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Effective operators for changing sign
Robin Laplacian in thin two- and

three-dimensional curved waveguides

CisArR R. DE OLIVEIRA AND ALEX F. ROSSINI

We study the Laplacian in some thin curved domains, in the plane
and space, with particular types of Robin boundary conditions and
cross-sections. We derive, when the diameters of the cross sections
tend to zero, nontrivial effective Schrodinger operators on the refe-
rence curve by means of norm resolvent convergences. Besides the
changing sign in the Robin parameter, for which no renormalization
is necessary, another novelty is that the torsion (in the spatial case)
plays no role to effective operators.
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1. Introduction

We study the Laplace operator in some planar strips and three-dimensional
curved tubes, subject to certain Robin boundary conditions; such regions
Q. are built over a reference curve I'(s) by appropriately moving a bounded
cross section along I'. In this paper we investigate effective self-adjoint opera-
tors as the cross-section S (a square in the spatial case) of the region tends
(uniformly) to zero as a parameter € vanishes.

Related studies, with more general cross-sections, as the behavior of
the essential spectrum and eigenvalues expansions in terms of the small
diameter of the model, have also been discussed in the literature, mainly
with Neumann and Dirichlet boundary conditions; see [1, [6, @, 12} 17, 21]
and references therein. There are few works that consider Robin boundary
conditions, as [3] 14} 15, 19] with positive coupling parameters in the plane,
with e-scaled and positive parameters in space [2], and combination of Robin
with other types of conditions [I1].

Here we examine (particular) Robin type conditions, i.e., we investigate
effective operators for the Laplace operator on thin domains whose Robin
parameter v is not constant and changes sign, a situation that has not been
considered in the literature of thin regions (to our best knowledge). See
ahead for detailed descriptions.

Since the domains {2, and I' have different dimensions, suitable identi-
fications are required, and here we will approach effective operators in the
norm resolvent sense. As in other works, their actions can be characterized
by one-dimensional operators that depend on geometric characteristics of
the thin domain, and here new classes of effective Schrodinger operators are
obtained.

With our choice of boundary conditions, the effective potentials (see
the actions of the effective operators for tubes in and for planar strips
in ) may be attractive or repulsive and, with some surprize, in the three-
dimensional case the torsion of I' plays no role in such singular limits!

In what follows we are going to be more specific in the description of
our setting. We formally use

Q

(1) L+ yu =0, on 0f,

S
1l

to introduce our boundary condition, where € > 0 is small and 02, denotes
the boundary of €. In this context, equation should be understood in the
sense of traces. As already mentioned, the function 7 : 92 — R is bounded
and changes sign. In fact, in the study of the three-dimensional case we put
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5 :=~0 L1 (the natural change of coordinates L. for tubes is presented
in (12))), where the bounded function v : 9Q — R is defined on the border of
the straight region @ = S x R, S = (0,1) x (0, 1) (a square). The considered
possibilities of boundary conditions for tubes are the following.

Let a boundary “parameter function” « : R — R be given and we take
the function v : 92 — R on the border of €2 given by

—a(s), (y1,y2) € {(0,1] x {0} U {0} x [0,1)}, s€R
® s = { as), (.9 € ({1} % (0.1100,1) x {1}}, s

Some hypotheses on I' and « will be imposed in Section

For unbounded tubes with Dirichlet condition, it was obtained in [5], via
I'- convergence, that the effective operator (through strong resolvent conver-
gence) is given by

Fs)

Tw=—w"+ <C’(S)7‘2(s) -

> w,  domT = H*(R),

with C(S) > 0, where k(s) and 7(s) are, respectively, the curvature and
the torsion of the reference curve; see Theorem 5 in [5], which was based
on studies of bounded tubes in [1]. By applying the technique of [12, [13]
combined with an additional change of variables, in [8] a norm resolvent
convergence was obtained also for unbounded tubes; related results were
also obtained in [I8] and with minimal regularity assumptions (e.g., some
noncontinuous curvatures of the reference curves are allowed).

Although in the studies of Robin boundary condition in [2] the I'-
convergence was employed, here the method of [12] will be our main tool.
We will then establish a type of norm resolvent convergence to effective
operators in space whose actions was found to be

3)  Tw=—w"+ (—2a%(s) — a(s)k(s)) w, w € domT = H?(R),

see Theorem [2.2] Particularly, note the absence of torsion 7(s) in the effective
potentials (compare with the Dirichlet case [1, 5] and Robin condition with
positive and scaled parameter [2]) and that, depending on the values of the
functions « and k, the potential may be attractive or repulsive.

In the two-dimensional case, i.e., when we deal with unbounded curved
strips over a reference curve I'; a similar analysis is performed. In this case
we study a Robin Laplacian on Q. C R?, under the boundary condition
with 4 = v o f71. It is natural to express the Laplacian in the coordinates
(s,u) determined by the inverse of f described in (7). Now we consider
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the same notation as before, that is, let a boundary parameter o : R — R
be given; then the function v :0Q — R on the border of Q: =R x (0,1)
(straight strip) is proposed to be

B —a(s), (s,u) € Rx {0}
(W e ={ T R )

We have found that, as € — 0, the effective operator for strips with this
boundary condition may be identified with

(5) Tw=-w"+ (—az(s) — a(s)k(s)) w, w e domT = H*(R).

The paper is organized as follows. In Section [2| we present the planar
and spatial models and state our main results in Theorems and (see
also Remark . We introduce appropriate quadratic forms in Sections
which are used in the proofs of the main results. Furthermore, we discuss
some information about the Robin Laplacian on the respective cross sections,
and explain how effective operators are obtained. In Section [5| we introduce
some intermediate, but fundamental, convergences. The proofs of the main
theorems are concluded in Section [6} however, in order to improve readability
of the core of the work, we leave the proofs of some technical steps to three
appendices.

Some notation used in the text. The symbol A C B indicates that A is
a dense subset of B. The curvature and torsion of curves will be denoted,
respectively, by k(s) and 7(s). The norms on L2, L are respectively de-

noted by || - |2, * |lco- We denote by dom g the domain of the operator
or quadratic form g. The norm on the Sobolev space H!(f2) of order 1 is
denoted by || - ||1,2. The outward pointing unit normal is denoted by 7/, so

that % is the outward normal derivative of u (this was already used in this
Introduction).

Acknowledgements. The authors thank the referees for their detailed
work and suggestions that have improved the presentation of the paper.
AFR was supported by CAPES and CRdO partially supported by CNPq
(Brazilian government agencies).
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2. Preliminaries and Main Results
2.1. Strips

In what follows we precise the regions {2, which are modelled by infinitely
long curved waveguides in R?, and state our main results. The general idea
is to consider the curved regions §2. when its cross-section €S diminishes to a
point as € | 0, and study the behavior of the family of operators associated
with the corresponding quadratic forms. Through appropriate identifica-
tions, we will be able to approximate such a family of operators, by means
of a norm resolvent convergence, by a one-dimensional effective operator.
Let I': R — R2: {5+ (TI'1(s),'2(s))} be an infinite planar curve of class
C3(R) and with unit speed, i.e., ||[I'(s)|| = 1 for all s € R. We assume that T" is
an embedding. The vectors N := (—I'5,T'1) defines a unit normal vector field
and the pair (I', N) gives a distinguished orthonormal frame. The curvature
of I' is the scalar function defined by k = det(I',T"). We note that k is a
function of class C!(R). Furthermore, we assume that k € W1 °(R). Let
the curved strip, which is the configuration space Q. C R?, be defined by

(6) Qe = {(z,y) € R* (z,y) =T(s) + euN(s),s € R,u € (0,1)}.

