.2.
We begin by giving a precise definition of what a strongly invertible knot
is. Recall that Sym(S3,K) denotes the symmetry group of a knot K, that
is, the group of diffeomorphisms of the pair (S3,K) modulo isotopies, and
Sym+(S3,K) is the subgroup of Sym(S3,K) of diffeomorphisms preserving
the orientation of S3.

Definition 5.1. A strongly invertible knot is a pair (K, τ), where τ ∈
Sym(S3,K) is called a strong inversion, and it is an orientation preserv-
ing involution of S3 that reverses the orientation of K, taken up to con-
jugacy in Sym+(S3,K). Thus, two strongly invertible knots (K1, τ1) and
(K2, τ2) are equivalent if there is an orientation preserving homeomorphism
f : S3 −→ S3 satisfying f(K1) = K2 and fτ1f

−1 = τ2.

Call KSI(S3) the set of strongly invertible knots (K, τ) in S3, up to
equivalence, and KS.I.(S

3) the subset of K(S3) consisting of knots that ad-
mit a strong inversion. There is then a natural forgetful map KSI(S3) −→
KS.I.(S

3). As we saw in Section 3.4, the lift of a knotoid through the dou-
ble branched cover of S3 is a strongly invertible knot, thus, γS(K(S2)) ⊂
KS.I.(S

3). More precisely, the branching set e− ∪ e+ determines an involu-
tion τ . Thus, we can promote γS to a map γS : K(S2) −→ KSI(S3). Further,
a knotoid k, its reverse −k, its rotation krot and its reverse rotation −krot
map to the same element in KSI(S3) (see Remark 3.7, and note that their
associated θ-curves share the same preferred constituent unknot e− ∪ e+).
Thus, γS descends to a well defined map on the quotient

γS : K(S2)/≈ −→ KSI(S3)

On the other hand, given a strongly invertible knot there are four oriented
knotoids associated to it, given by the construction explained below. Con-
sider a strongly invertible knot (K, τ) ∈ KSI(S3); the fixed point set of τ is
an unknotted circle (thanks to the positive resolution of the Smith conjec-
ture, [41]). Moreover, τ defines the projection

p : S3 −→ S3/τ ∼= S3
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that can be interpreted as the double cover of S3 branched along Fix(τ).

Figure 5.1: The trefoil is a strongly invertible knot. Up to isotopy, we can
represent the fixed point set as the z axis in R

3. On the right, the θ-curve
obtained from the projection. The unknotted component is again represented
as the z axis.

From (K, τ) we can construct the θ-curve θ(K, τ) = p(Fix(τ)) ∪ p(K),
where p(K) = e0 and p(Fix(τ)) = e− ∪ e+, as explained in [36] and as shown
in Figure 5.1. Equivalent strongly invertible knots project to equivalent θ-
curves (as elements of Θs/≈), thus, we have a well defined map

β : KSI(S3) −→ Θs/≈

The four labelled θ-curves corresponding to the different choices of labelling
the edges e− and e+ and the vertices v0 and v1 are mapped by the iso-
morphism t of Theorem 3.4 to knotoids k,−k, krot and −krot related by
reversion and rotation, as discussed in Section 3.2. Thus, we have a well
defined map

Π = t−1
≈ ◦ β

from the set of strongly invertible knots to the set K(S2)/≈ of unoriented
knotoids in S2 up to rotation. Since the preferred constituent unknot of
t≈(t

−1
≈ (θ(K, τ))) = θ(K, τ) is clearly p(Fix(τ)), Π is the inverse of γS . From

this and the discussion in Section 3.4 we obtain that

γS : K(S2)/≈ −→ KSI(S3)

is a bijection, and Theorem 1.1 is proven.

5.2. Connected sums

Call k1 the knotoid on the left-side of Figure 2.5, and consider the product
k1 · k1. Its image under γS is the composite knot 31#31 (see e.g. Figure 8.4,
and recall Theorem 4.3). We know from Proposition 3.10 that the knot-type
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knotoid k associated to the trefoil knot lifts to 31#31 as well (the trefoil
is invertible, thus 31 ∼ −31). Theorem 1.1 implies that 31#31 admits at
least two non-equivalent involutions, associated to the equivalence classes
in K(S2)/≈ of the knotoids k1 · k1 and k, respectively. These non-equivalent
involutions are shown in Figure 5.2.

Figure 5.2: The fixed point sets of two non-equivalent involutions are shown
here. The one corresponding to the vertical line associates the knot 31#31
to k1 · k1. The quotient under the involution corresponding to the horizontal
line is the one associated to the knot-type knotoid k.

Similarly, Figure 5.3 shows two different involutions of the composite
knot 31#820, defining different composite knotoids.

