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1. Introduction

In recent years, the geometry and analysis on metric measure spaces with
Ricci curvature bounded from below are actively studied. A notion of Ricci
curvature bounded from below, called the curvature-dimension condition
CD(K,N), on a metric measure space has been introduced by Lott-Villani
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[18] and Sturm [22, 23]. The curvature-dimension condition CD(K,N) for
K ∈ R and N ∈ [1,∞] is defined by using the optimal transport theory and
corresponds to the Ricci curvature bounded from below by K and the di-
mension bounded from above by N . The class of CD(K,N) spaces includes
not only Riemannian geometries, but also Finsler geometries. In order to iso-
late Riemannian from Finslerian, Ambrosio-Gigli-Savaré [5] introduced the
Riemannian curvature-dimension condition RCD(K,N) which is stronger
than CD(K,N).

The pmG-convergence introduced by Gigli-Mondino-Savaré [13] is one of
the notions of convergence of metric measure spaces. Roughly speaking, this
convergence is defined by the following condition: there exists a metric space
such that all metric measure spaces in a given sequence are embedded into it
isometrically and the sequence of the embedded measures weakly converges.
Gigli-Mondino-Savaré proved that the pmG-convergence is independent of
the choice of embeddings and constructed the distance function metrizing
the pmG-convergence on the set of all metric measure spaces. Then they
proved many results for the pmG-convergence, for example the stability of
the curvature-dimension condition, the Mosco convergence of the Cheeger
energy functionals and the descending slopes of the relative entropy, the
convergence of the heat flows, and the spectral convergence of the Laplacians
etc.

The main question of our study is whether we can obtain analogous re-
sults for a sequence which does not pmG-converge. It is known that many
sequences of metric measure spaces whose dimensions are unbounded do
not pmG-converge. For example, the sequence of n-dimensional unit spheres
Sn(1) in R

n+1, n = 1, 2, . . . with the standard Riemannian metric does not
pmG-converge as n→ ∞ (see Corollary 5.20 and Remark 4.16 in [21]).
On the other hand, the following phenomenon occurs for sequences of n-
dimensional spheres. For n-dimensional spheres Sn(rn) of radii rn > 0, we
take an arbitrary point x̄n ∈ Sn(rn) and define a map pn : Sn(rn) → R by

(1.1) pn(x) := dSn(rn)(x, x̄n)−
π

2
rn

for x ∈ Sn(rn), where dSn(rn) is the Riemannian distance on Sn(rn). We
define a metric measure space Xn for each n by

Xn :=
([

−π
2
rn,

π

2
rn

]
, | · |, pn∗σn

)
,
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where σn is the normalized Riemannian volume measure on Sn(rn) and
pn∗σ

n is the push-forward measure of σn by pn. These Xn behave the fol-
lowing.





Xn
pmG−−−→ ∗ if rn/

√
n→ 0,

Xn
pmG−−−→ (R, | · |, γK2) if rn/

√
n→ K ∈ (0,+∞),

Xn does not pmG-convergence otherwise,

where ∗ is a one-point metric measure space and γa2 the 1-dimensional cen-
tered Gaussian measure on R with variance a2. In the case that rn/

√
n→

K, the Ricci curvature RicSn(rn) ≡ (n− 1)/(r2n) of Sn(rn) converges to the
weighted Ricci curvature Ric(R,|·|,γK2 ) ≡ 1/K2 of the 1-dimensional Gaussian
space (R, | · |, γK2) of variance K2 as n→ ∞. Moreover, for k = 0, 1, 2, . . .,
the k-th (up to multiplicity) eigenvalue k(k + n− 1)/(r2n) of the Laplacian
on Sn(rn) converges to the k-th eigenvalues k/(K2) of the weighted Lapla-
cian on (R, | · |, γK2) as n→ ∞ (see [19, Subsection 2.1]). By this observation
of n-dimensional spheres, we expect the existence of a convergence theory
extended to metric measure spaces whose dimensions are unbounded.

Actually, the reason of the convergence of the lower bound of the Ricci
curvature of these spheres has already been understood. This is that the map
pn of (1.1) induces a metric measure foliation on Sn(rn). The metric measure
foliation is introduced by Galaz-Garćıa, Kell, Mondino, and Sosa in [9] and
corresponds to the notion of the Riemannian submersion for metric measure
spaces. The definition and other details of the metric measure foliation is
described in Section 3. Galaz-Garćıa, Kell, Mondino, and Sosa studied the
relation between a metric measure space (X, d,m) with a metric measure
foliation and its quotient metric measure space (X∗, d∗,m∗) induced by the
foliation. One of their results is that the strong curvature-dimension con-
dition for X implies the same condition for the quotient space X∗. In the
observation of spheres, the space Xn inherits the lower bound of the Ricci
curvature from Sn(rn) and then this lower bound converges to the lower
bound of the Ricci curvature of the pmG-limit space. In the smooth setting,
Lott [17] had shown that a Riemannian submersion between two weighted
Riemannian manifolds preserves the lower bound of the Ricci curvature.
Galaz-Garćıa, Kell, Mondino, and Sosa generalized this phenomenon to the
framework of metric measure spaces properly. Furthermore, they showed
the formula between the Cheeger energy functionals on a metric measure
space X with a metric measure foliation and on its quotient space X∗. How-
ever, their result for the Cheeger energy functional does not lead to the
convergence of the eigenvalues of the Laplacian seen in the observation of
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spheres. In this paper, focusing on the various convergence phenomena in
the pmG-convergence, we study the metric measure foliation deeply.

Before describing the main theorem, we need to explain one more condi-
tion. A metric measure space (X, d,m) is said to satisfy the volume growth
condition (VG) if

(1.2)

∫

X
e−C2d(x,x̄)2 dm(x) < +∞

for some point x̄ ∈ X and some real number C > 0. Any CD(K,∞) space
satisfies the condition (VG) (see Proposition 2.8).

The main result in this paper is the following theorem on the variational
convergence of the q-Cheeger energy functionals Chq. We denote by N the
set of positive integers.

Theorem 1.1. Let {(Xn, dn,mn, x̄n)}n∈N be a sequence of pointed metric
measure spaces and (Y, d,m, ȳ) a pointed metric measure space and let K ∈
R. Assume that each Xn has a metric measure foliation and its quotient
space X∗

n satisfies the condition (VG) and pmG-converges to Y as n→ ∞.
Then we have the following (1) – (4).

(1) If each Xn satisfies CD(K,∞), then Y also satisfies CD(K,∞).

(2) Under the same assumption as in (1), ChXn

2 Mosco converges to ChY2 .

(3) If each Xn satisfies RCD(K,∞), then Y also satisfies RCD(K,∞).

(4) Under the same assumption as in (3), ChXn

qn Γ-converges to ChYq if
{qn}n∈N ⊂ (1,+∞) converges to a real number q ∈ (1,+∞).

Remark 1.2. (1) We are able to discuss a foliation consisted of not
only bounded leaves, but also unbounded leaves. In original setting
of [9, Definition 8.5], we assume the leaves are bounded.

(2) In the case that Xn pmG-converges to Y (i.e., each Xn has the trivial
foliation induced by the identity), (1) – (3) was proved by Gigli-
Mondino-Savaré [13] and (4) was proved by Ambrosio-Honda [6].

As an application of the Mosco convergence of the Cheeger energy func-
tionals, we obtain the lower semicontinuity of the spectra of Laplacians on
metric measure spaces satisfying RCD(K,∞). The Laplacian ∆X on a metric
measure space X satisfying RCD(K,∞) is defined as the self-adjoint linear
operator associated with the quadratic form ChX2 . We denote by σ(∆X) the
spectrum of ∆X .
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Corollary 1.3. Under the same assumptions as in Theorem 1.1 (3), we
have

(1.3) σ(∆Y ) ⊂ lim
n→∞

σ(∆Xn
),

that is, for any λ ∈ σ(∆Y ), there exists a sequence λn ∈ σ(∆Xn
) convergent

to λ.

The following is a special case of Corollary 1.3.

Corollary 1.4. Let (X, d,m) be a metric measure space satisfying
RCD(K,∞) for K ∈ R. Assume that X has a metric measure foliation and
its quotient space X∗ satisfies (VG). Then we have

(1.4) σ(∆X∗) ⊂ σ(∆X).

Furthermore, we obtain the Γ-convergence of the descending slopes
|D−Entm| of the relative entropy Entm.

Theorem 1.5. Let {(Xn, dn,mn, x̄n)}n∈N be a sequence of pointed met-
ric measure spaces and (Y, d,m, ȳ) a pointed metric measure space and let
K ∈ R. Assume that each Xn satisfies CD(K,∞) and has a metric measure
foliation and that its quotient space X∗

n satisfies (VG) and pmG-converges
to Y as n→ ∞. Then |D−Entmn

| Γ-converges to |D−Entm|.

In the pmG-convergent case, Gigli-Mondino-Savaré proved the Mosco
convergence of the descending slopes. However, since we do not know a
suitable weak convergence of measures in our framework, we do not obtain
the Mosco convergence. For the convergence of the heat flows, we obtain a
result generalizing the result in the pmG-convergent case. The details of the
descending slope of the relative entropy and the heat flow are written in the
last subsection in this paper.

Acknowledgement. The author would like to thank Professor Takashi
Shioya, Hiroki Nakajima, and Yuya Higashi for their comments and encour-
agement. He is also grateful to Professor Martin Kell for his helpful advice
and for his information about Lemma 3.8 and its proof. He would like to
thank Professor Shouhei Honda for his advice about Lqn-convergence.
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2. Preliminaries

In this section, we prepare some basic notions of the optimal transport, the
Sobolev space, and the curvature-dimension condition on metric measure
spaces. We use most of these notions along [13]. As for other details, we refer
to [1,24] for optimal transport, [4,11] for Sobolev space, and [2,5,18,22] for
curvature-dimension condition.

2.1. Metric measure spaces and optimal transport theory

In this paper, (X, d) denotes a complete separable metric space and m a
locally finite Borel measure on X with full support, that is, 0 < m(Br(x)) <
+∞ for any point x ∈ X and any real number r > 0. Such a triple (X, d,m)
is called a metric measure space, or an m.m. space for short. In Section 4,
we consider pointed metric measure spaces. We call a quadruple (X, d,m, x̄)
a pointed metric measure space, or a p.m.m. space for short, if (X, d,m) is
an m.m. space and x̄ ∈ suppm a base point.

We denote by Mloc(X) the set of locally finite Borel measures on X
and by P(X) the set of Borel probability measures on X. Further we
denote by Cb(X) the set of bounded continuous functions on X and by
Cbs(X) the set of all functions of Cb(X) with bounded support in X. Then
a topology of Mloc(X) is defined by the following convergence: a sequence
{µn} ⊂ Mloc(X) converges weakly to µ ∈ Mloc(X) provided

lim
n→∞

∫

X
ϕ(x) dµn(x) =

∫

X
ϕ(x) dµ(x)

for any ϕ ∈ Cbs(X). In the case where µn, µ are finite Borel measures (for
example, µn, µ ∈ P(X)), the above condition is equivalent to the condition
defined by Cb(X) instead of Cbs(X).

Given two Borel probability measures µ0, µ1 ∈ P(X), we denote by
Π(µ0, µ1) ⊂ P(X ×X) the set of transport plans between them. That means
each element π ∈ Π(µ0, µ1) satisfies pri∗π = µi for i = 0, 1, where pri is the
projection to each coordinate and pri∗π is the push-forward of π by pri.

Let p ∈ [1,+∞) be a real number. For two probability measures µ, ν ∈
P(X), the Lp-Wasserstein distance Wp between them is defined by

Wp(µ, ν) := inf
π∈Π(µ,ν)

(∫

X×X
d(x, x′)p dπ(x, x′)

) 1

p

.
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If Wp(µ, ν) < +∞, then there exists an optimal transport plan attaining
the infimum. We denote by Pp(X) the set of Borel probability measures
on X with finite p-th moment. Then (Pp(X),Wp) is a complete separable
metric space and it is called the Lp-Wasserstein space of X. In some cases,
we may consider the extended metric space (P(X),Wp), where the distance
Wp takes values in [0,+∞].

The following lemma gives a simple property of Wasserstein distance.

Lemma 2.1. Let X,Y be two complete separable metric spaces and p :
X → Y a 1-Lipschitz map and let q ∈ [1,+∞). Then, for any µ0, µ1 ∈ P(X),
we have

(2.1) Wq(p∗µ0, p∗µ1) ≤Wq(µ0, µ1).

In other words, the map

(2.2) p∗ : P(X) ∋ µ 7→ p∗µ ∈ P(Y )

is 1-Lipschitz with respect to Wq.

Proof. We take any µ0, µ1 ∈ P(X) such that Wq(µ0, µ1) < +∞. Let π ∈
P(X ×X) be an optimal transport plan for Wq(µ0, µ1). We see that (p×
p)∗π is a transport plan between p∗µ0 and p∗µ1. In fact, since pri ◦ (p× p) =
p ◦ pri, where pri is the projection to the i-th coordinate for i = 0, 1, we have

pri∗(p× p)∗π = (pri ◦ (p× p))∗π = (p ◦ pri)∗π = p∗pri∗π = p∗µi.

Therefore,

Wq(p∗µ0, p∗µ1)
q ≤

∫

Y×Y
dY (y, y

′)q d(p× p)∗π(y, y
′)

=

∫

X×X
dY (p(x), p(x

′))q dπ(x, x′)

≤
∫

X×X
dX(x, x′)q dπ(x, x′) =Wq(µ0, µ1)

q.

(2.1) is obtained. This completes the proof. □

2.2. Sobolev space on metric measure spaces

Let (X, d) be a complete separable metric space and I ⊂ R a non-trivial
interval. A curve γ on X defined on I means a continuous map γ : I → X.
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By C(I;X), we denote the space of curves on X defined on I. We endow this
space with the uniform distance and then C(I;X) is a complete separable
metric space.

