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We consider a conformally invariant version of the Calderón prob-
lem, where the objective is to determine the conformal class of a
Riemannian manifold with boundary from the Dirichlet-to-
Neumann map for the conformal Laplacian. The main result states
that a locally conformally real-analytic manifold in dimensions ≥ 3
can be determined in this way, giving a positive answer to an ear-
lier conjecture [LU02, Conjecture 6.3]. The proof proceeds as in the
standard Calderón problem on a real-analytic Riemannian mani-
fold, but new features appear due to the conformal structure. In
particular, we introduce a new coordinate system that replaces
harmonic coordinates when determining the conformal class in a
neighborhood of the boundary.
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1. Introduction

1.1. Calderón problem

The anisotropic Calderón problem consists in determining a conductivity
matrix of a medium, up to a change of coordinates fixing the boundary, from
electrical voltage and current measurements on the boundary. In dimensions
≥ 3 this problem may be written geometrically as the determination of a
Riemannian metric on a compact manifold with boundary from Dirichlet
and Neumann data of harmonic functions. More precisely, if (M, g) is a
compact oriented Riemannian manifold with smooth boundary, we consider
the Dirichlet problem for the Laplace-Beltrami operator ∆g,

∆gu = 0 in M , u|∂M = f

and define the Dirichlet-to-Neumann map (DN map)

Λg : C
∞(∂M) → C∞(∂M), Λgf = ∂νu|∂M

where ∂ν is the normal derivative on ∂M . In dimensions n ≥ 3, one has the
coordinate invariance

Λg = Λϕ∗g

for any diffeomorphism φ :M →M fixing the boundary. If n = 2, the
Laplace-Beltrami operator is additionally conformally invariant, and one
has

Λg = Λcϕ∗g

whenever φ :M →M is a diffeomorphism fixing the boundary, and c ∈
C∞(M) is a positive function with c|∂M = 1 and ∂νc|∂M = 0.

The geometric Calderón problem amounts to showing that the DN map
Λg determines the manifold (M, g) modulo the above invariances. This has
been verified in [LU02] in the following cases. If (M, g) is a compact con-
nected C∞ Riemannian manifold with C∞ boundary, then:

(a) If n = 2, the DN map Λg determines the conformal class of (M, g).

(b) If n ≥ 3 and if M , ∂M and g are real-analytic, then the DN map Λg
determines (M, g).

Related results are given in [LU89, LTU03], and an analogous result
for Einstein manifolds (which are real-analytic in the interior) is proved in
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[GS09]. It remains a major open problem to remove the real-analyticity con-
dition when n ≥ 3; for recent progress in the case of conformally transversally
anisotropic manifolds see [DKSU09, DKLS16].

1.2. Conformal invariance

Given the conformal invariance of the Calderón problem when n = 2, [LU02]
formulated an analogous inverse problem that is conformally invariant in any
dimension and involves the conformal Laplacian. This inverse problem re-
duces to the usual Calderón problem when n = 2, and it was conjectured
that uniqueness holds for locally conformally real-analytic manifolds in di-
mensions ≥ 3 ([LU02, Conjecture 6.3], see also [Uh04, Uh14]). In this work
we give a positive answer to this conjecture.

Inverse problems for the conformal Laplacian are closely related to coun-
terexamples for inverse problems and invisibility cloaking. Invisibility cloak-
ing means the possibility, both theoretical and practical, of shielding a region
or object from detection via physical waves, see [AE05, AE13, GKLUa07,
GKLUb07, GKLU08, GLU03, GLU03, KSVW08, MN06, Le06, PSS06].

The first counterexamples for elliptic inverse problems using blow-up
maps were developed for the Laplace-Beltrami operator on two-dimensional
manifolds in [LTU03] and they were based on the conformal invariance of
harmonic functions. In [LTU03] it was shown that if one removes one point
from a compact manifold and blows up the metric using a conformal transfor-
mation, one obtains a non-compact manifold whose DN map coincides with
that of a compact manifold. Thus the DN map for the Laplace-Beltrami
operator does not determine even the topology of a non-compact manifold.

The blow-up of the metric near a point corresponds to making a hole,
or a cavity, in the manifold. In 2003, other types of blow-up maps were used
in [GLU03] to construct examples where objects were hidden inside holes
created by blow-up maps. This led to counterexamples for Calderón’s prob-
lem and to invisibility cloaking constructions for the conductivity equation.
The interest in cloaking surged in 2006 when it was realized that practi-
cal cloaking constructions are possible using so-called metamaterials. The
construction of Leonhardt [Le06] was based on conformal mapping on a non-
trivial Riemann surface. At the same time, Pendry et al [PSS06] proposed a
cloaking construction for Maxwell’s equations using a blow-up map and the
idea was demonstrated in laboratory experiments [Sc06]. For reviews on the
topic, see [GKLUb09, GKLUa09].

The conformal Laplacian is also called the Yamabe operator due to its
role in the (nowadays solved) Yamabe problem on compact closed manifolds.
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The solution of the Yamabe problem is a positive function solving a non-
linear eigenvalue equation for the conformal Laplacian, see e.g. [LP87] and
references therein. The Yamabe problem also has a counterpart on man-
ifolds with boundary, which is settled in most cases [Es92, Ma05, BC14].
Some other related works on the conformal Laplacian are [PR87, HJ99].

Finally, the conformal Laplacian and its higher order generalizations
have appeared quite recently in physics in connection with the so-called
AdS/CFT (Anti-de Sitter/Conformal Field Theory) correspondence in quan-
tum gravity. (See e.g. [Wi98, An05] for AdS/CFT correspondence.) The ba-
sic ingredients in this theory are Poincaré-Einstein metrics and manifolds,
which are special manifolds with boundary, equipped with conformally com-
pactified metrics [An05, An10]. The geometric nature of the theory has gen-
erated significant interest in its mathematical aspects [FG84, FG12]. In the
seminal work [GZ03], the scattering matrix of Poincaré-Einstein type mani-
folds is related to the conformal Laplacian and other “conformally invariant
powers of the Laplacian”. DN type maps for these operators are studied
in [Go07, BG01].

1.3. Inverse problem for the conformal Laplacian

Let (M, g) be a compact connected oriented Riemannian manifold with
smooth boundary, with n = dim(M). Consider the conformal Laplacian

Lg = −∆g +
n− 2

4(n− 1)
Sg

where ∆g = −δd is the Laplace-Beltrami operator (with negative spectrum)
and Sg is the scalar curvature. The conformal Laplacian has the conformal
scaling property

Lcgu = c−
n+2

4 Lg(c
n−2

4 u)

for any smooth positive function c.
Assume that 0 is not a Dirichlet eigenvalue for Lg (this is the case for

instance when Sg ≥ 0). Then for any f ∈ C∞(∂M) the Dirichlet problem

Lgu = 0 in M, u|∂M = f,

has a unique solution u ∈ C∞(M) and we may define the Dirichlet-to-
Neumann map (DN map) related to Lg by

Ng : C
∞(∂M) → C∞(∂M), Ngf = ∂νu|∂M .
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It follows that if c ∈ C∞(M) is a positive function satisfying c|∂M = 1 and
∂νc|∂M = 0, then

Ncg = Ng.

Consequently, one can only expect to determine g up to such a conformal
transformation from Ng.

It was conjectured in [LU02, Conjecture 6.3], see also [Uh04, Uh14], that
if (M, g) is a manifold of dimension n ≥ 3 that is locally conformal to a real
analytic manifold, and if 0 is not a Dirichlet eigenvalue of Lg, then Ng de-
termines a manifold conformal to (M, g). Generally speaking, a Riemannian
manifold is locally conformal to a real analytic manifold if near each point
there is a coordinate chart so that the corresponding coordinate represen-
tation of the metric is a real analytic matrix field up to a C∞ conformal
factor. We will make this precise in Definition 1.2 below.

We give a positive answer to this conjecture in the following sense.

Theorem 1.1. Let (M, g) be a compact locally conformally real analytic
Riemannian manifold with boundary, n = dim(M) ≥ 3. Assume that 0 is not
a Dirichlet eigenvalue of the conformal Laplacian. Then the DN map defines
the manifold (M, g) up to a conformal scaling c and a diffeomorphism F ,
which satisfy the following conditions:

c|∂M = 1, ∂νc|∂M = 0 and F |∂M = Id.(1.1)

The statement of the theorem precisely means that if (M1, g1) and
(M2, g2) are compact locally conformally real analytic Riemannian manifolds
with mutual boundary ∂M and n = dim(M) ≥ 3, then there is a diffeomor-
phism F :M1 →M2 with F ∗g2 = c g1. The conformal mapping F and the
conformal scaling c ∈ C∞(M1) satisfies the properties stated in the theorem
(with ∂ν replaced with ∂ν1).

We proceed to define locally conformally real analytic manifolds.

1.4. Locally conformally real analytic manifolds

A Riemannian manifold is said to be locally conformally real analytic if
around each of its points there are local coordinates where the coordinate
representation is real analytic up to a conformal scaling. If the point is
a boundary point, we assume (in this paper) boundary conditions for the
scaling. Precisely we define:
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Definition 1.2. (a) A Riemannian manifold (M, g) without boundary is
locally conformally real analytic if near every point p ∈M there are local
coordinates φ : U → R

n, φ(x) = (xi(x))ni=1, such that in these coordinates
g has the form

(1.2) gij(x) = s(x)hij(x),

with s ∈ C∞(Ω) and hij ∈ Cω(Ω) real analytic, Ω = φ(U) ⊂ R
n open and

connected.

(b) A Riemannian manifold (M, g) with boundary ∂M is locally conformally
real analytic if interior points satisfy the condition in (a), and if for ev-
ery boundary point p ∈ ∂M there is a boundary chart φ : U → R

n, with
coordinates (x′, xn), x′ ∈ R

n−1, xn ≥ 0, such that

gij(x) = s(x)hij(x)

where s ∈ C∞(Ω) and hij ∈ Cω(Ω), Ω = φ(U) ⊂ {xn ≥ 0}, and addition-
ally

s(x′, 0) ∈ Cω(Γ)

where Γ := Ω ∩ {xn = 0} ⊂ R
n−1.

The notation hij ∈ Cω(Ω) means that hij is real analytic up to the
boundary and thus has a converging Taylor expansion with positive ra-
dius of convergence also at points of Γ. Also, by a boundary chart near
a point p ∈ ∂M we mean a coordinate chart φ : U → H

n = {(x′, xn) ∈ R
n :

x′ ∈ R
n−1, xn ≥ 0} satisfying φ(U ∩ ∂M) ⊂ {xn = 0}. Boundary normal co-

ordinates provide an example of a boundary chart.
We remark that we do not assume in the definition of a locally con-

formally real analytic manifold that the manifold has a real analytic atlas.
However, we prove in Appendix A (Proposition A.1) that this is true at least
if the manifold has no boundary.

Examples of locally conformally real analytic manifolds (without bound-
ary) are those conformal to Einstein manifolds, but also Bach and obstruc-
tion flat manifolds. Bach flat manifolds are conformally invariant generaliza-
tions of Einstein manifolds in dimension 4, while obstruction flat manifolds
serve a similar purpose in even dimensions n > 4, see e.g. [FG84, FG12].
That Bach and obstruction flat manifolds are locally conformally real an-
alytic can be seen for example by using n-harmonic coordinates, so that
the determinant normalized metric satisfies an elliptic PDE in these coordi-
nates [LS15].
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1.5. Outline of proof

The proof of the main result may be divided in three parts.

1. We will begin by determining the Taylor series of the metric on the bound-
ary following [DKSU09]. To do this, one needs to find a suitable conformal
scaling and determine the Taylor series in boundary normal coordinates
for the scaled metric. One can think of this as a gauge fixing process for
the conformal and diffeomorphism invariances of the DN map.

The boundary normal coordinates, where we determine the jet of the
(conformal) metric on the boundary, might not be real analytic. This
causes a difficulty in the next step where we determine the metric near
the boundary from its Taylor expansion.

2. Next we determine the metric near the boundary. For this we introduce
a new real analytic coordinate system associated with the conformal
Laplacian. We call the new coordinate system Z-coordinates. In these
coordinates we can employ the assumption that the manifolds are lo-
cally conformally real analytic. This technique is in part motivated by
the work [GS09] on inverse problems on Einstein manifolds.

3. After determining the metric near the boundary, we follow the embed-
ding argument of [LTU03]. There the authors give a new proof for the
result of [LU02] stating that on real analytic manifolds (n ≥ 3) the DN
map associated to the Laplace-Beltrami operator determines the mani-
fold up to a boundary preserving diffeomorphism. We extend the methods
of [LTU03] to the conformally invariant setting of this paper.

Finally, we remark that just knowing a real analytic metric near the
boundary does not determine the Riemannian manifold itself, as can be
seen from the following example.

Example. (Real analytic manifolds that are isometric near the boundary)
Let N1 be the n-dimensional sphere S

n ⊂ R
n+1, n ≥ 3, and let p0 ∈ S

n be
the North Pole. Also, let N2 be the n-dimensional projective space RP

n,
constructed by taking the closed upper half-sphere S

n ∩ (Rn × [0,∞)) and
identifying the antipodal points on the boundary S

n−1 × {0} ⊂ R
n+1.

This well known construction defines a 2-to-1 map H : N1 = S
n → N2 =

RP
n. We use on N1 the metric g1 that is inherited from R

n+1 and on N2 the
metric g2 = H∗g1. Also, let B1 = BN1

(p0,
1
2) be the ball of N1 having center

at the North Pole p0 and radius 1/2. Let B2 = H(B1). Finally, define M1 =
N1 \B1 and M2 = N2 \B2. Then M1 and M2 are real-analytic manifolds
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with boundary such that the τ -neighborhoods of the boundaries with τ <
π/2− 1 are isometric. In particular, the C∞ jets of the metric tensors in their
boundary normal coordinates on these manifolds coincide. However,M1 and
M2 are not isometric, nor even homeomorphic (M1 is simply connected,
but M2 is not since its covering space S

n \ (B(p0, 1) ∪B(−p0, 1)) has two
boundary components whereas M2 has only one).

We will see below that the symbol of the DN map (considered as a
pseudo-differential operator) of the conformal Laplacian on (Mj , gj), j =
1, 2, determines the C∞ jet of a metric conformal to gj in boundary normal
coordinates of the conformal metric.

However, by Theorem 1.1 the DN map of the conformal Laplacian de-
termines the manifold (M, g) up to a conformal transformation satisfying
(1.1). Hence, the above elementary example of manifolds M1 and M2 shows
that symbol (modulo smoothing symbols in class S−∞) of the DN map is not
sufficient to determine uniquely the conformal type of the real-analytic man-
ifold. Rather, some additional global properties of the DN map are needed.
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2. Boundary determination

The first step is the following boundary determination result. It shows that
the DN map Ng of the conformal Laplacian determines the Taylor series of
some conformal metric, in boundary normal coordinates of the new metric.