Figure 5.3: Two different involutions of the composite knot 31#820, associ-
ated to the composite knotoids k1 · k2 and k2 · k1.
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5.3. Strong inversions

It is a classical result [25] that every knot admits a finite number of non
equivalent strong inversions. For torus and hyperbolic knots a stronger result
holds. Recall that we say that a knot K admits period 2 if it is fixed by an
orientation preserving involution which also preserves the knot orientation.
More precisely, K has cyclic (respectively free) period 2 if there exist a non-
trivial ϕ ∈ Sym+(S3,K) with ϕ2 = id, that preserves the orientation on K,
with fix(ϕ) an unknot (respectively fix(ϕ) = ∅).

Theorem 5.2 (Proposition 3.1, [36]). A torus knot admits exactly one
strong inversion. If a hyperbolic knot is strongly invertible, then it admits
either 1 or 2 non equivalent inversions, and it admits exactly 2 if and only
if it admits (cyclic or free) period 2.

The previous result together with Theorem 1.1 proves Corollary 1.2.
Thus, to every torus knot there is a single knotoid associated up to reversion
and rotation, and to every hyperbolic knot there are at most two. We give
the following definition, borrowed from classical knot theory.

Definition 5.3. We will call torus knotoids the knotoids whose lifts are
torus knots. Similarly, we will call hyperbolic knotoids those lifting to hy-
perbolic knots.

More generally, only finitely many knotoids are associated with a single
knot type. Hence it is natural to ask the following.

Question 5.4. Is there an algorithm to decide whether two knotoids k1 and
k2 are equivalent?

Since there are now several known ways to solve the knot recognition
problem (for a survey, see e.g [28] and [10]), the next step to answer Ques-
tion 5.4 positively would be to decide whether two given involutions of a
knot complement are conjugate homeomorphisms. As stated in the intro-
duction, using the solution to the equivalence problem for hyperbolic knots
([33] and [27]), since there is an algorithm to decide whether two involutions
of a hyperbolic knot complement are conjugate [29], this can be done in the
hyperbolic case. Thus, it is possible to tell if two hyperbolic knotoids k1 and
k2 represent equivalent classes in K(S2)/≈. This is enough to distinguish
them as oriented knotoids.
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Theorem 5.5. Given two hyperbolic knotoids k1 and k2, there is an algo-
rithm to determine whether k1 and k2 are equivalent as oriented knotoids.

Proof. By the previous discussion, we can tell if k1 and k2 represent equiva-
lent classes in ∈ K(S2)/≈. Suppose they do, and note that since the mapping
class group of a hyperbolic knot is computable (see [17]), we can tell whether
their lift admits or not period 2. If it does, then Corollary 1.5 (a proof of
which is contained in Section 6) tells us that exactly one of the following
holds:

• k1 and k2 are isotopic as oriented knotoids;

• k1 is isotopic to k2rot.

We can then consider the diagrams of k1 and k2 given as an input, and any
diagram of k2rot. Now, if two diagrams represent equivalent knotoids, then
there exists a finite sequence of Reidemeister moves and isotopies taking
one to the other. Since we know that k1 is equivalent to one between k2 and
k2rot, after a finite number of Reidemeister moves and isotopies performed
on k1, this will transform into either k2 or k2rot. Similarly, if the lift of k1
and k2 does not admit period 2, Corollary 1.5 assures that exactly one of
the following holds:

• k1 and k2 are isotopic;

• k1 is isotopic to −k2;

• k1 is isotopic to k2rot;

• k1 is isotopic to −k2rot.

And we can distinguish between these possibilities exactly as before. □

Remark 5.6. Note that Question 5.4 can be answered positively using the
correspondence between knotoids and θ-curves (Theorem 3.4). Indeed, given
two θ-curves, we can consider their complements in S3, together with the
data of the meridians of the three edges. We could then let Haken’s algorithm
(see [16], [39]) run to decide whether or not the obtained 3-manifolds are
equivalent. However, the algorithm of Theorem 5.5 appears to be practical,
whereas Haken’s algorithm is not.
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5.4. An example: the T2,2k+1-torus knotoids

Every T2,2k+1-torus knot admits a diagram of the form shown in the upper
part of Figure 5.4, where its unique involution τ is represented as a straight
line.

Figure 5.4: On the top, a diagram representing the torus knot T2,2k+1. The
K box contains k consecutive crossings of the same sign, as shown on the
top-right side of the picture. Note that rotating K by π does not change
it. The unique involution τ of T2,2k+1 gives 4 labelled θ-curves and their
associated oriented knotoids. These are related to one another by reversion
and rotation.

Recall that, as defined in Section 5.1, the inverse of γS is given by
Π = t−1

≈ ◦ β, where β is the map from the set of strongly invertible knots
KSI(S3) to the set Θs/≈ of equivalence classes of simple and labelled θ-
curves, and t≈ is the bijection t≈ : K(S2)/≈ −→ Θs/≈. In the equivalence
class of β(T2,2k+1) there are a priori 4 distinct labelled θ-curves. These are
shown in the middle of Figure 5.4, over their associated knotoids. Using
these canonical representatives of Π(T2,2k+1, τ) we can prove the following.
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Proposition 5.7. Every T2,2k+1-torus knotoid is reversible.