Let p ∈ [1,+∞) be a real number. We define a class ACp(I;X) of curves
on X in the following. A curve γ ∈ C(I;X) is the element of ACp(I;X) if
and only if there exists f ∈ Lp(I) satisfying

(2.3) d(γ(s), γ(t)) ≤
∫ t

s
f(r) dr

for any s, t ∈ I with s < t. If p = 1, then γ satisfying (2.3) is called an ab-

solutely continuous curve and we write AC(I;X) as AC1(I;X). For each
curve γ ∈ AC(I;X), it is well-known that there exists a minimal function,
in the a.e. sense, of f satisfying (2.3). This is called the metric derivative of

γ and is known to be provided by the following:

(2.4) |γ̇|(t) := lim
h→0

d(γ(t+ h), γ(t))

|h|

for a.e. t ∈ I (see [3, Theorem 1.1.2]).
We define a map Ep : C(I;X) → [0,+∞] for p > 1 by

(2.5) Ep[γ] :=





∫

I
|γ̇|(t)p dt if γ ∈ ACp(I;X),

+∞ otherwise

for any γ ∈ C(I;X). The map Ep is lower semicontinuous and thenACp(I;X)
is a Borel subset of C(I;X). For t ∈ I, a continuous map et : C(I;X) → X
is defined by et(γ) := γ(t).

We consider a curve µ : I → P(X) on the space (P(X),Wp). We often
write µt as µ(t). Even if the distance Wp takes values in [0,+∞], we can
define C(I; (P(X),Wp)) and ACq(I; (P(X),Wp)) for q ∈ [1,+∞) in the
same way as above.

Proposition 2.2. Let µ ∈ ACp(I; (P(X),Wp)) and π ∈ P(C(I;X)) sat-
isfy et∗π = µt for any t ∈ I. Then, it holds that

(2.6)

∫

I
|µ̇|(t)p dt ≤

∫

C(I;X)
Ep[γ] dπ(γ).

It is shown in [16] that there exists π ∈ P(C(I;X)) satisfying equality
of (2.6).
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Proposition 2.3 ([16, Corollary 1]). For any µ ∈ ACp(I; (P(X),Wp)),
there exists π ∈ P(C(I;X)) such that et∗π = µt for any t ∈ I, and

(2.7)

∫

I
|µ̇|(t)p dt =

∫

C(I;X)
Ep[γ] dπ(γ).

Let (X, d,m) be an m.m. space and let p ∈ (1,+∞) be a real number
and q the conjugate exponent of p.

Definition 2.4 (q-Test plan). We call π ∈ P(C([0, 1];X)) a q-test plan
provided that there exists a constant C > 0 such that et∗π ≤ Cm for any
t ∈ [0, 1], and

(2.8)

∫

C([0,1];X)
Eq[γ] dπ(γ) < +∞.

Definition 2.5 (p-Weak upper gradient). Let f : X → R be a Borel
measurable function. We call a Borel measurable function g : X → [0,+∞]
a p-weak upper gradient of f provided that

∫

C([0,1];X)
|f(γ(1))− f(γ(0))| dπ(γ)(2.9)

≤
∫

C([0,1];X)

∫ 1

0
g(γ(t))|γ̇|(t) dtdπ(γ)

for any q-test plan π ∈ P(C([0, 1];X)). We denote by Sp(X, d,m) the space
of all Borel measurable functions on X whose weak upper gradients belong
to Lp(X,m).

Given f ∈ Sp(X, d,m), it is known that there exists a unique minimal
function, in the m-a.e. sense, of p-weak upper gradients of f . This is called
the minimal p-weak upper gradient of f and is denoted by |Df |w, that is,
for any p-weak upper gradient g, it holds that

(2.10) |Df |w(x) ≤ g(x)

for m-a.e. x ∈ X. A more appropriate notation would be |Df |w,p. We omit p
because we use only |Df |w,p for f ∈ Sp(X, d,m). The details of the relation
between |Df |w,p and |Df |w,p′ for a function f are stated in [11, Remark 2.5].

The Sobolev space W 1,p(X, d,m) on an m.m. space (X, d,m) is the sub-
space Lp(X,m) ∩ Sp(X, d,m) of Lp(X,m) equipped with the following norm



✐

✐

“4-Kazukawa” — 2023/4/27 — 8:18 — page 1310 — #10
✐

✐

✐

✐

✐

✐

1310 Daisuke Kazukawa

∥ · ∥W 1,p :

(2.11) ∥f∥pW 1,p := ∥f∥pLp + ∥ |Df |w∥pLp .

The Sobolev space W 1,p(X, d,m) is a Banach space. However it is not a
Hilbert space in general even if p = 2. Thus there is not always the Dirichlet
form on L2(X,m) associated with the Sobolev space W 1,2(X, d,m). Instead
of the Dirichlet energy, we consider the following Cheeger energy, which
is not necessarily quadratic even if p = 2. We define the p-Cheeger energy

functional Chp : L
p(X,m) → [0,+∞] by

(2.12) Chp(f) :=





1

p

∫

X
|Df |w(x)p dm(x) if f ∈W 1,p(X, d,m),

+∞ otherwise

for f ∈ Lp(X,m). The functional Chp is lower semicontinuous and convex.

2.3. Curvature-dimension conditions

Let (X, d,m) be an m.m. space. The relative entropy functional Entm :
P(X) → [−∞,+∞] is defined by

(2.13) Entm(µ) :=





lim
ε↓0

∫

{ρ>ε}
ρ(x) log ρ(x) dm(x) if µ = ρm,

+∞ otherwise

for µ ∈ P(X). It coincides with
∫
X ρ log ρ dm ∈ [−∞,+∞) if the positive

part of ρ log ρ ism-integrable, and it is equal to +∞ otherwise. We denote by
D(Entm) the set of all µ ∈ P(X) satisfying Entm(µ) < +∞. The following
three properties are most important in this paper among the several basic
properties of Entm.

• Let Y be a complete separable metric space and p : X → Y a Borel
measurable map such that p∗m ∈ Mloc(Y ). Then, for any µ ∈ P(X),
it holds that

(2.14) Entp∗m(p∗µ) ≤ Entm(µ).

• The map P(X)× P(X) ∋ (m,µ) 7→ Entm(µ) is jointly lower semi-
continuous with respect to weak convergence in the two variables.

• Let K ⊂ Mloc(X) and m ∈ P(X). If supµ∈K Entm(µ) < +∞, then K
is tight.
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Note that second and third properties hold only for m ∈ P(X).
The condition of Ricci curvature bounded from below on an m.m. space

(X, d,m) is provided the following.

Definition 2.6 (CD(K,∞)). Let K ∈ R. An m.m. space (X, d,m) satis-
fies the curvature-dimension condition CD(K,∞) if for any two measures
µ0, µ1 ∈ P2(X) ∩D(Entm), there exists a W2-geodesic µ : [0, 1] ∋ t 7→ µt ∈
P2(X) joining µ0 and µ1 satisfying that

(2.15) Entm(µt) ≤ (1− t)Entm(µ0) + tEntm(µ1)−
K

2
t(1− t)W2(µ0, µ1)

2

for any t ∈ [0, 1].

Note that a curve γ : [0, 1] → Z on a metric space (Z, d) is called a
(minimal) geodesic joining z and z′ provided that γ(0) = z, γ(1) = z′ and

d(γ(s), γ(t)) = |s− t|d(γ(0), γ(1))

for any s, t ∈ [0, 1].
Let (X, d,m) be an m.m. space and assume that there exists a Lipschitz

function V : X → [0,+∞) with

(2.16) z :=

∫

X
e−V (x)2 dm(x) < +∞.

We define m̃ := z−1e−V 2

m ∈ P(X) and denote by PV (X) the set of all µ ∈
P(X) satisfying

∫
X V 2 dµ < +∞. Since V is Lipschitz, we have P2(X) ⊂

PV (X). More generally, for any µ ∈ PV (X) and ν ∈ P(X) withW2(µ, ν) <
+∞, we have ν ∈ PV (X) and

(2.17)

(∫

X
V 2 dν

) 1

2

≤ Lip(V )W2(µ, ν) +

(∫

X
V 2 dµ

) 1

2

,

where Lip(V ) is the Lipschitz constant of V .
Given µ ∈ PV (X), using the formula for the relative entropy

(2.18) Entm(µ) = Entm̃(µ)−
∫

X
V 2 dµ− log z,

we see that Entm(µ) > −∞.
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Definition 2.7 (VG). An m.m. space (X, d,m) satisfies the volume growth

condition (VG) if there exist x̄ ∈ X and C > 0 such that

(2.19)

∫

X
e−C2d(x,x̄)2 dm(x) < +∞,

that is, the Lipschitz function V := Cd(·, x̄) satisfies (2.16).

The following proposition means any CD(K,∞) space satisfies (VG).

Proposition 2.8 ([22, Theorem 4.24]). Let (X, d,m) be an m.m. space
satisfying CD(K,∞) for K ∈ R and let x̄ ∈ X be a fixed point. Then there
exists a constant C > 0 such that

(2.20) m(Br(x̄)) ≤ Ce(1+K−)r2

for every r > 0, where K− := max {−K, 0}.

The following lemma gives an equivalent condition for CD(K,∞).

Lemma 2.9. Let (X, d,m) be an m.m. space satisfying CD(K,∞) for K ∈
R and let V be a Lipschitz function satisfying (2.16). Then for any two
measures µ0, µ1 ∈ PV (X) ∩D(Entm) withW2(µ0, µ1) < +∞, there exists a
W2-geodesic µ : [0, 1] ∋ t 7→ µt ∈ PV (X) joining µ0 and µ1 satisfying (2.15).

The proof of this lemma is described in the appendix.

Definition 2.10 (Infinitesimally Hilbertian). An m.m. space (X, d,m)
is said to be infinitesimally Hilbertian if the 2-Cheeger energy functional
Ch2 : L

2(X,m) → [0,+∞] is a quadratic form on L2(X,m), that is,

(2.21) Ch2(f + g) + Ch2(f − g) = 2Ch2(f) + 2Ch2(g)

holds for any two functions f, g ∈ L2(X,m). It follows that X is infinitesi-
mally Hilbertian if and only if the Sobolev space W 1,2(X, d,m) is a Hilbert
space.

The Riemannian curvature-dimension condition was introduced by [5] for
normalized m.m. spaces with finite variance. After that, by [2], its concept
was extended to m.m. spaces with σ-finite measures and it was simplified to
the following condition.
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Definition 2.11 (RCD(K,∞)). Let K ∈ R. An m.m. space (X, d,m) sat-
isfies the Riemannian curvature-dimension condition RCD(K,∞) if X sat-
isfies CD(K,∞) and is infinitesimally Hilbertian.

Remark 2.12. We say that an m.m. space (X, d,m) satisfies the strong
CD(K,∞) condition if allW2-geodesics on P2(X) satisfy (2.15). It is known
that any RCD(K,∞) space satisfies the strong CD(K,∞) condition (see [2]
and [8]).

3. Metric measure foliation

3.1. Metric measure foliation

In this subsection, we describe the metric measure foliation introduced by
Galaz-Garćıa, Kell, Mondino and Sosa in [9]. We review the classical metric
foliation before we explain the metric measure foliation.

Definition 3.1 (Metric foliation). Let (X, d) be a metric space and F
a family of closed subsets of X. We call F a (topological) foliation provided
that any two elements of F are disjoint to each other and F is a covering of
X. An element F ∈ F is called a leaf. Furthermore, a foliation F is called a
metric foliation if for any two leaves F, F ′ ∈ F and any x ∈ F ,

(3.1) d(F, F ′) = d(x, F ′).

Given a metric foliation F on a metric space (X, d), we consider the
equivalence relation defined by x ∼ x′ if and only if there exists F ∈ F such
that x, x′ ∈ F , and its quotient space X∗ := X/ ∼. Let p : X → X∗ be the
quotient map. We define a distance function d∗ on X∗ as

(3.2) d∗(y, y′) := d(p−1(y), p−1(y′))

for y, y′ ∈ X∗. Thanks to (3.1), the function d∗ becomes a distance function
on X∗. If (X, d) is complete and separable, then so is (X∗, d∗).

We next define a submetry f . On a metric space (X, d), we denote Br(x)
the open ball centered at x ∈ X with radius r > 0.

Definition 3.2 (Submetry). Let (X, dX), (Y, dY ) be two metric spaces
and f : X → Y a map between them. We call f a submetry if for any x ∈ X
and r > 0,

(3.3) f(Br(x)) = Br(f(x)).
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Note that any submetry f is 1-Lipschitz and surjective.
The next lemma shows that the concepts of the submetry and the metric

foliation are equivalent.

Lemma 3.3 ([9, Lemma 8.4]). There is a one-to-one correspondence be-
tween metric foliations and submetries up to an isometry, that is, the fol-
lowing (1) and (2) hold.

(1) Given a metric foliation F on a metric space X, the quotient map
p : X → X∗ is a submetry.

(2) Given a submetry f : X → Y between two metric spaces X and Y ,
the foliation {f−1(y)}y∈Y is a metric foliation and there exists an
isometry if : Y → X∗ such that if ◦ f = p.

In order to define the metric measure foliation, we need the disintegration
obtained by the following disintegration theorem.

Theorem 3.4 (Disintegration theorem). Let X,Y be two complete
separable metric spaces and p : X → Y a Borel measurable map. Then, for
any Borel measure µ on X satisfying p∗µ ∈ Mloc(Y ), there exists a family
{µy}y∈Y of probability measures on X such that

(1) the map Y ∋ y 7→ µy(A) ∈ [0, 1] is a Borel measurable function for
any Borel subset A ⊂ Y ,

(2) µy(X \ p−1(y)) = 0 (i.e., p∗µy = δy) for p∗µ-a.e. y ∈ Y ,

(3) for any Borel measurable function f : X → [−∞,+∞],

(3.4)

∫

X
f(x) dµ(x) =

∫

Y

∫

p−1(y)
f(x) dµy(x)d(p∗µ)(y).

