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Level curves of minimal graphs

Allen Weitsman

We consider minimal graphs u = u(x, y) > 0 over domains D ⊂ R2

bounded by an unbounded Jordan arc γ on which u = 0. We prove
an inequality on the curvature of the level curves of u, and prove
that if D is concave, then the sets u(x, y) > C (C > 0) are all
concave. A consequence of this is that solutions, in the case where
D is concave, are also superharmonic.

1. Introduction

Let D be a plane domain bounded by an unbounded Jordan arc γ. In this
paper we consider the boundary value problem for the minimal surface equa-
tion

(1.1)







div
∇u

√

1 + |∇u|2
= 0 and u > 0 in D

u = 0 on γ

We shall study the curvature κ = ±|dϕ/ds| for level curves u = C (C > 0)
where ϕ is the angle of the tangent vector to the curve, and the sign will be
taken to be + when the curve bends away from the set where u > C.

Theorem 1. There exists a constant K depending on u such that, if u as in
(1.1) and C > 0, the curvature κ = κ(C) of the level curve u = C satisfies
the inequality

(1.2) |κ| ≤ K

C
.

Further comments regarding the constant K are given in §6.
Our next result concerns solutions whose domains are concave. There is

a literature (see [3] and references cited there) regarding the propogation of
convexity for level curves of solutions to partial differential equations over
convex domains.

However, regarding the possible geometry of D in (1.1), it follows from a
theorem of Nitsche [6, p.256] thatD cannot be convex unlessD is a halfplane
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since (1.1) cannot have nontrivial solutions over domains contained in a
sector of opening less than π. On the other hand, amongst the examples
given in [5], there is a continuum of graphs which do have concave domains;
specifically those given parametrically in the right half plane H by

(1.3) z(ζ) = (ζ + 1)γ − 1

γ(2− γ)
(ζ̄ + 1)2−γ (ζ ∈ H, 1 < γ < 2)

together with the height function 2ℜe ζ. A concave domain D is taken to be
one whose complement is an unbounded convex domain. The boundary of
D is then a curve which bends away from the domain.

In §6 we will verify that the domains for the graphs of (1.3) are concave.
In this note we shall prove the following

Theorem 2. If u is a solution to (1.1) with D concave and bounded by a
C2 curve γ, then the sets where u > C are concave for each C > 0.

This has the curious consequence

Corollary. If u is as in Theorem 2 above, then u is also superharmonic
in D.

2. Preliminaries

For a solution u to the minimal surface equation over a simply connected
domain D we shall slightly abuse notation by using u to also denote the
solution to (1.1) when given in parametric form. We shall make use of the
parametrization of the surface given by u in isothermal coordinates using
Weierstrass functions (x(ζ), y(ζ), u(ζ)) with ζ in the right half plane H. Our
notation will then be given by

(2.1) f(ζ) = x(ζ) + iy(ζ) ζ = σ + iτ ∈ H.

Then f(ζ) is univalent and harmonic, and since D is simply connected it
can be written in the form

(2.2) f(ζ) = h(ζ) + g(ζ) ζ = σ + iτ ∈ H

where h(ζ) and g(ζ) are analytic in H,

(2.3) |h′(ζ)| > |g′(ζ)|,
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and

(2.4) u(ζ) = 2ℜe i
∫

√

h′(ζ)g′(ζ) dζ.

(cf. [2, §10.2]).
Now, u(ζ) is harmonic and positive in H and vanishes on ∂H. Thus, (cf.

[7, p. 151]),

(2.5) u(ζ) = k0ℜe ζ,

where k0 is a positive constant. This with (2.4) gives

(2.6) g′(ζ) = − k

h′(ζ)
(k = k20/4).

Then from (2.3) we have, in particular, that

(2.7) |h′(ζ)| ≥
√
k.

