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1. Introduction

A G2-structure on a 7-dimensional differentiable manifoldM is a positive (or
definite) differential 3-form on M . Each G2-structure φ defines a Rieman-
nian metric g on M together with an orientation and (M,φ) is called homo-
geneous if its automorphism group Aut(M,φ) := {f ∈ Diff(M) : f∗φ = φ}
acts transitively on M .

As is well known, torsion-free (or parallel) G2-structures (i.e. dφ = 0 and
d ∗ φ = 0) produce Ricci flat Riemannian metrics with holonomy contained
in G2. Homogeneous torsion-free G2-structures are therefore necessarily flat
by [AK]. In the case that φ is closed, the only torsion that survives is a
2-form τ and one has that,

dφ = 0, τ = − ∗ d ∗ φ, d ∗ φ = τ ∧ φ, dτ = ∆φ.

Closed G2-structures play an important role as natural candidates to deform
toward a torsion-free one via the Laplacian flow ∂

∂t
φ(t) = ∆φ(t), introduced

back in 1992 by R. Bryant in [B] (see [Lo] for an account of recent advances).
In the homogeneous case, closed G2-structures are only allowed on non-
compact manifolds (see [PR]) and examples on non-solvable Lie groups were
given in [FR3].

A closed G2-structure is said to be extremally Ricci-pinched (ERP for
short) when

dτ = 1
6 |τ |

2φ+ 1
6 ∗ (τ ∧ τ),

one of the ways in which dτ can quadratically depend on τ . It is proved in
[B, (4.66)] that this is the only way in the compact case. In the homogeneous
case, the only other possibility for a quadratic dependence is to have dτ =
1
7 |τ |2φ (i.e. φ an eigenform of ∆), though the existence of such structures
is still an open problem (see [L3, Lemma 3.4] and [L4]). ERP G2-structures
were introduced by R. Bryant in [B, Remark 13] and owe their name to
the fact that they are precisely the structures at which equality holds in
the following estimate for closed G2-structures on a compact manifold M
obtained in [B, Corollary 3]:

∫

M

scal2 ∗1 ≤ 3

∫

M

|Ric |2 ∗ 1.

This estimate does not hold in general in the homogeneous case, examples of
closed G2-structures on solvable Lie groups such that scal2 > 3|Ric |2 were
found in [L3]. In [FR2], it is proved that the Laplacian flow solution starting
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at an ERP G2-structure φ is simply given by

φ(t) = φ+ c(t)dτ, c(t) = 6
|τ |2

(

e
|τ|2
6

t − 1
)

,

from which follows that the set of ERP G2-structures is invariant under the
Laplacian flow and the solutions are always eternal.

Until now, only two examples of ERPG2-structures were known and they
are both (locally) homogeneous: one on the homogeneous space SL2(C)⋉
C2/SU(2) (see [B, Example 1]), or alternatively, on the solvable Lie group
given in [CI, Section 6.3] (see also [L3, Examples 4.13, 4.10]), and a second
one on a unimodular solvable Lie group given in [L3, Example 4.7]. It is
worth highlighting that both examples are also steady Laplacian solitons,
that is, they evolve under the Laplacian flow in the following silly way:
there is a one-parameter family f(t) ∈ Diff(M) such that the Laplacian flow
solution starting at φ is given by φ(t) = f(t)∗φ.

Motivated by this major lack of examples, we study in this paper left-
invariant ERP G2-structures on Lie groups, in which the G2-structure can
be identified with a positive 3-form on the Lie algebra. Our aim is to show
that the condition produces quite strong structure constraints on the Lie
algebra (see Section 4).

We first introduce some notation. Given a real vector space g with basis
{e1, . . . , e7}, we consider the positive 3-form

φ = e127 + e347 + e567 + e135 − e146 − e236 − e245

= ω3 ∧ e3 + ω4 ∧ e4 + ω7 ∧ e7 + e347,(1)

where ω7 := e12 + e56, ω3 := e26 − e15 and ω4 := e16 + e25, and let θ denote
the usual representation of gl4(R) on Λ2R4. Two Lie groups endowed with
G2-structures (G,φ) and (G′, φ′) are called equivariantly equivalent if there
is a Lie group isomorphism f : G→ G′ such that φ = f∗φ′.

We are now ready to state our main result (see Theorem 4.7 and Propo-
sition 4.9).

Theorem 1.1. Every Lie group endowed with a left-invariant ERP G2-
structure is equivariantly equivalent, up to scaling, to a (G,φ) with torsion
τ = e12 − e56, where φ is as in (1), and the following conditions hold for the
Lie algebra g of G:

(i) h := sp{e1, . . . , e6} is a unimodular ideal.
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(ii) g0 := sp{e7, e3, e4} is a Lie subalgebra and g1 := sp{e1, e2, e5, e6} is an
abelian ideal of g. In particular, g = g0 ⋉ g1 and g is solvable.

(iii) h1 := sp{e3, e4} is an abelian subalgebra; in particular h = h1 ⋉ g1.