Lemma 2.1. Let (M, g) be a compact oriented Riemannian manifold with
smooth boundary, with n = dim(M) ≥ 3.

(a) Let U ⊂M be open and assume that Γ = U ∩ ∂M is nonempty. If
c ∈ C∞(U) is a positive function satisfying

(2.1) c|Γ = 1, ∂νc|Γ = 0, Lj
Ñ
H̃|Γ = 0 (j ≥ 1),
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where g̃ = cg (defined in U), then the knowledge of Ngf |Γ for any
f ∈ C∞

c (Γ) determines

Lj
Ñ
g̃|Γ, j ≥ 0.

(b) There exists a positive function c ∈ C∞(M) satisfying (2.1) on ∂M .

Here LÑ is the Lie derivative of the 2-tensor g̃, Ñ is the extension of the g̃-
inner unit normal vector of ∂M which is parallel along g̃-normal geodesics,
and H̃ = ∆g̃(dg̃( · , ∂M)) is the mean curvature of the hypersurfaces with
fixed g̃-distance from ∂M .

Remark. If p ∈ Γ and if (x̃′, x̃n) are g̃-boundary normal coordinates in
some neighbourhood of p in M , so that g̃ = g̃αβ dx̃

α dx̃β + (dx̃n)2 where α
and β are summed from 1 to n− 1, then

Lj
Ñ
g̃|Γ = ∂jx̃n

g̃αβ(x̃
′, 0) dx̃α dx̃β (j ≥ 1),

so knowing Ng on Γ in fact determines ∂jx̃n
g̃αβ |Γ for all j ≥ 0.

Combining (a) and (b) above, we see that the knowledge of Ngf |Γ for
any f ∈ C∞

c (Γ) determines the Taylor series of some conformal metric g̃ in
g̃-boundary normal coordinates on Γ. Lemma 2.1 implies the following kind
of result.

Lemma 2.2. Let (M, g) be a compact oriented Riemannian manifold with
smooth boundary, with n = dim(M) ≥ 3. Let p ∈ ∂M , and assume that for
some neighborhood U of p in M there is a positive function c ∈ C∞(U)
satisfying (2.1) for Γ = U ∩ ∂M . Then the knowledge of Ngf |Γ for any f ∈
C∞
c (Γ) determines

∂jx̃n
g̃αβ |Γ (j ≥ 0)

in g̃-boundary normal coordinates at p.

Lemma 2.1 (a) is essentially proved in [DKSU09, Section 8]. The first step
there was a conformal normalization, replacing the metric g by a conformal
metric g̃ such that log det(g̃) has suitable Taylor series in g̃-boundary normal
coordinates at the boundary. However, there is a mistake in this part of
[DKSU09, Section 8]. The authors are grateful to Plamen Stefanov, who
pointed out the mistake and provided a corrected proof for the conformal
normalization statement (a related argument is given in [SY16]). Lemma 2.1
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(b) gives an invariant formulation of the conformal normalization condition
in terms of the mean curvature H̃. The proof is partly based on the argument
of Stefanov.

We will use the following notation. If (M, g) is a compact oriented man-
ifold with smooth boundary, let r(x) = dg(x, ∂M) so that r is a smooth
function near ∂M and Γt = {x ∈M ; r(x) = t} are smooth submanifolds for
t small with Γ0 = ∂M . The vector field

N = gradg(r)

is a unit normal vector field of Γt for t small. If ∇ is the Levi-Civita connec-
tion of (M, g), let S be the (1, 1)-tensor field near ∂M ,

S(X) = ∇XN,

so that S|Γt
is the shape operator of Γt and S(N) = 0. The 2-tensor h

obtained from S by lowering an index is given by

h = Hess(r), h(X,Y ) = ⟨∇XN,Y ⟩,

and this corresponds to the scalar second fundamental form of Γt. Finally
let H be the mean curvature of the surfaces Γt,

H = Trg(h) = ∆gr

where ∆g = −δgd is the (negative) Laplace-Beltrami operator. (We omit the
factor 1

n−1 usually included in the definition of H.)
Let (x′, xn) be any boundary normal coordinates, so that

g = gαβ dx
αdxβ + (dxn)2.

We use the Einstein summation convention so that a repeated Greek index
in upper and lower position is summed from 1 to n− 1, whereas Roman
indices are summed from 1 to n. Then one has

r = xn, N = ∂n,

the scalar second fundamental form is given by

h(∂α, ∂β) = ⟨∇∂α∂n, ∂β⟩ = Γlαnglβ =
1

2
glm(∂αgnm + ∂ngαm − ∂mgαn)glβ

=
1

2
∂ngαβ ,
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and the mean curvature is given by

H =
1

2
gαβ∂ngαβ .

If (M, g) is given, we consider the conformal metric g̃ = e2µg where µ ∈
C∞(M) is real valued. Denote by r̃, Ñ , S̃, h̃, H̃ the above quantities in (M, g̃).
We first compare the normal derivatives ∂n and ∂̃n with respect to g and g̃,
respectively.

Lemma 2.3. Let (M, g) be a compact manifold with smooth boundary, let
µ ∈ C∞(M) satisfy µ|∂M = ∂νµ|∂M = 0, and let g̃ = e2µg. If f is a smooth
function in M , then

∂̃nf |∂M = ∂nf |∂M ,

∂̃2nf |∂M = ∂2nf |∂M ,

∂̃3nf |∂M = ∂3nf − (∂2nµ)∂nf |∂M

and for any m ≥ 4

∂̃mn f |∂M = ∂mn f − (∂m−1
n µ)∂nf +

m−1∑

j=0

Tmj (∂jnf)|∂M

where each Tmj is a tangential differential operator on ∂M depending on µ

only through µ|∂M , ∂nµ|∂M , . . . ∂
m−2
n µ|∂M and their tangential derivatives.

Proof. Let (x′, xn) be g-boundary normal coordinates near a boundary point
p, and let η(s) be any smooth curve through p. Write ηj(s) = xj(η(s)). We
claim that for any m ≥ 3, one has

(2.2) ∂ms (f(η(s)) = ∂j1···jmf(η)η̇
j1 · · · η̇jm + ∂jf(η)∂

m−1
s η̇j

+

m−1∑

l=2

∂j1···jlf(η)

[ ∑

i1+···+il=m−l

ami1···il(∂
i1
s η̇

j1) · · · (∂ils η̇
jl)

]

where each ami1···il is an absolute constant. In fact, one has

∂s(f(η(s))) = ∂jf(η)η̇
j ,

∂2s (f(η(s))) = ∂jkf(η)η̇
j η̇k + ∂jf(η)η̈

j ,

∂3s (f(η(s))) = ∂jklf(η)η̇
j η̇kη̇l + 3∂jkf(η)η̈

j η̇k + ∂jf(η)
...
η j

which proves the case m = 3. The claim follows by induction.
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Now choose η(s) to be the normal g̃-unit speed g̃-geodesic through p.
Then η(0) = p, η̇(0) = ∂̃n|p, and representing η in terms of the g-boundary
normal coordinates (x′, xn) yields

η̈l(s) = −Γ̃ljk(η(s))η̇
j(s)η̇k(s)

by the g̃-geodesic equation. The g̃-Christoffel symbols Γ̃ljk are related to

g-Christoffel symbols Γljk by

Γ̃ljk = Γljk + (∂jµ)δ
l
k + (∂kµ)δ

l
j − glq(∂qµ)gjk.

This implies that

∂sη̇
l(s) = −Γljkη̇

j η̇k − 2(∂sµ)η̇
l + e−2µglq∂qµ|η(s)

where ∂sµ = ∂s(µ(η(s))). Observe that one has Γlnn = 0 for any l since
(x′, xn) are g-boundary normal coordinates. This gives

(2.3) ∂sη̇
l(s) = −Γlαβ η̇

αη̇β − 2Γlαnη̇
αη̇n − 2(∂sµ)η̇

l + e−2µglq∂qµ|η(s).

By induction, one sees that for m ≥ 1

(2.4) ∂ms η̇
l(s) = −2(∂ms µ)η̇

l + e−2µglq∂m−1
s (∂qµ(η(s))) + fml|η(s)

where each fml|η(s) depends on ∂j1···jrµ(η(s)) and ∂
r
s η̇
j(s) for r ≤ m− 1, and

on ∂j1···jrgjk for r ≤ m. Here we also used (2.2).
Restricting to ∂M , the condition µ|∂M = 0 implies that η̇(0) = Ñ(p) =

N(p) = ∂n|p and thus

η̇l|∂M = δln.

Now (2.3) and the condition ∂nµ|∂M = 0 give

η̈l|∂M = 0.

Taking ∂s of (2.3), evaluating on ∂M and using the previous conditions gives

...
η l|∂M = −2(∂2sµ)η̇

l + glq∂nqµ|∂M

= −(∂2nµ)δ
l
n.

Using (2.4) and (2.2), it follows by induction that

(2.5) ∂ms η̇
l|∂M = −2(∂mn µ)δ

l
n + glq∂q∂

m−1
n µ+ fml|∂M
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for some new functions fml depending on ∂j1···jrµ|∂M for r ≤ m− 1 and on
∂j1···jrgjk|∂M for r ≤ m. Since ∂̃nf(η(s)) = ∂s(f(η(s))), one has ∂̃

m
n f(η(s)) =

∂ms (f(η(s))). Thus inserting (2.5) in (2.2) gives that

∂̃mn f |∂M = ∂mn f − (∂nf)∂
m−1
n µ+ gαβ(∂αf)∂β∂

m−2
n µ+

m−1∑

j=0

Tmj (∂jnf)|∂M

where each Tmj is a tangential differential operator on ∂M with coefficients
depending on µ and its derivatives up to order m− 2, and on gpq and their
derivatives. □

Lemma 2.4. Let (M, g) be a compact manifold with smooth boundary, let
µ ∈ C∞(M) satisfy µ|∂M = ∂νµ|∂M = 0, and let g̃ = e2µg. If r̃ = dg̃( · , ∂M)
and if (x′, xn) are g-boundary normal coordinates, then

r̃|∂M = 0,

∂nr̃|∂M = 1,

∂2nr̃|∂M = 0,

∂3nr̃|∂M = ∂2nµ|∂M ,

∂mn r̃|∂M = ∂m−1
n µ|∂M + fm (m ≥ 4)

where fm depends on µ|∂M , ∂nµ|∂M , . . . , ∂m−2
n µ|∂M and their tangential

derivatives.

Proof. Clearly r̃|∂M = 0. Note that if (x̃′, x̃n) are g̃-boundary normal coor-
dinates, then r̃ = x̃n and one has ∂̃nr̃ = 1 and ∂̃mn r̃ = 0 for m ≥ 2. We use
Lemma 2.3 to obtain

∂nr̃|∂M = ∂̃nr̃|∂M = 1,

∂2nr̃|∂M = ∂̃2nr̃|∂M = 0,

∂3nr̃|∂M = ∂̃3nr̃ + (∂2nµ)∂nr̃|∂M = ∂2nµ|∂M .

Finally, if m ≥ 4 we obtain from Lemma 2.3 that

0 = ∂̃mn r̃|∂M

= ∂mn r̃ − (∂m−1
n µ)∂nr̃ +

m−1∑

j=0

Tmj (∂jnr̃)|∂M
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where Tmj are tangential differential operators depending on µ|∂M , ∂nµ|∂M ,

. . . , ∂m−2
n µ|∂M and their tangential derivatives. Inductively, we see that for

m ≥ 3

∂mn r̃|∂M = ∂m−1
n µ|∂M + fm

where fm depends on µ|∂M , ∂nµ|∂M , . . . , ∂m−2
n µ|∂M and their tangential

derivatives. □

Proof of Lemma 2.1 (b). We look for c in the form c = e2µ for some µ ∈
C∞(M) with

(2.6) µ|∂M = ∂νµ|∂M = 0.

If g̃ = cg and r̃ = dg̃( · , ∂M), we have

H̃ = ∆g̃ r̃.

If f is any smooth function, a computation shows that

∆g̃f = e−2µ(∆gf + (n− 2)⟨dµ, df⟩g).

Let now (x′, xn) be g-boundary normal coordinates, so that in these coor-
dinates g = gαβ dx

α dxβ + (dxn)2. Then ∆g = gjk(∂jk − Γj∂k) where Γj =
gjlΓ

l and Γl = gjkΓljk = −∆gx
l. In particular Γn = −H. It follows that

H̃ = e−2µ(∆g r̃ + (n− 2)⟨dµ, dr̃⟩g)

= e−2µ
[
∂2nr̃ + [(n− 2)∂nµ+H]∂nr̃

+ gαβ(∂αβ r̃ + [(n− 2)∂αµ− Γα]∂β r̃)
]
.(2.7)

Using Lemma 2.4 and (2.6), we have

H̃|∂M = H|∂M .

For the first normal derivative, we use Lemmas 2.3–2.4 and (2.7) and com-
pute

∂̃nH̃|∂M = ∂nH̃|∂M

= ∂3nr̃ + (n− 2)∂2nµ+ ∂nH|∂M

= (n− 1)∂2nµ+ ∂nH|∂M .
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Thus choosing µ so that

∂2nµ|∂M = −
1

n− 1
∂nH|∂M

will ensure that ∂̃nH̃|∂M = 0. If m ≥ 2, we first use Lemma 2.3 and the fact
that ∂nH̃|∂M = 0 to obtain that

∂̃mn H̃|∂M = ∂mn H̃ +

m−1∑

j=0

Tmj (∂jnH̃)|∂M

where Tmj are tangential differential operators depending on tangential
derivatives of ∂rnµ|∂M for r ≤ m− 2. We then differentiate (2.7), which gives

∂mn H̃|∂M = ∂m+2
n r̃ + (n− 2)∂m+1

n µ+ ∂mn H + fm|∂M

where fm depends on tangential derivatives of ∂rnµ|∂M for r ≤ m, tangen-
tial derivatives of ∂rnr̃|∂M for r ≤ m+ 1, and on gjk and their derivatives.
Combining these facts with Lemma 2.4 yields that

∂̃mn H̃|∂M = (n− 1)∂m+1
n µ+ ∂mn H + fm|∂M

where fm depends on tangential derivatives of ∂rnµ|∂M for r ≤ m and on
gjk and their derivatives. Thus we may choose ∂jnµ|∂M inductively for all
j ≥ 2 and apply Borel summation to get a smooth function µ near p so
that µ|∂M = ∂νµ|∂M = 0 and ∂̃mn H̃|∂M = 0 near p for all m ≥ 1. Covering
∂M with finitely many coordinate charts, doing this construction in each
coordinate chart and applying a suitable partition of unity gives a function
µ ∈ C∞(M) so that c = e2µ has the required properties. □

Proof of Lemma 2.1 (a). We use the results of [DKSU09, Section 8]. The
main point is that in the notation of [DKSU09] we have

Ng = Λg,0,qg

where qg =
n−2

4(n−1)Sg.
Let c be as stated, let p ∈ Γ and let U0 ⊂⊂ U be a neighborhood of p.