Moreover, {µy}y∈Y is unique in the p∗µ-a.e. sense.

Definition 3.5 (Disintgration). The family {µy}y∈Y as in Theorem 3.4
is called the disintegration of µ for p.

Definition 3.6 (Metric measure foliation). Let (X, d,m) be an m.m.
space and F a metric foliation. We call F a metric measure foliation if p∗m ∈
Mloc(X

∗) and there exists a Borel subset Ω ⊂ X∗ with p∗m(X∗ \ Ω) = 0
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such that

(3.5) W2(µy, µy′) = d∗(y, y′) = d(p−1(y), p−1(y′))

for any y, y′ ∈ Ω, where p : X → X∗ is the quotient map and {µy}y∈Y is the
disintegration of m for p.

Remark 3.7. We can weaken p∗m ∈ Mloc(X
∗) to the condition that p∗m

is σ-finite because the disintegration of m exists even if p∗m is σ-finite. To
avoid some complex situations, we deal with only locally finite measures in
this paper. On the other hand, we do not assume the boundedness of the
leaves which always assume in the original setting in [9, Definition 8.5].

The metric measure foliation is independent of the choice of versions of
the disintegration {µy}y∈X∗ . Moreover, since the map

Ω ∩ {y ∈ X∗| p∗µy = δy} ∋ y 7→ µy ∈ P(X)

is isometric in the sense of (3.5) and Ω ∩ {y ∈ X∗| p∗µy = δy} is dense on X∗,
this map extends to an isometric map on X∗. This implies that there exists
a version of the disintegration {µy}y∈X∗ ⊂ P(X) of m such that p∗µy = δy
for all y ∈ X∗ and

W2(µy, µy′) = d∗(y, y′)

for all two points y, y′ ∈ X∗. We say that this version is canonical and often
consider the canonical version of the disintegration of m in the case that F
is a metric measure foliation.

Lemma 3.8. Let (X, dX ,mX), (Y, dY ,mY ) be two m.m. spaces and p :
X → Y a 1-Lipschitz map such that p∗mX = mY (so that, p∗mX ∈ Mloc(Y )).
Assume that there exists a Borel subset Ω ⊂ Y with mY (Y \ Ω) = 0 such
that

(3.6) W2(µy, µy′) = dY (y, y
′)

for any y, y′ ∈ Ω. Then p is a submetry. In particular, p induces the metric
measure foliation {p−1(y)}y∈Y and Y is mm-isomorphic to X∗.

Remark 3.9. The author studied the condition (3.6) at first. He received
some important advice from Martin Kell and learned the notion of the metric
measure foliation. Lemma 3.8 means that the condition (3.6) always induces
the metric foliational structure. The proof of this lemma was given by Martin
Kell.
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We need the following proposition for the proof of Lemma 3.8.

Proposition 3.10. Assume that the assumption of Lemma 3.8. Let y0, y1 ∈
Y be a pair of points satisfying (3.6) and p∗µyi

= δyi
for i = 0, 1. Then any

optimal transport plan for W2(µy0
, µy1

) is supported on

{(x, x′) ∈ p−1(y0)× p−1(y1)| dY (y0, y1) = dX(x, x′)}.

Proof. Let π be an optimal transport plan for W2(µy0
, µy1

). By the 1-
Lipschitz continuity of p and suppµyi

⊂ p−1(yi) for i = 0, 1, we see that
π is supported on

{(x, x′) ∈ p−1(y0)× p−1(y1)| dY (y0, y1) ≤ dX(x, x′)}.

If Γ:={(x, x′)∈p−1(y0)×p−1(y1)| dY (y0, y1)<dX(x, x′)} is not π-negligible,
then

π(Γ) · dY (y0, y1)2 <
∫

Γ
dX(x, x′)2 dπ(x, x′).

Therefore we have

dY (y0, y1)
2 <

∫

X×X
dX(x, x′)2 dπ(x, x′) =W2(µy0

, µy1
)2,

which contradicts (3.6). This completes the proof. □

Proof of Lemma 3.8. Let {µy}y∈Y be the canonical disintegration ofmX .
Note that we obtain the canonical one using only (3.6). In particular, the
property p∗µy = δy for all y ∈ Y implies that p is surjective.

Suppose that there are x ∈ X and r > 0 such that Br(y) \ p(Br(x)) ̸= ∅,
where y = p(x). By this assumption, there exist a neighborhood U of x and
a real number r′ < r such that Br′(y) \ p(Vr′) ̸= ∅, where

Vr′ :=
⋃

x̃∈U∩p−1(y)

Br′(x̃).

In fact, by Br(y) \ p(Br(x)) ̸= ∅, there exist y′ ∈ Y and r′ < r such that
y′ ∈ Br′(y) \ p(Br(x)). Setting U := Br−r′(x) and Vr′ as above, we have Vr′ ∩
p−1(y′) = ∅. If there is x′ ∈ Vr′ ∩ p−1(y′), then there exists x̃ ∈ U ∩ p−1(y)
such that x′ ∈ Br′(x̃) and

dX(x, x′) ≤ dX(x, x̃) + dX(x̃, x′) < (r − r′) + r′ = r,

which implies y′ ∈ p(Br(x)). This contradicts the choice of y′. Thus Vr′ ∩
p−1(y′) = ∅, that is, y′ ∈ Br′(y) \ p(Vr′).
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Let πyy′ be an optimal transport plan for W2(µy, µy′) for some y′ ∈
Br′(y) \ p(Vr′). By the choice of y′, we see that

dY (y, y
′) < r′ ≤ dX(x̃, x′)

for all (x̃, x′) ∈ (U ∩ p−1(y))× p−1(y′). Since mX has full support, we may
assume that µy(U ∩ p−1(y)) > 0. Thus we have

πyy′({(x̃, x′) ∈ p−1(y)× p−1(y′)| dY (y, y′) < dX(x̃, x′)})
≥ πyy′((U ∩ p−1(y))× p−1(y′)) = µy(U ∩ p−1(y)) > 0.

This contradicts Proposition 3.10. The proof is completed. □

Proposition 3.11. Let (X, d,m) be an m.m. space and F a metric measure
foliation. Then we have

(3.7) Wq(µy, µy′) = d∗(y, y′) = d(p−1(y), p−1(y′))

for any q ∈ [1,+∞) and any y, y′ ∈ X∗ where {µy}y∈X∗ is the canonical
disintegration.

Proof. We take any q ∈ [1,+∞) and any y, y′ ∈ X∗. Let πyy′ be an optimal
transport plan for W2(µy, µy′). By Proposition 3.10, we see that πyy′ is
supported on

{(x, x′) ∈ p−1(y)× p−1(y′)| d∗(y, y′) = d(x, x′)},

which means that

Wq(µy, µy′)q ≤
∫

X×X
d(x, x′)q dπyy′(x, x′) = d∗(y, y′)q.

On the other hand, by Lemma 2.1, we see that d∗(y, y′) ≤Wq(µy, µy′). The
proof is completed. □

We give some examples of metric measure foliation.

Example 3.12 (Riemannian submersion). The Riemannian submer-
sion between two weighted Riemannian manifolds induces a metric measure
foliation. The notion of the metric measure foliation is motivated by Lott’s
article [17] about a relation between the weighted Ricci curvature and the
Riemannian submersion. This detail is described in [9].
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Let (M, g, ϕvolg), (N, h, ψvolh) be two weighted Riemannian manifolds
and π :M → N a Riemannian submersion such that π∗(ϕvolg) = ψvolh. For
any smooth curve γ : [0, 1] → N , we define a diffeomorphism ρ : π−1(γ(0)) →
π−1(γ(1)) between the fibers of the extremal points of γ as the corre-
spondence of the two extremal points of each horizontal lift of γ, that is,
ργ(x) := γ̄x(1), where γ̄x is the horizontal lift of γ with γ̄x(0) = x.

Assume that ρ∗µγ(0) = µγ(1) for any smooth curve γ on N . Then the
family {π−1(y)}y∈N is a metric measure foliation on M .

Example 3.13 (lq-Product space). The product space of m.m. spaces is
a typical example of a metric measure foliation. Let (Y, dY ,mY ), (Z, dZ ,mZ)
be two m.m. spaces and q ∈ [1,+∞] an extended real number. We define the
lq-product Y ×lq Z of Y and Z as the product space Y × Z equipped with
the distance dlq and the measure mY ⊗mZ , where dlq is defined by

(3.8) dlq((y, z), (y
′, z′)) :=

{
(dY (y, y

′)q + dZ(z, z
′)q)

1

q if 1 ≤ q < +∞,
max{dY (y, y′), dZ(z, z′)} if q = +∞

for any two points (y, z), (y′, z′) ∈ Y × Z, and mY ⊗mZ means the product
measure of mY and mZ .

The lp-product space Y ×lq Z has a metric measure foliation induced by
the projection p : Y ×lq Z → Y if mZ has the finite mass.

Example 3.14 (Action of isometry group). An m.m. space with an
isometric action by a compact group is an important example of the metric
measure foliation. This is studied in [9] deeply.

Let (X, d,m) be an m.m. space and G a compact (topological) group.
Let G×X ∋ (g, x) 7→ gx ∈ X be an isometric action of G on X. Then, the
distance function dX/G on the quotient space X/G is defined by

(3.9) dX/G([x], [x
′]) = inf

g,g′∈G
d(gx, g′x′)

for [x], [x′] ∈ X/G, where [x] is the G-orbit of a point x ∈ X. (X/G, dX/G)
is a complete separable metric space. Let p : X ∋ x 7→ [x] ∈ X/G be the
projection. The triple (X/G, dX/G, p∗m) is an m.m. space and is called the
orbit space of X for G.

An action G×X ∋ (g, x) 7→ gx ∈ X is said to be mm-isomorphic if for
every g ∈ G, the map X ∋ x 7→ gx ∈ X is an isometry preserving the mea-
sure m.

The family F := {p−1(y) ⊂ X | y ∈ X/G} of orbits of an mm-isomorphic
action by G is a metric measure foliation on X.
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Example 3.15 (Warped product). Warped products in the framework
of m.m. spaces are defined and studied by [12,14] et al. The warped product
is an example of metric measure foliation. In the following, we define warped
products along [12]. We need to assume that two m.m. spaces defining the
warped product of them are intrinsic metric spaces and at least one of them
has finite measure.

Let (Y, dY ,mY ), (Z, dZ ,mZ) be two m.m. spaces with intrinsic metric
and wd, wm : Y → [0,+∞) two bounded continuous functions on Y such
that wm ̸≡ 0. We assume that mZ is finite. For a curve γ = (α, β) on Y × Z
such that α, β are absolutely continuous curves on Y, Z respectively, the
wd-length lw[γ] of γ is defined by

(3.10) lw[γ] =

∫ 1

0

√
|α̇|(t)2 + wd(α(t))2|β̇|(t)2 dt.

For any two points x, x′ ∈ Y × Z, we denote by Adm(x, x′) the set of all
curves γ = (α, β) on Y × Z joining x and x′ such that α, β are absolutely
continuous curve on Y, Z respectively. We define a pseudo-metric dw on
Y × Z by

(3.11) dw(x, x
′) := inf {lw[γ] | γ ∈ Adm(x, x′)}

for x, x′ ∈ Y × Z. The pseudo metric dw induces an equivalence relation
defined by x ∼ x′ if and only if dw(x, x

′) = 0. The quotient space Q :=
((Y × Z)/ ∼, dw) is a metric space. Since Y, Z are both separable, Q is also
separable. We write Q̂ as the completion of Q and regard Q as a subset of
Q̂. Let q : Y × Z → Q be the quotient map. We define a Borel measure mw

on Q̂ by

(3.12) mw := q∗(wmmY ⊗mZ).

Since mZ is finite and wm ̸≡ 0, we see that mw is locally finite and non-
trivial. We define the warped product Y ×w Z of Y and Z for the warping
functions w = (wd, wm) by

(3.13) Y ×w Z := (suppmw, dw,mw).

Lemma 3.16. Let (Y, dY ,mY ), (Z, dZ ,mZ) be two m.m. spaces with in-
trinsic metric and wd, wm : Y → [0,+∞) two bounded continuous functions
on Y such that wm ̸≡ 0. Assume that mZ is finite. Then the projection
p : Y ×w Z → Y induces a metric measure foliation.
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Proof. We set C := mZ(Z) and Ω := {y ∈ Y | wm(y) > 0}. It is easy to prove
that p is 1-Lipschitz. Let us prove that p satisfies (3.6) on Ω. Let Q be
the quotient space and q : Y × Z → Q the quotient map in the definition
of the warped product. Since p ◦ q coincides with the natural projection
from Y × Z to Y , we obtain p∗mw = CwmmY . Moreover, we define a family
{µy}y∈Y of probability measures on Y ×w Z by

(3.14) µy :=

{
qy∗(C

−1mZ) if y ∈ Ω,
µ0 otherwise

for any y ∈ Y , where qy := q|{y}×Z is the quotient map restricted on {y} × Z
and µ0 is an arbitrary probability measure on Y ×w Z. Then, since p∗mw(Y \
Ω) = 0, we see that {µy}y∈Y is the disintegration of mw for p. We write νy as
the measure C−1mZ on {y} × Z. We have µy = qy∗νy for any y ∈ Ω. Given
two points y, y′ ∈ Ω, we define a Borel measurable map ψyy′ : {y} × Z →
{y′} × Z by

ψyy′((y, z)) = (y′, z) ∈ {y′} × Z

for (y, z) ∈ {y} × Z. We set πyy′ := (qy × (qy′ ◦ ψyy′))∗νy and then have
πyy′ ∈ Π(µy, µy′). Therefore,

W2(µy, µy′)2 ≤
∫

X×X
dw(x, x

′)2 dπyy′(x, x′)

=

∫

Z
dw((y, z), (y

′, z))2 dνy(z) = dY (y, y
′)2.

On the other hand, by Lemma 2.1, we have

W2(µy, µy′) ≥ dY (y, y
′).