We consider, for small € > 0, that the strips 2. are not self—interS(aﬁting. In
fact, we are introducing the mapping f. from the straight strip €2, where
Q=R x (0,1), to R? defined by

(7) fe(s,u) = T(s) + euN(s),

and make the hypothesis that f. is injective, and since k € L*°(R) the map-
ping f. is a C2-diffeomorphism, whose image 2 = f.(R x (0,1)) has the
geometrical meaning of an open nonself-intersecting curved strip along I'.
The Robin Laplacian we consider, —A% in €, is the unique self-adjoint
operator on L%(Q,) associated with the quadratic form b given by

(8) b (9) = /Q V6P dady + /m Htr (@) doe,  dom b = H'(,),

where the function tr.(¢) denotes the trace of ¢ € domb$* and do. the
one-dimensional surface measure on 0€2.. In terms of natural coordinates
(x,y) = fe(s,u), with (s,u) € 99, we have, by definition, that 4 : 9Q, — R
is bounded (recall ([4)).
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At the end of this subsection we present our main result (Theorem [2.1)
for curved strips. For this, let us begin with the introduction the closed
subspace E of H = L?(Q), which consists of functions independent of the
longitudinal variable u, i.e., let E© C ‘H be the subspace given by

E = {w(s)l;w € L(R)}.

Since the functions in E depend only on s, E can be identified with L(RR).
Hence, we may identify an operator on L2(R) with an operator acting on E
and vice versa.

For each ¢ € H = E @ E* the following holds,

1
(9) &= P(d)+ Ppu(9), with P(¢)(s,u) = /0 o(s,r)dr, ne scR,

where P = P and Pp. stand for the orthogonal projections from L2(Q)
onto the subspaces E and EL, respectively. For future reference, introduce
the linear surjective isometry

7o : B — L*(R) : {wl — w}.

We are now in position to formulate our first main result; in Section [3]
we describe the operator T precisely. For technical reasons, the proof of our
Theorem [2.1| requires that o € WH*°(R) N CH(R).

Theorem 2.1. Consider the self-adjoint operator T. in L2(Q)) unitarily
equivalent to the Robin Laplacian operator —A% in L2(Qe). If T denotes
the self-adjoint operator in L2(R) given by , then for some ¢y > 0 the
uniform resolvent convergence

T.o+e) ' = (a0 (T+e)! LH
H( +c1) [71'0 o(T+ 1) 0770690}3} B(L?(Q))—)O’ e — 0,

holds true, where Og. is the null operator on the subspace E+. The choice
of c1 is done in Lemma[3.]).

The fact that a “big” subspace is discarded in the limit process is what
allows us to identify operators in L?(2) with operators in L?(IR). Moreover,
this identification occurs via a type of norm convergence of resolvents.
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2.2. Tubes

We consider a special e-tubular neighborhood €2 of some curves in R3. It
follows the ideas of the planar model. Let ' : R — R? be a simple curve of
class C3(R) with ||I'(s)|| = 1 for all s € R. The curvature k of the reference
curve I is defined by k(s) = ||T'(s)|, for all s € R. We choose the orthonormal
basis of vector fields (T, N, B) of its tangent, normal and binormal, respec-
tively, and assume that the (distinguished) Frenet frame is globally defined.
The curvature and torsion functions associated with I', denoted by k£ and 7,
respectively, are supposed to satisfy the Frenet equations

T 0 k0 T
(10) N|=|-k 0 7 N | ;
B 0 -7 0 B

the torsion 7 is defined by .

In order to guarantee that the distinguished Frenet frame exists one may
impose the condition k(s) # 0 everywhere, but this is not strictly necessary;
in case k(s) # 0 in a compact interval I, for instance, it is possible to extend
the distinguished Frenet frame to all s by using suitable constant frames
outside I (see [10]).

Consider the set

Qe={x € R3; z = I(s) + ey1 N(s) + ey2B(s),s € R, (y1,y2) € S},

which is obtained by properly translating the region €S along the curve T’
recall that here S = (0,1) x (0,1).

Introduce the Robin Laplacian —A% in Q. as the unique self-adjoint
operator in L2(Q.) associated with the closed and lower bounded quadratic
form F. given by

(11) Fﬁ(zp)—/g \V¢]2dx+/aﬂ Atre(¥)|* do., domF, = H'(Q,),

where do,. denotes the bidimensional surface measure on the boundary 0f);
the bounded function 4 : 92 — R is given by .

The standard strategy is similar to the case of planar strips, i.e., a nat-
ural change of coordinates given by £_! is performed, so that the region
in becomes the straight tube €2 := S x R, which is independent of € > 0.
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Consider the mapping L, :  — Q, for each € > 0,
(12) L(y,s) :=T(s)+ey1 N(s) + ey2B(s) .

Denote B¢ = Be(y,s) = Be(y1,€) := (1 — €k(s)y1); a unitary transformation
will identify the Hilbert space L?(£2.) with L2(2), the latter with the inner
product

(13)  (1,0) = /Q By, )py, )E2Be(y, s) dyds, ¥ 1, ¢ € LE(Q).

In order to ensure that this identification is meaningful, we will assume that
1&]loos || T||o < 00, so that L is a diffeomorphism. For technical reasons,
the results of our main Theorem [2.2| require that 7 € W1°°(R) N C1(R) and
k,a € W22(R) N C?(R); so our hypothesis that I is of class C* (on top of
the assumed existence of a distinguished Frenet frame).

The Jacobian determinant of £, is found to be det VL, = €23, where
Be = (1 — €k(s)y1). Indeed, after some calculations, the Jacobian VL, matrix
is given by

el 0 € 0 T
(14) VL(y,s):==1| e | =] 0 0 € N

€3 Be —Teya Teyr B
where we put

0L 0L, 0L,

~ o eQ:ayg’ T hs

The inverse of the matrix in is given by

€1

)y _ (s 1
Be(y,s) <(y,5) Be(y,s)
2 0 0
0 1 0

Since k is bounded, for € small enough, we obtain that 8. > 0on Q2 =5 x R
and then it follows that L. is a local diffeomorphism. By requiring that L. is
injective (it is usual to assume the tube ). is nonself-intersecting), a global
diffeomorphism is obtained.

Finally, after a suitable identification and by , we take into account
the family as follows {(be + c1)}es0 of quadratic forms in H = L?(£). Since
space E = {w(s)1;w € L2(R)} C H is closed and 7 : E — L2(R) {wl — w}
identifies these spaces, we are able to state our main result in the three-
dimensional case.
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Theorem 2.2. Let B, be the self-adjoint operator associated with be. Then,
for some c1 > 0, the uniform resolvent convergence

H(Be—i—cl)_l— |:7T0_10(T+Cl)_107T0@0EL:| — 0, €—=0,

’B(L2(Q))

holds true, with T defined in and O denotes the null operator on E*.
The choice of ¢y is done in Lemma[].10

Remark 2.3. In the proofs of Theorems (2.1 and[2-3, an intermediate step
will be necessary, and a relevant family of closed subspaces of H will be con-
sidered; this takes into account the first eigenfunction of the Robin Laplacian
on the respective cross sections; see Sections[3.3 and[{.3 for more details.

3. Two-dimensional forms

In the two-dimensional case, the dimensional reduction will be produced
by means of Proposition 3.1 in [I2] together with a uniform convergence of
quadratic forms. In fact, note that the determinant Jacobian matrix of the
transformation fe is equal to €. where 5. = 1 — euk(s) > 0 for € > 0 small
enough.

Initially, we employ the unitary transformation to simplify the strip
region so that we may work in the Hilbert space L?(Q, ¢B.dsdu), where
Q = fc(Qe) (straight strip), but the price to pay is a more complicated action
of the Robin Laplacian —A%.

Next, using the unitary transformation V. below, we can study the
asymptotic behavior of quadratic forms in the Hilbert space L2(£2, dsdu).