We extend c outside U0 to obtain some positive function c1 ∈ C∞(M) with
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c1|∂M = 1 and c1|∂M = 0. Then the conformal metric

g̃ = c1g

satisfies

Ng = Ng̃ = Λg̃,0,qg̃ .

By the assumptions, if (x̃′, x̃n) are g̃-boundary normal coordinates near p,
then g̃ also satisfies the normalization condition

∂jx̃n
(g̃αβ∂x̃n

g̃αβ)(x′, 0), j ≥ 1,

near p.
Next, by computing the symbol of the pseudodifferential operator Λg̃,0,qg̃

near p, [DKSU09, Lemma 8.7] shows that knowledge of Ng near p determines
on {x̃n = 0} the quantities

g̃αβ , ∂x̃n
g̃αβ , ∂̃K

(
1

4
∂x̃n

k̃αβ + qg̃ g̃
αβ

)

for any multi-index K, where k̃αβ = ∂x̃n
g̃αβ − (g̃γδ∂x̃n

g̃γδ)g̃αβ . Finally an
induction argument in the proof of [DKSU09, Theorem 8.4] shows that these
quantities determine

∂jx̃n
g̃αβ(x′, 0), j ≥ 2.

This concludes the proof. □

3. Determination near the boundary

Next we combine the boundary determination result, Lemma 2.1, with local
conformal real-analyticity in order to determine the conformal class of the
metric near the boundary from the knowledge of the DN map on the full
boundary. The main result in this section is as follows.

Proposition 3.1. Let (M1, g1) and (M2, g2) be compact locally confor-
mally real analytic manifolds with boundary ∂M = ∂M1 = ∂M2. Assume
that Ng1 = Ng2 on ∂M . Then there is a function c ∈ C∞(M1) satisfying
c|∂M = 1, ∂νc|∂M = 0, and a diffeomorphism F from a neighborhood U of
∂M in M1 onto a neighborhood of ∂M in M2, such that

g1 = cF ∗g2 on U , F |∂M = Id.
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The proof is in several steps. First, we have determined the formal Taylor
expansion, or the jet, of cg in Lemma 2.2 in cg-boundary normal coordinates,
where c was some smooth scaling of g found in Lemma 2.1 satisfying

c|∂M = 1 and ∂νc|∂M = 0.

So far we have not used the assumption that the manifolds we are considering
are locally conformally real analytic.

We wish to determine the metric near the boundary by using the as-
sumption of local real analyticity to show that the Taylor expansion of a
conformal metric converges. Here we encounter a problem: even if the orig-
inal metric g is conformally real analytic in some coordinates, it does not
follow that it is conformally real analytic in cg-boundary normal coordi-
nates. It follows that we cannot determine the metric near the boundary
using its formal Taylor series in cg-boundary normal coordinates, at least in
general.

To resolve this problem we use the following procedure. We first deter-
mine the Taylor expansion of cg in cg-boundary normal coordinates. Then we
construct a new set of coordinates by solving suitable Dirichlet problems for
the conformal Laplacian of cg. The solutions of the Dirichlet problems will
constitute a coordinate system which we, after a scaling, call Z-coordinates.

We will see that the Z-coordinates induce a real analytic change of co-
ordinates from the coordinate system where the metric is conformally real
analytic to the new Z-coordinates. Since a real analytic transformation pre-
serves conformal real analyticity,

gij = shij , hij ∈ Cω,

we conclude that after changing to Z-coordinates, the metric is still confor-
mally real analytic. In particular, we conclude that if the metric is confor-
mally real analytic in some boundary chart it is that in Z-coordinates. (This
is analogous to the fact that changing to harmonic coordinates preserve Cω

regularity.)
We will see that if the jets of the metrics g̃i = cigi agree in g̃i-boundary

normal coordinates ψi,

Jx(ψ
−1∗
1 g̃1) = Jx(ψ

−1∗
2 g̃2),

and if the DN maps agree, then we will also have

(3.1) Jx((Z1 ◦ ψ1)
−1∗g̃1) = Jx((Z2 ◦ ψ

−1∗
2 )g̃2).
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After these steps we have determined the Taylor expansion of a conformal
metric in a coordinate system where it is conformally real analytic.

Finally we will normalize the determinant of the conformal metric and
argue that the resulting normalized metric is determined by its Taylor ex-
pansion. The whole process is illustrated in the Figure 3 below.

Figure 1: The abbreviation ”lcra” refers to a coordinate system where the
metric is locally conformally real analytic and ”bnc” refers to boundary
normal coordinates.

We remark that the procedure we described is analogous, though more
involved, to the one used in the work [GS09] in studying inverse problems on
Einstein manifolds. There the authors use first boundary normal coordinates
to determine the Taylor expansion of the metric and then use harmonic coor-
dinates and the fact that in harmonic coordinates the metric of an Einstein
manifold is real analytic.

We will now move to the details.
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3.1. Determining the jets.

Let us make precise the conclusion of Lemma 2.1. The lemma states that the
formal Taylor expansion of g̃ = cg is determined on the boundary portion Γ
in g̃-boundary normal coordinates. This means the following. Assume that
there are two Riemannian metrics g1 and g2 on manifolds M1 and M2 with
common boundary portion Γ ⊂ ∂M1,Γ ⊂ ∂M2. Assume that the DN maps
for (M1, g1) and (M2, g2) agree on Γ ⊂ ∂M . Let p ∈ Γ.

Let then c1 and c2 be the smooth functions found in part (b) of
Lemma 2.1 and denote g̃i = cigi, i = 1, 2. Let x′ = (x1, x2, . . . , xn−1) be some
coordinates on Γ, and let ψ1 and ψ2 be the g̃1- and g̃2-boundary normal co-
ordinates constructed by using the same x′-coordinates. The latter implies
that

ψ1|Γ = ψ2|Γ = (x′, 0).

Let us denote by JpS the jet of a tensor field S at p. A jet of tensor field
is defined in given coordinates (x1, . . . , xn) as the coefficients of the Taylor
expansion of the coordinate representation of the tensor field.

With these in mind, the conclusion of Lemma 2.2 states that

(3.2) Jx(ψ
−1∗
1 g̃1) = Jx(ψ

−1∗
2 g̃2).

Here we have denoted x = ψ1(p) = ψ2(p).

3.2. Z-coordinates

We next construct the new coordinate system that we call Z-coordinates.
This is an n-tuple of functions constructed from (global) solutions of Dirich-
let problems for the conformal Laplacian.

We will denote by W l, l = 1, . . . , n, the corresponding n functions that
define a coordinate system on an open subset ofM . Later, we will denote by
Z l the coordinate representations of W l. This is consistent with Figure 3.

Proposition 3.2. Let (M, g) be a Riemannian manifold with smooth bound-
ary, with n = dim(M) ≥ 3. Let p ∈ ∂M and let y′ = (y1, . . . , yn−1) be coor-
dinate chart on ∂M near p. Then there exists a boundary coordinate system
W = (W 1, . . . ,Wn) on some open neighborhood U ⊂ V of p satisfying the
following conditions:

W l =
wl

wn+1
, l = 1, . . . , n,
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where each wl ∈ C∞(M) for l = 1, . . . , n+ 1 solves

Lgw
l = 0 in M,

and the restrictions of wl to Γ = U ∩ ∂M are given by

wl|Γ = yl, 1 ≤ l ≤ n− 1,

wn|Γ = 0,

wn+1|Γ = 1.

Proof. Let p ∈ ∂M and let y′ = (y1, . . . , yn−1) be a coordinate chart on ∂M
near p. We first construct the functions wl ∈ C∞(M) for l = 1, . . . , n− 1 as
the solutions of the global Dirichlet problems

Lgw
l = 0 in M,

wl = ỹl on ∂M,

where ỹl ∈ C∞(∂M) are some smooth continuations of the functions yl,
defined near p on ∂M , to functions on the whole of ∂M .

We set wn to be the solution of

Lgw
n = 0 in M,

wn = θ on ∂M,

where the Dirichlet data θ ∈ C∞(∂M) is chosen so that

θ = 0 on V ∩ ∂M,

∂νw
n ̸= 0 on V ∩ ∂M.

Existence of such a θ is not trivial, but is guaranteed by a Runge type density
argument given in Proposition B.1.

We define the function wn+1 to be the solution of

Lgw
n+1 = 0 in M,

wn+1 = 1 on ∂M.

We extend y′ to a boundary chart y = (y′, yn) near p, and denote the
coordinate representations of wl and W l by f l = wl ◦ y−1 and Z l =W l ◦
y−1. (This is consistent with Figure 3.) Let us notice that the Jacobian
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matrix of Z = (Z1, . . . , Zn) is given by

DZ|y(p) =

[
In−1 ∂nZ

T

0 ∂nZ
n

]
.

Here ∂nZ
T denotes the vector (∂1Z

1, . . . ∂nZ
n−1). Note that the Jacobian

determinant of Z is non-zero at y(p) if

∂nZ
n|y(p) ̸= 0.

But now at y(p) we have

∂nZ
n =

1

fn+1
∂nf

n −
fn

(fn+1)2
∂nf

n+1 = ∂nf
n ̸= 0,

since fn+1(p) = 1 and fn(p) = 0. Thus there exists a neighborhood U of p
in M such that W is boundary chart on U . This concludes the proof. □

The construction of the coordinate system W in the proposition takes
coordinates y′ on the boundary as input, and thus those can be chosen at will.
In the next proposition, we will take the coordinates y′ to be g∂M -harmonic
coordinates on the boundary. Here g∂M denotes the induced metric on the
boundary. For the existence of harmonic coordinates, see e.g. [DK81, LS14].

We will consider the functionsW l introduced in the previous proposition
in boundary normal coordinates ψ. The boundary normal coordinates ψ will
chosen to be the ones constructed using the same g∂M -harmonic coordinate
system on the boundary that we will use in constructing the W coordinates.
Thus we will have ψl = wl, l = 1, . . . , n− 1, on the boundary.

The coordinate representationW l ◦ ψ−1 ofW l will be denoted by Z l. We
call the n-tuple Z = (Z1, . . . , Zn) Z-coordinates. These are functions on an
open subset of the upper half plane Hn ⊂ R

n. We also denote f l = wl ◦ ψ−1.
The next proposition shows that if the Riemannian metric is locally

conformally real analytic it is still that in Z-coordinates, at least if the
coordinates on the boundary y′ in Proposition 3.2 are chosen to be g∂M -
harmonic coordinates. We formulate the proposition in the setting of the
Figure 3.

Proposition 3.3. Let (M, g) be a locally conformally real analytic Rieman-
nian manifold with boundary. Thus for given p ∈ ∂M there is a boundary
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coordinate chart (U, φ) on a neighborhood of p where

φ−1∗g = sh, with s ∈ C∞(Ωϕ), h ∈ Cω(Ωϕ),

s|Ωφ∩{xn=0} ∈ Cω(Ωϕ ∩ {xn = 0}).

Here Ωϕ = φ(U) ⊂ H
n.

Let c ∈ C∞(M) be a positive function on M satisfying c|∂M = 1 and
∂νc|∂M = 0. Let ψ be boundary normal coordinates for (M, cg) defined on a
neighborhood V ⊂ U of p constructed with respect to g∂M -harmonic coordi-
nates on the boundary. Define

Z l =W l ◦ ψ−1

where W l are constructed in Proposition 3.2 for (M, cg) with the choice
y′ = ψ′|Γ. Here ψ = (ψ′, ψn). Thus the coordinates y′ on the boundary are
also g∂M -harmonic.

Then the transition function

T = Z ◦ ψ ◦ φ−1 : Ωϕ → ΩZ

from φ-coordinates to Z-coordinates is a real analytic diffeomorphism up to
the boundary, at least after replacing V ⊂M by a smaller open set near
p. We denote this set still by V . Above ΩZ = Z(ψ(V )). In particular, the
metric cg in Z-coordinates is conformally real analytic up to the boundary,

Z−1∗ψ−1∗(cg) = s̃h̃, s̃ ∈ C∞(ΩZ), h̃ ∈ Cω(ΩZ).

Here s̃ = c|ψ−1◦Z−1s|T−1 and h̃ = T−1∗h and ΩZ is an open subset of H
n

intersecting {xn = 0}.

Proof. We show that there is a function γ such that γwl ◦ φ−1 ∈ Cω(Ωϕ),
with γ independent of l. Here wl are the functions used to construct the
Z-coordinates in Proposition 3.2. (In particular, the functions wl depend on
the ψ-coordinates at the boundary.)

The functions f l = wl ◦ ψ−1 satisfy

Lψ−1∗(cg)f
l = 0 on Ωψ
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with some real analytic Dirichlet boundary conditions on an open subset of
{xn = 0}. We remove the index l from our notation to simplify our presen-
tation. Applying (ψ ◦ φ−1)∗ to the above yields

0 = (ψ ◦ φ−1)∗Lψ−1∗(cg)f = L(ϕ−1∗ψ∗ψ−1∗(cg))(w ◦ φ−1)

= Lc|φ−1ϕ−1∗g(w ◦ φ−1) = Lc|φ−1sh(w ◦ φ−1)

=
(
c|ϕ−1s

)−n+2

4 Lh

[(
c|ϕ−1s

)n−2

4 (w ◦ φ−1)
]
.

Thus

Lh

[(
c|ϕ−1s

)n−2

4 (w ◦ φ−1)
]
= 0.

Note that h is real analytic up to boundary by assumption and that(
c|ϕ−1s

)n−2

4 (w ◦ φ−1) has real analytic Dirichlet boundary values on Ωϕ ∩
{xn = 0} ⊂ H

n: First of all, we have

wn ◦ φ−1(x) and wn+1 ◦ φ−1(x) are equal to 0 or 1

on Ωϕ ∩ {xn = 0} respectively. Then, for l = 1, . . . n− 1 we write

wl ◦ φ−1 = (wl ◦ ψ−1) ◦ (ψ ◦ φ−1)︸ ︷︷ ︸
∈Cω(Rn−1)

∈ Cω(Ωϕ ∩ {xn = 0}).

Some explanations are in order. The functions ψl are g∂M -harmonic on
the boundary. By the coordinate invariance of ∆g∂M

, the functions ψl ◦
φ−1 restricted to Ωϕ ∩ {xn = 0} are solutions to an elliptic equation with
Cω(Rn−1)-coefficients. Thus ψ ◦ φ−1 is real analytic on Ωϕ ∩ {xn = 0}. We
have included the details of this argument in Proposition A.2 in the ap-
pendix. We also have wl ◦ ψ−1(x) = xl, for x ∈ Ωϕ ∩ {xn = 0} by assump-
tion.