Proof. First, observe that it is enough to prove that one of the knotoids in
Figure 5.4 is reversible, since rotation and reversion commute. The proof is
contained in Figure 5.5. □

Figure 5.5: A proof that the T2,2k+1-torus knotoids are reversible. The ro-
tation by π sends the θ-curve associated to a T2,2k+1-torus knotoid into the
one corresponding to its reverse.

The previous proposition, together with Corollary 1.2 implies that there
are at most 2 oriented knotoids associated to every T2,2k+1-torus knot. These
knotoids are reversible and related by a rotation.

6. Amphichirality, reversibility and rotatability in

hyperbolic knotoids

In this section we show how Corollary 1.2 can be improved in two different
ways, by considering properties of the symmetry groups of hyperbolic knots.

6.1. Orbifolds

Much of this section uses the machinery of orbifolds. The formal definition
of an orbifold is given in [37][Section 2] and [7][Section 2.1]. We omit it here
because it is quite lengthy. Informally, an orbifold is a space where each point
x has an open neighbourhood of the form R

n/Γ for some finite subgroup Γ
of O(n), and where x is taken to the image of the origin. However, it is more
than just a topological space, since the orbifold also records the specific
group Γ attached to x. This is called the local group of x. The singular locus
of the orbifold is the set of points with non-trivial local group.
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The most basic example of an orbifold is the quotient of a smooth mani-
fold M by a finite group of diffeomorphisms. In this paper, we will only con-
sider the case of the group Z2 acting on a smooth manifold by an orientation-
preserving involution τ . In this case, the quotient M/τ is again a manifold
and its singular locus is a properly embedded 1-manifold.

The most significant structural result about 3-orbifolds is the Orbifold
Theorem [3, 7], which gives a version of the Geometrisation Conjecture for
orbifolds. Rather than state the precise theorem, we observe the following
well-known consequence.

Theorem 6.1. Let Γ be a finite group of diffeomorphisms of a finite-volume
hyperbolic 3-manifold M . Then Γ is conjugated to a group of isometries.

Proof. Mostow Rigidity implies that Γ is homotopic to a group of isometries,
but this is weaker than our desired conclusion. Instead, we use the Orbifold
Theorem. This implies that the orbifold M/Γ is hyperbolic. Hence, M has a
hyperbolic structure upon which Γ acts by isometries. By Mostow Rigidity,
this hyperbolic structure is isometric to our given one, via an isometry h.
Thus, h is our required conjugating diffeomorphism. □

There is a notion of the fundamental group π1(O) of an orbifold O and
of a covering map between orbifolds. For a definition of these terms, see
e.g. [37] or [7].

6.2. Reversible knotoids

Let’s turn our attention back to oriented knotoids. Even if the maps γS and
γT can not distinguish between two knotoids differing only in the orientation,
using γS it is possible to tell whether a hyperbolic knotoid is reversible or
not, and whether it is rotatable or not. The following lemma follows from
Theorem 3.4.

Lemma 6.2. An oriented knotoid k ∈ K(S2) is reversible (respectively ro-
tatable) if and only if there is an isotopy taking the θ-curve t(k) back to
itself, that preserves each edge but swaps the two vertices (respectively, that
preserves e0, and swaps e+ and e− and the vertices).

Furthermore, we can prove that the isotopies of the previous lemma have
order 2.
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Proposition 6.3. A hyperbolic, oriented knotoid k ∈ K(S2) is reversible
(respectively, equivalent to the reverse of its rotation) if and only if there
is an order two orientation preserving homeomorphism of S3 taking the θ-
curve t(k) back to itself, that preserves each edge but swaps the two vertices
(respectively, that preserves e0 and swaps the two vertices and e− and e+).

Proof. One direction is clear. So suppose that k is a hyperbolic knotoid that
is either reversible or equivalent to the reverse of its rotation. Let t(k) be
the corresponding θ-curve, with edges labelled e−, e+ and e0, and where
e− ∪ e+ is the preferred constituent unknot. By hypothesis, γS(k) is a hy-
perbolic knot. The involution on the hyperbolic manifold S3 \ int(N(γS(k)))
is realised by a hyperbolic isometry τ by Theorem 6.1. The quotient (S3 \
int(N(γS(k)))/τ is therefore a hyperbolic orbifold O. Its underlying space
is the 3-ball S3 \ int(N(e0)), and its singular locus is the intersection with
e− ∪ e+. Now, we are assuming that k is either reversible or equivalent to
the reverse of its rotation. Hence, by Lemma 6.2, there is a homeomorphism
ρ of S3 taking t(k) back to itself, that preserves each edge but swaps the
two vertices, or that swaps both the vertices and the edges e− and e+. In
both cases, this therefore induces a homeomorphism of O that preserves its
singular locus. By Mostow rigidity, this is homotopic to an isometry ρ of
O. In both cases, the action of ρ2 on ∂O is isotopic to the identity, via an
isotopy that preserves the singular points throughout. Hence, because it is
an isometry of a Euclidean pillowcase orbifold, ρ2 is the identity. Therefore,
ρ2 is actually equal to the identity on O. So, in both cases, ρ extends to
the required order two homeomorphism of S3, taking t(k) back to itself,
that preserves each edge but swaps the two vertices or that preserves e0 and
swaps the vertices and the two other edges. □

Sakuma and Kodama [23] proved that, given an invertible hyperbolic
knot K with a strong involution τ , the existence of such symmetries for the
θ-curve θ(K, τ) is completely determined by Sym(S3,K).