Our first unitary transformation is given by

Ue: L2()

L2(Q, eBcdsdu)
¢ :

(15) o=1of,

—
—

This leads to the operator J. = Uc(— A% YU in LQ(Q, €Bedsdu), which is

€

associated with the quadratic form b$}(¢) = b2 (U=1(¢)), and a direct cal-
culation leads to dom b = H(Q, ef.dsdu) and

|050]*
Q /Be

+/a(8) (Itr(e)(s, 1)[*Be(s, 1) — [t(0)(s, 0)[?) ds.
R

(16)  b2(0) = dsdu+ -+ / 10,6[28. ds du
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By means of the unitary mapping

V. : L2(Q, eBe dsdu) — L2(Q) = L2(Q, dsdu) : {¢p — (\/eB)d}

we identify L2(Q, ¢8,) with L%(Q). Note that V.(H(Q, €8, dsdu)) = H'(Q);
since the derivative k& € L°(R), we have that

te(¢) =2 (V. ' (¢), with ¢ € H'(Q),

is well defined. Furthermore, T, = V,(J.)V.~! is the corresponding associated

operator. After some maths, the quadratic form t. is explicitly given by

|05 1
t6(¢):/9 2 dsdu+€2/g|8ud>|2dsdu

+1/ a]tr(¢)‘2y2 do + 1/ kﬁ‘(ﬁp ds du
¢ /oo 4 Jo B?

2 le
+62/Qtjl|ﬂi 162 ds du.

We now introduce the quadratic form #. , with domt, = H'(Q),

te(9) ::/ \68¢’2dsdu—|—12/ ’au¢|2d3du+1/ a\tr(¢)|2y2dg
@ € Ja € Joq
K2 5 1 [ k. -
+/ — ol deU+/ —Re(¢0,¢) ds du
Q 4 € Q/Be

which was obtained from t. by omitting the last two terms and replacing 32
by the constant 1 in the first and fourth integrals.

3.1. Estimates for straight strips

For technical reasons, we will deal with (strictly) positive quadratic forms,
for both strips and tubes. Hence we choose appropriate positive constants
c1, 2 so that the family of quadratic forms @, = t. + ¢; satisfies @, > ¢, for €
small enough. Lemma and Proposition |3.5] provide the main properties
of such quantities.

Lemma 3.4. Under the regularity assumptions k,a € WH(R) N CL(R),

there exist positive constants c1, ca so that the quadratic form ac(= t. + c1) >
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co is closed and bounded from below by co; moreover, a.(¢) > (2¢)72||0.913
for all ¢ € dom ae.

Proof. We begin by recalling the family {t.}cso, domt. = H (),

|05
o B2
L[k, 1 [ k_ -
+/Bﬂddmm+lﬁﬂ%W%@dwﬂ

/2
+e/Q BsRe(qS@sgb)dsdu—i-e / 1 “;J; 6|2 ds du.

1 1
te(¢) = dsdu+2/ |0ucz5|2dsdu+/ altr(p)?vy do
e Ja € Jon

First, the inequality holds

|0s¢]?
o B2

ds du+e/ u—Re (¢0s¢) ds du

k,/2
+€ / 1 ‘ﬂi |p|? ds du > 4\|k’||oo/ 9| ds du

for every e sufficiently small.
We proceed as follows to limit the remaining terms. Let Q¢(¢) denote

0 odedy s ) :
00 Qo) = g [ 10u0P dsdutt [ altre)Prado

+1/Q§€Re(¢3u¢>)dsdu.

€

By using integration by parts we obtain
1 k -

(18) — [ —Re(¢0,¢)dsdu
€Ja Be

k? 1
:_/Qzﬁﬂdzdsdu—i—e/ 53 |tr(¢)|?ve do

so that 1' becomes, where ap = a + %,

(19) Qc(p) = 612/9 ’8u¢’2 dsdu + 1/39 ak‘tr(¢)|2yg do

1 cuk? 9 9
- - d
w1 [ Sa@)Puas /%mwsu
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and we have used that % (ﬁi — 1) = E“k . By symmetry, we can verify that
fc‘m |tr |2v5 do is positive. Since BE — 1,6 — 0, we find that

k;2
— ¢2dsdu2—k2m/ o> ds du
| 3514 1821 [ 1o
and it then follows that
(20) Qc(9) > —||ak!|§o/9|¢l2dsdu— IIkIIZo/Qlcblgdst-

Finally, we may choose ¢y = [|ag % + [|k[|% + 4[|k’ ||c + 4/|K"]|%, so that

t(0) =~ [ o dsdu, € domt..
Q

To apply Friedlander-Solomyak technique, we consider positive quadratic
forms. Then we can choose ¢; = 2¢s, to obtain

te(¢) + cllgll3 > call9]13.

In view of inequality and the fact that 8. — 1 uniformly as ¢ — 0, one
can choose ¢y small enough such that, for 0 < € < ¢y, there exists L > 0
(independent of €) such that

(21) e/Q que(¢8s¢) dsdu

> 4]l / (612 ds du — 4eK . / 0,62 ds du
Q Q

and
2
(22) ’asf| dsdu—4e\|k’|yoo/ |056|* ds du
Q Be Q
> L/ 050> ds du > 0.
Q
Furthermore,

te(¢) +eillo3 = 20)720ugll3 and  te(¢) + i3 > Llsoll3

with the latter inequality obtained thanks to ¢; > 0 and . Note that the
above proof allows us to obtain a constant ¢ > 0, for e small enough, such
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that [|¢[|f 5 < &(te + c1)(¢), for each ¢ € H'(Q). Thus, the quadratic forms
in the family {t. + ¢1}es0 are closed.

Similarly, one may check that the lemma holds true for the sequence
{t:}c defined by

¢):/ ]85¢]2dsdu+12/ lﬁuqb\zdsdu—irl/ altr(¢)Pre do
Q € Q € Jon
k% 1 [ k_ -
+/ —| o dsdu+/ —Re(¢p0,¢) ds du
Q 4 € QB&

i.e, one gets t.(¢) > —cal|¢||? for all ¢ € HY(2). To verify that a. =t + c;
is closed, just note that there is a constant d > 0 such that ||¢H <d ZL (9),
for € small enough. O

Proposition [3.5 justifies the option of the family {a.}.~¢ instead of origi-
nal {t. + ¢1}e>0. The choice of the constant ¢ is from Theorem 1 in [7] and
the uniform convergence . — 1. Let A. denote the self-adjoint operator
associated with a..

Proposition 3.5. Let ¢, ¢y be the constants obtained in Lemmal[3.4 Then,
for € small enough, there exist 6,6 > 0 so that

[(te+ e1)(9) — @c(9)| < (e0) acl@), o € domt,

St
a

T, +c *1—A;1H <
Jresen )

Proof. Tt is enough to verify the hypotheses of Theorem 1 in [7]. For € small
enough, we have the inequality ||3:2 — 1|ls < €E with E > 0 depending only
on ||k||so. Then

2
(et e)(@) ~ a0)| < (eB) [ oo dsdut (@) [ Hlosdu
? e

T |p)? ds du| .

+

K
A u@Re(gZ)@sqS) dsdu + € /



1240 C. R. de Oliveira and A. F. Rossini

Now we estimate

2 |k"|2

4 54

< 4e|¥ ] [ J |as¢|2dsdu] el [ 10 dsdu
Q Q

u—Re (p0sp) ds du + €2 / |¢\2dsdu‘

and for 6 = 1+ E + 4||K'||s + 4||||%,, we may produce

—a € 2dsdu € kj 2dsdu
(et e)(®) — ac0)] < (60 [ 0.0P dsdu-+ (50) [ Frlof s
+(00)[2641 1 + 41 )] [ 10 ds .