Also, c|ϕ−1 = 1 on the boundary and s is real analytic on Ωϕ ∩ {xn =

0} by assumption. By these facts, the functions
(
c|ϕ−1s

)n−2

4 (wl ◦ φ−1), l =
1, . . . , n+ 1, indeed have real analytic Dirichlet boundary values on Ωϕ ∩
{xn = 0}.

It follows from [MN57, Theorem A] that

(
c|ϕ−1s

)n−2

4 (w ◦ φ−1)

is real analytic up to the boundary near φ(p). If necessary, we redefine V as
a smaller open subset near p so that this function is real analytic up to the
boundary on φ(V ) for l = 1, . . . , n+ 1. Thus we may take γ = (c|ϕ−1s)

n−2

4 .
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Now, we have that

T l =
wl

wn+1
◦ φ−1 =

wl ◦ φ−1

wn+1 ◦ φ−1
=

(c|ϕ−1s)
n−2

4 wl ◦ φ−1

(c|ϕ−1s)
n−2

4 wn+1 ◦ φ−1

is real analytic up to the boundary {xn = 0}. Thus T = (T 1, . . . , T l) ∈
Cω(Ωϕ,ΩZ), where Ωϕ = φ(V ) and ΩZ = Z(φ(V )) are some open sets on
H
n intersecting the set {xn = 0}.
That cg is conformally real analytic (up to boundary) in Z-coordinates

follows by noticing that

Z−1∗ψ−1∗(cg) = c|ψ−1◦Z−1Z−1∗ψ−1∗φ∗φ−1∗(g)

= c|ψ−1◦Z−1T−1∗(dh) = c|ψ−1◦Z−1s|T−1T−1∗h.

Since h ∈ Cω and T is a Cω-diffeomorphism up to boundary, we have the
claim. □

3.3. Jets of Z-coordinates

Next we show that if two sets of Z-coordinates are constructed for two
Riemannian metrics H1 and H2 such that a) the metrics satisfy H1 = H2 +
O(x∞n ) on {xn = 0} in given boundary normal coordinates, and b) these
two sets of Z-coordinates have the same Cauchy data on {xn = 0}, then
the Z-coordinates agree up to infinite order in the variable xn on the set
{xn = 0}.

We begin with an auxiliary lemma.

Lemma 3.4. Let H1 and H2 be smooth positive definite symmetric matrix
fields on an open subset Ω of the upper half plane H

n = {(x′, xn) ∈ R
n : x′ ∈

R
n−1, xn ≥ 0} that intersects the boundary {xn = 0}. Set Γ = Ω ∩ {xn = 0}.

Assume that these matrix fields have the form

Hi(x
′, xn) = dx2n + hi(x

′, xn), i = 1, 2.

Assume that H1 and H2 satisfy

H1 = H2 +O(x∞n ) on Γ.

Let f1 and f2 be two functions on Ω such that

LHi
fi = 0 in {xn > 0} ∩ Ω, i = 1, 2
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with the same C∞ smooth Cauchy data on the boundary

f1 = f2 and ∂xn
f1 = ∂xn

f2 on Γ.

Then

f1 = f2 +O(x∞n ).

Proof. Since H1 = H2 +O(x∞n ) on Γ, the coefficients of LH1
and LH2

agree
up to O(x∞n ) on Γ. We have

(3.3) LH1
f1 = LH1

f2 +O(x∞n ),

which follows by differentiating the equation

(3.4) LH1
f1 = 0 = LH2

f2.

To see this, note first that since the Dirichlet data of fi, i = 1, 2, is by
assumption C∞ smooth and H1 and H2 are C∞ smooth up to boundary, we
have that the equation above holds up to boundary (see e.g. [Ev10, Theorem
5, Sec 6.3.2]). Let x0 ∈ Γ and let us calculate at x0:

∂xn
(LH1

f2) = (∂xn
LH1

)f2 + LH1
(∂xn

f2) = (∂xn
LH2

)f2 + LH2
(∂xn

f2)

= ∂xn
(LH2

f2) = ∂xn
(LH1

f1).

Here in the second equality we have used H1 = H2 +O(x∞n ) at x0 and in
the last equality we have used that (3.4) holds at x0. The higher derivatives
follow similarly and by using induction.

Now, the conformal Laplacian for the metrics of the given form reads

LHi
= −∂2xn

+ Pi,

where Pi is a partial differential operator containing only first order deriva-
tives in xn and x′ derivatives up to second order, and whose coefficients
depend only on Hi. Thus we can express second order xn derivatives as

∂2xn
= P1 − LH1

.

By assumption we have

f1 = f2 and ∂xn
f1 = ∂xn

f2 on Γ,
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and consequently we have on Γ that

∂2xn
|xn=0f2 = P1|xn=0(f2)− LH1

|xn=0(f2)

= P1|xn=0(f1)− LH1
|xn=0(f1) = ∂2xn

|xn=0f1.

The claim follows by induction and using (3.3). □

The result is now a consequence of this lemma.

Proposition 3.5. Assume that the conditions of Lemma 3.4 are satisfied
and let f li , i = 1, 2 and l = 1, . . . , n+ 1, be functions satisfying the assump-
tions for fi in that lemma. Then the functions Z li ,

Z li =
f li
fn+1
i

, i = 1, 2, l = 1, . . . , n,

satisfy

Z1 = Z2 +O(x∞n )

on Γ. Here Zi = (Z1
i , . . . , Z

n
i ), i = 1, 2.

In particular if Zi are coordinate systems, and if we have

Jx(H1) = Jx(H2) for x ∈ Γ,

then

Jx(Z
−1∗
1 H1) = Jx(Z

−1∗
2 H2).

(Here x = Z1(x) = Z2(x).)

Proof. The first claim follows directly from Lemma 3.4. The latter claim can
be proven by using the chain rule to calculate the Taylor coefficients and
using the knowledge that Z1 and Z2 have the same Taylor coefficients at the
boundary. □

3.4. Determination near the boundary by Taylor series

We are ready to combine our results and newly developed tools to prove
determination near the boundary. We remind the reader that the procedure
is illustrated in Figure 3.

We record one more lemma whose main function is to collect all the
required assumptions. Recall that Z-coordinates depend on given local co-
ordinates y′ on the boundary as described in Proposition 3.2. We choose
these coordinates y′ to be g∂M -harmonic.
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Lemma 3.6. Let (Mi, gi), i = 1, 2, be two Riemannian manifolds with a
common boundary portion Γ ⊂ ∂M1 ∩ ∂M2. Let ci be functions on Mi sat-
isfying

ci|Γ = 1 and ∂νici|Γ = 0.

Let p ∈ Γ and assume that ψi are cigi-boundary normal coordinate sys-
tems on neighborhoods Ui ⊂Mi of p that agree on Γ:

ψ′
1|Γ = ψ′

2|Γ.

Here ψi = (ψ′
i, ψ

n
i ). Assume that ψ′

1|Γ and ψ′
2|Γ are ∆(gi)∂M

-harmonic re-
spectively on Γ.

Let Zi =Wi ◦ ψ
−1
i denote the Zi-coordinate systems constructed in

Proposition 3.2 with respect to metrics cigi and boundary coordinates y′ =
ψ′
1|Γ = ψ′

2|Γ.
Assume that a) The jets of the two conformal Riemannian metrics cigi,

i = 1, 2, in Zi ◦ ψi-coordinates, satisfy

Jx(Z
−1∗
1 ψ−1∗

1 (c1g1)) = Jx(Z
−1∗
2 ψ−1∗

2 (c2g2)),

for x near x0 = Zi ◦ ψi(p) in {xn = 0}.
b) There are coordinate systems φi on Ui where the metric is conformally

real analytic,

φ−1∗
i gi = sihi, si ∈ C∞(Ωϕi

), hi ∈ Cω(Ωϕi
),

s|Ωφ∩{xn=0} ∈ Cω(Ωϕ ∩ {xn = 0}).

Here Ωϕ = φi(Ui) is an open neighborhood of Hn intersecting {xn = 0}.
If all these assumptions hold, then (after possibly shrinking U1 and U2)

we can determine the metrics g1 and g2 up to a diffeomorphism F : U1 → U2

and a conformal scaling c ∈ C∞(U1) satisfying

F |Γ = Id, c|Γ = 1 and ∂νc|Γ = 0

in the sense that

g1 = c F ∗g2 on U1.

(Here we have denoted ν1 = ν2 = ν.)



✐

✐

“6-Liimatainen” — 2023/3/16 — 23:20 — page 1148 — #28
✐

✐

✐

✐

✐

✐

1148 M. Lassas, T. Liimatainen, and M. Salo

Proof. Let us denote

Gi = Z−1∗
i ψ−1∗

i (cigi).

We define determinant normalized metrics by

Ĝi =
Gi

det(Gi)1/n
.

We first note that we have

(3.5) Ĝi =
h̃i

det(h̃i)1/n
∈ Cω(ΩZ),

where

h̃i = T−1∗
i hi ∈ Cω(ΩZ).

Here ΩZ is an open neighborhood of Hn intersecting {xn = 0}. To see this,
note that for i = 1, 2, ci, si, φi, ψi, gi, hi, Zi satisfy the assumptions of
Proposition 3.3. It follows that

Ti = Zi ◦ ψi ◦ φ
−1
i

is a real analytic change of coordinates, Ti ∈ Cω(Ωϕi
). Thus we have (3.5)

since the si conformal factors cancel out.
Since by assumption we have that

Jx0
G1 = Jx0

G2,

it follows that we also have

(3.6) Jx0

(
G1

det(G1)1/n

)
= Jx0

(
G2

det(G2)1/n

)
.

Consequently, we have

Jx0

(
h̃1

det(h̃1)1/n

)
= Jx0

Ĝ1 = Jx0

(
G1

det(G1)1/n

)
= Jx0

(
G2

det(G2)1/n

)

= Jx0
Ĝ2 = Jx0

(
h̃2

det(h̃2)1/n

)
.

Here in the third equation, we used (3.6).
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Now we have that two matrix fields

h̃1

det(h̃1)1/n
and

h̃2

det(h̃2)1/n

defined on ΩZ ⊂ H
n that are real analytic up to boundary have the same

Taylor expansion at x0 ∈ {xn = 0}. Thus

h̃1

det(h̃1)1/n
=

h̃2

det(h̃2)1/n
on Ω′,

where Ω′ is an open neighborhood of x0 in R
n that intersects the set {xn =

0}.
Unwinding all the scalings and coordinate transformations shows first

that

G1 =
det(G1)

1/n

det(G2)1/n
G2

and then

c1g1 = ψ∗
1Z

∗
1G1 = ψ∗

1Z
∗
1

(
det(G1)

1/n

det(G2)1/n
G2

)

= ψ∗
1Z

∗
1

(
det(G1)

1/n

det(G2)1/n

)
ψ∗
1Z

∗
1Z

−1∗
2 ψ−1∗

2 (c2g2).

Thus defining

F = ψ−1
2 ◦ Z−1

2 ◦ Z1 ◦ ψ1

and

c =
c2|F
c1

ψ∗
1Z

∗
1

(
det(G1)

1/n

det(G2)1/n

)

ensures the main claim, i.e. that g1 = cF ∗g2, since

F |Γ = Id and c|Γ = 1,

where the latter holds since G1|xn=0 = G2|xn=0. That

(3.7) ∂νc|Γ = 0

holds follows by noticing that the gradient of all the factors in the formula
for c above vanishes on Γ. More precisely, calculating in ψ1-coordinates, we
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have that

∂ν

[
ψ∗
1Z

∗
1

(
det(G1)

1/n

det(G2)1/n

)]
on Γ

reads

∂n

(
det(G1)

1/n

det(G2)1/n

)
◦ Z1 on {xn = 0} ∩ Ωϕ1

.

This is zero since that all the first order derivatives of

det(G1)

det(G2)

vanish on {xn = 0} ∩ Ωϕ1
, because the jets of G1 and G2 agree there. Simi-

larly, in ψ1-coordinates we have that ∂ν |Γc2 ◦ F on Γ reads

∂n
[
c2 ◦ (ψ

−1
2 ◦ Z−1

2 ◦ Z1)
]
on {xn = 0} ∩ Ωϕ1

.

This is zero since all the first order derivatives of c2 ◦ ψ
−1
2 vanish by the

assumption on c2 and by the fact that ψ2 is a boundary normal coordinate
system. These observations (and the assumptions on c1) yield (3.7), which
concludes the proof. □

The determination result for the metric near the boundary is the follow-
ing.

Proposition 3.7. Let (M1, g1) and (M2, g2) be locally conformally real an-
alytic manifolds of dimension n = dim(Mi) ≥ 3. Let Γ be a nonempty open
common boundary portion of both Mi, and assume that the DN maps coin-
cide on Γ: for any f ∈ C∞

c (Γ) we have

Ng1f |Γ = Ng2f |Γ.

Then for any p ∈ Γ there is a diffeomorphism F : U1 → U2 and a positive
function c ∈ C∞(U1), for some neighborhoods Ui of p in Mi, such that

g1 = c F ∗g2 in U1

and

c|U1∩Γ = 1, ∂νc|U1∩Γ = 0, F |U1∩Γ = Id.

The diffeomorphism F is of the form

F = ψ−1
2 ◦ Z−1

2 ◦ Z1 ◦ ψ1,
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where ψi and Zi are respectively boundary normal coordinates and Z-
coordinates with respect to scaled metrics cigi introduced in Lemma 2.1 and
Proposition 3.2.

Proof. We only need to verify the assumptions of the previous lemma. Let
p ∈ Γ and let φi denote the coordinate systems where the metrics gi are
conformally real analytic.

By Lemma 2.1, in cigi-boundary normal coordinates ψi we have

Jx(ψ
−1∗
1 (c1g1)) = Jx(ψ

−1∗
2 (c2g2))

for x ∈ {xn = 0} ∩ ψi(Γ) after possibly decreasing Γ. Note that ψ1|Γ = ψ2|Γ.
It follows that the induced metrics on the boundary (gi)Γ are the same,

and we can choose coordinates near p on Γ′ ⊂ Γ on the boundary which are
∆(gi)Γ-harmonic for i = 1, 2. Thus, we can apply Lemma 2.1 again to have
the above equality for jets in cigi-boundary normal coordinates, where

ψ′
1|Γ′ = ψ′

2|Γ′

and where ψ′
1|Γ′ and ψ′

2|Γ′ are ∆(gi)∂M
-harmonic respectively on Γ′. (Recall

that boundary normal coordinates are constructed by first choosing coordi-
nates on the boundary and emitting geodesics in normal directions into the
manifolds. Inverting this map gives boundary normal coordinates.)

