Level curves of minimal graphs

Allen Weitsman

We consider minimal graphs $u=u(x, y)>0$ over domains $D \subset R^{2}$ bounded by an unbounded Jordan arc γ on which $u=0$. We prove an inequality on the curvature of the level curves of u, and prove that if D is concave, then the sets $u(x, y)>C(C>0)$ are all concave. A consequence of this is that solutions, in the case where D is concave, are also superharmonic.

1. Introduction

Let D be a plane domain bounded by an unbounded Jordan arc γ. In this paper we consider the boundary value problem for the minimal surface equation

$$
\left\{\begin{array}{l}
\operatorname{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=0 \quad \text { and } u>0 \quad \text { in } D \tag{1.1}\\
u=0 \text { on } \gamma
\end{array}\right.
$$

We shall study the curvature $\kappa= \pm|d \varphi / d s|$ for level curves $u=C \quad(C>0)$ where φ is the angle of the tangent vector to the curve, and the sign will be taken to be + when the curve bends away from the set where $u>C$.

Theorem 1. There exists a constant K depending on u such that, if u as in (1.1) and $C>0$, the curvature $\kappa=\kappa(C)$ of the level curve $u=C$ satisfies the inequality

$$
\begin{equation*}
|\kappa| \leq \frac{K}{C} \tag{1.2}
\end{equation*}
$$

Further comments regarding the constant K are given in $\S 6$.
Our next result concerns solutions whose domains are concave. There is a literature (see [3] and references cited there) regarding the propogation of convexity for level curves of solutions to partial differential equations over convex domains.

However, regarding the possible geometry of D in (1.1), it follows from a theorem of Nitsche [6, p.256] that D cannot be convex unless D is a halfplane
since (1.1) cannot have nontrivial solutions over domains contained in a sector of opening less than π. On the other hand, amongst the examples given in [5], there is a continuum of graphs which do have concave domains; specifically those given parametrically in the right half plane \mathbf{H} by

$$
\begin{equation*}
z(\zeta)=(\zeta+1)^{\gamma}-\frac{1}{\gamma(2-\gamma)}(\bar{\zeta}+1)^{2-\gamma} \quad(\zeta \in \mathbf{H}, \quad 1<\gamma<2) \tag{1.3}
\end{equation*}
$$

together with the height function $2 \Re e \zeta$. A concave domain D is taken to be one whose complement is an unbounded convex domain. The boundary of D is then a curve which bends away from the domain.

In $\S 6$ we will verify that the domains for the graphs of 1.3) are concave. In this note we shall prove the following

Theorem 2. If u is a solution to (1.1) with D concave and bounded by a C^{2} curve γ, then the sets where $u>C$ are concave for each $C>0$.

This has the curious consequence
Corollary. If u is as in Theorem 2 above, then u is also superharmonic in D.

2. Preliminaries

For a solution u to the minimal surface equation over a simply connected domain D we shall slightly abuse notation by using u to also denote the solution to (1.1) when given in parametric form. We shall make use of the parametrization of the surface given by u in isothermal coordinates using Weierstrass functions $(x(\zeta), y(\zeta), u(\zeta))$ with ζ in the right half plane \mathbf{H}. Our notation will then be given by

$$
\begin{equation*}
f(\zeta)=x(\zeta)+i y(\zeta) \quad \zeta=\sigma+i \tau \in \mathbf{H} \tag{2.1}
\end{equation*}
$$

Then $f(\zeta)$ is univalent and harmonic, and since D is simply connected it can be written in the form

$$
\begin{equation*}
f(\zeta)=h(\zeta)+\overline{g(\zeta)} \quad \zeta=\sigma+i \tau \in \mathbf{H} \tag{2.2}
\end{equation*}
$$

where $h(\zeta)$ and $g(\zeta)$ are analytic in \mathbf{H},

$$
\begin{equation*}
\left|h^{\prime}(\zeta)\right|>\left|g^{\prime}(\zeta)\right| \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
u(\zeta)=2 \Re e i \int \sqrt{h^{\prime}(\zeta) g^{\prime}(\zeta)} d \zeta \tag{2.4}
\end{equation*}
$$

(cf. [2, §10.2]).
Now, $u(\zeta)$ is harmonic and positive in \mathbf{H} and vanishes on $\partial \mathbf{H}$. Thus, (cf. [7, p. 151]),

$$
\begin{equation*}
u(\zeta)=k_{0} \Re e \zeta \tag{2.5}
\end{equation*}
$$

where k_{0} is a positive constant. This with (2.4) gives

$$
\begin{equation*}
g^{\prime}(\zeta)=-\frac{k}{h^{\prime}(\zeta)} \quad\left(k=k_{0}^{2} / 4\right) \tag{2.6}
\end{equation*}
$$