Theorem 6.4 (Proposition 1.2, [23]). Given an invertible hyperbolic
knot K with a strong inversion τ , then Sym(S3,K) admits cyclic (respec-
tively free) period 2 if and only if there exist an orientation preserving in-
volution of S3 fixing setwise θ(K, τ) that preserves each edge but swaps the
two vertices (respectively, that preserves e0, and swaps e+ and e− and the
vertices)2.

2In [23] Sakuma and Kodama call θ(K, τ) strongly reversible in the first case,
and say that θ(K, τ) has period 2 centered in e0 = p(K) in the second case.
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As an immediate corollary of Theorem 6.4 and Lemma 6.3 we have the
following characterisation for hyperbolic knotoids, which is a restatement of
Theorem 1.3.

Theorem 6.5. A hyperbolic, oriented knotoid k ∈ K(S2) is reversible if and
only if γS(k) has cyclic period 2. Analogously, it is equivalent to the reverse
of its rotation if and only if γS(k) has free period 2.

6.3. Hyperbolic knotoids are not rotatable

Recall that a knotoid k ∈ K(S2) is called rotatable if it is isotopic to its
rotation krot. For hyperbolic knotoids, this is never the case.

Theorem 6.6. A hyperbolic knotoid is never rotatable.

Proof. Associated to the hyperbolic knotoid k, there is the θ-curve t(k),
which has three edges e0, e− and e+, and where e− ∪ e+ is the preferred
constituent unknot. By hypothesis, γS(k) is a hyperbolic knot. As in the
proof of Proposition 6.3, the involution on the hyperbolic manifold S3 \
int(N(γS(k))) is realised by a hyperbolic isometry τ . The quotient (S3 \
int(N(γS(k)))/τ is a hyperbolic orbifold O. Its underlying space is the 3-
ball S3 \ int(N(e0)), and its singular locus is the intersection with e− ∪ e+.
Let krot be the knotoid obtained by rotating k. If we suppose that krot and
k are equivalent, then by Lemma 6.3 there is a homeomorphism of S3 taking
t(k) back to itself that swaps the edges labelled e− and e+ and leaves all
other labels unchanged. This therefore induces a homeomorphism h : O → O
that preserves the singular locus. It is homotopic to an isometry h : O → O.

We claim that h is not equal to the identity, but that (h)2 is the iden-
tity. First observe that h swaps the two components of the singular locus.
These are distinct geodesics in O. Thus, the isometry h also swaps these two
geodesics and therefore is not the identity. On the other hand, h2 acts as the
identity on ∂N(t(k)). Hence, the restriction of (h)2 to ∂O is isotopic to the
identity, via an isotopy that preserves the singular points of ∂O. But any
isometry of a Euclidean pillowcase orbifold that is isotopic to the identity
via an isotopy preserving the singular points must be equal to the identity.
So the restriction of the isometry (h)2 to ∂O is the identity and hence (h)2

is the identity on O. By the double branched cover construction, we obtain
p : S3 − int(N(γS(k))) → O that is an orbifold covering map. This induces a
homomorphism p∗ : π1(S

3 − int(N(γS(k))) → π1(O). The image of this ho-
momorphism is an index 2 subgroup of π1(O). This subgroup consists of



✐

✐

“3-Barbensi” — 2023/3/14 — 23:52 — page 1044 — #38
✐

✐

✐

✐

✐

✐

1044 Barbensi, Buck, Harrington, and Lackenby

those loops in S3 − int(N(t(k))) that have even linking number with the
unknot e− ∪ e+.

Now h lifts to an isometry ϕ : S3 \ int(N(γS(k))) → S3 \ int(N(γS(k))).
This is because h∗ : π1(O) → π1(O) preserves the subgroup

p∗π1(S
3 − int(N(γS(k))).

This lift ϕ swaps the arcs p−1(e− ∩ O) and p−1(e+ ∩ O). It preserves each of
the meridians of γS(k) at the endpoints of these arcs. To see this, pick a small
arc α in ∂O near one of the endpoints of k, joining a point of e− ∩ ∂O to a
point of e+ ∩ ∂O. This is preserved by h and hence the Euclidean geodesic
representative for α is preserved by h. The inverse image of this geodesic
in S3 \ int(N(γS(k))) is therefore a meridian of γS(k) that is preserved by
ϕ. Hence, ϕ extends to an involution of S3 that fixes γS(k). But no such
symmetry exists, by the solution to the Smith Conjecture, since γS(k) is a
non-trivial knot. □

Remark 6.7. Consider a hyperbolic knotoid k, and suppose that its lift
γS(k) admits simultaneously free and cyclic period 2. Then, by Theorem 6.5,
k is equivalent both to −k and to −krot. This imply that k is equivalent
to its rotation krot, contradicting Theorem 6.6. Thus, Theorem 6.6 and
Theorem 6.5 imply that a strongly invertible hyperbolic knot K can not
admit simultaneously free and cyclic period 2. We believe that this statement
holds for hyperbolic knots in general, but we weren’t able to find a reference.