The Zi-coordinates are constructed by solving Dirichlet problems with
smooth continuations of the functions ψ′

i|Γ′ as the Dirichlet data. This is
described in Proposition 3.2. Denote the continuations by ψi ∈ C∞(∂Mi).
Since ψ1|Γ′ = ψ2|Γ′ , we can redefine Γ′ so that we still have ψ̄1|Γ′ = ψ̄2|Γ′

and that the continuations satisfy supp(ψi) ⊂ Γ′. For convenience, we denote
Γ′ = Γ in the following.

The crucial point is now to notice that since the Dirichlet-to-Neumann
maps agree

Nc1g1f |Γ = Nc2g2f |Γ,

for f ∈ C∞
c (Γ), we have that on Γ

νc1g1w
l
1 = Nc1g1ψ

l
1 = Nc2g2ψ

l
2 = νc2g2w

l
2.

In ψi coordinates the above reads that the coordinates Zi are constructed
by using functions, call them f li , that have the same local Cauchy data and
thus satisfy the assumptions of Proposition 3.5.
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Thus

Z1 = Z2 +O(x∞n )

on the intersection of {xn = 0} and the common domain of the Zi coordi-
nates. It follows that after transforming into Zi coordinates it still holds
that

Jx0
(Z−1∗

1 ψ−1∗
1 (c1g1)) = Jx0

(Z−1∗
2 ψ−1∗

2 (c2g2))

(Here x0 = Zi ◦ ψi(p0).)
By assumption, the manifolds M1 and M2 are locally conformally real

analytic. Thus the assumption b) in Lemma 3.6 holds. All the assumptions
of previous proposition are now satisfied and we have the claim. □

We prove next that the mapping F generated in the previous theorem
using specifically chosen coordinates and scalings is actually independent of
these.

Proposition 3.8. Let F : U → F (U) and F̃ : Ũ → F (Ũ) be the local (con-
formal) diffeomorphisms generated in Proposition 3.7 with respect to

ψi and ψ̃i, Zi and Z̃i

on connected open sets U and Ũ respectively, i = 1, 2. Assume ∂M ∩ U ∩
Ũ ̸= ∅.

Assume that the Dirichlet-to-Neumann maps agree on the union of the
supports of the functions wli and w̃

l
i used to construct Zi- and Z̃i-coordinates

(as in Proposition 3.2) on U and Ũ . Assume also that wl1 and wl2, l =
1, . . . , n+ 1, are constructed using the same Dirichlet data on ∂M . Assume
similarly for w̃l1 and w̃l2.

We have

F =W−1
2 ◦W1 and F̃ = W̃−1

2 ◦ W̃1

and

F = F̃

on U ∩ Ũ . HereWi = (W 1
i , . . . ,W

n
i ), i = 1, 2, (similarly W̃i) are as in Propo-

sition 3.2.
Also, since

g1 = cF ∗g2 and g1 = c̃F̃ ∗g2, on U ∩ Ũ ,

we have c = c̃ on U ∩ Ũ .
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Proof. We show that both the functions

w̃l1 and c−
n−2

4 F ∗w̃l2

satisfy the same equation

Lg1w̃
l
1 = 0 = Lg1c

−n−2

4 F ∗w̃l2

on Int(U1 ∩ Ũ1) with the same Cauchy data on Γ ∩ Γ̃. Note that there is
F and c indeed in these formulas and not F̃ and c̃. The first equality is a
part of the definition of w̃l1, l = 1, . . . , n+ 1. For the second one, we simply
calculate

Lg1c
−n−2

4 F ∗w̃l2 = LcF ∗g2c
−n−2

4 F ∗w̃l2

= c−
n+2

4 LF ∗g2F
∗w̃l2 = c−

n+2

4 F ∗Lg2w̃
l
2 = 0.

The functions w̃l1 and w̃l2 have the same Dirichlet data by assumption
on Γ ∩ Γ̃. Since the Dirichlet-to-Neumann maps agree on their support, they
also have the same Cauchy data on Γ ∩ Γ̃. We know that F is identity on Γ
and c = 1 on Γ. Thus w̃l1 and c−

n−2

4 F ∗w̃l2 have the same Dirichlet data on
Γ ∩ Γ̃.

We also know that

F = ψ−1
2 ◦ Z−1

2 ◦ Z1 ◦ ψ1.

Viewing the differential of F using ψ2 and ψ1 coordinates and recalling that
the jets of Z2 and Z1 agree on {xn = 0} shows that

F∗∂ν1 = ∂ν2 on Γ.

We conclude that w̃l1 and F ∗w̃l2 have the same Cauchy data on Γ ∩ Γ̃.
Since the function c also satisfies

∂ν1c|Γ = 0,

it finally follows that w̃l1 and c−
n−2

4 F ∗w̃l2 have the same Cauchy data on
Γ ∩ Γ̃. Since they solve the same elliptic equation in U ∩ Ũ , by unique con-
tinuation [Is06, Theorem 3.3.1] (or e.g. [Le86, Section 4.3.]) we have

w̃l1 = c−
n−2

4 F ∗w̃l2 on U ∩ Ũ .
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Thus we have that

W̃ l
1 =

w̃l1
w̃n+1
1

=
F ∗w̃l2
F ∗w̃n+1

2

= F ∗W̃ l
2 on U ∩ Ũ .

(The factors c−
n−2

4 cancel out.)
Since

F̃ = ψ̃−1
2 ◦ Z̃−1

2 ◦ Z̃1 ◦ ψ̃1 = W̃−1
2 ◦ W̃1,

we have that

F̃ = W̃−1
2 ◦ W̃1 = W̃−1

2 ◦ W̃2 ◦ F = F

holding on U ∩ Ũ . This proves the claims on F and F̃ . Since

cF ∗g2 = g1 = c̃F̃ ∗g2 = c̃F ∗g2 on U ∩ Ũ ,

we also have c = c̃ on U ∩ Ũ . □

Proof of Proposition 3.1. Assume that M1 and M2 have a common bound-
ary ∂M , and that Ng1 = Ng2 on ∂M . Proposition 3.7 shows that for each
p ∈ ∂M there is a neighborhood Up in M1, a local diffeomorphism Fp and a
positive function cp so that g1 = cpF

∗
p g2 in Up. Proposition 3.8 shows that

these locally defined diffeomorphisms and functions agree on the overlaps
of their domains. This yields smooth maps F : U →M2 and c : U → R+,
where U is some neighborhood of ∂M in M1. The mapping F is injective on
each Up, it satisfies g1 = cF ∗g2 in U , and F |∂M = Id.

It remains to show that F is globally injective in some neighborhood
of ∂M (cf. [KS13, Lemma 7.3]). By compactness of the boundary
infp∈∂M Inji(p) = ci > 0, where Inji(p) is the injectivity radius at p. By
the continuity of F , and possibly after shrinking U , we may assume U ⊂
∪p∈∂MB1(p, r) and F : U → ∪p∈∂MB2(p, r) where r < min(c1, c2). Since we
can cover ∂M by sets Up, where F is injective, we may further assume that
there is ε, with r > ε > 0, such that F is injective on each “ball of injectivity”
B1(p, 3ε) for p ∈ ∂M .

Since the boundary ∂M is the same for both manifolds, we may assume
that there is a boundary preserving diffeomorphism

Σ : U1 ⊂ ∪p∈∂MB1(p, r) → U2 = ∪p∈∂MB2(p, r).

It follows that there is one-to-one correspondence with paths in U1 and U2.
Consequently, since the metrics g1 and g2 are continuous, there is C > 1,
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such that
1

C
dU1

1 (x, y) ≤ dU2

2 (Σ(x),Σ(y)) ≤ CdU1

1 (x, y).

Here

dUi

i (x, y) = inf
γ⊂Ui,γ:x≃y

li(γ).

(If we knew that M1 and M2 are diffeomorphic by a boundary preserving
global diffeomorphism, we could just use the normal distances di of gi, i =
1, 2.)

If K is any compact subset of U1 containing the boundary, uniform
continuity implies that there is ε′ < ε such that

d2(F (p), F (q)) < ε/C whenever d1(p, q) < ε′, p, q ∈ K.

In particular, for some ε′ < ε we have that B1(p, ε
′) ⊂ U1 for all p ∈ ∂M and

(3.8) F (B1(p, ε
′)) ⊂ B2(p, ε/C), p ∈ ∂M.

We redefine

U1 = ∪p∈∂MB1(p, ε
′).

Now, if x1, x2 ∈ U1 are such that F (x1) = F (x2), then xi ∈ B1(πi, ε
′), πi ∈

∂M , and we have

d1(π1, x2) ≤ d1(π1, π2) + d1(π2, x2) < dU1

1 (π1, π2) + ε′

≤ CdU2

2 (π1, π2) + ε′ ≤ CdU2

2 (π1, F (x1)) + CdU2

2 (F (x2), π2) + ε′.

Now, since we have d2(πi, F (xi)) < ε/C < r by (3.8), where r is less than the
injectivity radius of the point πi, it follows that d2(πi, F (xi)) = dU2

2 (πi, F (xi)).
Substituting this to the above, and using (3.8) again, we have

d1(π1, x2) ≤ Cd2(π1, F (x1)) + Cd2(F (x2), π2) + ε′ < 3ε.

Thus x2 belongs to the injectivity ball of π1, as does x1. Consequently x1 =
x2, and F is globally injective on U1. □

4. Green’s functions agree locally

We proceed by showing that the Green’s functions for the conformal Lapla-
cians on (M1, g1) and (M2, g2) agree on U × U up to a local diffeomorphism
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F : U → F (U) and scaling c found in Proposition 3.7. The proof is analogous
to the proof of [GS09, Corollary 3.5].

The (Dirichlet) Green’s function for the conformal Laplacian on a Rie-
mannian manifold (M, g) with boundary is the unique solution to

LgG(y, ·) = δy on M

G(y, ·) = 0 on ∂M.

Here the Dirac mass δy is the linear functional f 7→ f(y), which in local
coordinates can be represented as δy(x) = |g|−1/2δ(x− y), where δ( · ) is the
Dirac delta on R

n. See e.g. [Ho15, Section 6.3] how to define distributions
on manifolds. Note that G is not necessarily positive.

We first record a fact about the Schwartz kernel of the Dirichlet-to-
Neumann map of the conformal Laplacian.

Lemma 4.1. The Schwartz kernel N of Ng is given for p, p′ ∈ ∂M , p ̸= p′,
by

N (p, p′) = ∂ν∂ν′G(x, x′)|x=p, x′=p′ ,

where ∂ν and ∂ν′ are respectively the inward pointing normal vector fields to
the boundary in variable x and x′.

We omit the proof since it is identical to the proof of the same result for
the Dirichlet-to-Neumann map of the Laplace-Beltrami operator [GS09].

Proposition 4.2. Let (Mi, gi), i = 1, 2, be two locally conformally real
analytic manifolds, with a common boundary portion Γ ⊂ ∂M , and whose
Dirichlet-to-Neumann maps Ngi agree on Γ: for any f ∈ C∞

c (Γ) we have

Ng1f |Γ = Ng2f |Γ.

Then for any p ∈ Γ there is an open neighborhood of U ⊂M1 of p such
that the Green’s functions Gi(x, y) of Lgi satisfy

G1(x, y) =
1

c(x)
n−2

4 c(y)
n−2

4

G2(F (x), F (y)), (x, y) ∈ U × U \ {x = x′}.

Here F is a local diffeomorphism and c is a positive smooth function as in
Proposition 3.7.

If Γ = ∂M , we can take U to be a neighborhood of the whole boundary.
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Proof. By Proposition 3.7 we have that for any p ∈ Γ there is an open neigh-
borhood U ⊂M1 of p such that

g1 = cF ∗g2 on U,

where F : U → F (U) is diffeomorphism of the form

F = ψ−1
2 ◦ Z−1

2 ◦ Z1 ◦ ψ1

and c is a conformal scaling satisfying

(4.1) c|Γ = 1, ∂ν1c|Γ = 0.

We prove the claim by using ψ1 coordinates on U and ψ2 coordinates
on F (U). Since the jets of Z1 and Z2 agree on Γ by Proposition 3.5, we
have that the differential of F in these coordinates on Γ is just the identity
matrix. Let us denote c̃ = c−

n−2

4 .
We first show that

(4.2) ∂ν′

(
c̃(x)c̃(x′)G2(F (x), F (x

′))
)
= ∂ν′G1(x, x

′),

for x ∈ U and x′ ∈ Γ, x ̸= x′. For this, let x′ ∈ Γ. We denote

T1(x) = ∂ν′G1(x, x
′)

and

T2(x) = ∂ν′

(
c̃(x)c̃(x′)G2(F (x), F (x

′))
)
.

We have by the diffeomorphism and conformal invariance of the conformal
Laplacian that

LcF ∗g2T2

= c−
n+2

4 F ∗Lg2
[
(c̃|F−1(·))

−1∂ν′

(
c̃|F−1(·)c̃(x

′)G2(·, F (x
′))
)]

= c−
n+2

4

(
F ∗∂ν′

(
c̃(x′)Lg2G2(·, x

′)
))
.

Here the conformal Laplace operators are understood to operate on the
variable x, which is omitted or marked as (·) in the equations, and not in
the x′ variable. For U ∋ x ̸= x′ the above equals zero. On the other hand,
we have that the left hand side of the above equation equals Lg1T2 for x ∈ U
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and thus T2 solves

Lg1T2 = 0, in U \ {x′}.

We also have,

Lg1T1 = 0, in U \ {x′}.

Let us then show that the Cauchy data of T1 and T2 agree on Γ. After
this, the equation (4.2) follows from unique continuation [Is06]. We have

T1|Γ\{x′} = ∂ν′G1(x, x
′)|x∈Γ\{x′} = 0

T2|Γ\{x′} = ∂ν′

(
c̃(x)c̃(x′)G2(F (x), F (x

′))
)
|x∈Γ\{x′} = 0.

The latter equation holds since F is a local diffeomorphism that preserves
Γ.

Since x′ ∈ Γ, and x ̸= x′, we have

∂νT1|Γ\{x′} = ∂ν∂ν′G1(x, x
′)|x∈Γ\{x′} = N1(x, x

′)

by the previous lemma. Similarly, we have

∂νT2|Γ\{x′} = ∂ν∂ν′

(
c̃(x)c̃(x′)G2(F (x), F (x

′))
)
|x∈Γ\{x′}

= ∂ν∂ν′(G2(F (x), F (x
′)) = ∂ν2∂ν′

2
G2(x, x

′) = N2(x, x
′).

Some explanations are in order. In the second equality we have used that
the function c̃ satisfies the boundary conditions (4.1). In the second to last
equality we have used the facts that the differential of F is the identity
matrix on the boundary in ψ1 and ψ2 coordinates, and that F preserves
Γ. We have also distinguished the boundary normal vector fields of M2 by
using notations ∂ν2 and ∂ν′

2
.