These imply (3.6). The proof is completed. □

Example 3.17. In Section 1, we consider the sequence of the n-dimensional
spheres Sn(rn) in R

n+1, n = 1, 2, . . . with radii rn > 0. We define a map
pn : Sn(rn) → R by

pn(x) := dSn(rn)(x, x̄n)−
π

2
rn

for x ∈ Sn(rn), where x̄n is a fixed point in Sn(rn). For each n, we see that
the map pn induces a metric measure foliation from the following discussion.
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We define an m.m. space In by

(3.15) In :=
([

−π
2
rn,

π

2
rn

]
, | · |,L1|[−π

2
rn,

π

2
rn]

)

and define two continuous maps wd, wm : In → [0,+∞) by

(3.16) wd(t) := cos
t

rn
, wm(t) :=

cosn−1 t
rn∫

In
cosn−1 t

rn
dt
.

We see that Sn(rn) is isomorphic to In ×w S
n−1(rn) as m.m. space and pn

corresponds to the projection from Sn(rn) to In if the fixed point x̄n ∈
Sn(rn) corresponds to [(−π

2 rn, ∗)] ∈ In ×w S
n−1(rn). By Lemma 3.16, the

map pn induces a metric measure foliation.

3.2. Quotient space induced by metric measure foliation

Let F be a metric measure foliation on an m.m. space (X, d,m). We denote
by (X∗, d∗,m∗) the quotient m.m. space induced by F and denote by p :
X → X∗ the quotient map, where the measure m∗ is defined by m∗ := p∗m.

The quotient map p : X → X∗ induces a nice pullback of a probability
measure on X∗ (which is called the lift of measure in [9]).

Definition 3.18 (Pullback of measure). Let ν ∈ P(X∗). The pullback

measure p∗ν ∈ P(X) of ν by p is defined by

(3.17) (p∗ν)(A) :=
∫

Y
µy(A) dν(y)

for any Borel subset A ⊂ X.

It follows from the definition of the pullback measure p∗ν that for any
Borel measurable function f : X → R,

(3.18)

∫

X
f(x) d(p∗ν)(x) =

∫

Y

∫

p−1(y)
f(x) dµy(x)dν(y).

Remark 3.19. For a function f : X∗ → R, the pullback function p∗f :
X → R of f by p is defined by p∗f := f ◦ p naturally.

Proposition 3.20. Let ν ∈ P(X∗). We have the following (1) – (3).

(1) p∗(p∗ν) = ν.
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(2) If ν = ρm∗ for a Borel measurable function ρ : X∗ → R, then p∗ν =
(p∗ρ)m.

(3) If ν is absolutely continuous with respect to m∗, then

Entm∗(ν) = Entm(p∗ν).

Proof. We first prove (1). Given a Borel subset B ⊂ X∗, it holds that

p∗(p
∗ν)(B) = (p∗ν)(p−1(B)) =

∫

X∗

µy(p
−1(B)) dν(y)

=

∫

X∗

1B(y) dν(y) = ν(B).

This means p∗(p∗ν) = ν.
We next prove (2) and (3). We assume ν = ρm∗. For any Borel subset

A ⊂ X,

p∗ν(A) =
∫

X∗

µy(A)ρ(y) dm
∗(y)

=

∫

X∗

ρ(y)

∫

p−1(y)
1A(x) dµy(x)dm

∗(y)

=

∫

X∗

∫

p−1(y)
ρ(p(x))1A(x) dµy(x)dm

∗(y)

=

∫

X
1A(x)ρ(p(x)) dm(x) = (p∗ρ)m(A),

which implies p∗ν = (p∗ρ)m. Moreover, we have

Entm(p∗ν) =
∫

X
ρ(p(x)) log ρ(p(x)) dm(x)

=

∫

X
ρ(y) log ρ(y) dm∗(y) = Entm∗(ν).

The proof is completed. □

Lemma 3.21. Let ν0, ν1 ∈ P(X∗) and q ∈ [1,+∞). Then we have

(3.19) Wq(p
∗ν0, p

∗ν1) =Wq(ν0, ν1).

In other words, the map

(3.20) p∗ : P(X∗) ∋ ν 7→ p∗ν ∈ P(X)
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is isometric with respect to Wq.

Proof. We take any two measures ν0, ν1 ∈ P(X∗) and fix them. The in-
equality Wq(ν0, ν1) ≤Wq(p

∗ν0, p∗ν1) follows from Proposition 3.20(1) and
Lemma 2.1. We prove the opposite inequality. Assume that Wq(ν0, ν1) <
+∞. Let π ∈ P(X∗ ×X∗) be an optimal transport plan for Wq(ν0, ν1).
By Aumann’s measurable choice theorem (see [7]), there exists a family
{πyy′}(y,y′)∈X∗×X∗ of probability measures on X ×X such that the map
X∗ ×X∗ ∋ (y, y′) 7→ πyy′(A) ∈ [0, 1] is Borel measurable for any Borel sub-
set A ⊂ X ×X and πyy′ is an optimal transport plan for Wq(µy, µy′) for π-
a.e. (y, y′) ∈ X∗ ×X∗. (In Aumann’s theorem, it is easy to check the Borel
measurability of

{
(y, y′, π) ∈ (X∗)2 × P(X2)

∣∣∣∣Wq(µy, µy′)q =

∫

X×X
d(x, x′)q dπ

}
,

where P(X2) has the weak topology, from (3.5).) We define a measure
π̃ ∈ P(X ×X) by

(3.21) π̃(A) :=

∫

X∗×X∗

πyy′(A) dπ(y, y′)

for any Borel subset A ⊂ X ×X. We see that π̃ is a transport plan between
p∗ν0 and p∗ν1. In fact, we have

pr0∗π̃(A) =
∫

X∗×X∗

πyy′(pr0
−1(A)) dπ(y, y′)

=

∫

X∗×X∗

µy(A) dπ(y, y
′) =

∫

X∗

µy(A) dν0(y) = p∗ν0(A)

for any Borel subset A ⊂ X, where pr0 is the projection to the first coor-
dinate. This means pr0∗π̃ = p∗ν0 and we obtain pr1∗π̃ = p∗ν1 in the same
way. Thus π̃ is a transport plan between p∗ν0 and p∗ν1. Then, we have

Wq(p
∗ν0, p

∗ν1)
q ≤

∫

X×X
d(x, x′)q dπ̃(x, x′)

=

∫

X∗×X∗

∫

X×X
d(x, x′)q dπyy′(x, x′)dπ(y, y′)

=

∫

X∗×X∗

Wq(µy, µy′)q dπ(y, y′)

=

∫

X∗×X∗

d∗(y, y′)q dπ(y, y′) =Wq(ν0, ν1)
q.
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By this, we obtain (3.19). The proof is completed. □

In [9, Theorem 8.8], it is shown that the strong CD(K,∞) condition
(Remark 2.12) is preserved via the metric measure foliation with bounded
leaves. The following theorem claims that the (usual) CD(K,∞) condition
is preserved even if the foliation consists of unbounded leaves.

Theorem 3.22. Let (X, d,m) be an m.m. space with a metric measure
foliation and let K ∈ R. Assume that X satisfies CD(K,∞) and X∗ satisfies
(VG). Then the quotient space X∗ satisfies CD(K,∞).

Note that if X∗ satisfies CD(K,∞), by Proposition 2.8, then X∗ satisfies
(VG), so that the condition (VG) is a natural assumption.

Proof. The outline of the proof is the same as that of [9, Theorem 8.8].
Since X∗ satisfies (VG), there exist ȳ ∈ X∗ and C > 0 such that

(3.22)

∫

X∗

e−C2d∗(y,ȳ)2 dm∗(y) < +∞.

We define V : X → [0,+∞) by V (x) := Cd∗(p(x), ȳ) for x ∈ X.
We take any two measures ν0, ν1 ∈ P2(X

∗) ∩D(Entm∗). Let ρ0, ρ1 be
the densities of ν0, ν1 with respect to m∗ respectively, that is, νi = ρim

∗

for i = 0, 1. Then, by Proposition 3.20, p∗ν0, p∗ν1 both belong to PV (X) ∩
D(Entm). Moreover, by Lemma 3.21, we have

W2(p
∗ν0, p

∗ν1) =W2(ν0, ν1) < +∞.

Thus, by Lemma 2.9, there exists aW2-geodesic µ : [0, 1] ∋ t 7→ µt ∈ PV (X)
joining p∗ν0 and p∗ν1 such that for any t ∈ [0, 1],
(3.23)

Entm(µt) ≤ (1− t)Entm(p∗ν0) + tEntm(p∗ν1)−
K

2
t(1− t)W2(p

∗ν0, p
∗ν1)

2.

We set νt := p∗µt ∈ P2(X
∗) for any t ∈ (0, 1). Let us prove that ν : [0, 1] ∋

t 7→ νt ∈ P2(X
∗) is a W2-geodesic joining ν0 and ν1 satisfying (2.15). By

Proposition 3.20 (1), we have

p∗µi = p∗(p
∗νi) = νi

for i = 0, 1. Combining Lemma 2.1, the definition of W2-geodesic, and
Lemma 3.21 yields that for any s, t ∈ [0, 1],

W2(νs, νt) ≤W2(µs, µt) = |s− t|W2(µ0, µ1) = |s− t|W2(ν0, ν1).
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On the other hand, by the triangle inequality,

W2(νs, νt) ≥W2(ν0, ν1)−W2(ν0, νs)−W2(νt, ν1)

≥W2(ν0, ν1)− sW2(ν0, ν1)− (1− t)W2(ν0, ν1)

= (t− s)W2(ν0, ν1),

which implies that for any s, t ∈ [0, 1],

W2(νs, νt) = |s− t|W2(ν0, ν1).

Thus, ν : [0, 1] ∋ t 7→ νt ∈ P2(X
∗) is aW2-geodesic joining ν0 and ν1. More-

over, combining (3.23), Proposition 3.20, and Lemma 3.21 yields that for any
t ∈ [0, 1],

Entm∗(νt) ≤ Entm(µt)

≤ (1− t)Entm(p∗ν0) + tEntm(p∗ν1)−
K

2
t(1− t)W2(p

∗ν0, p
∗ν1)

2

= (1− t)Entm∗(ν0) + tEntm∗(ν1)−
K

2
t(1− t)W2(ν0, ν1)

2,

which implies that ν satisfies (2.15). Therefore, we see that X∗ satisfies
CD(K,∞). The proof is completed. □

Theorem 3.23. Let (X, d,m) be an m.m. space with a metric measure
foliation and let q ∈ (1,+∞). Then we have

(3.24) ChX
∗

q (f) = ChXq (p∗f)

for any f ∈ Lq(X∗,m∗).

This theorem corresponds to [9, Proposition 8.9 (4)]. In the proof of
[9, Proposition 8.9], some assumptions for the Sobolev space is required in
order to approximate by Lipschitz functions. We remove the assumptions
using a new technique which is to make a lift of q-test plan via a foliation on
the basis of the concept of the weak upper gradient. We prove the following
corollary using Theorem 3.23 before we prove Theorem 3.23.

Corollary 3.24. Let (X, d,m) be an m.m. space with a metric measure
foliation. Assume that X is infinitesimally Hilbertian. Then the quotient
space X∗ is infinitesimally Hilbertian.
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Proof. We take any two functions f, g ∈ L2(X∗,m∗). Let us prove that

ChX
∗

2 (f + g) + ChX
∗

2 (f − g) = 2ChX
∗

2 (f) + 2ChX
∗

2 (g).

Since their pullback functions p∗f, p∗g belong to L2(X,m) and the functional
ChX2 is quadratic, it holds that

ChX2 (p∗f + p∗g) + ChX2 (p∗f − p∗g) = 2ChX2 (p∗f) + 2ChX2 (p∗g).

Thus, by Theorem 3.23, we have

ChX
∗

2 (f + g) + ChX
∗

2 (f − g) = ChX2 (p∗f + p∗g) + ChX2 (p∗f − p∗g)

= 2ChX2 (p∗f) + 2ChX2 (p∗g) = 2ChX
∗

2 (f) + 2ChX
∗

2 (g).

This completes the proof. □

Combining Theorem 3.22 and Corollary 3.24 proves the following. This
is a stronger result than [9, Corollary 8.10]. We remove some technical as-
sumption and extend to the foliations whose leaves are unbounded.

Corollary 3.25. Let (X, d,m) be an m.m. space with a metric measure fo-
liation and let K ∈ R. Assume that X satisfies RCD(K,∞) and X∗ satisfies
(VG). Then the quotient space X∗ satisfies RCD(K,∞).

We prove Theorem 3.23. Let (X, d,m) be an m.m. space with a met-

ric measure foliation and let q ∈ (1,+∞). We write X̃, X̃∗ as C([0, 1];X),

C([0, 1];X∗) respectively for simplicity. Moreover, we set a map p̃ : X̃ → X̃∗

by p̃(ξ) := p ◦ ξ for any curve ξ ∈ X̃. The map p̃ is 1-Lipschitz with respect
to the uniform distance. We first obtain the following proposition.

Proposition 3.26. Let (X, d,m) be an m.m. space with a metric measure
foliation and q ∈ (1,+∞). Then, for any f ∈W 1,q(X∗, d∗,m∗), the pullback
p∗f belongs to W 1,q(X, d,m) and

(3.25) |D(p∗f)|w(x) ≤ |Df |w(p(x))

holds for m-a.e. x ∈ X. In particular, for any f ∈ Lq(X∗,m∗), we have

(3.26) ChXq (p∗f) ≤ ChX
∗

q (f).