Thus, we obtain the following improvement of Corollary 1.2, dealing with
hyperbolic knotoids.

Corollary 6.8. Given any strongly invertible hyperbolic knot K there are
exactly 4 distinct oriented knotoids associated to it. Moreover, one of the
following holds.

• If K has cyclic period 2, these are two inequivalent reversible knotoids
k1, k2 and their rotations k1

rot
, k2

rot
;

• if K has free period 2, these are two inequivalent knotoids k1, k2 (each
equivalent to the reverse of its rotation) and their reverses −k1, −k2;

• if K does not have period 2, these are a knotoid k, its reverse −k, its
rotation krot and its reverse rotation −krot.

Proof. By Theorem 5.2, K has either 1 or 2 strong inversions up to equiva-
lence. It has exactly 2 if and only if K has period 2.
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Suppose first that K does not have period 2. Then, up to reversion and
rotation, it is associated with just one knotoid k. Moreover, by Theorems 6.5
and 6.6, k, −k, krot and −krot are all distinct.

Suppose that K has cyclic period 2. Then, it is associated with two
knotoids k1 and k2 that are distinct, even up to rotation and reversion. By
Theorem 6.5, k1 is equivalent to −k1. Hence, k1rot is equivalent to −k1rot. By
Theorem 6.6, k1 and−k1 are distinct from k1rot and−k1rot. Similar statements
are true for k2.

Finally, suppose that K has free period 2. Then again it is associated
with two knotoids k1 and k2 that are distinct up to reversion and rotation.
By Theorem 6.5, k1 is equivalent to −k1rot. Hence, −k1 is equivalent to k1rot.
By Theorem 6.6, k1 and −k1rot are distinct from −k1 and k1rot. Again, similar
statements are true for k2. □

In particular, the knotoids in Figure 6.1 are all not reversible. In fact,
their images under the double branched cover construction are the knot 820,
which is hyperbolic with symmetry group isomorphic to the dihedral group
D1 (thus, it does not admit period 2).

Figure 6.1: There are 4 oriented and not reversible knotoids associated to
the knot 820. These are related to each other by reversion and/or rotation.
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6.4. Amphichiral strongly invertible knots

It is possible to give a refinement of Corollary 1.2 in the case of amphichiral
hyperbolic knots.

Definition 6.9. A knot K is called amphichiral if there exists an
orientation-reversing homeomorphism of S3 fixing the knot (setwise). Note
that this implies that K is equivalent to its mirror Km.

Consider an invertible, hyperbolic, amphichiral knot K, and suppose
that it admits period 2. From Theorem 5.2 it follows that K admits two
non-equivalent involutions τ1 and τ2. Let ϕ be the (isotopy class of) the
orientation reversing homeomorphism of Definition 6.9; from [[36], Proposi-
tion 3.4], we know that τ1 and τ2 are conjugated through ϕ

τ2 = ϕ ◦ τ1 ◦ ϕ
−1

Thus, (K, τ1) is equivalent to m(K, τ2), where m(K, τ2) is the strongly
invertible knot obtained from (K, τ2) by reversing the orientation of S3, and
the following holds.

Proposition 6.10. Given an invertible, hyperbolic, amphichiral knot K
admitting period 2, and let τ1 and τ2 be the two non-equivalent strong invo-
lutions of K. Then Π(K, τ1) is the equivalence class in K(S2)/≈ containing
the mirror images of the knotoids in Π(K, τ2).

Note that Theorem 6.5 tells us that the oriented knotoids in the equiva-
lence classes of Π(K, τ1) and Π(K, τ2) are all either reversible or equivalent
to the reverse of their rotations, and Theorem 6.10 tells us that each class
contains the mirror reflections of the other.

6.4.1. Example: 41. We work out the case of the figure eight knot (41 in
the Rolfsen table) as an example of Proposition 6.10. The 41 knot is known to
be hyperbolic, invertible, amphichiral and it admits period 2; thus, it admits
two distinct inversions τ1 and τ2, shown in the upper part of Figure 6.2.

By considering the quotients under τ1 and τ2 we obtain two elements
θ(41, τ1) and θ(41, τ2) of Θs/≈, shown in the bottom of Figure 6.2. Their
constituent knots are two unknots and the torus knot 51, and two unknots
and the mirror image of 51 respectively. Since it is well known that 51 ≁ m51,
it follows that θ(41, τ1) and θ(41, τ2) represent different elements of Θs/≈.
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Figure 6.2: On the top, a diagram for 41 with the fixed point sets of τ1 and
τ2 represented as straight lines. On the bottom, the θ-curves θ(41, τ1) and
θ(41, τ2).