Then from (2.3) we have, in particular, that

$$
\begin{equation*}
\left|h^{\prime}(\zeta)\right| \geq \sqrt{k} \tag{2.7}
\end{equation*}
$$

It follows from (2.5) that the level curves of u can be parametrized by $f\left(\sigma_{0}+i \tau\right)$ for $-\infty<\tau<\infty$ and fixed values σ_{0}. Then the curvature κ corresponding to height σ_{0} with the sign convention given at the begining for

$$
\varphi=\arctan \left(y_{\tau} / x_{\tau}\right)
$$

is given by

$$
\begin{equation*}
\kappa=\kappa\left(\sigma_{0}, \tau\right)=\frac{d \varphi}{d s}=\frac{1}{\left(x_{\tau}^{2}+y_{\tau}^{2}\right)^{3 / 2}}\left(x_{\tau} y_{\tau \tau}-y_{\tau} x_{\tau \tau}\right) \tag{2.8}
\end{equation*}
$$

To compute 2.8 we use 2.1 and 2.6 to write

$$
\begin{align*}
x_{\tau} & =\frac{\partial}{\partial \tau} \Re e(h+\bar{g})=\Re e i\left(h^{\prime}-k / h^{\prime}\right) \tag{2.9}\\
& =-\Im m\left(h^{\prime}-k / h^{\prime}\right)=-\left(\left|h^{\prime}\right|^{2}+k\right) \Im m \frac{1}{\bar{h}^{\prime}} \\
x_{\tau \tau} & =-\frac{\partial}{\partial \tau} \Im m\left(h^{\prime}-k / h^{\prime}\right)=-\Re e\left(h^{\prime \prime}+k h^{\prime \prime} / h^{\prime 2}\right) \tag{2.10}\\
y_{\tau} & =\frac{\partial}{\partial \tau} \Im m(h+\bar{g})=\Im m i\left(h^{\prime}+k / h^{\prime}\right) \tag{2.11}\\
& =\Re e\left(h^{\prime}+k / h^{\prime}\right)=\left(\left|h^{\prime}\right|^{2}+k\right) \Re e \frac{1}{\bar{h}^{\prime}} \\
y_{\tau \tau} & =\frac{\partial}{\partial \tau} \Re e\left(h^{\prime}+k / h^{\prime}\right)=-\Im m\left(h^{\prime \prime}-k h^{\prime \prime} / h^{\prime 2}\right) \tag{2.12}
\end{align*}
$$

Substituting (2.9)-2.12) into (2.8) we get

$$
\begin{aligned}
\kappa=\frac{\left|h^{\prime}\right|^{3}}{4\left(\left|h^{\prime}\right|^{2}+k\right)^{2}}(& -\left(\frac{1}{\bar{h}^{\prime}}-\frac{1}{h^{\prime}}\right)\left(h^{\prime \prime}-k \frac{h^{\prime \prime}}{h^{2}}-\bar{h}^{\prime \prime}+k \frac{\bar{h}^{\prime \prime}}{\bar{h}^{\prime 2}}\right) \\
& \left.+\left(\frac{1}{\bar{h}^{\prime}}+\frac{1}{h^{\prime}}\right)\left(h^{\prime \prime}+k \frac{h^{\prime \prime}}{h^{\prime 2}}+\bar{h}^{\prime \prime}+k \frac{\bar{h}^{\prime \prime}}{\bar{h}^{\prime 2}}\right)\right)
\end{aligned}
$$

which simplifies down to

$$
\begin{equation*}
\kappa=\frac{\left|h^{\prime}\right|}{\left|h^{\prime}\right|^{2}+k} \Re e \frac{h^{\prime \prime}}{h^{\prime}} . \tag{2.13}
\end{equation*}
$$

Summarizing this, we have
Lemma 1. With u as in (1.1) and k_{0} as in (2.5), then the locus of $u=C$ is the set $\zeta=\sigma_{0}+i \tau$, where $\sigma_{0}=C / k_{0}$ and $-\infty<\tau<\infty$. The curvature κ at each point of this level set satisfies (2.13).