Remark 3.27. Proposition 3.26 does not need the foliational structure.
We obtain the same result for a 1-Lipschitz map p : X → Y between two
m.m. spaces X and Y satisfying p∗mX = mY .
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Proof. We take any f ∈W 1,q(X∗, d∗,m∗) and fix it. For the proofs of p∗f ∈
W 1,q(X, d,m) and (3.25), it suffices to prove

∫

X̃
|(p∗f)(ξ(1))− (p∗f)(ξ(0))| dπ(ξ)

≤
∫

X̃

∫ 1

0
|Df |w(p(ξ(t)))|ξ̇|(t) dtdπ(ξ)

for any q∗-test plan π ∈ P(X̃) on X, where q∗ is the conjugate exponent
of q. We take any q∗-test plan π ∈ P(X̃) and fix it. Then the measure

p̃∗π ∈ P(X̃∗) is a q∗-test plan on X∗. In fact, since π is a q∗-test plan,
there exists a constant C > 0 such that et∗π ≤ Cm for any t ∈ [0, 1]. Since
et ◦ p̃ = p ◦ et for each t ∈ [0, 1], we have

et∗p̃∗π = p∗et∗π ≤ p∗(Cm) = Cm∗.

Moreover, it holds that

∫

X̃∗

Eq∗ [γ] d(p̃∗π)(γ) =
∫

X̃
Eq∗ [p ◦ ξ] dπ(ξ) ≤

∫

X̃
Eq∗ [ξ] dπ(ξ) < +∞,

which implies that p̃∗π is a q∗-test plan on Y . Thus, by the definition of
|Df |w, it holds that

∫

X̃∗

|f(γ(1))− f(γ(0))| d(p̃∗π)(γ)

≤
∫

X̃∗

∫ 1

0
|Df |w(γ(t))|γ̇|(t) dtd(p̃∗π)(γ).

This implies

∫

X̃
|(p∗f)(ξ(1))− (p∗f)(ξ(0))| dπ(ξ)

=

∫

X̃∗

|f(γ(1))− f(γ(0))| d(p̃∗π)(γ)

≤
∫

X̃∗

∫ 1

0
|Df |w(γ(t))|γ̇|(t) dtd(p̃∗π)(γ)

=

∫

X̃

∫ 1

0
|Df |w(p(ξ(t)))| ˙(p ◦ ξ)|(t) dtdπ(ξ)

≤
∫

X̃

∫ 1

0
|Df |w(p(ξ(t)))|ξ̇|(t) dtdπ(ξ).
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The proof is completed. □

It is sufficient to show the opposite inequality of (3.26) for the proof of
Theorem 3.23. We prepare the following to prove it. Let {µy}y∈X∗ be the
canonical disintegration of m for the quotient map p. We fix q ∈ (1,+∞)
and denote q∗ the conjugate exponent of q.

We take any curve γ ∈ ACq∗([0, 1];X∗) ⊂ X̃∗ and consider the curve
µγ : [0, 1] ∋ t 7→ µγ(t) ∈ P(X). Since we have

Wq∗(µγ(s), µγ(t)) = d∗(γ(s), γ(t))

for any s, t ∈ [0, 1], the curve µγ belongs to ACq∗([0, 1]; (P(X),Wq∗)) and
|µ̇γ |(t) = |γ̇|(t) holds for L1-a.e. t ∈ [0, 1]. Thus, by Proposition 2.3, there

exists a measure ηγ ∈ P(X̃) such that

et∗ηγ = µγ(t) for any t ∈ [0, 1],(3.27)
∫

X̃
Eq∗ [ξ] dηγ(ξ) =

∫ 1

0
|µ̇γ |(t)q

∗

dt =

∫ 1

0
|γ̇|(t)q∗ dt = Eq∗ [γ].(3.28)

Since et ◦ p̃ = p ◦ et for each t ∈ [0, 1], we have (et)∗p̃∗ηγ = δγ(t) for each

t ∈ [0, 1]. This implies p̃∗ηγ = δγ ∈ P(X̃∗). By Aumann’s measurable choice

theorem (see [7]), whenever we take a probability measure π on X̃∗, there
exists a family {ηγ}γ∈X̃∗

of probability measures on X̃ such that the map

X̃∗ ∋ γ 7→ ηγ(A) ∈ [0, 1] is Borel measurable for any Borel subset A ⊂ X̃

and, for π-a.e. γ ∈ X̃∗, the measure ηγ satisfies (3.27) and (3.28).

From this discussion, we regard the family {ηγ}γ∈X̃∗
⊂ P(X̃) as a “nice”

lift of the disintegration {µy}y∈X∗ ⊂ P(X) ofm. Using this family {ηγ}γ∈X̃∗
,

we are able to lift all test plans on X̃∗ to X̃.

Proposition 3.28. Let π ∈ P(X̃∗) be a q∗-test plan on X∗. We define a
measure p̃∗π ∈ P(X̃) by

(3.29) p̃∗π(A) :=
∫

X̃∗

ηγ(A) dπ(γ)

for any Borel subset A ⊂ X̃. Then p̃∗π is a q∗-test plan on X and satisfies
p̃∗(p̃∗π) = π.

Proof. Let π ∈ P(X̃∗) be a q∗-test plan on X∗. By the definition of q∗-test
plan, there exists a constant C > 0 such that et∗π ≤ Cm∗ for any t ∈ [0, 1].
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We first prove that

(3.30)

∫

X̃
Eq∗ [ξ] d(p̃∗π)(ξ) < +∞.

By the definition of p̃∗π and (3.28), we see that

∫

X̃
Eq∗ [ξ] d(p̃∗π)(ξ) =

∫

X̃∗

∫

X̃
Eq∗ [ξ] dηγ(ξ)dπ(γ) =

∫

X̃∗

Eq∗ [γ] dπ(γ).

We obtain (3.30). We next prove that et∗(p̃
∗π) ≤ Cm for any t ∈ [0, 1]. We

take any t ∈ [0, 1]. Then, for any Borel subset A ⊂ X,

et∗(p̃
∗π)(A) =

∫

X̃∗

ηγ(e
−1
t (A)) dπ(γ) =

∫

X̃∗

µγ(t)(A) dπ(γ)

=

∫

X∗

µy(A) d(et∗π)(y) ≤ C

∫

X∗

µy(A) dm
∗(y) = Cm(A),

which implies et∗(p̃
∗π) ≤ Cm. Thus, we see that p̃∗π is a q∗-test plan on X.

Moreover, we see that p̃∗π satisfies p̃∗(p̃∗π) = π in the same way as in the
proof of Proposition 3.20 (1). The proof is completed. □

Lemma 3.29. Let f ∈W 1,q(X, d,m). We define g ∈ Lq(X∗,m∗) by

(3.31) g(y) :=

∫

X
f(x) dµy(x)

for y ∈ X∗. Then g belongs to W 1,q(X∗, d∗,m∗) and

(3.32) |Dg|w(y)q ≤
∫

X
|Df |w(x)q dµy(x)

holds for m∗-a.e. y ∈ X∗.

Remark 3.30. Given a function h ∈W 1,q(X∗, d∗,m∗), we apply Lemma
3.29 to the function f := p∗h. Then g coincides with h and

(3.33) |Dh|w(y)q ≤
∫

X
|D(p∗h)|w(x)q dµy(x)

holds for m∗-a.e. y ∈ X∗. For the proof of Theorem 3.23, it suffices to
prove (3.33). We obtain the stronger formula (3.32).
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Proof of Lemma 3.29. We take any f ∈W 1,q(X, d,m) and define g ∈
Lq(X∗,m∗) by (3.31). For the proof of g ∈W 1,q(X∗, d∗,m∗) and (3.32), it
is sufficient to prove

∫

X̃∗

|g(γ(1))− g(γ(0))| dπ(γ)

≤
∫

X̃∗

∫ 1

0

(∫

X
|Df |w(x)q dµγ(t)(x)

) 1

q

|γ̇|(t) dtdπ(γ)
(3.34)

for any q∗-test plan π ∈ P(X̃∗) on X∗. We take any q∗-test plan π ∈ P(X̃∗)
on X∗ and fix it. By Proposition 3.28, the measure p̃∗π defined by (3.29) is
a q∗-test plan on X. By the definition of |Df |w, we have

∫

X̃
|f(ξ(1))− f(ξ(0))| d(p̃∗π)(ξ)

≤
∫

X̃

∫ 1

0
|Df |w(ξ(t))|ξ̇|(t) dtd(p̃∗π)(ξ).

Moreover, taking et∗ηγ = µγ(t) into account, we have

g(γ(t)) =

∫

X
f(x) dµγ(t)(x) =

∫

X̃
f(ξ(t)) dηγ(ξ).

Therefore,

∫

X̃∗

|g(γ(1))− g(γ(0))| dπ(γ)

≤
∫

X̃∗

∫

X̃
|f(ξ(1))− f(ξ(0))| dηγ(ξ)dπ(γ)

=

∫

X̃
|f(ξ(1))− f(ξ(0))| d(p̃∗π)(ξ)

≤
∫

X̃

∫ 1

0
|Df |w(ξ(t))|ξ̇|(t) dtd(p̃∗π)(ξ)

=

∫

X̃∗

∫

X̃

∫ 1

0
|Df |w(ξ(t))|ξ̇|(t) dtdηγ(ξ)dπ(γ)

≤
∫

X̃∗

∫ 1

0

(∫

X̃
|Df |w(ξ(t))q dηγ(ξ)

) 1

q

(∫

X̃
|ξ̇|(t)q∗ dηγ(ξ)

) 1

q∗

dtdπ(γ)

=

∫

X̃∗

∫ 1

0

(∫

X
|Df |w(x)q dµγ(t)(x)

) 1

q

(∫

X̃
|ξ̇|(t)q∗ dηγ(ξ)

) 1

q∗

dtdπ(γ).
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In order to prove (3.34), it suffices to prove

(3.35)

∫

X̃
|ξ̇|(t)q∗ dηγ(ξ) = |γ̇|(t)q∗

for π-a.e. γ ∈ X̃∗ and L1-a.e. t ∈ [0, 1]. Since p is 1-Lipschitz, we have
∫

X̃
|ξ̇|(t)q∗ dηγ(ξ) ≥

∫

X̃
| ˙(p ◦ ξ)|(t)q∗ dηγ(ξ) = |γ̇|(t)q∗

for π-a.e. γ ∈ X̃∗ and L1-a.e. t ∈ [0, 1]. On the other hand, by (3.28),

∫ 1

0

(∫

X̃
|ξ̇|(t)q∗ dηγ(ξ)− |γ̇|(t)q∗

)
dt = 0

holds for π-a.e. γ ∈ X̃∗. These imply (3.35). Thus we obtain (3.34). This
completes the proof. □

Proof of Theorem 3.23.We take any f ∈Lq(X∗,m∗). By Proposition 3.26,
we have

ChXq (p∗f) ≤ ChX
∗

q (f).

If ChXq (p∗f) = +∞, then we obtain ChXq (p∗f) = ChX
∗

q (f). We consider the
case of p∗f ∈W 1,q(X, d,m). Then, by Lemma 3.29,

|Df |w(y)q ≤
∫

X
|D(p∗f)|w(x)q dµy(x)

holds for m∗-a.e. y ∈ X∗. Therefore,

ChX
∗

q (f) =
1

q

∫

X∗

|Df |w(y)q dm∗(y)

≤ 1

q

∫

X∗

∫

X
|D(p∗f)|w(x)q dµy(x)dm∗(y)

=
1

q

∫

X
|D(p∗f)|w(x)q dm(x) = ChXq (p∗f),

which implies ChXq (p∗f) = ChX
∗

q (f). The proof is completed. □

4. Convergence under the metric measure foliation

In this section, we study the stability of the curvature-dimension condition
and the convergence of the q-Cheeger energy functionals ChXn

q and the de-
scending slopes |D−Entmn

| (Definition 4.19) of the relative entropies Entmn
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for a sequence of p.m.m. spaces (Xn, dn,mn, x̄n) with a metric measure fo-
liation.

4.1. Variational convergence of q-Cheeger energy functionals

Our goal in this subsection is to prove Theorem 1.1. We denote by N the set
of positive integers.

Definition 4.1. Let {(Xn, dn,mn, x̄n)}n∈N be a sequence of p.m.m. spaces
and (Y, d,m, ȳ) a p.m.m. space. We say that {Xn}n∈N pmG-converges to
Y if there exist a complete separable metric space (Z, dZ) and isometric
embeddings ιn : Xn → Z, ι : Y → Z such that ιn∗mn converges weakly to
ι∗m in Mloc(Z) and ιn(x̄n) converges to ι(ȳ) in Z as n→ ∞.

The following result was obtained by Gigli-Mondino-Savaré [13].

Theorem 4.2 ([13, Theorem 4.9 and 7.2]). Let {(Xn, dn,mn, x̄n)}n∈N be a
sequence of p.m.m. spaces and (Y, d,m, ȳ) a p.m.m. space. Assume that Xn

pmG-converges to Y and eachXn satisfies CD(K,∞) (resp. RCD(K,∞)) for
a real number K ∈ R. Then, Y also satisfies CD(K,∞) (resp. RCD(K,∞)).

Combining this theorem and Theorem 3.22 and Corollary 3.25 proves
Theorem 1.1 (1) and (3) directly.

Proof of Theorem 1.1 (1) and (3). We only prove (1). By Theorem 3.22,
if each Xn satisfies CD(K,∞), then X∗

n satisfies CD(K,∞). Since X∗
n pmG-

converges to Y and by Theorem 4.2, the space Y also satisfies CD(K,∞).
The proof is completed. We obtain (3) in the same way using Corollary 3.25.

□

In order to prove Theorem 1.1 (2) and (4), we need to define the appro-
priate Γ-convergence and Mosco convergence of Cheeger energy functionals
in our setting.