It follows from (2.5) that the level curves of u can be parametrized
by f(σ0 + iτ) for −∞ < τ <∞ and fixed values σ0. Then the curvature κ
corresponding to height σ0 with the sign convention given at the begining
for

ϕ = arctan(yτ/xτ )

is given by

(2.8) κ = κ(σ0, τ) =
dϕ

ds
=

1

(x2τ + y2τ )
3/2

(xτyττ − yτxττ ).
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To compute (2.8) we use (2.1) and (2.6) to write

xτ =
∂

∂τ
ℜe(h+ g) = ℜe i(h′ − k/h′)(2.9)

= −ℑm(h′ − k/h′) = −(|h′|2 + k)ℑm 1

h
′

xττ = − ∂

∂τ
ℑm(h′ − k/h′) = −ℜe(h′′ + kh′′/h′2)(2.10)

yτ =
∂

∂τ
ℑm(h+ g) = ℑmi(h′ + k/h′)(2.11)

= ℜe(h′ + k/h′) = (|h′|2 + k)ℜe 1
h
′

yττ =
∂

∂τ
ℜe(h′ + k/h′) = −ℑm(h′′ − kh′′/h′2)(2.12)

Substituting (2.9)-(2.12) into (2.8) we get

κ =
|h′|3

4(|h′|2 + k)2

(

− (
1

h
′
− 1

h′
)(h′′ − k

h′′

h′2
− h

′′

+ k
h
′′

h
′2
)

+ (
1

h
′
+

1

h′
)(h′′ + k

h′′

h′2
+ h

′′

+ k
h
′′

h
′2
)

)

which simplifies down to

(2.13) κ =
|h′|

|h′|2 + k
ℜe h

′′

h′
.

Summarizing this, we have

Lemma 1. With u as in (1.1) and k0 as in (2.5), then the locus of u = C
is the set ζ = σ0 + iτ , where σ0 = C/k0 and −∞ < τ <∞. The curvature
κ at each point of this level set satisfies (2.13).

The proof of Theorem 2 uses the comparison of κ in (2.13) with the
corresponding curvature κ1 of the image of the line σ0 + iτ (−∞ < τ <∞)
under h. Since arg h′ = ℑm log h′, the formula (2.8) gives

(2.14) κ1 =
1

|h′|ℜe
h′′

h′
.
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3. Proof of Theorem 1

Since f in (2.2) is a univalent harmonic mapping, we may convert the es-
timate from [1, Lemma 1] (cf. also ( [2, p. 153])) for a univalent harmonic
mapping F = H +G in the unit disk U to a mapping of the half plane H.

Lemma 2. Let u be as in (1.1) and f = h+ g as in (2.2). Then
∣

∣

∣

∣

h′′(ζ)

h′(ζ)

∣

∣

∣

∣

≤ A/σ

for some absolute constant A.

Proof of Lemma 2. For the univalent harmonic mapping F = H +G of U,
the estimate of [1] is

∣

∣

∣

∣

H ′′(w)

H ′(w))

∣

∣

∣

∣

≤ A1

1− |w| , w ∈ U

for some absolute constant A1. Now, for f(ζ) = h(ζ) + g(ζ), let

F (w) = f

(

1 + w

1− w

)

, w ∈ U.

Then,

h(ζ) = H

(

ζ − 1

ζ + 1

)

,

h′(ζ) = H ′

(

ζ − 1

ζ + 1

)

2

(ζ + 1)2
,

and

h′′(ζ) = H ′′

(

ζ − 1

ζ + 1

)

4

(ζ + 1)4
−H ′

(

ζ − 1

ζ + 1

)

4

(ζ + 1)3
.

Thus,

∣

∣

∣

∣

h′′(ζ)

h′(ζ)

∣

∣

∣

∣

≤ 2

|ζ + 1|





1

|ζ + 1|
A1

1−
∣

∣

∣

ζ−1
ζ+1

∣

∣

∣

+ 1





≤ 2

|ζ + 1|

(

A1

|ζ + 1| − |ζ − 1| + 1

)

≤ 2

|ζ + 1|

(

A2(|ζ + 1|+ |ζ − 1|)
4σ

+ 1

)

≤ A/σ
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for some absolute constant A. □

Proof of Theorem 1. From Lemma 1, Lemma 2, and (2.7) it follows that, on
the level set u = C,

(3.1) |κ| ≤ A√
kC

.