Figure 6.3: On the top: from θ(41, τ1) to Π(41, τ1). On the bottom: from
θ(41, τ2) to Π(41, τ2). The two knotoids are one the mirror image of the
other.

In figure 6.3 we show how to obtain two specific representatives of the
equivalence classes Π(41, τ1) and Π(41, τ2). It is clear from the picture that
these knotoids are one the mirror image of the other.
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6.5. Strongly invertible composite knots

As a corollary of Theorem 1.1 and Corollary 1.5, we have the following result
dealing with strong involutions of composite knots.

Proposition 6.11. Consider a knot K isotopic to the connected sum of
#n

i=1K
i
h, where n ≥ 2 and every Ki

h is a strongly invertible, hyperbolic knot.
Suppose that these hyperbolic knots are pairwise distinct. Then, the number
of non-equivalent strong involutions of K is equal to 4n−1(n!).

Proof. By Theorem 1.1, the number of different involutions of K = #n
i=1K

i
h

is equal to the number of elements of K(S2)/≈ whose image under γS
is a knot isotopic to K. Theorem 4.2 implies that every knotoid k with
γS(k) = K is decomposable as k = ·nj=1kj where each kj belong to the equiv-

alence class Π(Ki
h, τ) ∈ K(S2)/≈ for a unique (Ki

h, τ). By hypothesis, the
summands of #n

i=1K
i
h are pairwise distinct, thus, none of the kj is a knot-

type knotoid. Thus, Theorem 2.7 implies that this decomposition is unique
in K(S2). There are n! ways to order the factors of k = ·nj=1kj , and each ar-

rangement corresponds to a different element in K(S2). Moreover, by Corol-
lary 1.5, each Ki

h is associated to exactly 4 inequivalent oriented knotoids.
Depending on whether or not Ki

h has period 2, these can be either

• two inequivalent reversible knotoids k1i , k
2
i and their rotations k1irot,

k2irot, contained in the two classes Π(Ki
h, τ1) and Π(Ki

h, τ2);

• two inequivalent knotoids k1i , k
2
i (each equivalent to the reverse of its

rotation) and their reverses −k1, −k2, contained in the two classes
Π(Ki

h, τ1) and Π(Ki
h, τ2);

• a knotoid ki, its reverse −ki, its rotation kirot and its reverse rotation
−kirot, contained in Π(Ki

h, τ).

Choosing a different oriented knotoid associated to the same hyperbolic knot
in the decomposition k = ·nj=1kj corresponds to creating a different element

in K(S2). Thus, there are a total of 4n(n!) different composite knotoids in
K(S2) whose double branched cover is a knot isotopic to K. Since for ev-
ery knotoid k′ = k′1 · k

′
2 . . . k

′
m−1 · k

′
m it holds k′rot = k′1rot · k

′
2rot . . . k

′
m−1rot ·

k′mrot and −k′ = −k′m · −k′m−1 · · · − k′2 · −k′1, by considering reversion and
reflection on the composite knotoids, the claim follows. □
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7. On the map γT : an example

It is often hard to distinguish non-equivalent planar knotoids which represent
the same class in K(S2). Important developments in this direction have been
carried on in [8], where polynomial invariants are used to detect the planar
knotoid types associated to open polymers. In what follows, we show how
we can efficiently use the map γT to this end. Consider the pair of knotoids
k1 and k2 in K(R2) of Figure 7.1, on the top. They both represent the trivial
knotoid in K(S2).

Figure 7.1: On the top, the knotoids k1 and k2 in K(R2). On the bottom,
their images under γT .

The images of knotoids k1 and k2 under γT are two knots in the solid
torus. To distinguish them, we can consider the following construction. We
can embed the solid torus in S3 as done in Section 3.3, but this time after
giving a full twist along the meridian of S1 ×D2. We then obtain two knots
in S3, shown in Figure 7.2, that can be easily shown to be the knots 946 and
52 by computing the Alexander and Jones polynomials. These invariants
are in fact enough to distinguish them since, according to knotinfo [5], the
knots 52 and 946 are uniquely determined by their Alexander and Jones
polynomials among all knots up to 12 crossings. Note that this procedure
may be applied to several similar cases, highlighting the power of the map
γT . We emphasise that the authors are not aware of any other method other
than using γT that is capable of distinguishing k1 and k2. This example was
kindly suggested by Dimos Goundaroulis.
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Figure 7.2: By embedding the solid torus in S3 as in Section 3.3 after giving
a full twist along the meridian, we obtain a pair of knots in S3.

Remark 7.1. As mentioned in Section 3.3, after applying the map γT one
could directly compare the resulting knots in the solid torus by using invari-
ants for knots in the solid torus, see e.g. [30], [14] and [19]. Alternatively, one
could also consider the two-component link L in S3 obtained as the union
of γT (k) with the meridian of the solid torus S1 ×D2.