By the assumption, the Dirichlet-to-Neumann maps agree on Γ, thus
their Schwartz kernels agree on Γ, and it follows that

∂νT1|Γ\{x′} = ∂νT2|Γ\{x′}.

We have now seen that T1 and T2 solve the same elliptic equation and
they have the same Cauchy data. It follows by unique continuation that
T1(x) = T2(x) on an open neighborhood of Γ.

We conclude the proof by using the above to show that also G1(x, x
′)

and c̃(x)c̃(x′)G2(F (x), F (x
′)) have the same Cauchy data for fixed x′ ∈ U .
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This is sufficient by unique continuation: We have for x ∈ U , x ̸= x′, that

Lg1G1(·, x
′) = 0

and

Lg1(c̃(·)c̃(x
′)G2(F (·), F (x

′))) = c̃(x′)LcF ∗g2(c̃(·)G2(F (·), F (x
′))) = 0,

and thus the functions in question satisfy the same elliptic equation. Set

S1(x) = G1(x
′, x) and S2(x) = c̃(x′)c̃(x)G2(F (x

′), F (x)).

(Recall that the point x′ ∈ U is now fixed.) We have S1|Γ\{x′} = S2|Γ\{x′} =
0. By what we have proved above, we have

∂νS1|Γ\{x′} = ∂νG1(x
′, x)|x∈Γ\{x′} = T1(x

′)

= T2(x
′) = ∂ν

(
c̃(x′)c̃(x)G2(F (x

′), F (x))
)
= ∂νS2|Γ\{x′}

Thus the Cauchy data on Γ for S1 and S2 is the same. This concludes the
proof.

By Proposition 3.8 together with the proof of Proposition 3.1 we can
take U to be a neighborhood of whole ∂M . □

5. Proof of the main result

We prove our main theorem, Theorem 1.1. We define scaled Green’s func-
tions as follows,

Hi(x, y) =
Gi(x, y)

Pi(x)Pi(y)
,

for x, y ∈ Int(Mi), and where the functions Pi : Int(Mi) → R, i = 1, 2, are
defined as

Pi(x) =

(∫

∂M

(
∂ν′

i
Gi(x, z

′)
)2
dS(z′)

)1/2

.

This function is nonvanishing for x ∈ Int(Mi). This is because if we had a
point x̂ ∈ Int(Mi) such that Pi(x̂) = 0, we would have that

∂ν′

i
Gi(x̂, z

′) = 0 for z′ ∈ ∂M.

Since also Gi(x̂, z
′) = 0 for z′ ∈ ∂M and LgiGi(x̂, ·) = 0 it would follow from

elliptic unique continuation that Gi(x̂, z
′) is identically zero in Mi \ {x̂}
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(recall that Mi is assumed to be connected). But this would contradict the
behavior of Gi when x̂ and z′ are close to each other.

We have the following basic lemma, which shows that the functions
Hi(x, y) are real-analytic outside the diagonal in suitable coordinates. We
remove the subscript i from our notation for the moment.

Lemma 5.1. Let (M, g) be a locally conformally real analytic manifold
with boundary. Fix points p, p′ ∈ Int(M) with p ̸= p′, and let φ and φ′ be
coordinates in some neighborhoods U and U ′ of p and p′ so that

φ−1∗g = sh and φ′−1∗g = s′h′ with h, h′ ∈ Cω.

Then the function

H(φ−1(x), φ′−1(y))

is jointly real-analytic in (φ(U)× φ′(U ′)) \ {(x, y) ; φ−1(x) = φ′−1(y)}.

Proof. We need to show that both s̃(x)s̃(y)G(x, y) and s̃(x)P (x) are (jointly)
real-analytic in suitable coordinates. Then H(x, y) will also be jointly real-
analytic as the quotient of real-analytic functions (recall that s̃(x)P (x) is
nonvanishing in Int(M)).

Let first (p0, q0) ∈ Int(M)× ∂M and let φ and φ′ be a coordinate chart
and a boundary chart near p0 and q0 respectively where the metric is of the
form

φ−1∗g = sh and φ′−1∗g = s′h′ with h, h′ ∈ Cω.

Let us denote

K(p, q) = s̃(p)s̃(q)G(p, q)

and denote by K(x, y) the coordinate representation of K(p, q) in coordi-
nates (φ, φ′):

K(x, y) = K(φ−1(x), φ′−1(y)).

Now the function K(x, y), whose domain is a subset of Rn ×H
n, satisfies

an elliptic equation in an open subset of R2n

(Lxh + Lyh′)K(x, y) = 0 for x ̸= y,

with real analytic coefficients and with real analytic boundary values
K(x, y)|{yn=0} = 0. Thus by Cω elliptic regularity [MN57] K(x, y) is jointly
real-analytic up to the boundary in an open subset of R2n. The same argu-
ment proves that K(x, y) is jointly real-analytic also for points in Int(M)×
Int(M), showing the required statement for s̃(x)s̃(y)G(x, y).
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Near (x0, y0) := (φ(p0), φ
′(q0)) we can express the function K(x, y) as a

convergent power series

K(x, y) =
∑

α,β

∂αx ∂
β
yK(x0, y0)

α!β!
(x− x0)

α(y − y0)
β .

for (x, y) ∈ B(x0, R)×B(y0, R) (i.e.
∑

α,β
|∂α

x ∂
β
yK(x0,y0)|

α!β! R|α|+|β| <∞) for

some R > 0. Since ∂αxK(x0, y) =
∑

β
∂α
x ∂

β
yK(x0,y0)

β! (y − y0)
β , we can write the

above in the form

K(x, y) =
∑

α

∂αxK(x0, y)

α!
(x− x0)

α

which holds for (x, y) ∈ B(x0, R)×B(y0, R), and we also obtain

∂νyK(x, y) =
∑

α

∂νy∂
α
xK(x0, y)

α!
(x− x0)

α

for (x, y) ∈ B(x0, R)× (B(y0, R) ∩ {yn = 0}).
Using these facts, we have

∂νy(s̃(x)G(x, y)) = ∂νy

(
1

s̃(y)
K(x, y)

)

= −s̃(y)−2(∂νy s̃(y))K(x, y) + s̃(y)−1∂νyK(x, y)

=
∑

α

1

α!
∂αx

(
∂νy

K(x0, y)

s̃(y)

)
(x− x0)

α

which continues to hold for (x, y) ∈ B(x0, R)× (B(y0, R) ∩ {yn = 0}). Fi-
nally, composing the above with φ′ in the y variable, we have

∂νq(s̃(x)G(x, q)) =
∑

α

1

α!
∂αx

(
∂νq

K(x0, q)

s̃(q)

)
(x− x0)

α

holding for x ∈ B(x0, R) and q ∈ U1 ∩ ∂M where U1 is an open neighbor-
hood of the boundary point q0.

By using the compactness of ∂M , we can cover the boundary with finitely
many boundary charts Uj so that the above holds in each uj with R = Rj >



✐

✐

“6-Liimatainen” — 2023/3/16 — 23:20 — page 1162 — #42
✐

✐

✐

✐

✐

✐

1162 M. Lassas, T. Liimatainen, and M. Salo

0. Since power expansions are unique, we have that

∂νq(s̃(x)G(x, q)) =
∑

α

1

α!
∂αx

(
∂νq

K(x0, q)

s̃(q)

)
(x− x0)

α

holds for x ∈ B(x0, R) and q ∈ ∂M where R = minRj > 0. It also follows
that the power series

(∂νq(s̃(x)G(x, q)))
2 =

∑

α

aα(q)(x− x0)
α

has a positive radius of convergence, again denoted by R, independent of
q ∈ ∂M (that is,

∑
α∥aα∥L∞(∂M)R

|α| <∞). We can thus integrate the power
series over ∂M and obtain that

(s̃(x)P (x))2 =

∫

∂M
(∂νq s̃(x)G(x, q))

2

has a convergent power series near x0. Since P is positive, the square root
s̃(x)P (x) is real analytic near x0 as required. □

We simplify our presentation by giving the interiors of the locally con-
formally real analytic manifolds (Mi, gi) real analytic Cω-structures. The
existence of such a structure is proven in the appendix by using n-harmonic
coordinates. This allow us to speak about real analyticity without constantly
specifying the coordinates. The transition function from the coordinates
where the metric is conformally real analytic to n-harmonic coordinates is
real analytic (see proof of Proposition A.1 in the appendix). Thus we have:

Corollary 5.2. Assume that Riemannian manifolds (Mi, gi), i = 1, 2, are
locally conformally real analytic. Then the functions Hi(zi, z

′
i), i = 1, 2, are

real analytic for zi, z
′
i ∈ Int(Mi), zi ̸= z′i.

We will define embeddings of the interiors of Mi into a Sobolev space
(of negative index) to prove our main theorem, Theorem 1.1. Before going
there, we record the following.
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Proposition 5.3. If

G1(x, y) =
1

c(x)
n−2

4 c(y)
n−2

4

G2(F (x), F (y)),(5.1)

(x, y) ∈ U × U \ {x = y}.

on an open set U containing ∂M , where c and F are the functions found in
Proposition 3.1, then

H1(x, y) = H2(F (x), F (y)), (x, y) ∈ Int(U)× Int(U) \ {x = y}.

In addition, we have that

P1(x) = c(x)−
n−2

4 P2(F (x)).

Proof. Set c̃ = c−
n−2

4 . We have for x ∈ Int(U) that

P 2
1 (x) =

∫

∂M

(
∂ν′

1
G1(x, z

′)
)2
dS(z′)(5.2)

= c̃2(x)

∫

∂M

(
∂ν′

1
G2(F (x), F (z

′))
)2
dS(z′)

= c̃2(x)

∫

∂M

(
(F∗∂ν′

1
)G2(F (x), z

′)
)2
dS(z′)

= c̃2(x)

∫

∂M

(
∂ν′

2
G2(F (x), w

′)|w′=F (z′)

)2
dS(z′)

= c̃2(x)

∫

∂M

(
∂ν′

2
G2(F (x), w

′)
)2
dS(w′) = c̃2(x)P 2

2 (F (x)).

In the second equality we have used assumptions on the boundary behavior
of c. In the fourth equality we have used that on ∂M we have

F∗∂ν1 = ψ−1
2∗ (Z

−1
2 ◦ Z1)∗ψ1∗∂ν1 = ψ−1

2∗ (Z
−1
2 ◦ Z1)∗∂xn

= ψ−1
2∗ ∂xn

= ∂ν2 ,

where the second to last equality holds since the Jacobian matrix of Z−1
2 ◦ Z1

is identity matrix on ∂M . We have also used that F is identity on ∂M
in (5.2).

Thus it follows that

H1(x, y) =
G1(x, y)

P1(x)P1(y)
=

c̃(x)c̃(y)G2(F (x), F (y))

c̃(x)c̃(y)P2(F (x))P2(F (y))
= H2(F (x), F (y))

for (x, y) ∈ Int(U)× Int(U) \ {x = x′}. □
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Before continuing we make some general remarks about the functions
H(x, y) and P (x).

Lemma 5.4. Let (M, g) be a Riemannian manifold with boundary ∂M ,
and let H(x, y) be the scaled (Dirichlet) Green’s function

H(x, y) =
G(x, y)

P (x)P (y)
.

Then, when x ∈ Int(M) is fixed and y ∈ Int(M) is close to x, there are
c1, c2 > 0 so that

c1d(x, y)
2−n ≤ H(x, y) ≤ c2d(x, y)

2−n.

We have

lim
y→x

H(x, y)

d(x, y)2−n
=

1

P (x)2
c(n),

with constant c(n) depending only on the dimension n:

c(n) =
1

(n− 2)ωn
, ωn =

2πn/2

Γ(n/2)
.

Proof. The asymptotic behavior near the diagonal of the Green’s function
of a uniformly elliptic operator is well known though an explicit reference
seems to be hard to find. We have (n ≥ 3)

(5.3) G(x, y) =
1

(n− 2)ωn
d(x, y)2−n + o(d(x, y)n−2).

We refer to [AS13, Lemma 25] on this result, which shows that in given local
coordinates there holds

G(x, y) =
1

(n− 2)ωn
|g(x)|1/2⟨g−1(x)(x− y), (x− y)⟩

n−2

2

for y near x. (Note that there is a typo in the power of ⟨g−1(x)(x− y), (x−
y)⟩ in the reference.) Using normal coordinates centered at x then shows (5.3),
which is a coordinate invariant equation in the leading term (the constants
implied by the ”o”-notation depend on coordinates).

The results of the lemma follows since P is smooth and positive in
Int(M). □
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5.1. The embedding

So far we have determined the metrics on an open neighborhood U of the
whole boundary ∂M , see Proposition 3.1. For this we have assumed the
knowledge of the Dirichlet-to-Neumann map on the whole boundary. Our
next and final task is to extend the conformal mapping F : U → F (U) ob-
tained in Proposition 3.1 to a global conformal mapping J :M1 →M2.

Since the boundary behavior of the functions Pi, i = 1, 2, might pose
some issues, we will work only on the interior parts of the manifold. (The
functions Pi are integrals of Poissons kernels, which are singular on the
boundary.) Working only on the interiors is possible, since we have already
determined the conformal metric near the whole boundary ∂M .

We make the following definitions to ease our work. Below the mapping
F is the one found in Proposition 3.1.

Definition 5.5. We set

N(ε) = {x ∈M1 : d1(x, ∂M1) ≤ ε}(5.4)

C(ε) = {x ∈M1 : d1(x, ∂M1) > ε},

where ε > 0 is small enough so that C(ε) is connected and N(ε) ⊂⊂ U . Then
we set

M̂1 := C(ε) and Û := U \N(ε).

Since F is a diffeomorphism U → F (U) and it maps ∂M1 to ∂M2 (i.e. ∂M →
∂M), we have that F (N(ε)) is a closed neighborhood of ∂M2 in M2. We set

M̂2 :=M2 \ F (N(ε)).

The manifolds M̂i are open manifolds.

With these definitions, we define the maps

Hi : M̂i → Hs(Û)

by setting

H1(z1)(y) = H1(z1, y) and H2(z2)(y) = H2(z2, F (y)).

Here zi ∈ M̂i and y ∈ Û and s < 2− n/2. For s < 1− n/2 these mapping
are C1, cf. [LTU03].
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A conformal mapping between locally conformally real analytic mani-
folds is real analytic between the interiors of the manifolds. This follows from
standard regularity theory, and the proof is also given in Proposition A.3 in
the appendix. It follows that H2(z2, F (y)) is real analytic for z2 ̸= F (y).

We have the following result.

Lemma 5.6. Hi : M̂i → Hs(Û) are C1-embeddings, for any s < 1− n/2.