Let {(Xn, dn,mn, x̄n)}n∈N be a sequence of p.m.m. spaces and (Y, d,m, ȳ)
a p.m.m. space. From now on, we assume that each Xn has a metric measure
foliation and its quotient space X∗

n pmG-converges to Y as n→ ∞. Let Z be

a complete separable metric space in Definition 4.1 associated with X∗
n

pmG−−−→
Y . We are able to regard X∗

n, Y as the subsets on Z via the isometric
embeddings. Furthermore, we denote by pn : Xn → X∗

n the quotient map
and assume that every p.m.m. space Xn satisfies (VG).
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Definition 4.3. Let {qn}n∈N ⊂ (1,+∞) be a sequence of real numbers con-
vergent to a real number q ∈ (1,+∞). Let fn ∈ Lqn(Xn,mn) for each n ∈ N

and f ∈ Lq(Y,m). We say that fn L
qn-weakly converges to f if for any func-

tion ϕ ∈ Cbs(Z),

(4.1) lim
n→∞

∫

Xn

ϕ(pn(x))fn(x) dmn(x) =

∫

Y
ϕ(y)f(y) dm(y)

holds, and

(4.2) lim sup
n→∞

∥fn∥Lqn (Xn,mn) < +∞

holds.

Definition 4.4. Let {qn}n∈N ⊂ [1,+∞) be a sequence of real numbers con-
vergent to a real number q ∈ [1,+∞) as n→ ∞. Let fn ∈ Lqn(Xn,mn) for
each n ∈ N and f ∈ Lq(Y,m).

(1) In the case that qn = q > 1, we say that fn L
q-strongly converges to

f if fn L
q-weakly converges to f and it holds that

(4.3) lim
n→∞

∥fn∥Lq(Xn,mn) = ∥f∥Lq(Y,m).

(2) In the case that qn = q = 1, we say that fn L
1-strongly converges to

f if σ ◦ fn L2-strongly converges to σ ◦ f , where σ(t) := sign(t)
√

|t|
is the signed root.

(3) In the case that qn → q > 1, we say that fn L
qn-strongly converges to

f if fn L
qn-weakly converges to f and, for any ε > 0, there exists a

decomposition fn = αn + βn such that
• supn ∥αn∥L∞(Xn,mn) < +∞ and αn L

1-strongly convergent,
• supn ∥βn∥Lqn (Xn,mn) < ε.

Remark 4.5. In the case that (Xn, dn,mn, x̄n) = (Y, d,m, ȳ) and pn = idY
for each n ∈ N, the Lq-convergence in Definition 4.3 and 4.4 is equivalent to
the usual Lq-convergence on Lq(Y,m). In the case that Xn pmG-converges
to Y , Definition 4.3 and 4.4 coincide with [13, Section 6.1] and [6, Section 3].

A discussion in the same way as [13], [3, Section 5.4], [6, Section 3] yields
that the Lqn-convergence in Definition 4.3 and 4.4 has some basic properties
as follows. From now on, we assume that {qn}n∈N ⊂ (1,+∞) converges to
q ∈ (1,+∞).
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Proposition 4.6. Let fn ∈ Lqn(Xn,mn), f ∈ Lq(Y,m) and assume that fn
Lqn-weakly converges to f . Then, it holds that

(4.4) lim inf
n→∞

∥fn∥Lqn (Xn,mn) ≥ ∥f∥Lq(Y,m).

Moreover, any sequence fn ∈ Lqn(Xn,mn) with (4.2) has a Lqn-weakly con-
verging subsequence.

This proposition is proved by the way in [3, Section 5.4] directly. On the
other hand, there is the following easier proof by admitting this property of
the Lqn-convergence in the pmG-convergent case in [6, Proposition 3.1].

Proof of Proposition 4.6. We first prove (4.4). We take any functions
fn ∈ Lqn(Xn,mn), f ∈ Lq(Y,m) and assume that fn L

qn-weakly converges
to f . For each n, we define a function gn ∈ Lqn(X∗

n,m
∗
n) by

gn(z) :=

∫

Xn

fn(x) dµ
n
z (x),

where {µnz }z∈X∗

n
is the disintegration of mn for pn. Actually, we have

∫

X∗

n

gn(z)
qn dm∗

n(z) =

∫

X∗

n

(∫

Xn

fn(x) dµ
n
z (x)

)qn

dm∗
n(z)

≤
∫

Xn

fn(x)
qn dmn(x),

(4.5)

which implies gn ∈ Lqn(X∗
n,m

∗
n). For any ϕ ∈ Cbs(Z), we have

∫

X∗

n

ϕ(z)gn(z) dm
∗
n(z) =

∫

X∗

n

∫

Xn

ϕ(z)fn(x) dµ
n
z (x)dm

∗
n(z)

=

∫

Xn

ϕ(pn(x))fn(x) dmn(x).

Thus, since fn L
qn-weakly converges to f as n→ ∞, we obtain

lim
n→∞

∫

X∗

n

ϕ(z)gn(z) dm
∗
n(z) =

∫

Y
ϕ(y)f(y) dm(y),

which implies that gn L
qn-weakly converges to f on Z if we regard gn and

f as the functions on Z. By the lower semicontinuity of Lqn-norm in the
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pmG-convergent case, we obtain

(4.6) lim inf
n→∞

∥gn∥Lqn (X∗

n,m
∗

n)
≥ ∥f∥Lq(Y,m).

Combining (4.5) and (4.6) leads to (4.4).
We next prove the weak compactness of the Lqn-bounded sequence.

We take any functions fn ∈ Lqn(Xn,mn) satisfying (4.2). We define gn ∈
Lqn(X∗

n,m
∗
n) as in the same way as above. By (4.5), the sequence {gn}n∈N

also satisfies (4.2). By the weak compactness in the pmG-convergent case,
there exists f ∈ Lq(Y,m) such that gn L

qn-weakly converges to f on Z as
n→ ∞. In the same way as above, we see that fn L

qn-weakly converges to f .
We obtain the weak compactness in our setting. The proof is completed. □

Proposition 4.7. Let fn, gn ∈ Lqn(Xn,mn) and f, g ∈ Lq(Y,m). Assume
that fn, gn Lqn-strongly converges to f , g respectively. Then fn + gn Lqn-
strongly converges to f + g and it holds that

(4.7) lim
n→∞

∥fn∥Lqn (Xn,mn) = ∥f∥Lq(Y,m).

Proposition 4.8. Let fn ∈ Lq(Xn,mn), f ∈ Lq(Y,m) and let gn ∈
Lq∗(Xn,mn), g ∈ Lq∗(Y,m) with q∗ = q/(q − 1). Assume that fn L

q-strongly
converges to f and gn L

q∗-weakly converges to g. Then it holds that

(4.8) lim
n→∞

∫

Xn

fn(x)gn(x) dmn(x) =

∫

Y
f(y)g(y) dm(y).

Remark 4.9. (1) We do not need any continuity of pn for the definition
of Lqn-convergence and some properties as above. We only use the
Borel measurability of pn.

(2) From the above properties, this Lqn-convergence is an asymptotic re-

lation which defined by [15], so that this is regarded as a natural
extension of Lqn-convergence in [13, Section 6.1] and [6, Section 3].

Under this Lqn-convergence, we define convergences of q-Cheeger energy
functionals.

Definition 4.10. We say that ChXn

qn Γ-converges to ChYq if

(1) for any sequence of functions fn ∈ Lqn(Xn,mn) L
qn-strongly converg-

ing to a function f ∈ Lq(Y,m), we have

lim inf
n→∞

ChXn

qn (fn) ≥ ChYq (f),
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(2) for any f ∈ Lq(Y,m), there exists a sequence of functions fn ∈
Lqn(Xn,mn) L

qn-strongly convergent to f such that

lim
n→∞

ChXn

qn (fn) = ChYq (f).

Moreover, we say that ChXn

qn Mosco converges to ChYq if

(1′) for any sequence of functions fn ∈ Lqn(Xn,mn) L
qn-weakly converg-

ing to a function f ∈ Lq(Y,m), we have

lim inf
n→∞

ChXn

qn (fn) ≥ ChYq (f),

and above (2).

The following results obtained in [13] and [6] mean the pmG-convergent
case of Theorem 1.1 (2) and (4). We need it for the proof of Theorem 1.1.

Theorem 4.11 ([13, Theorem 6.8]). Let {Xn}n∈N be a sequence of
p.m.m. spaces satisfying CD(K,∞) for a common number K ∈ R and Y
a p.m.m. space. Assume that Xn pmG-converges to Y as n→ ∞. Then
ChXn

2 Mosco converges to ChY2 as n→ ∞.

Theorem 4.12 ([6, Theorem 8.1]). Let {Xn}n∈N be a sequence of
p.m.m. spaces satisfying RCD(K,∞) for a common number K ∈ R and Y a
p.m.m. space. Assume that Xn pmG-converges to Y as n→ ∞. Then ChXn

qn

Γ-converges to ChYq as n→ ∞.

Proof of Theorem 1.1 (2) and (4). Let {qn} ⊂ (1,+∞) be a sequence
convergent to a real number q ∈ (1,+∞). We take any functions fn ∈
Lqn(Xn,mn), f ∈ Lq(Y,m) and assume that fn Lqn-weakly converges to f
as n→ ∞. For each n, we define a function gn ∈ Lqn(X∗

n,m
∗
n) by

gn(y) :=

∫

Xn

fn(x) dµ
n
y (x),

where {µny}y∈X∗

n
is the disintegration of mn for pn. By Lemma 3.29,

|Dgn|w(y)qn ≤
∫

Xn

|Dfn|w(x)qn dµny (x)
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holds for m∗
n-a.e. y ∈ X∗

n. Thus we have

ChX
∗

n
qn (gn) =

1

qn

∫

X∗

n

|Dgn|w(y)qn dm∗
n(y)

≤ 1

qn

∫

X∗

n

∫

Xn

|Dfn|w(x)qn dµny (x)dm∗
n(y)(4.9)

=
1

qn

∫

Xn

|Dfn|w(x)qn dmn(x) = ChXn

qn (fn).

Since fn L
qn-weakly converges to f , the sequence {gn} Lq-weakly converges

to f on Z in the same way as in the proof of Proposition 4.6.
In the case of qn = q = 2, by Theorem 4.11 under the CD(K,∞) assump-

tion, Ch
X∗

n

2 Mosco converges to ChY2 . Combining this with (4.9) implies

ChY2 (f) ≤ lim inf
n→∞

Ch
X∗

n

2 (gn) ≤ lim inf
n→∞

ChXn

2 (fn).

We obtain (1′) in Definition 4.10 in the case of qn = q = 2.
In the general case, we further assume that fn L

qn-strongly converges to
f . We prove the following claim.

Claim 4.13. gn L
qn-strongly converges to f on Z as n→ ∞.

Proof. We take any ε > 0. Since fn L
qn-strongly converges to f , there exists

a decomposition fn = αn + βn such that αn L
1-strongly convergent and

sup
n∈N

∥αn∥L∞(Xn,mn) < +∞, sup
n∈N

∥βn∥Lpn (Xn,mn) < ε.

We define α̂n, β̂n by

α̂n(y) :=

∫

Xn

αn(x) dµ
n
y (x), β̂n(y) :=

∫

Xn

βn(x) dµ
n
y (x),

where {µny}y∈X∗

n
is the disintegration ofmn for pn. We see that gn = α̂n + β̂n

and

∥α̂n∥L∞(X∗

n,m
∗

n)
≤ ∥αn∥L∞(Xn,mn), ∥β̂n∥Lpn (X∗

n,m
∗

n)
≤ ∥βn∥Lpn (Xn,mn).

Thus it suffices to prove the L1-strongly convergence of {α̂n} on Z. Splitting
αn in the positive and negative parts, we assume αn ≥ 0. Let α be the L1-
strong limit of {αn} and let α̂ be a L2-weak limit on Z of a convergent
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subsequence of {σ ◦ α̂n}, where σ(t) := sign(t)
√

|t| is the signed root. For
any ϕ ∈ Cbs(Z), we see that

∫

Xn

ϕ(pn(x))(σ ◦ αn)(x) dmn(x) =

∫

X∗

n

ϕ(y)

∫

Xn

αn(x)
1

2 dµy(x)dm
∗
n(y)

≤
∫

X∗

n

ϕ(y)(σ ◦ α̂n)(y) dm
∗
n(y),

which implies, by taking the limit as n→ ∞,

∫

Y
ϕ(y)(σ ◦ α)(y) dm(y) ≤

∫

Y
ϕ(y)α̂(y) dm(y).

Thus we have σ ◦ α(y) ≤ α̂(y) for m-a.e. y ∈ Y . On the other hand, we have

∥α̂∥L2(Y,m) ≤ lim inf
n→∞

∥σ ◦ α̂n∥L2(X∗

n,m
∗

n)

≤ lim inf
n→∞

∥σ ◦ αn∥L2(Xn,mn) = ∥σ ◦ α∥L2(Y,m).

Combining these leads to σ ◦ α(y) = α̂(y) for m-a.e. y ∈ Y and

lim
n→∞

∥σ ◦ α̂n∥L2(X∗

n,m
∗

n)
= ∥σ ◦ α∥L2(Y,m).

Therefore σ ◦ α̂n L
2-strongly converges to σ ◦ α, that is, α̂n L

1-strongly con-
verges to α. This completes the proof. □

By Theorem 4.12 under the RCD(K,∞) assumption, Ch
X∗

n
qn Γ-converges

to ChYq . Combining this with Claim 4.13 and (4.9) implies

ChYq (f) ≤ lim inf
n→∞

ChX
∗

n
qn (gn) ≤ lim inf

n→∞
ChXn

qn (fn).

We obtain (1) in Definition 4.10 in the general case.
We next prove (2) in Definition 4.10. We take any function f ∈ Lq(Y,m).

By Theorem 4.11 and 4.12, the sequence of the Cheeger energy functionals
Ch

X∗

n
qn Γ-converges to ChYq as n→ ∞. Thus, there exists a sequence of func-

tions gn ∈ Lqn(X∗
n,m

∗
n) L

qn-strongly convergent to f on Z such that

lim
n→∞

ChX
∗

n
qn (gn) = ChYq (f).

We define a function fn by fn := pn
∗gn for each n. These fn are what we

want. Let us prove that these fn satisfy the condition (2) in Definition 4.10.
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We see that
∫

Xn

fn(x)
qn dmn(x) =

∫

Xn

gn(pn(x))
qn dmn(x) =

∫

X∗

n

gn(y)
qn dm∗

n(y)

holds, so that fn ∈ Lqn(Xn,mn). Moreover, we obtain

(4.10) lim
n→∞

∥fn∥Lqn (Xn,mn) = ∥f∥Lq(Y,m).