8. Gauss code and computations

The oriented Gauss code GC(D) for a knot diagram D is a pair (C, S),
where C is a 2n-tuple and S an n-tuple, n being the number of crossings of
the diagram. Given a diagram D, GC(D) is constructed as follows: assign
a number between 1 and n to each crossing, and pick a point a in the
diagram, which is not a double point. Start walking along the diagram from
a, following the orientation, and record every crossing encountered (in order)
by adding an entry to C consisting of the corresponding number, together
with a sign + for overpassing and − for underpassing, until you reach the
starting point a again. Note that each crossing is encountered twice. S is
the n-tuple whose ith entry is equal to 1 if the ith crossing is positive and
−1 otherwise. As an example, the Gauss code associated to the diagram in
Figure 8.1 is equal to:

GC(D) = ((1,−2, 3,−1, 2,−3), (1, 1, 1))

Gauss codes can be easily extended to knotoid diagrams, see [15]. The
procedure is basically the same, but in this case the starting point a coincides
with the tail of the diagram. As an example, the Gauss code for the knotoid
in Figure 8.2 is equal to:

GC(D) = ((−1, 1, 2,−3,−2, 3), (1, 1, 1))

The information encoded in GC(D) is enough to reconstruct D, both in
the case of knot and knotoid diagrams.
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Figure 8.1: Computing the Gauss code for a knot diagram.

Figure 8.2: Computing the Gauss code for a knotoid.

8.1. Generalised Gauss code for knotoids

Gauss code for knotoid diagrams may be generalised to contain also the
information about the intersection with the branching set. We will call the
generalised Gauss code (indicated as gGC(D)) the pair (C, S) where S is
the same as in GC(D), while C contains also entries equal to b every time
the diagram intersects with the arcs that connect the branched points (i.e.
the endpoints) with the boundary of the disk containing the diagram. For
instance, the Gauss code for the knotoid in Figure 8.3 is:

−1, b, b, 1, 2,−3, b,−2, 3/1, 1, 1

Figure 8.3: Computing the generalised Gauss code for a knotoid.
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8.2. Gauss code for the lifts

Given a diagram D representing a knotoid k with gGC(D) = (C, S) it is
possible to compute GC(γS(D)), where γS(D) is the diagram representing
γS(k) obtained with the “cuts” technique, as in Figure 3.4.

Figure 8.4: Computing the Gauss code for the lift: an example.

Consider the knotoid diagram D on the left-side of Figure 8.4 with
gGC(D) = ((1,−2, b,−1, 2), (1, 1). Label the crossings in γS(D) as shown
on the right-side of Figure 8.4: every half of the annulus is a copy of the disk
in which D lies, keep the same enumeration on the top-half and increase by
2 the labels in the bottom one. Now, start computing GC(γS(D)): notice
that until we reach an intersection between the diagram and one of the arcs
splitting the annulus, the entries added in GC(γS(D)) are equal to the first
entries in gGC(D). After an intersection point, the path continues on the
bottom half of the annulus, and the next entries added in GC(γS(D)) are
equal to the corresponding ones in gGC(D), but with every label increased
by 2. Once we reach the lift of the head, the path along the knot continues,
and it is the same path we have just done, but in the opposite direction and
on opposite halves of the annulus. Thus, the last entries added are a copy
of the entries written so far, added in the opposite order and with labels
corresponding to opposite halves of the annulus and thus:

GC(γS(D)) = ((1,−2,−3, 4, 2,−1,−4, 3), S)

To compute S, note that the sign of a crossing in the top-half is the same
as its corresponding crossing in the bottom-half. Moreover, since the labels
corresponding to each crossings in gGC(D) appear once before the entry b
and once after, the signs of the first two crossings in the knot diagram are
changed, and the complete Gauss code is

GC(γS(D)) = ((1,−2,−3, 4, 2,−1,−4, 3), (−1,−1,−1))
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Figure 8.5: Computing the Gauss code of the lift γS(D).

The previous procedure can be generalised to produce an algorithm.
Thus, consider the diagram in Figure 8.5, and start walking along the knot
from the lift of the tail. Every time we pass from one half of the annulus to
the other, the path on the diagram follows as in the knotoid diagram, but on
a different half. Moreover, as before, once we reach the lift of the head of the
knotoid, the path proceeds as the one just traced, in the opposite direction
and on different halves as before. Now, suppose that on gGC(D) the two
appearances of the same label happen without the occurrence of a b entry
between them. This means that in γS(D) we are going to reach the top-lift of
the crossing twice without passing to the other half (thus, without swapping
the orientation), and the same holds for the bottom-lift of the crossings. In
this case the signs of both the lifted crossings in γS(D) are equal to the sign
of the corresponding one in D. Putting everything together, we obtain the
following algorithm, that can be easily implemented.