In the proof of Lemma [3.4] it was found that

1 1
2/ yau¢|2dsdu+/ altr(¢)Pre do
e Ja € Jon

+/ ZRe(¢8u¢)dsdu+2(2\aky§o+2||k|y§o)/ |92 ds du > 0.
Q €Pe Q

Thus, |(tc + c1)(¢) — ac(¢)| < (5€)[te + c1](¢), and an application of Theo-
rem 1 in [7] completes the proof. O

3.2. Robin Laplacian on the interval

Some results for Robin Laplacian —Al on the cross-section I = (0,1) are
presented for a constant parameter o € R; in particular, we briefly discuss
its self-adjointness. Assume that

(23) —'(0) —a1p(0) =0 and /(1) +adh(1) =

and let dom (—AL) = {x) € H?(0,1); ¢ satisfies }, where —A! has the
usual action of (weak) second derivative in L2(I). This operator is associated
with the sesquilinear form b, > —|a|? in the Hilbert space L2(I) given by

w(6.0) = [ T ) dy + o (TR - FOHO)),
®, wedomba_Hl (I).

By following an idea in [14] and [16], Example VI. 2.16, a proof of Theo-
rem is obtained (since it is standard, it will be omitted here).
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Theorem 3.6. Let o € R. Then, the above Laplacian —Aé 1s the unique
self-adjoint operator associated with be,.

Now we present a short discussion about the eigenfunctions and eigenva-
lues of —AZ; we only discuss the case a # 0 and this will be very important
ahead (see the next section and Section 4.3). Denote by —AL and —AL; the
usual Laplacian in L?(I) with Dirichlet and Neumann boundary conditions,
respectively. The eigenvalues of —AZ are given by

with corresponding normalized eigenfunctions

1/2
(24) do(y) =ce ¥, with ¢= <2a> ,

1—e 20
(25) bnly) = 77 (6N ) — vl ).

(n2mw2 + a?)

nm

Here 2 (y) := v/2sin(nry) and Y (y) := v/2 cos(nmy) for n > 1, are eigen-
functions of —AL and —AZL;, respectively. The collection {¢,}>°; U {¢o} is
an orthonormal basis of L2(T).

3.3. Effective potential and operators: interval cross-section

As already mentioned, there is an intermediate step in the proof of Theo-
rem It consists of an application of the technique of [12], and the choice
of a secondary closed subspace H, of H, along with the orthogonal decom-
position H = H, ® Hel

In what follows the subspace H, will consist of the functions w(s)$§ with
w € L2(R); we have denoted by ¢§(s,-) the positive normalized eigenfunc-
tion corresponding to the lowest eigenvalue )\676(3) < 0 of Robin Laplacian
—Al (o m L2(]), with o = a + §, that is,

e~ (s)u

<f01 ‘e—eak(s)uP du> 12"

Of course, we may consider a linear surjective isometry m. from H. into
L2(R), defined by

He = {wghiw € LX(R)} with  ¢f(s,u) =

(26) 7o : He — L2(R) : {wof — w}.
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In order to explicit an effective potential, let ¢ € H = L?(Q), so that we
have the decomposition

d=w(s)ps+ b with we§ e He, ¢ € HE.

From such a decomposition, we can conclude that w(s) = fol P du; more-
over, wg§ € H'(Q) whenever ¢ € H'(2). The hypothesis ¢ € HL implies

1
/qzﬁf)qﬁj_(s,u)duzo a.e. seR.
0

Assuming, in addition, that ¢, € H'(f2), then one can differentiate such
identity to get

/01 o6(s,u)0sh 1 (s,u)du = — /01 0595 (s,u)py (s,u)du ae. seR.
Next, the restriction @|q_, with de = {w¢§; w € HY(R)} C H,, implies
autuwdt) = [ (1P + ol VT + ) ds
with effective potential V. (s) satisfying the uniform convergence
Vel 5 vell(s) = —a?(s) — a(s)k(s), €—0.

Indeed, let ¢ = w¢f, with w € H'(R); then by integrating by parts and
Theorem [3.6]

(27) /Qlassbl%lsdu:/R<|w’|2+|w|2 [/I|83¢5|2du]>ds,

1 2 1 2 _ 2 2
@) [ PoPdsdust [ an@Prdo = - [ o) s
(29) % /Q gﬁRe(q_Sﬁugb)dsdu—l /8 Ql;tr(¢)|2qua

€

€12
:/kak|w2 [1— 196l du] ds.
R I BE

Under the assumptions on the curvature function k£ and since S, converges
uniformly to 1, we have uniform limits

_ [ 1% }
[1 /Iﬁe du| — 0.
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Therefore,
(@) = [ (10 o+ [P Ve + ) ds,
R
where

k2 (s)
1

eff _ €12 2 - W
VY (s) = [ |0sd5|” du — az(s) + k(s)ag(s) |1 du| +
I I 56

which is obtained from (27)-(29), with VT — Ve uniformly.

In what follows, let us denote by ¢. the quadratic form identified with
dela., defined in domg. = H'(R), and let T, be the associated operator.
Explicitly,

aelw) = [ (10 + [V + calul?) ds,
R
T, (w) = —w" + VT 4 elw,  we HA(R).

Let ¢ be the quadratic form, bounded from below by cs,
g(w) = / (lw/[2+ [V + cr]fwf?) s, domg = H'(R),
R

whose associated effective operator is given by [T+ ¢;], with

d2

(30) T:—@Jrveff, domT = H*(R).

Now we are in a position to prove the following results.

Theorem 3.7. Suppose k,a € WH°(R) N CH(R), then the following con-
vergence holds true

H(qu)il — (T + Cl)il”B(L?(R)) — 0, e—0.

Proof. If u,v € H'(R), then
‘<(Tqé)1/2u, (qu)1/2@> — <(T +en)Y2u, (T + Cl)l/2v>‘
NVET = Vol oozl
since

(T 20, (T, 20) = (T + )2, (T + e0)20)| = Jac(u,0) = g(u,v)]
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and
Jge(u, 0) = q(u, 0)] < VT = VIl ull2[fv]l2 -
Taking u = (T + ¢1)"'g and v = (T,)"'h, with g,h € L}(R), we have
(T +e)g.h) = (9. (T,) )|
< (I + ) HIVET = VTl ()~ 1) 1R gl
Therefore, by letting € — 0,

T 71_T+c 71H <c—2 ‘/;eff_veﬁoo_>07
| =@ e, i, <27 [

and the proof is complete. [l

Corollary 3.8. Consider the restriction q. = ae|q,,de = H,, with associated
self-adjoint operator Q. > ca. Then, Q. = m_ ‘o (Ty.) o e, and

o7 e0] - [ o s ey o], 0 e

Proof. Tt is enough to note that

o o0] - ot oo

<@ =@+ e

(L2()
B(L*(R))
0

Lemma 3.9. Let (T +¢1)~!: L2(R) — L2(R) be as in Theorem|3.7. Then,

H {77;1 o(T+c1) 'ome® 0] - {W(;l o(T +c1) " om @ OEL} HB(L2(Q)) =0,

e — 0,

where 0 and Og. are the null operators on the subspaces Hg‘ and E*, respec-
tively.
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Proof. Let ¢ = P(¢) + Pr.(¢) and ¢ = wof + ¢, with ||¢|| = 1 (recall that
P = Py and Pp. denote the orthogonal projections onto E and E, respec-

tively). Then,

H[ o (T +er) ™ ome®0](9) = [mg" o (T +e1) OWO@OEL](@‘LZ(Q)

BT+ er)w = (T + 1) P(9)|

L2(Q)

By the triangle inequality,

BT+ er)w — (T + 1) 7 P(9)|

L2(Q)

< Hég(T+ c1)tw — (T + 01)_110‘ @)

(T + ) o = (T + )7 Pl)| .