The proof of Theorem 2 uses the comparison of κ in 2.13 with the corresponding curvature κ_{1} of the image of the line $\sigma_{0}+i \tau \quad(-\infty<\tau<\infty)$ under h. Since $\arg h^{\prime}=\Im m \log h^{\prime}$, the formula (2.8) gives

$$
\begin{equation*}
\kappa_{1}=\frac{1}{\left|h^{\prime}\right|} \Re e \frac{h^{\prime \prime}}{h^{\prime}} . \tag{2.14}
\end{equation*}
$$

3. Proof of Theorem 1

Since f in (2.2) is a univalent harmonic mapping, we may convert the estimate from [1, Lemma 1] (cf. also ([2, p. 153])) for a univalent harmonic mapping $F=H+\bar{G}$ in the unit disk \mathbf{U} to a mapping of the half plane \mathbf{H}.
Lemma 2. Let u be as in (1.1) and $f=h+\bar{g}$ as in (2.2). Then

$$
\left|\frac{h^{\prime \prime}(\zeta)}{h^{\prime}(\zeta)}\right| \leq A / \sigma
$$

for some absolute constant A.
Proof of Lemma 2. For the univalent harmonic mapping $F=H+\bar{G}$ of \mathbf{U}, the estimate of [1] is

$$
\left|\frac{H^{\prime \prime}(w)}{\left.H^{\prime}(w)\right)}\right| \leq \frac{A_{1}}{1-|w|}, \quad w \in \mathbf{U}
$$

for some absolute constant A_{1}. Now, for $f(\zeta)=h(\zeta)+\overline{g(\zeta)}$, let

$$
F(w)=f\left(\frac{1+w}{1-w}\right), \quad w \in \mathbf{U}
$$

Then,

$$
\begin{gathered}
h(\zeta)=H\left(\frac{\zeta-1}{\zeta+1}\right) \\
h^{\prime}(\zeta)=H^{\prime}\left(\frac{\zeta-1}{\zeta+1}\right) \frac{2}{(\zeta+1)^{2}}
\end{gathered}
$$

and

$$
h^{\prime \prime}(\zeta)=H^{\prime \prime}\left(\frac{\zeta-1}{\zeta+1}\right) \frac{4}{(\zeta+1)^{4}}-H^{\prime}\left(\frac{\zeta-1}{\zeta+1}\right) \frac{4}{(\zeta+1)^{3}}
$$

Thus,

$$
\begin{aligned}
\left|\frac{h^{\prime \prime}(\zeta)}{h^{\prime}(\zeta)}\right| & \leq \frac{2}{|\zeta+1|}\left(\frac{1}{|\zeta+1|} \frac{A_{1}}{1-\left|\frac{\zeta-1}{\zeta+1}\right|}+1\right) \\
& \leq \frac{2}{|\zeta+1|}\left(\frac{A_{1}}{|\zeta+1|-|\zeta-1|}+1\right) \\
& \leq \frac{2}{|\zeta+1|}\left(\frac{A_{2}(|\zeta+1|+|\zeta-1|)}{4 \sigma}+1\right) \\
& \leq A / \sigma
\end{aligned}
$$

for some absolute constant A.
Proof of Theorem 1. From Lemma 1, Lemma 2, and 2.7) it follows that, on the level set $u=C$,

$$
\begin{equation*}
|\kappa| \leq \frac{A}{\sqrt{k} C} \tag{3.1}
\end{equation*}
$$

4. Proof of Theorem 2

For convenience, we dismiss the trivial case where u is planar, and hence we may assume that h^{\prime} is nonconstant.

From the given hypothesis, it follows that γ must have asymptotic angles in both directions as $z \rightarrow \infty$. By a rotation we may assume that the asymptotic tangent vectors have directions $\pm \alpha$ for some $0 \leq \alpha \leq \pi / 2$.

From the concavity of D and the assumption that the asymptotic tangents to γ have angles $\pm \alpha$, it follows that $y_{\tau} \geq 0$ for $\sigma=0$. Thus, from 2.11 it follows that for $\sigma=0, \Re e 1 / \bar{h}^{\prime} \geq 0$, and hence $\Re e 1 / h^{\prime} \geq 0$. Since, by (2.7) $1 / h^{\prime}$ is bounded in \mathbf{H}, this means that $\Re e 1 / h^{\prime}>0$ thoughout \mathbf{H}. This in turn gives

$$
\begin{equation*}
\Re e h^{\prime}(\zeta)>0 \quad \zeta \in \mathbf{H} \tag{4.1}
\end{equation*}
$$

Let $\psi(\tau)=\arg h^{\prime}(i \tau)$. It follows from (2.13) and 2.14) that $0 \leq \kappa_{1} \not \equiv 0$ on $\partial \mathbf{H}$ so that

$$
\begin{equation*}
\frac{d \psi}{d \tau}=\frac{\partial}{\partial \tau} \Im m\left(\log h^{\prime}\right)=\Re e \frac{h^{\prime \prime}}{h^{\prime}} \geq 0 \quad \text { when } \tau=0 \tag{4.2}
\end{equation*}
$$