Input: generalised Gauss code of the knotoid, n = number of crossings
in the knotoid diagram;

• go through the knotoid code: copy the entries until you find a b;

• until you reach the point corresponding to the head of the knotoid:
after reaching a b
– if the number of b-entries encountered is odd, add entries equals to

the knotoid ones, but changing the labels by adding n to them. Do
that until you reach another b;

– if the number of b-entries encountered is even, add entries equals
to the knotoid ones. Do that until you reach another b.
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• After reaching the head: copy the entries added so far, starting from
the last one, and changing the labels by subtracting n if they are
greater than n, and adding n otherwise;

• Consider the k crossing in the knotoid diagram:
– if the corresponding labels in the knotoid code appear twice with

an even (or zero) number of b-entries between them, then the sign
of the k and k + n crossings in the knot diagram are equal to the
sign of the starting crossing;

– if the corresponding labels in the knotoid code appear twice with
an odd number of b-entries between them, then the sign of the k
and k + n crossings in the knot diagram are opposite to the sign of
the starting crossing.

Output: Gauss code for the lifted knot diagram.
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[22] Klein, F. Über Realitätsverhältnisse bei der einem beliebigen Geschlechte
zugehörigen Normalkurve der φ Springer, Berlin, Heidelberg, 1922.

[23] Kodama, K., and Sakuma, M. Symmetry groups of prime knots up to
10 crossings. Knots. Vol. 90. de Gruyter, 1992.



✐

✐

“3-Barbensi” — 2023/3/14 — 23:52 — page 1056 — #50
✐

✐

✐

✐

✐

✐

1056 Barbensi, Buck, Harrington, and Lackenby

[24] Kodokostas, D., and Lambropoulou, S. Rail knotoids. preprint arXiv:
1812.09493 (2018).

[25] Kojima, S. Finiteness of symmetries on 3-manifolds., Transformation
Groups and Representation Theory Pages 1–5 (1983).

[26] Korablev, P. G., and May, Y. K. Knotoids and knots in the thickened
torus. Siberian Mathematical Journal 58.5 (2017).

[27] Kuperberg, G. Algorithmic homeomorphism of 3-manifolds as a corol-
lary of geometrization. preprint arXiv:1508.06720 (2015).

[28] Lackenby, M. Elementary knot theory. preprint arXiv:1604.03778

(2016).

[29] Lackenby, M. Links with splitting number one. preprint arXiv:1808.

05495 (2018).

[30] Lambropoulou, S. Knot theory related to generalized and cyclotomic
Hecke algebras of type B J Knot Theory Ramif. (1999)

[31] Lickorish, WB. R. and Millett, K.C. A polynomial invariant of oriented
links. Topology. 1987.

[32] Lickorish, WB. R. Polynomials for links. Bulletin of the London Math-
ematical Society 20.6 (1988).

[33] Manning, J. F. Algorithmic detection and description of hyperbolic
structures on closed 3-manifolds with solvable word problem. Geome-
try and Topology 6.1 (2002).

[34] Moriuchi, H. An enumeration of theta-curves with up to seven crossings.
Journal of Knot Theory and Its Ramifications 18.02 (2009).

[35] Rolfsen, D. Knots and links. Vol. 346. American Mathematical Soc.,
1976.

[36] Sakuma, M. On strongly invertible knots. Algebraic and Topological
Theories. Papers from the Symposium Dedicated to the Memory of Dr.
Takehiko Miyata (Kinosaki, 1984), Kinokuniya Company Ltd., Tokyo.
1986.

[37] Scott, P. The geometries of 3-manifolds. Bulletin of the London Math-
ematical Society 15.5 (1983): 401–487.

[38] Taniyama, K. Cobordism of theta curves in S3. Mathematical Proceed-
ings of the Cambridge Philosophical Society. Vol. 113. No. 1. Cambridge
University Press, 1993.



✐

✐

“3-Barbensi” — 2023/3/14 — 23:52 — page 1057 — #51
✐

✐

✐

✐

✐

✐

Double branched covers of knotoids 1057

[39] Thompson, A. Algorithmic recognition of 3-manifolds. Bulletin of the
American Mathematical Society 35.1 (1998).

[40] Turaev, V. Knotoids. Osaka Journal of Mathematics 49.1 (2012).

[41] Waldhausen, F. Uber Involutionen der 3-Sphare, Topology (1969), 81–
92. MR 38 5209.

[42] Watson, L. Khovanov homology and the symmetry group of a knot.
Advances in Mathematics 313 (2017).

Mathematical Institute, University of Oxford

Oxford OX2 6GG, UK

E-mail address: Agnese.Barbensi@maths.ox.ac.uk

Department of Mathematical Sciences, University of Bath

Bath, BA2 7AY, UK

and Math Department, Duke University

Durham, NC 27708, USA

E-mail address: dbuck@math.duke.edu

Mathematical Institute, University of Oxford

Oxford OX2 6GG, UK

E-mail address: harrington@maths.ox.ac.uk

Mathematical Institute, University of Oxford

Oxford OX2 6GG, UK

E-mail address: lackenby@maths.ox.ac.uk

Received February 27, 2019

Accepted October 8, 2019


	Introduction
	Preliminaries
	Double branched covers
	Multiplication and trivial knotoid detection
	Knotoids and strongly invertible knots
	Amphichirality, reversibility and rotatability in hyperbolic knotoids
	On the map T: an example
	Gauss code and computations
	References