The first term on the r.h.s. above vanishes as € — 0. Indeed, given § >
0, by means of uniform convergence, there exists €y = €g(d) > 0 such that

9§ — 112 < m, whenever 0 < € < €. Therefore,

166(T + e1) 7w — (T + e1) "l [f g

—/ oG — 1\2](T+01)_1w]2dsdu
Q

52

<— (T +¢) ! 2/ wl?ds < 6°.
H(TJrCl),lHQll( 1)l R| |

The remaining term can be estimated as follows:

|+ e P(e) - (T + clrlem)

- ( / (T + 1)~ (w = P(@))[2ds du) v

<HT—|—01 </|w P(¢ |2ds>1/2.
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From the discussion in Section and @, for 0 < € < €p, we have

r-mrs) [ s )
< /01 (/R|¢’2|¢6_1’2ds>1/2du

< 8/II(T + )M

Hence, given 6 > 0, there exists €y such that, if 0 < € < €,

H [We_l o(T+c) tom @ 0} (9)

_ [wgl o(T+c)) toma® OEL] (gb)‘ <20,

L2(Q)

and the proof is complete. O

4. Three-dimensional forms

As in the planar case, the first step will be to “straighten” the tubular region
via a unitary transformation Ug,

U, : L2(Q0)

L2(Q, 2B.dy ds)
o .

(31) S

—
—>

This leads to the operator 2 = Ue(—A%)Ugl, which is associated with the
quadratic form a. given by

ac(v) :=Fc(vo L), doma. = H'(Q);
see for the definition of F.. We write the gradient of v in the form
(Vyv,v'), being v the derivative with respect to the third variable s € R.

Now we present the action of the quadratic form a.. For each v € dom a,
put v = U_ v, so that

/Qe \Vep(z)]? dz = /R/S(|Vv(s,y)VC;l(y,5)|2)e2ﬁEdyds

[

! 2 BE 2
v'+ (Vyv- Ry)T| + :2|Vyv| dyds
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0 1
-1 0

By following [2], let y = y(t) be a piecewise C'[0, 1] parameterization of
the boundary 95 of S, counterclockwise oriented; then, with ¢ = one has
the following parametrization

wherein R is the clockwise rotation matrix
dy
dt

o [0,1] xR — R3

(32) (ts) = Loy(t)s)

of the surface 99, in R3?, and since

do. Oo. r N B
il 0 i) e
Be(y(t),s)  —7ya(t) Ty1(t)
one has
doe Do 2 L 2 2(r .2 2
(33) 5 < Bs :6(\/BE+ET (Y- y) ):e(BEJre Te)

for which a Taylor expansion of the square root gives, for the function
Te(yvs)a

(34) re>0 and |r.— T;(y -y)?| < Cie.

It follows that the boundary integral is given by

@) [ Alr)do)
// $)tre(v o L) (Le(y(t), 8))|? aa? %O;G dtds
// 8)|tr(v) (y(t), 5)2e(Be(y(t), 8) + re(y(t), 5)) dt ds

A /8 Svltr(v)\ (e + Erdo(y)) ds
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Thus, for all v € dom a,,

oAl

/ / e () (y(t), ) Pe(Bely(t), 5) + Erely(t). s)) de ds.

! 2 BE 2
v+ (Vyv- Ry)T’ + :2|Vyv] dyds

Since v € L>°(01), as in (33)) and we get

(36) ‘ /a Al dofa)

—6/ (/ ~tr(v)? <ﬂ6+2272(y Y) )do(y)> ds
<cie [ [ it astas

By virtue of , we define the quadratic form a. : H'(€, €23 dyds) — R,

o e
w [ ([ et (s + - 0?) ot ) as

2
v+ (Vo Ry)T‘ + f;\VyUF] dyds

and we have

(37) Fe(vo L) = ac(v)] < € Caf|v]i,.
Next, we consider the unitary transformation

(38) Ve L2(Q, 2B dyds) — L2(Q) : {v — (V2B )v}

and we investigate the asymptotic behavior of the family of quadratic forms
{be : dom b, — R}e~q, in L2(Q), given by

be(v) := a. (V- 1w), domb. = V. (doma,) = H'(Q),
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whose associated operator is B, = VeﬁleV; 1 where Qle is associated with a..
A direct computation gives

be(v) = /9512 v +7(Vyv- Ry) — 55 (5 +7(V yﬂe-Ry)>

b [ waekasast [ (f Sv\tr(v)\Qda@)) as
/|U|24B2 dyds — /Re( U 5 y5€> dyds
+e/R2 (/asfytr(ﬁe)’ (y-y)zda(y)> ds.

Finally, we introduce the quadratic form 36, which corresponds to a sim-
pler version of b., domb. = H'(Q), with action

2
dy ds

2
dy ds

v+ 7(Vyv- Ry) —

35 (Bl 7(y 6 Ry))

1 1
+ / V,u|? dy ds + /R (/asfy]tr(v)]Qda(y)) ds
/\v|2 dyds—/ Re <V v - B yﬁe) dy ds.

4.1. Estimates for straight tubes

Analogously to Section we get other positive constants, also denoted by
c1, 2, related to the family of quadratic forms b = b, 4 ¢1, whose properties
are listed in Lemma and Proposition [4.11

Lemma 4.10. Under the regqularity assumptions T € WH°(R) N C1(R) and
k,a € W2°(R) N C2(R), there exist positive constants ci,cy such that be =
be + 1 is a closed and lower bounded form by co (i.e., be > c2); moreover,
be(v) > (2€) 72| V0|3 for all v € dom b.

Proof. We are going to show that there exist positive constants ¢y, co, in-
dependent of €, such that be(¢) + c1]|¢]|3 > cal|¢||3, which implies that the
operator B, + ¢ is strictly positive. We will use that 1/2 < 5. < 3/2 for €
small enough.



1250 C. R. de Oliveira and A. F. Rossini

After some calculations, we get

[ 5 ([ Frwira i) s =10+ 150

where
2
. e [T
150) = § [ 5 (TuloP - (asdant)) dyds
Q Me
(39) 2 k 2
5(v) = < T a|v|2dyds.
? 2 Jo B2

Now we estimate each of the terms in . We claim that there exists C3 > 0
such that

(10) [ 5 ([ Fewra- s as
z-—cg[jg(h;2+\vyvﬁ)dyd4.

Indeed,
15 = <Ca | [ (P +19,0) ayats|
where C1 = 1 4 2||72||so ||/l oo~ On the other hand, for 0 < € < €1 < \/%Tl’ we
get
(41) i) < <1 [ (10 + 5121900 ayas.

For the other term we have
(42) 150 < 2Ca [ o dyds
Q

with Co = 1+ ||a/oo||£|/oo]|72||oc- Then we can take C3 = C; + 2C3 so that
holds.

Use integration by parts to establish the equality

(43) —;Am%%wgVM)@@

€

——/‘H|Pdd+1/ LTI
— 925627] yS c 89266 v 1 d0o.
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By the very definition of v (see (2)) it is found that

ay L aeerar =1 ([ szi@Pam) o
-1 | St

where 75, is given explicitly in . From —, we have that

ylk2 2
/ tr(v)|*v1 do > 0,
20
[%9) €

then from get the inequality
1 1

1) 00> 5z [ 1VPayas+ 7 [ ([ sale)Paow) as
2¢% Jo € Jr \Jos

1
— (Cs +2|IKlI3) / [ dy ds + (2 7~ cg> / Vyol* dy ds.
Q € Q

A similar argument as in Lemma [3.4] produces the lower bound

1 1
22/ \Vyv|2dyds+/ </ 72k|tr(v)]2da(y)> ds
€ Q € Jr oS

> Aflok]2 + oll%) /Q [v]? dy ds.