By (4.1)

$$
\begin{equation*}
-\pi / 2 \leq \psi(\tau) \leq \pi / 2 \tag{4.3}
\end{equation*}
$$

Now, $-\pi / 2<\Im m\left(\log h^{\prime}\right)<\pi / 2$ in \mathbf{H}, and in particular is a bounded harmonic function in \mathbf{H}. So for $\zeta=\sigma+i \tau \in \mathbf{H}$,

$$
\Im m \log h^{\prime}(\zeta)=\frac{\sigma}{\pi} \int_{-\infty}^{\infty} \frac{\psi(t) d t}{\sigma^{2}+(t-\tau)^{2}}
$$

Then

$$
\begin{aligned}
\Re e \frac{h^{\prime \prime}(\zeta)}{h^{\prime}(\zeta)} & =\frac{\partial}{\partial \tau} \Im m \log h^{\prime}(\zeta) \\
& =\frac{\partial}{\partial \tau}\left(\frac{\sigma}{\pi} \int_{-\infty}^{\infty} \frac{\psi(t) d t}{\sigma^{2}+(t-\tau)^{2}}\right) \\
& =\frac{2 \sigma}{\pi} \int_{-\infty}^{\infty} \frac{(t-\tau) \psi(t) d t}{\left(\sigma^{2}+(t-\tau)^{2}\right)^{2}}
\end{aligned}
$$

An integration by parts yields

$$
\Re e \frac{h^{\prime \prime}}{h^{\prime}}=\frac{\sigma}{\pi}\left(\left.\frac{-\psi(t)}{\sigma^{2}+(t-\tau)^{2}}\right|_{-\infty} ^{\infty}+\int_{-\infty}^{\infty} \frac{\psi^{\prime}(t) d t}{\sigma^{2}+(t-\tau)^{2}}\right)
$$

By (4.3) it follows that the first term on the right vanishes, and by (4.2) the second term is positive. Thus κ_{1} in (2.14) and hence κ in (2.13) are positive in \mathbf{H}.

5. Proof of the corollary

We may write the minimal surface equation for u as

$$
\frac{\Delta u+F}{|\nabla u|^{3}}=0
$$

where $F=F(u, x, y)=u_{y}^{2} u_{x x}+u_{x}^{2} u_{y y}-2 u_{x} u_{y} u_{x y}$.
Now, for a given function $v(x, y)>0$ the curvature of the level set $v(x, y)=0$ is given by $F(v, x, y) /|\nabla v|^{3}$ [4, p. 72] which is positive when the curve bends away from the interior of the domain. Since Theorem 2 shows that the level sets $u=c$ which bound the sets $u>c$ each have positive curvature, then applying this to $F(u-c, x, y)$ we find that $\Delta u<0$ and hence u is superharmonic in D

6. Concluding remarks

For the examples (1.3) of $\S 1$,

$$
\Re e \frac{h^{\prime \prime}}{h^{\prime}}=\Re e \frac{\gamma-1}{\zeta+1}>0
$$

for $1<\gamma<2$ so that by 2.13 these have concave domains.

Furthermore, using (2.13), this shows that Theorem 1 is sharp. Regarding the constant K in Theorem 1, the scaling factor k in (3.1) is consistent with the fact that κ would be rescaled by replacing $u(x, y)$ by $c u(x / c, y / c)$ for $0<c<\infty$.

References

[1] Y. Abu-Muhanna and A. Lyzzaik, The boundary behaviour of harmonic univalent maps, Pacific Jour. Math. 141 (1990) 1-20.
[2] P. Duren, Harmonic mappings in the plane, Cambridge Tracts in Mathematics, 2004.
[3] A.-K. Gallagher, J. Lebl, K. Ramachandran, Convexity of level lines of Martin functions and applications, Analysis and Mathematical Physics, 2019, Volume 9, Issue 1, 443-452.
[4] A. Gray, Modern differential geometry of curves and surfaces, Studies in Advanced Mathematics, 1993.
[5] E. Lundberg, A. Weitsman, On the growth of solutions to the minimal surface equation over domains containing a half plane, Calc Var. Partial Differential Equations 54 (2015) 3385-3395.
[6] J.C.C. Nitsche, On new results in the theory of minimal surfaces, Bull. Amer. Mat. Soc. 71 (1965), 195-270.
[7] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen Co., Ltd., Tokyo (1959).

Department of Mathematics, Purdue University
West Lafayette, IN 47907-2067, USA
E-mail address: weitsman@purdue.edu
Received April 28, 2019
Accepted September 16, 2019