Proof. The main point is to show that Hi is injective and its derivative
DHi(x) : TxM̂i → Hs(Û) is injective at any x. Then Hi is an immersion (the
range of DHi(x) is a closed split subspace since it is finite dimensional), and

since Hi actually extends as an injective C1 immersion to the closure of M̂i,
which is compact, it is an embedding.

The proofs that Hi and its derivative are injective are analogous to the
corresponding results in [LTU03]. We only prove injectivity of H2 to show
what is the idea of the proof.

Let x1, x2 ∈ M̂2 be such that

H2(x1) = H2(x2).

Thus

H2(x1, z) = H2(x2, z) for z in the open set F (Û).

Thus, by real analyticity, we have

H2(x1, z) = H2(x2, z) for z ∈ M̂2 \ {x1, x2}.

Since H2(x, y) blows up only when x = y, we conclude that x1 = x2. □

By Proposition 5.3 we have

(5.5) H1(x, y) = H2(F (x), F (y)), (x, y) ∈ Û × Û \ {x = y}.

It follows that

H2 ◦ F = H1 on Û ,

and thusH2|F (Û) is a bijective map F (Û) → H1(Û) (it is injective by Lemma

5.6). This shows that

(5.6) H−1
2 ◦ H1 = F on Û .

In the following result, which will imply the main theorem of this paper,
the conformal diffeomorphism F : Û → F (Û) is extended to a conformal
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diffeomorphism

J = H−1
2 ◦ H1 : M̂1 → M̂2.

Theorem 5.7. Assume that we have

H1(x, y) = H2(F (x), F (y)), for (x, y) ∈ Û × Û \ {x = y}

Then the sets H1(M̂1) and H2(M̂2) are identical subsets of H
s(Û). Moreover,

the map J := H−1
2 ◦ H1 : M̂1 → M̂2 is conformal.

Proof. Define sets

D1 ⊂ B1 ⊂ M̂1,

where B1 is the largest open set of points x ∈ M̂1 such that

H1(x) ∈ H2(M̂2) for x ∈ B1,

and where D1 is the largest open set in B1 where the mapping J = H−1
2 ◦ H1

is conformal with the conformal factor bounded by

K =

(
max

x2∈M̂2
P2(x2)

min
x1∈M̂1

P1(x1)

) 4

n−2

(5.7)

k =

(
min

x2∈M̂2
P2(x2)

max
x1∈M̂1

P1(x1)

) 4

n−2

from above and below respectively. Note that K and k are finite and positive
respectively, since the functions Pi are continuous on Mi, i = 1, 2.

The mapping H−1
2 ◦ H1 and the notion of conformality of it are defined

on B1 since Hi, i = 1, 2, are C1 smooth embeddings. The set D1 and thus
also B1 contains Û and they are non-empty by (5.6), the assumption and
Lemma 5.8 presented after this proof. (Lemma 5.8 gives the bounds (5.7).)

Let x1 be a boundary point of D1 in M̂1. Let (pk) ∈ D1 be a sequence
such that

(5.8) lim
k→∞

pk = x1.

Since the closure of M̂2 in M2 is compact we can pick subsequence of (pk)
such that

lim
k→∞

J(pk) = x2 ∈M2.
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If x2 ∈ F (U) then x1 ∈ D1 and we are done. This is because F (U) is open
in M1 and thus F is a conformal diffeomorphism from a neighborhood of
x1 to a neighborhood of x2 in this case. We remark that this is the point
where the determination near the whole boundary is used. So, we assume
that x2 /∈ F (U) ⊃ F (N(ε)). It follows that

x2 ∈ M̂2.

We turn our attention to the points x1 ∈ M̂1 and x2 ∈ M̂2, and we will
show that x1 ∈ D1. Thus, we will have that D1 is closed. Since D1 is also
open and M̂1 connected, it will then follow that D1 = M̂1.

Define Ω = Û \B(x1, δ), where δ is small enough so that Ω is nonempty

and connected. Define the maps HΩ
i : M̂i → Hs(Ω) by restricting the distri-

butions Hi(zi), zi ∈ M̂i, to Ω. The mappings HΩ
1 and HΩ

2 are real analytic

on M̂1 \ Ω and M̂2 \ F (Ω), respectively.
Since on D1 we have by its definition

(5.9) HΩ
1 = HΩ

2 ◦ J,

and since the mappings HΩ
i are continuous, it follows that there is a distri-

bution u ∈ Hs(Ω) such that

u = HΩ
1 (x1) = lim

k
HΩ

1 (pk) = lim
k

HΩ
2 (J(pk)) = HΩ

2 (x2).

Next we argue that there is an n-dimensional space

(5.10) V = DHΩ
1 (Tx1

M̂1) = DHΩ
2 (Tx2

M̂2).

The maps HΩ
i are also C1-embeddings with the same proof as above, so the

spaces DHΩ
i (Txi

M̂i) are n-dimensional. They also coincide: let v = DHΩ
2 (V )

∈ DHΩ
2 (Tx2

M̂2), where V ∈ Tx2
M̂2. We take a sequence Vk ∈ TJ(pk)M̂2 such

that

Vk → V ∈ Tx2
M̂2,

which is bounded in the norm given by g2. Since DJ is isomorphism on D1,
we have there a sequence isWk ∈ TpkM̂k such that DJ(Wk) = Vk. Note that
by the definition of D1 this sequence is bounded in the norm given by g1
by the bounds 5.7. Thus, by passing to a subsequence we may assume by
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compactness that

Wk →W ∈ Tx1
M̂1.

Now, by the continuity of the differentials of Hi, we have that

DHΩ
1 (W ) = lim

k
DHΩ

1 (Wk) = lim
k
DHΩ

2 (Vk) = DHΩ
2 (V ).

Inverting the role of M̂1 and M̂2 then proves (5.10).
Let L ⊂ Hs(Ω) be the orthogonal complement of V in Hs(Ω), and let

P : Hs(Ω) → V be the orthogonal projection. We define the maps

Θi = P ◦ HΩ
i : M̂i → V.

Now HΩ
1 is real analytic in M̂1 \ Ω and HΩ

2 is real analytic in M̂2 \ F (Ω).
Also, the projection P is real analytic as it is linear, the derivatives of the
maps Θi at xi, i = 1, 2, are invertible, and Θ1(x1) = Θ2(x2). It follows from

the inverse function theorem that there are neighborhoods Wi of xi in M̂i

and local real analytic inverses Ki : U →Wi satisfying

Θi(Ki(v)) = v.

Here U is some neighborhood of the point Θ1(x1) = Θ2(x2) in V. (In what
follows, it is useful to think U as a mutual domain of local parametrization
of M1 and M2 near x1 and x2 respectively.)

Thus we can represent the graphs of real-analytic functionsHΩ
i as graphs

of real analytic mappings

(5.11) Φi : U → L, Φi(v) = HΩ
i (Ki(v)).

The real analytic maps Φi coincide in an open subset Θ1(D1) ∩ U because

Φ1(v)(·) = H1(K1(v), ·) = H2(J ◦K1(v), F (·)) = H2(J ◦Θ−1
1 (v), F (·))

= H2(J ◦ (P ◦ HΩ
1 )

−1(v), F (·)) = H2(J ◦ (P ◦ HΩ
2 ◦ J)−1(v), F (·))

= H2((P ◦ HΩ
2 )

−1(v), F (·)) = H2(K2(v), F (·)) = HΩ
2 (K2(v))(·)

= Φ2(v)(·), for v ∈ Θ1(D1) ∩ U .

Thus Φ1 and Φ2 coincide in the whole set U by real analyticity.
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It follows that x1 is an interior point of B1: For y belonging to the open
neighborhood K1(U) ⊂ M̂1 of x1 we have

HΩ
1 (y)(·) = HΩ

1 (K1(v))(·) = Φ1(v)(·) = Φ2(v)(·) = HΩ
2 (K2(v))(·)

Here v is some element of U . Thus HΩ
1 (y) ∈ HΩ

2 (M̂2). Since for zi ∈ M̂i we
have

(5.12) HΩ
1 (z1) = HΩ

2 (z2) if and only if H1(z1) = H2(z2),

it follows thatH1(y) ∈ H2(M̂2) and consequently x1 ∈ Int(B1). We postpone
the proof of the equivalence (5.12) above to Lemma 5.9.

Using (5.12), we have on U that

Φ2 = Φ1 ⇐⇒ HΩ
2 ◦K2 = HΩ

1 ◦K1 ⇐⇒ H2 ◦K2 = H1 ◦K1.

Since J is defined as H−1
2 ◦ H1, we have

J = K2 ◦K
−1
1 on K1(U).

It also follows that

HΩ
1 = HΩ

2 ◦ J.

By the formula J = K2 ◦K
−1
1 we know that J is real analytic, as a compo-

sition of real analytic mappings. We have that

H1(x, y) = H2(J(x), J(y))

for x near x1 and y ∈ Ω. (Recall that F = J on Ω ⊂ Û .) By real analyticity
of the both sides in the y variable we have that this holds for x, y near x1.

By Lemma 5.8 below, we have that J satisfies the equation of conformal
mapping

g1(x) = ĉ(x)J∗g2(x)

near x1 with conformal factor

ĉ(x) =

(
P2(J(x))

P1(x)

) 4

n−2

.

Since the conformal factor ĉ satisfies the bounds (5.7) we have that x1 in
D1. This concludes the proof. We have found a mapping J that extends the
conformal mapping F : U → F (U) into a global conformal mapping. □
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Finally, we combine our results to prove our main theorem, Theorem 1.1.

Proof of Theorem 1.1. By Propositions 3.7 and 3.1 we can find a local con-
formal mapping F : U → F (U) where U is a neighborhood of ∂M inM1 and
F (U) is a neighborhood of ∂M in M2. By Propositions 4.2 and 5.3 we have

H1(x, y) = H2(F (x), F (y)), (x, y) ∈ Û × Û \ {x = y}.

Theorem 5.7 above now concludes the proof. □

We are left to prove the lemmas used in the proof of Theorem 5.7.

Lemma 5.8. Let Ui ⊂Mi be open, and let J : (U1, g1) → (U2, g2) be a dif-
feomorphism satisfying

H1(x1, y) = H2(J(x1), J(y))

in (U1 × U1) \ {(x, x) ; x ∈ U1}. Then J is conformal on U1, g1 = cJ∗g2, and
the conformal factor is given by

c(x1) =

(
P2(J(x1))

P1(x1)

) 4

n−2

, x1 ∈ U1.

Proof. By the behavior (see Lemma 5.4) of H1(x1, y) and H2(J(x1), J(y))
when y is near x1, we see that

P1(x1)
2d1(x1, y)

n−2 = P2(J(x1))
2d2(J(x1), J(y))

n−2 + o(d1(x1, y)
n−2).

Let V ∈ Tx1
U1 and let y(t) be a g1-geodesic with y(0) = x1 and ẏ(0) = V .

We have

P1(x1)
2|V |n−2

g1(x1)
= P2(J(x1))

2|J∗V |n−2
g2(J(x1))

+ o(tn−3).

Thus, by the elementary polarization identity, we have that

g1(x1) = c(x1)J
∗g2(x1),

where

c(x1) =

(
P2(J(x1))

P1(x1)

) 4

n−2

.

□
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Lemma 5.9. In the setting of the proof of Theorem 1.1 above

(5.13) HΩ
1 (z1) = HΩ

2 (z2) if and only if H1(z1) = H2(z2).

Proof. Note that if

H1(z1, y) = H2(z2, F (y)), y ∈ Ω,

then by real analyticity of H1(z1, ·) and H2(z2, F (·)) we have the above
for y ∈ Û \ {z1, F

−1(z2)}. We also must have that F (z1) = z2, due to the
diagonal behavior of the functions Hi (see Lemma 5.4). Thus the function

u = H1(z1, ·)−H2(z2, F (·))

is identically zero outside its singular support {z1}. We argue that u is
actually the zero distribution. We calculate using g1 = cF ∗g2 holding on
Û , together with identity P1(x) = c(x)−

n−2

4 P2(F (x)) of Proposition 5.3, as
follows

Lg1P1(z1)P1(·)u(·) = Lg1G1(z1, ·)

− c(z1)
−n−2

4 Lg1

[
P2(F (z1))c(·)

−n−2

4 P2(F (·))H2(F (z1), F (·))
]

= δg1,z1 − c(z1)
−n−2

4 LcF ∗g2

[
c(·)−

n−2

4 G2(F (z1), F (·))
]

= δg1,z1 − c(z1)
−n−2

4 c(·)−
n+2

4 LF ∗g2G2(F (z1), F (·))

= δg1,z1 − c(z1)
−n−2

4 c(·)−
n+2

4 F ∗(δg2,F (z1)) = δg1,z1 − δg1,z1 = 0.

In the second to last equality we have used again that g1 = cF ∗g2. The above
holds on Û . We conclude by unique continuation [Is06] that P1(z1)P1(x)u(x),
and thus u(x), are indeed the zero distributions. The equivalence (5.13)
follows. □

Appendix A. Real analytic structure

We show that a locally conformally real analytic manifold (without bound-
ary) admits a real analytic structure. The proof is by using n-harmonic
coordinates [LS14]. We also show that if a conformally real analytic man-
ifold has a boundary, then the boundary is real analytic as a Riemannian
manifold. In addition, we record the fact that a conformal mapping between
locally conformally real analytic manifolds is real analytic.
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An n-harmonic coordinate system is a conformal generalization of har-
monic coordinate system and also a generalization of isothermal coordinates.
We refer to [LS14, LS15, JLS16] on details on n-harmonic coordinates.

Proposition A.1. Let (M, g) be a locally conformally real analytic man-
ifold without boundary whose transition functions are C∞ smooth (i.e. M
as a manifold is C∞ smooth). Then M admits a real analytic Cω-structure
compatible with the original C∞-structure.

The Cω-structure can be given by transforming from coordinates where
the metric is locally conformally real analytic to n-harmonic coordinates.
The metric is conformally real analytic in the coordinates of the new atlas.

Proof. We only need to show that we can replace the C∞ smooth transition
functions of M by real analytic ones by transforming to n-harmonic coordi-
nates. For this let φ and φ̃ be two coordinate charts whose domains contain
a point x0 ∈M and the metric g of M is conformally real analytic in both
of these coordinates.

Let T and T̃ be transition functions from these coordinates to n-harmonic
coordinates near x0. We show that these mappings are Cω smooth since their
components satisfy a quasilinear elliptic equation on R

n:

∆nT
k = −|g|−1/2∂j(|g|

1/2gjm(gab∂aT
k∂bT

k)
n−2

2 ∂mT
k) = 0, k = 1, . . . , n.

See [LS14] for details on the n-harmonic equation. (Similarly for T̃ .) In [LS14]
it is also proven that each T k is C∞ smooth.