Finally, it follows from this last inequality and that
be(v) > —C4/ lv|* dy ds + C5/ IV, 0l* dy ds
Q 0

where Cy = C3 + 4]|ag||% + 4] a||% + 2||k[|% and C5 = (55 — C3) . Now, by
choosing ¢y = 2¢o, with ¢o = Cy, one has

be(v) + c1||v]|3 > eo||v]|3, Vv € doma;

since Cs > 0, for 0 < € < €3 < 1/24/C3, we have C5 > (2¢)~2. This means
that for 0 < € < min{ey, €2},

(46) be(v) + c1|[v]|? > (2¢) 72| Vyv|l3, Vv € doma,.

For the quadratic form /b\e, we perform similar estimates. It is worth men-
tioninAg that we can choose the same constants cq, co as above when we deal
with be. O
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Proposition 4.11. Let c1,c2 be the constants in Lemma[{.10, Denote by
Be, Be the operators associated with be > —co and be > c¢a, respectively. Then,
for € small enough, there exist A, A > 0 so that

‘(be +er)(v) — I;E(v)‘ < (eA) be(v), v e domb,

< eA.

H(BE ) - BE_IHB(L%Q))

Proof. First, we have that |32 — 1|joc < Ce, with C > 0 depending only
on ||k||~. Letting

@ L= |

one has

2

Y dy ds

2

o +7(Vyo - Ry) — 5 (8 +7(Vyfc Ry))

‘(be—i—q)(v)—f)e(v)‘ < (Ce) [Ie(v)—i—/glf|v2|dyds]

/RT; </857|tr(ﬁi)|2(y'y)2da(y)> ds

By Lemma [4.10] (see also (1)-(2)), we can infer the estimates (for e small

enough)
[ 5 ([ A G20t as

1
< [203/ |U|2dyds+/ 22|Vyv|2dyds}
Q O «€

+e€

(48)

1
(49) (2C3 01)/Q lv|? dyds < 262/Q|Vyv|2dyds

ret [([ atm@Past)) as

_ 2 / Re (vyv.”vy5€> dy ds.
Q ﬂe
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Therefore, for € small enough, the inequalities — imply

(be + €1)(v) = be(v)

- k2

< (Ce) [Ie(v) —|—/ vﬂdyds}
q 4
~ k2
+e [be(fu) - (IE(U) +/ 4]1)2]dyd3>}
Q

< €(C +1)b(v).
By applying Theorem 1 in [7], the proof of the proposition follows. O

4.2. Effective potential and operators: square cross-section

We introduce an effective potential function Veg with corresponding effective
operator for our Robin tubes, in a similar way we have done for strips, with
technical details left to Appendix [B] For the restriction of the quadratic
form b, to d. = {wuf;w € H'(R)} C H, we have

(50) be(wup) = / (1w ()12 + Ve (s) + eallw(s)?) ds
and the following uniform convergence holds
e}—>1/eﬁ:—2a2—ak:, as € — 0.
By identifying d. with H'(R) via the unitary transformation . (26)), for
simplicity we consider the restricted form g, = b|d. > ¢3 in L2(R),
Ge(w) = /R (W' + [PV + ea]) ds,  domge = HY(R),
and let 75, be the self-adjoint operator associated with g, that is,
Tj(w) = —w" + [Vig + eiw,  domTy = H*(R).

Since V& — Vegr, it is natural to define the form ¢ : H'(R) — L*(R), § > c2,
by
aw) = [ (P + Vi + ) ds
R

with associated self-adjoint effective operator [T + ¢1], where

d2
(51) T=—g5+ Ve, domT = H*(R).
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We have the following auxiliary theorem for the process of reduction of
dimension, whose proof is based on estimates similar to those presented in
proof of Theorem The family {H,}eso of closed subspaces of L2(S x R)
is introduced in Section

Theorem 4.12. Suppose T € WH°(R) N CH(R) and k, o« € W23*°(R) N C3(R);

then the following convergence holds true:

HT{1 — (T + Cl)ilHB(L?(R)) —0, €—0.

Corollary 4.13. Consider t@e restriction q&: Be‘de, d¢ E He, and the as-
sociated self-adjoint operator Q. > ca. Then, Q. = .1 o (Ty) o me, and

A—1 -1 ~1
. EBO}—[WG o(T'+c OWGEBO}H —0, e—=0.
H [Q ( ) B(L2())
Proof. Tt is entirely analogous to the proof of Corollary O

Lemma 4.14. Let (T + c1)~ ! : L2(R) —L2(R) be as in Theorem. Then,

H |:7['E_1 o(T+c¢)) Lo EBO}

_ {WO_IO(T—Fcl)?lOT(O@OEL”‘B(LZ(Q)) —0, e€e—0,

where 0 is the null operator on the subspace HEL and 0. the null operator
on E+.

Proof. Analogous to the proof of Lemma [3.9 (]
4.3. Robin Laplacian on square

In order to apply the technique for dimensional reduction of [12], we need
a “good choice” of a family of closed subspaces {He}eso of H = L2(Q2), Q =
S x R (straight tube). Denote by u§ the normalized eigenfunction associated
with the lowest eigenvalue Ag . <0 (see ahead) of the Robin Laplacian in
such cross-section S (see (52))), we pick

He = {w(s)uj(y, s);w € L2(R)}.

Since the boundary 95 is piecewise C![0, 1], in we take the parametriza-
tion y(t) = (¢,0) U (1,t) U (1,¢) U (0,t). We shall refer to problem as the
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(cross-section) Robin problem with boundary parameter oy = o + %,

) { ; ~Ayu=Xu, inS
8% +(evs,)u =0, in O
where
—ag(s), (y1,92) € (0,1] x {0},
6 =0 oG G el i)
—a(s), (y1,52) € {0} x [0,1).

Note that we can recast the boundary condition in as

—%Z(yl,O) — eag(s)u(y1,0) =0 —gul(O,yg) —ea(s)u(0,y2) =0

u

o0 (1,y2) + ea(s)u(l,y2) =0

aiw(yla 1) + Eak‘(s)u(yla ]-) =0

By the definition of 75 in , we have

ug(s,y) = ¢5(s, y1)vg(s, y2)
with

B5(5,y1) = ce(8)e N and  Yf(s,y2) = ce(s)e”v=e

I,
ea(s)’

being the corresponding normalized eigenfunctions of —Agm ,—A
). Since

where I; = 1,1 =1,2 (cc(s) is a normalization parameter; see
S =1 x I, we have

A5e(5) = Ale(s) + Agi(s) = —(ean(s))? — (eals))™.

In Proposition [4.15| we give additional information about the eigenfunc-
tions of the Robin Laplacian —AI% on the square cross-section; it was moti-
vated by Proposition 1, page 264, in [20].

Define the Robin Laplacian —A% as the unique self-adjoint operator
in L2(9,dy) associated with the quadratic form

= ul? ey Vul?do omb = H(S).
b(u)—/S|V|dy+As<vak>|\d<y>, domb = H(8)
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Proposition 4.15. Let S =1 x I and ~y;, as in . Then,

Dpr = {u;u € C*(S) with gZ(y) +ev5, (W)uly) =0 in 85}

is a core of the operator —AISDL, and if u € Dg then

?u 0%

CASy = T
R oyt Oy3

Proof. Initially, since C3°(S) C Dg, then Dy C L2(S). Consider the sym-
metric operator B = —A, dom B = Dp; an integration by parts gives

(u,Bu):/Su(—Au)dy:/S|vu\2dy—/asugz do(y)

— / Vul*dy + / et Jul? do (y).
S oS

Since {¢,,}22, is an orthonormal basis of L2(I) constituted of eigenfunctions

of —Agakgs), see Section then {¢n(y1)Pm(y2)}ns = is an orthonormal

basis of L#(.S) formed by eigenfunctions of B. By Theorem 2.2.10 in [4], B is

essentially self-adjoint and its closure B is its (unique) self-adjoint extension.
Now, consider the closed and lower bounded sesquilinear form

) = [ FulgVoldy + [ (s Jmte) doy), wo e H(S)
S oS
By definition,
b(u,v) = (u, —AZv), ¥ uec H'(S),v € dom(—A%).
But, for each v € Dgr C H?(S) C dom b, we have
b(u,v) = / VuVudy + / (ev5,)tr(w)tr(v) do(y)
S oS
= / u(—Av)dy—i—/ w(Vv-v)do(y) —|—/ ueyy, vdo(y)
S oS oS

= /Su(—Av)dy.