For any ϕ ∈ Cbs(Z), we have

∫

Xn

ϕ(pn(x))fn(x) dmn(x) =

∫

Xn

ϕ(pn(x))gn(pn(x)) dmn(x)

=

∫

X∗

n

ϕ(y)gn(y) dm
∗
n(y).

Thus we obtain

(4.11) lim
n→∞

∫

Xn

ϕ(pn(x))fn(x) dmn(x) =

∫

Y
ϕ(y)f(y) dm(y)

for any ϕ ∈ Cbs(Z). Combining (4.10) and (4.11) implies that fn L
qn-strongly

converges to f . By Theorem 3.23, we have

ChXn

qn (fn) = ChX
∗

n
qn (gn)

and so

lim
n→∞

ChXn

qn (fn) = ChYq (f).

Therefore the sequence of functions fn satisfies the condition (2). This com-
pletes the proof of Theorem 1.1. □

4.2. Semicontinuity of spectra and spectral gaps

As an application of the Mosco convergence of the Cheeger energy function-
als, we obtain the semicontinuity of the spectra of Laplacians on p.m.m.
spaces satisfying RCD(K,∞). The Laplacian ∆X on a p.m.m. space X sat-
isfying RCD(K,∞) is defined as the self-adjoint linear operator associated
with the quadratic form ChX2 . We denote by σ(∆X) the spectrum of ∆X .

Proof of Corollary 1.3 . This corollary follows from Theorem 1.1 and [15,
Proposition 5.30] directly. □
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Proof of Corollary 1.4. We take any λ ∈ σ(∆X∗). By Corollary 1.3, there
exists a sequence λn ∈ σ(∆X) convergent to λ. Since σ(∆X) is closed in
[0,+∞), λ belongs to σ(∆X). The proof is completed. □

Let (X, d,m) be an m.m. space with finite mass. For any real number
q ∈ (1,+∞) and any f ∈ Lq(X,m), we set

(4.12) cq(f) :=

(
inf
a∈R

∫

X
|f(x)− a|q dm(x)

) 1

q

.

We define the q-spectral gap λ1,q(X, d,m) by

(4.13) λ1,q(X, d,m) := inf
f

qChXq (f)

cq(f)q
,

where f runs over all nonconstant Lq-functions. It is well-known that the
infimum does not change if we minimize qChXq (f) where f runs over all
nonconstant Lq-functions with

∥f∥Lq(X,m) = 1,

∫

X
|f(x)|q−2 f(x) dm(x) = 0.

Proposition 4.14. Let (X, d,m) be an m.m. space with a metric measure
foliation and let q ∈ (1,+∞) be a real number. Assume that m has finite
mass. Then we have

(4.14) λ1,q(X
∗, d∗,m∗) ≥ λ1,q(X, d,m).

Proof. We take any f ∈ Lq(X∗,m∗). By Theorem 3.23, we have

ChX
∗

q (f) = ChXq (p∗f).

Moreover, for any a ∈ R, we see that

∫

X∗

|f(y)− a|q dm∗(y) =
∫

X
|p∗f(x)− a|q dm(x),

which implies that cq(f) = cq(p
∗f). Therefore we obtain

λ1,q(X, d,m) ≤
qChXq (p∗f)

cq(p∗f)q
=
qChX

∗

q (f)

cq(f)q
.

This completes the proof. □
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Proposition 4.15. Let {(Xn, dn,mn, x̄n)}n∈N be a sequence of p.m.m.
spaces and (Y, d,m, ȳ) be a p.m.m. space. Let {qn}n∈N ⊂ (1,+∞) be a se-
quence of real numbers convergent to q ∈ (1,+∞). Assume that the same
assumptions as in Theorem 1.1 (3) and each mn has finite mass. Then we
have

(4.15) lim sup
n→∞

λ1,qn(Xn, dn,mn) ≤ λ1,q(Y, d,m).

Proof. We take any f ∈ Lq(Y,m). By Theorem 1.1 (4), there exists fn ∈
Lqn(Xn,mn) L

qn-strongly converging to f such that

lim
n→∞

ChXn

qn (fn) = ChYq (f).

Then we see that cqn(fn) converges to cq(f) in the same way as in [6, Lemma
9.2]. Thus we obtain

lim sup
n→∞

λ1,qn(Xn, dn,mn) ≤ lim sup
n→∞

qnCh
Xn

qn (fn)

cqn(fn)
qn

=
qChYq (f)

cq(f)q
,

which leads to (4.15). □

Remark 4.16. In our setting, we do not obtain the upper semicontinuity
of the spectra σ(∆Xn

) and the lower semicontinuity of the qn-spectral gap
λ1,qn(Xn, dn,mn). Via the metric measure foliation, the spectral information
is lost in general. The limit-like space Y does not have the full information
of the limit behavior of Xn.

Example 4.17. Consider the sequence {Sn × S1}n∈N of the Riemannian
product of the n-dimensional unit sphere Sn and the 1-dimensional unit
sphere S1. The product space Sn × S1 has a metric measure foliation induced
by the trivial S1-fibration. We see that

λ1,2(S
n) = n, λ1,2(S

n × S1) = λ1,2(S
1) = 1.

Example 4.18. Consider the sequence {Sn(
√
n− 1)}n∈N, the map pn of

(1.1), and the space Xn in Section 1. Xn pmG-converges to 1-dimensional
standard Gaussian space (R, | · |, γ) as n→ ∞ (see [20, Lemma 3.9]), where
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γ is the 1-dimensional standard Gaussian measure (i.e., γ = γ1). It is well-
known that

σ(∆Sn(
√
n−1)) =

{
k

(
1 +

k

n− 1

) ∣∣∣∣ k = 0, 1, 2, . . .

}
,

σ(∆(R,|·|,γ)) = {k | k = 0, 1, 2, . . .} .

By Corollary 1.4, we see that σ(∆Xn
) ⊂ σ(∆Sn(

√
n−1)). Moreover, by [13,

Theorem 7.8], k-th eigenvalue of ∆Xn
converges to k-th eigenvalue of ∆(R,|·|,γ)

taking account of the multiplicity. Thus we see that σ(∆Xn
) = σ(∆Sn(

√
n−1))

and each multiplicity of eigenvalues of ∆Xn
equals to 1.

4.3. Descending slope of the relative entropy and heat flow

In this subsection, we state the results for the (descending) slope of the
relative entropy and the heat flow. We first define these notions along [4,13].
Let (X, d,m) be an m.m. space.

Definition 4.19 (Descending slope of Entm). We define the (descend-
ing) slope |D−Entm| : P2(X) → [0,+∞] of the relative entropy Entm for m
by

(4.16) |D−Entm|(µ) := lim sup
W2(ν,µ)→0

(Entm(µ)− Entm(ν))+

W2(µ, ν)
,

where (·)+ means the positive part. |D−Entm|(µ) is equal to +∞ if µ is
outside D(Entm) and 0 if µ is an isolated measure in D(Entm).

Proposition 4.20. Let (X, d,m) be an m.m. space satisfying CD(K,∞)
for a real number K ∈ R. Then, for any µ ∈ P2(X), we have

(4.17) |D−Entm|(µ) = sup
µ ̸=ν∈P2(X)

(
Entm(µ)− Entm(ν)

W2(µ, ν)
+
K

2
W2(µ, ν)

)+

.

In particular, |D−Entm| is lower semicontinuous with respect to W2.

It is known that the slope |D−Entm| of Entm and the 2-Cheeger energy
functional Ch2 on an m.m. space satisfying CD(K,∞) have the following
relation. This relation is a deep result obtained in [4].
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Theorem 4.21 ([4, Theorem 7.6]). Let (X, d,m) be an m.m. space sat-
isfying CD(K,∞) for a number K ∈ R. Then, for any measure µ ∈ P2(X)
that is absolutely continuous with respect to m, we have

(4.18) |D−Entm|2(µ) = 8Ch2(
√
ρ),

where ρ is the density of µ with respect to m.

Let I ⊂ R be an interval of R. A curve γ : I → X is said to be locally ab-

solutely continuous if there exists f ∈ L1
loc(I) satisfying (2.3) for any s, t ∈ I

with s < t. We denote by ACloc(I;X) the set of locally absolutely continuous
curves on X. For each γ ∈ ACloc(I;X), the metric derivative |γ̇| ∈ L1

loc(I)
of γ is defined by (2.4) locally and is the minimal function, in the a.e. sense,
of L1

loc-functions satisfying (2.3).

Definition 4.22 (Gradient flow of the relative entropy). Let (X, d,m)
be an m.m. space satisfying CD(K,∞) for a number K ∈ R and let µ̄ ∈
P2(X) ∩D(Entm). A curve µ : [0,+∞) → P2(X) ∩D(Entm) is a W2-

gradient flow of Entm starting from µ̄ provided µ belongs to ACloc([0,+∞);
(P2(X),W2)) and satisfies µ0 = µ and

(4.19) Entm(µs) = Entm(µt) +
1

2

∫ t

s
|µ̇|(r)2 dr + 1

2

∫ t

s
|D−Entm|(µr)2 dr

for any s, t ∈ [0,+∞) with s < t.

Remark 4.23. The formula (4.19) is called the Energy Dissipation Equa-

tion (abbreviated as EDE) and a gradient flow in Definition 4.22 is called a
flow in the EDE sense. Moreover a W2-gradient flow µ of Entm satisfies

− d

dt
Entm(µt) = |D−Entm|(µt)2

for a.e. t > 0. As one of the most important results in [4], it is known that
the W2-gradient flows of Entm coincide with the L2-gradient flows of the
2-Cheeger energy functional Ch2 on an m.m. space satisfying CD(K,∞).
Thus µ is called a heat flow.

The existence and uniqueness of the W2-gradient flow of Entm was
proved by [10] in the case of locally compact space and by [4] in the general
case.
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Theorem 4.24 ([4, Theorem 9.3]). Let (X, d,m) be an m.m. space satis-
fying CD(K,∞) for a number K ∈ R. Then, for any measure µ̄ ∈ P2(X) ∩
D(Entm), there exists a unique W2-gradient flow of Entm starting from µ̄.

In order to describe Theorem 1.5 more precisely, we define a Γ-
convergence of the slopes of the relative entropies in our setting.

Definition 4.25. Under the assumption of Theorem 1.5, we say that
|D−Entmn

| Γ-converges to |D−Entm| if the following (1) and (2) are sat-
isfied.

(1) For any µn ∈ P2(Xn), µ ∈ P2(Y ) such that W2(µn, pn
∗µ) tends to 0

as n→ ∞, we have

(4.20) lim inf
n→∞

|D−Entmn
|(µn) ≥ |D−Entm|(µ).

(2) For any µ ∈ P2(Y ), there exists a sequence µn ∈ P2(Xn) such that

lim
n→∞

W2(µn, pn
∗µ) = 0,(4.21)

lim
n→∞

|D−Entmn
|(µn) = |D−Entm|(µ).(4.22)

Remark 4.26. In Definition 4.25, the definition of the convergence of µn ∈
P2(Xn) to µ ∈ P2(Y ) is regarded as

(4.23) lim
n→∞

W2(µn, pn
∗µ) = 0.

This convergence is an asymptotic relation in [15], so that this is a natural
convergence. On the other hand, the W2-convergence of the push-forward
measures pn∗µn is weaker than (4.23) and is not an asymptotic relation.

We need the following lemma for the proof of Theorem 1.5.

Lemma 4.27. Let (X, d,m) be an m.m. space with a metric measure foli-
ation. Then, for any µ ∈ P2(X

∗), we have

(4.24) |D−Entm|(p∗µ) = |D−Entm∗ |(µ).

Proof. We take any measure µ ∈ P2(X
∗). If µ is outside D(Entm∗) or is

an isolated measure in D(Entm∗), the pullback measure p∗µ is also the
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same, which implies (4.24) trivially. We only prove the case that µ be-
longs to D(Entm∗) and is non-isolated. By (2.14), Proposition 3.20 (3), and
Lemma 2.1, we have

|D−Entm|(p∗µ) = lim sup
W2(ν,p∗µ)→0

(Entm(p∗µ)− Entm(ν))+

W2(p∗µ, ν)

≤ lim sup
W2(ν,p∗µ)→0

(Entm∗(µ)− Entm∗(p∗ν))+

W2(µ, p∗ν)

≤ lim sup
W2(ν′,µ)→0

(Entm∗(µ)− Entm∗(ν ′))+

W2(µ, ν ′)

= |D−Entm∗ |(µ).

On the other hand, by Proposition 3.20 (3) and Lemma 3.21, we have

|D−Entm|(p∗µ) = lim sup
W2(ν,p∗µ)→0

(Entm(p∗µ)− Entm(ν))+

W2(p∗µ, ν)

≥ lim sup
W2(ν′,µ)→0

(Entm(p∗µ)− Entm(p∗ν ′))+

W2(p∗µ, p∗ν ′)

= lim sup
W2(ν′,µ)→0

(Entm∗(µ)− Entm∗(ν ′))+

W2(µ, ν ′)

= |D−Entm∗ |(µ).

Therefore we obtain (4.24). This completes the proof. □

Moreover, we need the following two results obtained in [13].

Theorem 4.28 ([13, Theorem 4.7]). Let {(Xn, dn,mn, x̄n)}n∈N be a se-
quence of p.m.m. spaces and (Y, d,m, ȳ) a p.m.m. space. Assume that Xn

pmG-converges to Y as n→ ∞. Then, Entmn
Γ-converges to Entm as n→

∞, that is, the following (1) and (2) hold.

(1) For any sequence of measures µn ∈ P2(Xn) W2-converging to a mea-
sure µ ∈ P2(Y ), we have

lim inf
n→∞

Entmn
(µn) ≥ Entm(µ).