We establish the assumptions of [KN15, Corollary 1.4] for a Cω regularity
result for these type of equations with Cω coefficients in our case where each
dT k ̸= 0. The latter holds since otherwise the Jacobian determinant of T
would be zero contradicting the invertibility of T .

For the reference [KN15, Corollary 1.4], we set for simplicity of the no-
tation T k = u, and consider the above as a nonlinear elliptic equation:

∑

j

∂jF
j(x, du) = 0,

on U = Ω× (Rn \Bε(0)) ⊂ R
n × R

n, with

F j(x, p) = |g|1/2gjm(gabpapb)
n−2

2 pm.

Here Ω is the domain of each T k and we have restricted each F j to R
n \

Bε(0), ε > 0, by the facts that each du = dT k ̸= 0 and that dT k continuous
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on Ω. (We could also consider that the mapping T satisfy an nonlinear
elliptic system in the spirit of [KN15], but since the equations for T k are
uncoupled, it makes no difference.)

In the notation of [KN15, Corollary 1.4], we set

aij = ∂pjF
i(x, p) = |g|1/2gim

(n− 2

2
(gabpapb)

n−4

2 gcd(δjcpd + δjdpc)pm

+ (gabpapb)
n−2

2 δjm

)

= |g|1/2(gabpapb)
n−4

2

(
(n− 2)gjdpdg

impm + (gabpapb)g
ij
)
.

Here, as usual, repeated indices are summed over. We define a (scalar) sym-
bol A(ξ), for 0 ̸= ξ ∈ R

n, as in [KN15]:

A(ξ) = aijξiξj = |g|1/2(gabpapb)
n−4

2

(
(n− 2)(pag

aiξi)
2 + (gabpapb)g

ijξiξj
)
.

We trivially have

A(ξ) ≥ |g|1/2(gabpapb)
n−4

2 |p|2|ξ|2

and thus the assumptions [KN15, Definition 1.1] are satisfied on U , where
|p| ≥ ε. Thus u = T k, and consequently T , are real analytic.

We have that the components

T̃ k ◦ φ̃ ◦ φ−1 ◦ T, k = 1, . . . , n,

of the mapping (T̃ ◦ φ̃) ◦ (T ◦ φ)−1 also satisfy an n-harmonic equation with
Cω coefficients in a suitable subset of Rn: first we see that

∆n
T−1∗ϕ−1∗gT̃

k ◦ φ̃ ◦ φ−1 ◦ T−1 = (φ̃ ◦ φ−1 ◦ T−1)∗∆n
ϕ̃−1∗g

T̃ k = 0,

where ∆n is the n-Laplacian [LS14]. Then we note that

T−1∗φ−1∗g = s|T−1T−1∗h,

since φ was such that φ−1∗g = s h with s ∈ C∞ and h ∈ Cω, and use this
with the fact that the n-harmonic equation is invariant under conformal
scalings [LS14]. Thus

∆n
T−1∗hT̃

k ◦ φ̃ ◦ φ−1 ◦ T−1 = 0,

where T−1∗h ∈ Cω. As already mentioned above this can be seen as a quasi-
linear elliptic equation [LS14] for T̃ k ◦ φ̃ ◦ φ−1 ◦ T−1 with Cω coefficients.
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Thus it follows that the transition function (T̃ ◦ φ̃) ◦ (T ◦ φ)−1 is Cω regu-
lar [KN15, Corollary 1.4].

Defining new coordinate charts as φ′ = T ◦ φ and φ̃′ = T̃ ◦ φ̃, and ex-
tending this procedure over all charts of M where the metric is conformally
real analytic gives an Cω-structure for M , which is C∞ compatible with the
original atlas. (The latter follows since T and T̃ are actually even Cω local
diffeomorphisms of Rn as noted above.)

In the new coordinates the metric is still conformally real analytic:

φ′−1∗g = s′h′, s′ ∈ C∞ and h′ ∈ Cω,

and similarly for φ̃′. □

Proposition A.2. Let (M, g) be a locally conformally real analytic mani-
fold with boundary and let g∂M be the induced metric on the boundary ∂M .

Let x′ = (x1, . . . , xn−1) be g∂M -harmonic coordinates on a neighborhood
Γ of p ∈ ∂M on the boundary, and let φ = (φ1, . . . , φn−1, φn) be coordinates
on U ⊂M near the boundary point p such that

φ−1∗g = sh, with s ∈ C∞(Ω), h ∈ Cω(Ω),

s|Ω∩{xn=0} ∈ Cω(Ω ∩ {xn = 0}).

Here Ω = φ(U) ⊂ H
n. Denote Σ = Ω ∩ {xn = 0} and denote φ′ =

(φ1, . . . , φn−1) : U ∩ ∂M → Σ.
Then, the induced transition function S = x′ ◦ φ′−1 : Σ → x′(Γ) is real

analytic. In particular, changing to g|∂M -harmonic coordinates on the bound-
ary gives ∂M a real analytic atlas. The coordinate representations of g∂M
in the coordinates of this atlas are real analytic.

Proof. Let p ∈ ∂M and let x′ and φ be as in the assumption with

φ−1∗g = sh.

Now, φ′ = (φ1, . . . , φn−1) is a coordinate chart on U ∩ ∂M (by the definition
of boundary chart).

Let us decompose the matrix field h as

h =

[
h(n−1) h#n
hn# hnn

]
,

where h(n−1) is the (n− 1)× (n− 1) upper left block of whole h-matrix field.
The coordinate representation of the boundary metric g∂M in φ′-coordinates
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reads

φ′−1∗g∂M = s|Σh
(n−1)|Σ.

Let S = x′ ◦ φ′−1 be the transition function Σ → x′(Γ). We have

φ′∗∆s|Σhn−1|ΣS
l = ∆ϕ′∗(s|Σhn−1|Σ)x

l = ∆g∂M
xl = 0, l = 1, . . . n.

(Here “∆” is the (n− 1)-dimensional Laplace-Beltrami operator.) Thus,
each component function Sl of S is real analytic as a solution of an el-
liptic equation with real analytic coefficients, see e.g. [Be87, Appendix J].
That transforming to harmonic coordinates gives ∂M a real analytic atlas
follows as in the proof of previous proposition. □

Proposition A.3. A conformal mapping F between locally conformally
real analytic manifolds (M, g) and (N, h) is a real analytic diffeomorphism
between the interiors of the manifolds.

Proof. The proof is similar to the one used to prove smoothness of conformal
mappings in [LS14]. Let p ∈M and let φ′ and φ̃′ be coordinates near p and
F (p) such that the metrics g and h are locally conformally real analytic in
the coordinates respectively.

The components

(φ̃′)k ◦ F ◦ φ̃−1, k = 1, . . . , n,

of the mapping F in the introduced coordinates satisfy

∆n
ϕ̃−1∗g

(φ̃′)k ◦ F ◦ φ̃−1 = 0.

See [LS14] for details on this argument. Since the matrix field φ̃−1∗g is
conformally real analytic, and ∆n is conformally invariant, this proves the
claim by elliptic regularity of quasilinear equations, see [KN15, Corollary
1.4]. □

Appendix B. Density

In this section we assume that (M, g) is a compact connected oriented Rie-
mannian manifold with boundary, and dim(M) ≥ 2. We also assume that
q ∈ C∞(M) and that 0 is not a Dirichlet eigenvalue of −∆+ q in M (i.e.
the only solution u ∈ H1

0 (M) of (−∆+ q)u = 0 is u = 0).
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The next Runge approximation type result implies that one may solve
(−∆+ q)u = 0 in M while approximately prescribing the Cauchy data of u
on a strict open subset of ∂M .

Proposition B.1. Let Γ be a nonempty open subset of ∂M satisfying Γ ̸=
∂M . Then the set

{∂νu|Γ ; u ∈ C∞(M), (−∆+ q)u = 0 in M, u|Γ = 0}

is dense in C∞(Γ).

As a consequence, for any ε > 0 there exists wn ∈ C∞(M) satisfying

(−∆+ q)wn = 0, wn|Γ = 0,

and ∥∂νw
n|Γ − 1∥L∞(Γ) < ε.

The proof of Proposition B.1 requires a duality argument, Dirichlet prob-
lems with boundary data in negative order Sobolev spaces, and unique con-
tinuation.

Lemma B.2. Let P the operator C∞(∂M) → C∞(M) which maps f to
the unique solution of (−∆+ q)u = 0 in M satisfying u|∂M = f .

(a) For any s ∈ R, P has a bounded extension

P (s) : Hs(∂M) → Ds+1/2(M)

where Ds+1/2(M) is a Hilbert space which has C∞(M) as a dense sub-
space and is continuously contained in Hs+1/2(M), and there are bounded
trace operators

γ
(s)
j : Ds+1/2(M) → Hs−j(∂M), j = 0, 1,

extending γ0 : u 7→ u|∂M and γ1 : u 7→ ∂νu|∂M acting on C∞(M). For any
f ∈ Hs(∂M), the function u = P (s)f ∈ Hs+1/2(M) solves (−∆+ q)u = 0

in M in the sense of distributions, has boundary value γ
(s)
0 u = f , and

satisfies γ
(s)
1 u ∈ Hs−1(∂M).

(b) If f ∈ Hs(∂M) is C∞ near some boundary point p, then there is a neigh-
borhood U of p in M so that u = P (s)f is C∞ in U .



✐

✐

“6-Liimatainen” — 2023/3/16 — 23:20 — page 1178 — #58
✐

✐

✐

✐

✐

✐

1178 M. Lassas, T. Liimatainen, and M. Salo

(c) One has the following unique continuation statement: if Γ ⊂ ∂M is a
nonempty open set and if v = P (s)f for some f ∈ Hs(∂M) satisfies

v|Γ = ∂νv|Γ = 0,

then v = 0.

Proof. (a) follows from [LM72, Chapter 2], with the final result given in
Section 7.3 of Chapter 2.

For (b), writing f = χf + (1− χ)f where χ ∈ C∞(∂M) satisfies χ = 1
near p and χf ∈ C∞(∂M), and noting that P (s)(χf) ∈ C∞(M), it is enough
to show that u = P (s)((1− χ)f) is C∞ near p. We use a parametrix for this
boundary value problem [Ta96, Theorem 12.6]: there is a collar neighborhood
C = [0, 1]× ∂M and a distribution u♯ in C with

u♯ − u ∈ C∞(C)

so that, using coordinates (y, x) in C, one has u♯ = Q((1− χ)f) where
Qh(y, · ) = Q(y)h and Q(y) is a pseudodifferential operator on ∂M whose
symbol q(y, x, ξ) satisfies, for some C1 > 0,

q(y, x, ξ) = b(y, x, ξ)e−C1y⟨ξ⟩,

ykDl
yb(y, · ) is bounded in S−k+l

1,0 (∂M) for y ∈ [0, 1].

([Ta96] does not discuss Q acting on negative order Sobolev spaces, but this
can be justified since using [Ta96, Lemma 12.5] the operator Dl

yA(y) with
A(y) as in [Ta96, Proposition 12.4] maps H−r(∂M) to the mixed norm space

L2
yH

−r+1/2−l
x (C) for r ≥ 0.) Suppose ψ ∈ C∞(∂M) satisfies ψ = 1 near p and

supp(ψ) ⊂⊂ {χ = 1}. It is enough to show that

ψ(x)Q((1− χ(x))f) ∈ C∞(C).

Since each Q(y) is in Op(S0
1,0(∂M)) and thus has the pseudolocal prop-

erty, the operators ψ(x) ◦Q(y) ◦ (1− χ(x)) are in Op(S−∞
1,0 (∂M)). More-

over, these operators and their y-derivatives up to a fixed order have uniform
symbol bounds for y ∈ [0, 1]. This shows the required result.

To prove (c), we note that by (b) the function v is C∞ near any compact
subset K of Γ. Thus v is a smooth solution of (−∆+ q)v = 0 near K with
v|Γ = ∂νv|Γ = 0, and the unique continuation principle [Is06] implies that
v ≡ 0 near K. Since v solves (−∆+ q)v = 0 in M , it follows that v ≡ 0. □
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Lemma B.3. Let Γ be a nonempty open subset of ∂M with Γ ̸= ∂M . Let
also s > 0. Then the set

S = {∂νu|Γ ; u ∈ Hs+3/2(M), (−∆+ q)u = 0 in M, u|Γ = 0}

is dense in Hs(Γ).

Proof. Let T be a bounded linear functional on Hs(Γ) satisfying

T (∂νu|Γ) = 0, u ∈ S.

It is enough to show that T = 0. Define

T̃ : Hs(∂M) → R, T̃ (h) = T (h|Γ).

Then |T̃ (h)| ≤ C∥h|Γ∥Hs(Γ) ≤ C∥h∥Hs(∂M), so T̃ is bounded onHs(∂M) and
by duality there exists f ∈ H−s(∂M) satisfying

T̃ (h) = (f, h), h ∈ Hs(∂M).

(This is the place where the negative order Sobolev spaces appear in this
argument.) If supp(h) ⊂ ∂M \ Γ, then (f, h) = T̃ (h) = T (h|Γ) = 0. It follows
that supp(f) ⊂ Γ.

Choose a sequence (fj) ⊂ C∞(∂M) with fj → f in H−s(∂M). Let vj =
Pfj and v = P (−s)f with P (−s) as in Lemma B.2. Then for any u ∈ S,
integrating by parts implies that

0 = T (∂νu|Γ) = T̃ (∂νu) = (∂νu, f)

= lim (∂νu, vj)∂M = lim ((∇u,∇vj)M + (∆u, vj)M )

= lim (u, ∂νvj)∂M = (u, ∂νv)∂M .

Here we used the facts that (−∆+ q)vj = (−∆+ q)u = 0 and that
∂νPfj |∂M → ∂νv|∂M in H−s−1(∂M). Since this is true for u = Ph for any
h ∈ C∞(∂M) with h|Γ = 0, we see that ∂νv|∂M\Γ = 0. Now v = P (−s)f ∈

H−s+1/2(M) solves

(−∆+ q)v = 0 in M, v|∂M\Γ = ∂νv|∂M\Γ = 0.

The unique continuation statement in Lemma B.2 shows that v = 0, which
implies f = 0 and T = 0 as required. □
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Proof of Proposition B.1. The proof is analogous to that of Lemma B.3 with
the space Hs(Γ) replaced by C∞(Γ) etc. One also uses that the dual of
C∞(∂M) is D ′(∂M) and that any element of D ′(∂M) is in H−s(∂M) for
some s. □
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Hors Serie, 95–116.

[FG12] C. Fefferman, R. Graham, The ambient metric. Annals of Math-
ematics Studies 178, Princeton University Press, 2012.

[Go07] A. Gover, Conformal Dirichlet-Neumann maps and Poincaré-
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