Then it follows that v E dom(—A%) and —A%]domg = —A, thus B ¢ —A%,
and we obtain that B = —AIS%. O
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By Proposition for each fixed s, uf(y, s) is an eigenfunction of our
cross-section Robin Laplacian —A%, since uf(+,s) € Dg. Recall that uf is
associated with the first eigenvalue given by

Noe(8) = Agie(s) + Agi(s).
Furthermore, the second eigenvalue )\f is
AT (s) = A 4 A (s) = 2 — (ea(s))”.
5. Intermediate convergences

For each ¢ € dom @, we can write ¢ = w(s)@§ + ¢ (s,u), with w € H(R),
¢, € HY(R x I) N'HL. We may decompose the quadratic form . as follows:

de(ﬁb) = de(w¢’6) + d€(¢L) + 2Re[d€(w¢67 ¢L)]7 ¢ € dom de-

Suppose, for a moment, that the family {ac}eo, satisfies the following esti-
mates, where M is a positive constant,

(59) a6 = callocl ¥ o= wh € de = H'(R x 1) N Hes
2
(55) ac(#) = Slel3, ¥ =oued = H'(Rx D)NHE

(56) | @c(de; ¢)* < (Me?)ac(de)ac(¢), ¢ = de + ¢ € dom ae.

Similarly, suppose for the family {b}eso, with b, = wuf and ¢ = 1), that
there exist other constants co and M’ for which

(57) be(pe) > ea||Yell3, ¥ e € de := H'(S x R) N Hy;

(58)  be(y) >

%Hweng, VYt € d€ = HY(S x R) NHL;
(59) | be(the, ¥)|* < (M'e)be(e)be(¥°), ¥ = e + ¢ € domb.

Then, by invoking Proposition 3.1 in [12], we have Theorems and
below, whose details of the proofs are left to Appendix [A]
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Theorem 5.16. There exists D > 0 such that, for e small enough,

HA;I - [Q;l & 0} HB(H) < De, withH = L3R x I),

where 0 s the null operator on the subspace Hel, A, the operator associated
with ac, and Q. (see Corollary@ the operator associated with q. = ac|d..

Theorem 5.17. There exists D > 0 such that, for € small enough,

Hf};l . [Q;l ® o} HB(H) < De, withH = L*(S x R),

where 0 is the null operator on the subspace Hﬁl, B, the operator associated
with be, and Q. (see Corollary the operator associated with §. = be|d..

It is important to note that Theorem (planar strip) allows us to
derive a kind of norm convergence of resolvents, i.e., rigorously we can give
an answer to the question of how is the approach to effective operators
whose potential is expressed in terms of our Robin boundary conditions and
geometrically induced terms from the original model. In this sense, we say
that T, in L2(Q) converges to 7 in L?(R) in “norm resolvents sense,” where
T = —g—z + Veff. For Theorem we have a similar interpretation for our
tubes.

6. Proofs of Theorems [2.1] and 2.2]

We begin with some results that actually implement the dimensional reduc-
tion, the first one for strips and the second one for tubes.

Theorem 6.18. Consider the self-adjoint operator T, in L2(2) (see Sec-
tion@ unitarily equivalent to the Robin Laplaczcm operator —AQﬁ in L2 ().
If T denotes the self-adjoint operator in L2(R) given by (f . or . then

H(Te—i—cl)_l—[ o(T+e1) tom @ 0, €0,

0} HB(LQ(Q)) -

where 0 is the null operator on the subspace Hﬁ‘
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Proof. We are going to use the same symbol H H to indicate all involved
norms. By the triangle inequality, Proposition [3.5] Corollary [3.8] and Theo-

rem [5.16] we get
H(T6 +e1) - {77;1 o(T+a) tom.® O] H
< fjerer ey — A7 4[4 ~ ot e |
e w0~ fo st

and since each term tends to zero as € — 0, the result follows. O

Theorem 6.19. Consider the self-adjoint operator B, in L2(Q) (see Sec-
tion associated with be > —co. If T denotes the self-adjoint operator in

2(R) given by or (1)), then

H(Be—kcl)_l— [Trglo(T+c1)—lowe@oL 50, €0,

] HB(L2(Q))
where 0 is the null operator on the subspace HEl

Proof. Let BE,Q6 be the unique self-adjoint operators associated, respec-
tively, with be > ¢2, Ge := be la.. By triangle inequality,

H(BE + 01)_1 — [7&_1 o(T+ c1) tom @ 0} H
<im0+ 5 - o o]
+H[Q;1@0} — [wglo(TJrcl)*lows@O”)

and an application of Proposition Corollary and Theorem [5.17]
completes the proof. O

Note that Theorem [2.]] follows by combining Theorem and
Lemma whereas Theorem [6.19) and Lemma [.14] prove Theorem [2.2] -

Appendix A. Technicalities
A.1. Proof of Theorem [5.16

By definition, inequality holds. Relation will be obtained by the
minimax principle, since ¢§ L ¢, in L(I) for almost all s € R. By recalling
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1

€ )

the action of the form a. for each ¢, € H

Lemma

we have (by chosen ¢; as in

ae(¢J_) Z

612/R [/01 0wy |* du + Eak(s)(hr(ﬁh)(sa D? — |tr(¢L)(5,0)\2)} ds.

By the minimax principle (see Theorem 11.4.28 in [4]) and Theorem

I
(A1) (01) 2 54 [ JouP dsau

here the quantity A = 72 (see Section [3.2)) is the second eigenvalue of the
Robin Laplacian operator —Agak(s) with boundary condition

—1/(0) — ear(s)1(0) =0 and (1) + ear(s)i(1) = 0.

Nondiagonal part:

The goal now is to check (nondiagonal part). Given ¢ € H(2), we
can write ¢ = weg + 1, where n = ¢ . Consider the family of eigenfunctions
{#§ }e>0; we denote by I§ the sesquilinear form

- 1 - 1 _
L(oy) = /Q 05 p0s¢p ds du + — /Q D0yt ds du + ~ /8 Qaktr(¢)tr(1/1)y2da

€

and since [;(9sn)¢f du = — [;n(0s¢f) du, a.e. s € R, and [0s¢f| < Clpf| with
C > 0 independent of ¢, we have

1w, )] <
/Q ! $5041 + wdden] ds du < C(lwllvallnllz + ellwll2Burl2)-

Thus, by Lemma and (A.1)), there exists M > 0 (independent of €) such
that

|1E (o, m)| < (M) (@c)[od'/? (@) [¢]">.

Let

1 k - - 1 k-
2o = ¢ [ grliow+odldsdu—7 | Su(@umdo
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upon integration by parts we obtain

/8 ) gtr(gz)tr(u})yz do = /Q g[q&%u} + Ougy] ds du

and so

k2
IZ(weh,n) = /Q %[wgauwrnau(qug)] dsdu.