□

4. Proof of Theorem 2

For convenience, we dismiss the trivial case where u is planar, and hence we
may assume that h′ is nonconstant.

From the given hypothesis, it follows that γ must have asymptotic an-
gles in both directions as z → ∞. By a rotation we may assume that the
asymptotic tangent vectors have directions ±α for some 0 ≤ α ≤ π/2.

From the concavity of D and the assumption that the asymptotic tan-
gents to γ have angles ±α, it follows that yτ ≥ 0 for σ = 0. Thus, from (2.11)

it follows that for σ = 0, ℜe 1/h′ ≥ 0, and hence ℜe 1/h′ ≥ 0. Since, by (2.7)
1/h′ is bounded in H, this means that ℜe 1/h′ > 0 thoughout H. This in
turn gives

(4.1) ℜe h′(ζ) > 0 ζ ∈ H.

Let ψ(τ) = arg h′(iτ). It follows from (2.13) and (2.14) that 0 ≤ κ1 ̸≡ 0
on ∂H so that

(4.2)
dψ

dτ
=

∂

∂τ
ℑm(log h′) = ℜeh

′′

h′
≥ 0 when τ = 0.

By (4.1)

(4.3) −π/2 ≤ ψ(τ) ≤ π/2.

Now, −π/2 < ℑm(log h′) < π/2 in H, and in particular is a bounded
harmonic function in H. So for ζ = σ + iτ ∈ H,

ℑm log h′(ζ) =
σ

π

∫

∞

−∞

ψ(t)dt

σ2 + (t− τ)2
.



✐

✐

“7-Weitsman” — 2023/2/25 — 22:55 — page 1191 — #7
✐

✐

✐

✐

✐

✐

Level curves of minimal graphs 1191

Then

ℜeh
′′(ζ)

h′(ζ)
=

∂

∂τ
ℑm log h′(ζ)

=
∂

∂τ

(

σ

π

∫

∞

−∞

ψ(t)dt

σ2 + (t− τ)2

)

=
2σ

π

∫

∞

−∞

(t− τ)ψ(t)dt

(σ2 + (t− τ)2)2
.

An integration by parts yields

ℜeh
′′

h′
=
σ

π

( −ψ(t)
σ2 + (t− τ)2

∣

∣

∣

∞

−∞

+

∫

∞

−∞

ψ′(t)dt

σ2 + (t− τ)2

)

.

By (4.3) it follows that the first term on the right vanishes, and by (4.2) the
second term is positive. Thus κ1 in (2.14) and hence κ in (2.13) are positive
in H. □

5. Proof of the corollary

We may write the minimal surface equation for u as

∆u+ F

|∇u|3 = 0

where F = F (u, x, y) = u2yuxx + u2xuyy − 2uxuyuxy.
Now, for a given function v(x, y) > 0 the curvature of the level set

v(x, y) = 0 is given by F (v, x, y)/|∇v|3 [4, p. 72] which is positive when
the curve bends away from the interior of the domain. Since Theorem 2
shows that the level sets u = c which bound the sets u > c each have posi-
tive curvature, then applying this to F (u− c, x, y) we find that ∆u < 0 and
hence u is superharmonic in D □

6. Concluding remarks

For the examples (1.3) of §1,

ℜeh
′′

h′
= ℜe γ − 1

ζ + 1
> 0.

for 1 < γ < 2 so that by (2.13) these have concave domains.
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Furthermore, using (2.13), this shows that Theorem 1 is sharp. Regard-
ing the constant K in Theorem 1, the scaling factor k in (3.1) is consistent
with the fact that κ would be rescaled by replacing u(x, y) by cu(x/c, y/c)
for 0 < c <∞.
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