(iv) θ(ad e7|g1
)τ = 1

3ω7, θ(ad e3|g1
)τ = 1

3ω3 and θ(ad e4|g1
)τ = 1

3ω4.

(v) θ(ad e7|g1
)ω7 + θ(ad e3|g1

)ω3 + θ(ad e4|g1
)ω4 = τ + (tr ad e7|g0

)ω7.

Conversely, if g satisfies (i)-(v), then (G,φ) is an ERP G2-structure with
torsion τ = e12 − e56.

As a first application, we obtain the following geometric consequence.

Corollary 1.2. Any left-invariant ERP G2-structure on a Lie group is a
steady Laplacian soliton and its underlying metric is an expanding Ricci
soliton.

It is worth pointing out that the converse of the above corollary does not
hold. Indeed, an example of a simply connected solvable Lie group endowed
with a steady Laplacian soliton that is not an ERP G2-structure is exhibited
in [FR3].

Structurally, it follows from Theorem 1.1 that the Lie algebra g of any
ERP (G,φ) is determined by the 2× 2 matrix A1 := ad e7|h1

and the three
4× 4 matrices A := ad e7|g1

, B = ad e3|g1
, C := ad e4|g1

. The Jacobi condi-
tion is equivalent to

[A,B] = aB + cC, [A,C] = bB + dC, [B,C] = 0, A1 =
[

a b
c d

]

.

It must be stressed that conditions (iv) and (v) are really demanding on
these matrices.

In Section 5, we exhibit three new examples of ERP G2-structures on
Lie groups and obtain further refinements for the algebraic structure of g
by using the structural theorem on solvsolitons [L1, Theorem 4.8]. We prove
that there are only three possibilities for the nilradical n of g and that the
following conditions must hold in each case:

• n = g1: this is equivalent to g unimodular and one has that A1 = 0,
the matrices A,B,C are all symmetric, they pairwise commute and
{√

3A,
√
3B,
√
3C

}

is orthonormal. In particular, g is isomorphic to
the Lie algebra of [L3, Example 4.7], a result previously obtained in
[FR2].
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• n = Re4 ⊕ g1: A,B are symmetric, [A,B] = 0, C is nilpotent and a =
b = c = 0. We found two new examples in this case, with n 2-step and
3-step nilpotent, respectively.

• n = h: A1 and A are normal and B,C nilpotent. A new example is
given with n 4-step nilpotent.

Lastly, we study in Section 6 deformations and rigidity of ERP G2-
structures on Lie groups by using the moving-bracket approach. We have
obtained that the five known examples are all rigid.

We believe that the present paper paves the way toward achieving a
complete classification of ERP G2-structures on Lie groups, which will be
the object of further research.

Acknowledgements. We are very grateful with Alberto Raffero for very help-
ful comments on a first version of the paper.

2. Preliminaries

2.1. Linear algebra

Given a real vector space g with basis {e1, . . . , e7}, we consider the positive
3-form

(2) φ = ω ∧ e7 + ρ+ = e127 + e347 + e567 + e135 − e146 − e236 − e245,

where

ω := e12 + e34 + e56, ρ+ := e135 − e146 − e236 − e245.

The usual notation eij··· to indicate ei ∧ ej ∧ · · · will be freely used through-
out the paper. Note that ω ∧ ρ+ = 0. We have that {e1, . . . , e7} is an oriented
orthonormal basis with respect to the inner product ⟨·, ·⟩ and orientation vol
determined by φ, i.e.

(3) ⟨X,Y ⟩ vol = 1

6
iX(φ) ∧ iY (φ) ∧ φ, ∀X,Y ∈ g.

The almost-complex structure J defined on the subspace h :=
sp{e1, . . . , e6} by ω = ⟨J ·, ·⟩ is given by Jei = ei+1, i = 1, 3, 5, and we set

ρ− := ∗hρ+ = e145 + e136 + e235 − e246.
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Let θ : gl(h) −→ End(Λkh∗) denote the representation obtained as the
derivative of the natural left GL(h)-action on each Λkh∗ (i.e. h · α =
α(h−1·, . . . , h−1·)), which is given for each B ∈ gl(h) by,

θ(B)γ =
d

dt

∣

∣

∣

0
etB · γ = − (γ(B·, . . . , ·) + · · ·+ γ(·, . . . , B·)) , ∀γ ∈ Λkh∗.

The following technical lemma contains some useful information on the linear
algebra involved in subsequent computations.

Lemma 2.1. Let ∗ : Λkg∗ −→ Λ7−kg∗ and ∗h : Λkh∗ −→ Λ6−kh∗ be the
Hodge star operators determined by the ordered bases {e1, . . . , e7} and
{e1, . . . , e6}, respectively.

(i) ∗γ = ∗hγ ∧ e7, for any γ ∈ Λkh∗.

(ii) ∗(γ ∧ e7) = (−1)k ∗h γ, for any γ ∈ Λkh∗.

(iii) ∗hω = 1
2ω ∧ ω and ∗h(ω ∧ ω) = 2ω.

(iv) ∗2 = id and ∗2h = (−1)kid on Λkh∗.