Since k(s) and B(s) are bounded functions, there exists C > 0 such that
for € small enough (after combining with Lemma we get

112 (wdy,m)| < C / g§un] ds du < (€C) e fwab] e [n] /2.
Q
We finally obtain
lGe(wdly M) < (Me)alwdt)cln-

Thus, it is enough to invoke Proposition 3.1 in [12] to complete the proof of
Theorem [5.16l

A.2. Proof of Theorem

First we check the conditions , and ; then we complete the proof
of the theorem by applying Proposition 3.1 in [12].

e Estimate for the diagonal part: Let n € d°; then there exists . > 0
so that, for e small enough,

In]l3-

7 1
be(n) > 2

Indeed, let )\f be the second eigenvalue of the Robin Laplacian —A% on S
and pick n € H*(Q) N‘HL. By choosing ¢; > 0 as in Lemma we get the
inequality

" 1 1
be(n) > - / Yyl dsdy + / 25 In2do(y, ) + [lal% / inl? dy ds
€ Ja € Jon 9}

1
o [ Livakars [ et iniast) s+ el [ P ayas
€ Jr LJS oS Q
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Since A7 = M — €%|a(s)|?, by the minimax principle (see Theorem 11.4.28
in [4]) and Proposition we have

[ 1wy [ el anw) = (M - lalk) [ nPdy.
S oS S

Thus,

- M 2
be(n) > 2L dy ds.
(n) > Qez/g\n\ yds

e Claim 1: For e small enough the inequality I.(v) + cz||v[|3 > |lw'||3 is
satisfied for each v € d¢. Thus, b(wuf) > Hw'Hiz(R)

Proof. (Claim 1) Note first that, by the proof of Lemma
be(v) + exl|vl3 > Le(v),

see for the definition of I.. Clearly, we have

0= [P sy
Q

+ 2Re/ v’ [T(Vyz_} - Ry) —
)

U (B TV, Ry)| dyds.

For v =wu§, we find [, [v/|*dsdy > [; |w'|*ds. We will estimate the
second term above, which consists of two steps:

e Step 1: For v = wuf, and € small enough we have

(A.2) / 20'7(Vy0 - Ry)dsdy = / lw|?[u§)? [r((ea, ear) - Ry)] dyds
Q Q

> —02/ lw|? dy ds.
2 Jr

e Step 2: For v = wufy and € small enough,

(A.3) —2Re// {25 B +71(V yﬁe-Ry))} dyds>_/yw|2dyds
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Indeed, we have

—2Re/ [25 BL+T7(V yﬁE-Ry)} dy ds

:/QwauBP [265@ (v yﬁe-Ry)] dyds

and since k, 7, k', 7/ k" are bounded we have that ¢.,¢. — 0, € — 0, uni-
formly, where

(A.4) e = 52 (Bi + 7(VyBe - Ry)).

2ﬁe

So, we have checked Step 2. Thus, for each v € d., we obtain by (A.2)
and ([A.3)), that I.(v) + c2||v|3 > ||w'||3, since be(v) — Ie(v) + e2||v][3 > 0 then
be(v) > ||w'||3, for € small enough. O

e Estimate for the nondiagonal part: We need to verify condi-
tion (59). Given v € dom b, we put v = wu§ + 1 with w € H'(R) and n =
¢ € HY(Q) NH.

We note that (58] . ) follows by the definition of b. Claim 1 and (57) will be
freely used. Consider the quadratic form b, (wuf,n), and recall that wug L 7,
for all w € H'(R); by an integration by parts we may write

be(wi, m) = I(wuy, m) + Je(w, 1)
with I, and J, given by
I (wul, ) = /Q [(@us)' + ro(Vyus - Ry) + wuepe]

x [+ 7(Vyn - Ry) + mpe| dyds
€ 1 — € 1 S — €
Je(wuf,n) = 62/ wa<“0)Vy”d3dy+e/R (/asmwuwda(y)> ds

kQ
+ [ G w0+ o, (wi)] dy ds

Now we estimate each one of the above terms.
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e J-Estimate: By the definition of v and proceeding as in we get
[Je(wu,m)| < (D)be[wug)*be[n])'/?
where D > 0 is independent of ¢ > 0.
e [-Estimate: Since 7 € WH°(R)NCY(R) and k€ W2°°(R)NC?(R) then
we have that ¢, € CH(Q) N W1 2(Q), with [|1be||1.00 < C, where C > 0 is in-

dependent of e.
Since wuf, L n, we have

/ugn' dy = —/(ug)’n dy, ae. s€eR;

S S

also note that V,(u§) = —eu§(ou, o), [(uf)"| < Cluf), [(u))| < Cluf|. Since
(wuf)" = w'uf + w(uf)’, and keeping in mind the above observations, we

should estimate only three types of integrals in I, namely:

e [1-Estimate: Using integration by parts, we get
/ w(uf)'n’ dyds = —/ w'ufndy ds — / w(u§)"ndyds
Q Q Q
since a, o, " are uniformly bounded, we get

/ D)l dy ds| < (eD) acfwu]2ac[n] /2
Q

where D > 0 is independent of e.
e [>-Estimate: Upon integration by parts
/QwT(Vyuf) - Ry)n' dyds = — /Q w'T(Vyuf - Ry)ndyds
— /QwT/(Vyuf) - Ry)ndyds
— /QwT(Vyug - Ry)'ndyds

then
< (De)ac[wu§]2acn) /.

/ wt(Vyug - Ry)n' dyds
Q
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e [3-Estimate: Upon integration by parts,

/Qwugngn’ dyds = — /Q[wlugw6 + @ (u§) e + wuf(e) |ndy ds

and so

‘/ wufen' dyds| < (De)&ﬁ[wus]lﬂde[n]lﬂ.
Q

Thus, we may write
| e(wug, )| < (De)belwug] /b [n]'/?
for € small enough. Consequently,
[be(wug,m)|* < (M'€*)be[wug]*be[n)/?
where M’ > 0 is independent of € (for € small enough).

Appendix B. Effective three-dimensional potential

By considering each integral in be we will be able to find out the (inter-
mediate) effective potential V§, which arises after evaluating b (wug). Note
that the integral over the region S will be regarded as function of the vari-
able s. Our Robin boundary conditions (particularly the expression of the
first cross-section eigenfunction) combined with the symmetry of the cross-
section will result in the vanishing of all terms with torsion as € — 0.
One has
v

bo(v) = /ﬂ 5o (B (98 Ry)

1 1
+2/ !VyUIQdyder/ </ vik!vlzda(y)) ds
€ Ja € JRr a8

k2 1 k 1 k

2 - 2

+ —dyds + — —Re(v0, dyds — — —|t do
/ |v| 1 yds 6/ . e(v ylv) yds 6/8 2| r(v)| 121

2

v +7(Vyv- Ry) — dsdy

and so

L 2 K[
(B.1) |v|*—dsdy = [ |w|*—ds
o 4 R 4
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(B.2)

(B.3)

C. R. de Oliveira and A. F. Rossini

1 1
2/ IVyvlzdsder/ (/ %iklv\QdU(y)> ds
€ Jo € Jr a8

= —/(ai+a2)|w2ds
R

1 [ k 1 k
~ [ —=Re(v dyds — - [ =|tr(v)]*rad
E/gzﬁeRe(vaylv) yds 5/89 2| r(v)|v1 do
2 |ug|?
:/kozk\w| 1- du| ds
R I /86

Now we replace v by wuf in I(v), see for the definition of I,

Ie(v):/ |v’|2dsdy+/T2|(Vyv-Ry)|2dsdy
Q Q

+2Re/v/r(vyv‘Ry)dsdy+/ [v|? [ |? ds dy
Q Q

— 2Re/ gy [¢€] dsdy — 2Re/ 7(Vyv - Ry)v [1/}6] dsdy
Q Q

we obtain that

(B.4)

1) = [ |1+ 1o (Gt + [ [y] an)] a

where G1(s) is bounded (in R).

Note that the functions that multiply |w|? in (B.3)-(B.4) converge uni-
formly to zero as € — 0. Therefore, the uniform convergence of the potential

Vs comes from the expressions in (B.1))-(B.2). To compute the value of the

expressions I.(v) we have used integration by parts and that
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