(2) For any µ ∈ P2(Y ), there exists a sequence of measures µn ∈ P2(Xn)
W2-convergent to µ such that

lim
n→∞

Entmn
(µn) = Entm(µ).
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Note that the W2-convergence of µn is well-defined since each µn and µ are
regarded as measures on the common Z.

Theorem 4.29 ([13, Theorem 5.14]). Let {(Xn, dn,mn, x̄n)}n∈N be a se-
quence of p.m.m. spaces satisfying CD(K,∞) for a common number K ∈ R

and (Y, d,m, ȳ) a p.m.m. space. Assume that Xn pmG-converges to Y as
n→ ∞. Then |D−Entmn

| Mosco converges to |D−Entm| as n→ ∞, that is,
the following (1) and (2) hold.

(1) For any sequence of measures µn ∈ P2(Xn) weakly converging to a
measure µ ∈ P2(Y ), we have

lim inf
n→∞

|D−Entmn
|(µn) ≥ |D−Entm|(µ).

(2) For any µ ∈ P2(Y ), there exists a sequence of measures µn ∈ P2(Xn)
W2-convergent to µ such that

lim
n→∞

|D−Entmn
|(µn) = |D−Entm|(µ).

Note that the weak and W2 convergences of µn are well-defined since each
µn and µ are regarded as measures on the common Z.

Proof of Theorem 1.5. We first prove (1) in Definition 4.25. We take any
measures µn ∈ P2(Xn), µ ∈ P2(Y ) and assume that

lim
n→∞

W2(µn, pn
∗µ) = 0.

We take any measure ν ∈ D(Entm). By Theorem 4.28 (2), there exists a
sequence {νn}n∈N ⊂ P2(X

∗
n) W2-convergent to ν such that Entm∗

n
(νn) →

Entm(ν). Then we have W2(µn, pn
∗νn) →W2(µ, ν) as n→ ∞ and, by The-

orem 4.28 (1),

Entm(µ) ≤ lim inf
n→∞

Entm∗

n
(pn∗µn) ≤ lim inf

n→∞
Entmn

(µn).

Thus, by Proposition 4.20, we have

Entm(µ)− Entm(ν)

W2(µ, ν)
+
K

2
W2(µ, ν)

≤ lim inf
n→∞

(
Entmn

(µn)− Entmn
(pn

∗νn)
W2(µn, pn∗νn)

+
K

2
W2(µn, pn

∗νn)

)

≤ lim inf
n→∞

|D−Entmn
|(µn),
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which implies

lim inf
n→∞

|D−Entmn
|(µn) ≥ |D−Entm|(µ).

The proof of (1) in Definition 4.25 is completed.
We next prove (2) in Definition 4.25. We take any µ ∈ P2(Y ). By Theo-

rem 4.29 (2), there exists a sequence {νn}n∈N ⊂ P2(X
∗
n)W2-convergent to ν

such that |D−Entm∗

n
|(νn) → |D−Entm|(µ) as n→ ∞. We define a measure

µn by µn := pn
∗νn ∈ P2(Xn) for each n ∈ N. Then we have

W2(µn, pn
∗µ) =W2(νn, µ) → 0

and, by Lemma 4.27,

|D−Entmn
|(µn) = |D−Entm∗

n
|(νn) → |D−Entm|(µ)

as n→ ∞. This completes the proof of (2) in Definition 4.25. We obtain
Theorem 1.5. □

Remark 4.30. As in Theorem 4.29, the Mosco convergence of the slopes
|D−Entmn

| is obtained in the pmG-convergent case. However, we do not
know if we can extend Theorem 1.5 to a suitable Mosco convergence in our
setting.

We obtain the following results about the heat flow.

Proposition 4.31. Let (X, d,m) be an m.m. space with a metric measure
foliation. Assume that X satisfies CD(K,∞) for a real number K ∈ R and
its quotient space X∗ satisfies (VG). Let µ̄ ∈ P2(X

∗) ∩D(Entm∗) and let
µ : [0,+∞) → P2(X

∗) ∩D(Entm∗) be the heat flow starting from µ̄. We
define a curve p∗µ : [0,+∞) → P2(X) ∩D(Entm) by (p∗µ)t := p∗µt. Then
p∗µ is the heat flow starting from p∗µ̄.

Proof. By the definition of the heat flow, it suffices to prove that

Entm(p∗µt) = Entm∗(µt) for all t > 0,(4.25)

| ˙(p∗µ)|(t) = |µ̇|(t) for a.e. t > 0,(4.26)

|D−Entm|(p∗µt) = |D−Entm∗ |(µt) for a.e. t > 0.(4.27)
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(4.25) and (4.27) have already been obtained by Proposition 3.20 and
Lemma 4.27. We prove (4.26). By Lemma 3.21, we have

W2(p
∗µs, p

∗µt) =W2(µs, µt)

for any s, t > 0, which implies (4.26). This completes the proof. □

The following lemma is a generalization of [13, Theorem 5.7]. However,
the proof of this lemma is exactly the same as that of [13, Theorem 5.7].

Lemma 4.32. Let {(Xn, dn,mn, x̄n)}n∈N be a sequence of p.m.m. spaces
and (Y, d,m, ȳ) a p.m.m. space and let K ∈ R. Assume that each Xn sat-
isfies CD(K,∞) and has a metric measure foliation and its quotient space
X∗

n satisfies (VG) and pmG-converges to Y as n→ ∞. Let µ̄n ∈ P2(Xn) ∩
D(Entmn

), µ̄ ∈ P2(Y ) ∩D(Entm) and let µn, µ be the heat flows starting
from µ̄n, µ̄ respectively and assume that

pn∗µ̄n
W2−−→ µ̄, Entmn

(µ̄n) → Entm(µ̄).

Then, for any t > 0, we have

(4.28) pn∗µn,t
W2−−→ µt.

Remark 4.33. We conjecture that we could change the conclusion of
Lemma 4.32 from (4.28) to

lim
n→∞

W2(µn,t, pn
∗µt) = 0

if we assume the stronger convergence

lim
n→∞

W2(µ̄n, pn
∗µ̄) = 0.

In the RCD(K,∞) case, it is known that we have the contraction property

W2(µn,t, pn
∗µt) ≤ e−KtW2(µ̄n, pn

∗µ̄)

for any t ≥ 0, so that this conjecture is true. However, we do not know if
the conjecture is true in the general case.
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Appendix A. Proof of Lemma 2.9

Proof of Lemma 2.9. We take any µ0, µ1 ∈ PV (X) ∩D(Entm) with
W2(µ0, µ1) < +∞ and any sufficiently small real number ε > 0. Let π ∈
P(X ×X) be an optimal transport plan for W2(µ0, µ1). By the tightness of
π, there exist compact sets K0 ⊂ K1 ⊂ · · · ⊂ X ×X such that π(K0) ≥ e−ε

and π(Kn) ≥ 1− εe−n for n ≥ 1. Setting A0 := K0 and An := Kn \Kn−1

for n ≥ 1, we see that π(An) ≤ εe−(n−1) for n ≥ 1 and

(A.1) θ(ε) := −
∞∑

n=0

π(An) log π(An) ≤ ε+

∞∑

n=0

εe−n(n− log ε) → 0

as ε→ 0. The inequality of (A.1) follows from the monotonicity of the func-
tion r 7→ r log r for any sufficiently small r. We define the probability mea-
sures

πn := π(An)
−1π|An

, µn0 := pr0∗πn, µn1 := pr1∗πn

for n ∈ N ∪ {0}. Then we have µn0 , µ
n
1 ∈ P2(X) ∩D(Entm) for each n ∈ N ∪

{0} and

π =

∞∑

n=0

π(An)πn, µ0 =

∞∑

n=0

π(An)µ
n
0 , µ1 =

∞∑

n=0

π(An)µ
n
1 .

We verify only µn0 , µ
n
1 ∈ D(Entm). Setting ρi, ρ

n
i the densities of µi, µ

n
i re-

spectively for i = 0, 1 and n ∈ N ∪ {0}, we have ρni (x) ≤ π(An)
−1ρi(x) for

m-a.e. x ∈ X. Thus we have
∫

{ρn
i >1}

ρni (x) log ρ
n
i (x) dm(x)

≤
∫

{ρn
i >1}

ρni (x)(log ρi(x)− log π(An)) dm(x)

≤ π(An)
−1

∫

{ρn
i (xi)>1}∩An

log ρi(xi) dπ(x0, x1)− log π(An)

≤ π(An)
−1

∫

{ρi(xi)>1}
log ρi(xi) dπ(x0, x1)− log π(An)

= π(An)
−1

∫

{ρi>1}
ρi(x) log ρi(x) dµi(x)− log π(An) < +∞,

which implies µn0 , µ
n
1 ∈ D(Entm). Therefore, by CD(K,∞), there exists a

W2-geodesic µ
n : [0, 1] ∋ t 7→ µnt ∈ P2(X) joining µn0 and µn1 satisfying (2.15)
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for each n ∈ N ∪ {0}. We define a probability measure µt = µεt for t ∈ (0, 1)
by

µt :=

∞∑

n=0

π(An)µ
n
t .

It suffices to prove that µ : [0, 1] ∋ t 7→ µt ∈ P(X) is a W2-geodesic joining
µ0 and µ1 satisfying

Entm(µt) ≤ (1− t)Entm(µ0) + tEntm(µ1)(A.2)

− K

2
t(1− t)W2(µ0, µ1)

2 + θ(ε).

In fact, by (A.2), we see that supε>0 Entm(µεt ) < +∞. Combining this and
(2.17) and (2.18), we have supε>0 Entm̃(µεt ) < +∞. Thus {µεt}ε>0 is tight
and then there exists a weak limit µt ∈ P(X) of subsequence of {µεt}ε>0 as
ε→ 0 for t ∈ (0, 1). These weak limits {µt}t∈(0,1) is also a W2-geodesic and
satisfies (2.15) since θ(ε) → 0 as ε→ 0.

We first prove that µ is a W2-geodesic. Since π is an optimal transport
plan, πn is also optimal for W2(µ

n
0 , µ

n
1 ) for each n ∈ N ∪ {0}. Thus we have

∞∑

n=0

π(An)W2(µ
n
0 , µ

n
1 )

2 =

∞∑

n=0

π(An)

∫

X×X
d(x, x′)2 dπn(x, x

′)

=

∞∑

n=0

∫

An

d(x, x′)2 dπ(x, x′) =W2(µ0, µ1)
2.

By the triangle inequality, it is sufficient to prove that

(A.3) W2(µt, µi) ≤ ti(1− t)1−iW2(µ0, µ1)

for i = 0, 1. Let πt,in be an optimal transport plan for W2(µ
n
t , µ

n
i ). Defining

a measure

πt,i :=

∞∑

n=0

π(An)π
t,i
n ,
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we see that πt,i ∈ Π(µt, µi). Therefore, since µ
n is a W2-geodesic,

W2(µt, µi)
2 ≤

∫

X×X
d(x, x′)2 dπt,i =

∞∑

n=0

π(An)W2(µ
n
t , µ

n
i )

2

=

∞∑

n=0

π(An)t
2i(1− t)2(1−i)W2(µ

n
0 , µ

n
1 )

2

= t2i(1− t)2(1−i)W2(µ0, µ1)
2,

which implies (A.3).
We next prove that µ satisfies (A.2). Let us first prove that

(A.4)

∞∑

n=0

π(An)Entm(µni ) ≤ Entm(µi) + θ(ε) < +∞

for i=0, 1, where the series in the left-hand side converges. Since Entm̃(µni )≥
0 and ρni (x) ≤ π(An)

−1ρi(x) for m-a.e. x ∈ X, we have

(0 ≤)

∞∑

n=0

π(An)Entm̃(µni ) =

∞∑

n=0

π(An)

∫

X

(
zeV

2

ρni

)
log
(
zeV

2

ρni

)
dm̃

≤
∞∑

n=0

π(An)

∫

X
log
(
zeV

2

ρi

)
dµni −

∞∑

n=0

π(An) log π(An)

=

∞∑

n=0

∫

An

log
(
zeV

2

ρi

)
dπ + θ(ε) =

∫

X
log
(
zeV

2

ρi

)
dµi + θ(ε)

= Entm(µi) +

∫

X
V 2 dµi + log z + θ(ε) < +∞.

Moreover, we obtain

(0 ≤)

∞∑

n=0

π(An)

∫

X
V 2 dµni =

∞∑

n=0

∫

An

V 2 dπ =

∫

X
V 2 dµi < +∞.

Therefore, the series

∞∑

n=0

π(An)Entm(µni ) =

∞∑

n=0

π(An)

(
Entm̃(µni )−

∫

X
V 2 dµni − log z

)
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converges and (A.4) holds. Let ρt, ρ
n
t be the densities of µt, µ

n
t respectively

for t ∈ (0, 1). By the definition of µt and Fubini’s theorem, we have

ρt(x) =

∞∑

n=0

π(An)ρ
n
t (x)

for m-a.e. x ∈ X. Therefore, by Jensen’s inequality, Fubini’s theorem, (2.15)
of µn, and (A.4),

Entm(µt) =

∫

X

( ∞∑

n=0

π(An)ρ
n
t (x)

)
log

( ∞∑

n=0

π(An)ρ
n
t (x)

)
dm(x)

≤
∫

X

∞∑

n=0

π(An)(ρ
n
t (x) log ρ

n
t (x)) dm(x) =

∞∑

n=0

π(An)Entm(µnt )

≤ (1− t)

∞∑

n=0

π(An)Entm(µn0 ) + t

∞∑

n=0

π(An)Entm(µn1 )

− K

2
t(1− t)

∞∑

n=0

π(An)W2(µ
n
0 , µ

n
1 )

2

≤ (1− t)Entm(µ0) + tEntm(µ1)−
K

2
t(1− t)W2(µ0, µ1)

2 + θ(ε).

We obtain (A.2). The proof is completed. □
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metric spaces and in the space of probability measures, 2nd ed., Lectures
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