(v) ∗φ = 1
2ω ∧ ω + ρ− ∧ e7 = e3456 + e1256 + e1234 − e2467 + e2357 +

e1457 + e1367.

(vi) θ(A) ∗h + ∗h θ(At) = −(trA)∗h on Λh∗, for any A ∈ gl(h).

Proof. Parts (i)-(v) follow easily (see e.g. [L2, Lemmas 5.11, 5.12]) and to
prove part (vi), we first recall that

α ∧ ∗hβ = ⟨α, β⟩ ∗h 1, ∗h1 = e1 ∧ · · · ∧ e6, ∀α, β ∈ Λkh∗.

Thus, for any α ∈ Λph∗ and β ∈ Λ6−ph∗, one has

⟨α, θ(A) ∗h β⟩ ∗h 1 = ⟨θ(At)α, ∗hβ⟩ ∗h 1 = θ(At)α ∧ ∗2hβ = (−1)pθ(At)α ∧ β
= (−1)p+1(trA)α ∧ β + (−1)p+1α ∧ θ(At)β

= −(trA)α ∧ ∗h ∗h β − α ∧ ∗h ∗h θ(At)β

= ⟨α,−(trA) ∗h β − ∗hθ(At)β⟩ ∗h 1,

concluding the proof of the lemma. □

Recall that θ(B) is a derivation of the algebra Λh∗ and that θ(B)e1···6 =
−(trB)e1···6. We consider the 14-dimensional simple Lie group

G2 := {h ∈ GL7(R) : h · φ = φ} ⊂ SO(7),
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where φ is as in (2). Let g2 denote the Lie algebra of G2. The spaces
of 2-forms and 3-forms on g respectively decompose into irreducible G2-
representations as follows,

Λ2g∗ = Λ2
7g

∗ ⊕ Λ2
14g

∗, Λ3g∗ = Λ3
1g

∗ ⊕ Λ3
7g

∗ ⊕ Λ3
27g

∗,

where subscript numbers are the dimensions. A description of each of these
irreducible components (see e.g. [B, (2.14)]) can be obtained by considering
different suitable G2-equivariant linear maps. For example, the kernel of the
map Λ2g∗ −→ Λ6g∗, α 7→ α ∧ ∗φ must be Λ2

14g
∗. On the other hand, the

map Λ2g∗ −→ Λ2g∗, α 7→ ∗(α ∧ φ) is necessarily a multiple of the identity
and one obtains that such a multiple is −1 by evaluating at e12 − e34. This
implies that

(4) Λ2
14g

∗ = {α ∈ Λ2g∗ : α ∧ ∗φ = 0} = {α ∈ Λ2g∗ : α ∧ φ = − ∗ α}.

Since Λ2
14g

∗ is, as a G2-representation, equivalent to the adjoint representa-
tion g2, any nonzero τ ∈ Λ2

14g
∗ can be diagonalized, in the sense that there

exists an oriented orthonormal basis {e1, . . . , e7} of g such that φ is as in (2)
and

(5) τ = a e12 + b e34 + c e56, a+ b+ c = 0, a ≥ b ≥ 0 > c.

In particular,

τ ∧ τ = 2ab e1234 + 2ac e1256 + 2bc e3456,

τ ∧ τ ∧ τ = 6abc e123456,(6)

|τ ∧ τ | = |τ |2 = a2 + b2 + c2.

2.2. The Lie group Gµ

Let g be a Lie algebra of dimension 7 and assume that g has a 6-dimensional
ideal h. Consider a basis {e1, . . . , e7} of g such that h = sp{e1, . . . , e6}, so
g = h⋊Re7. The Lie bracket µ of g is therefore given by

(7) µ = λ+ µA,

where λ is the Lie bracket of h (extended to g by λ(g, e7) = 0) and µA is the
Lie bracket defined for some A ∈ Der(h) by

µA(e7, v) = Av, µA(v, w) = 0, ∀v, w ∈ h.
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Let Gµ denote the simply connected Lie group with Lie algebra (g, µ). Note
that Gµ is solvable if and only if the Lie algebra (h, λ) is solvable, and it is
nilpotent if and only if (h, λ) is nilpotent and A is a nilpotent linear map.
Denote by Hλ the simply connected Lie group with Lie algebra (h, λ) and
by GA the simply connected Lie group with Lie algebra (g, µA).

Some properties of the differentials of forms on these Lie groups are
given in the following lemma.

Lemma 2.2. Let dµ, dλ, dA denote the differentials of left-invariant k-forms
on the Lie groups Gµ, Hλ and GA, respectively.

(i) dµ = dλ + dA, for any γ = α+ β ∧ e7 ∈ Λkg∗, α ∈ Λkh∗, β ∈ Λk−1h∗,

dµγ = dλα+ dλβ ∧ e7 + dAα,

and dAα = (−1)kθ(A)α ∧ e7.
(ii) dµe

7 = 0, dλe
7 = 0, dAe

7 = 0 and dA(α ∧ e7) = 0, for all α ∈ Λkh∗.

(iii) dλ ◦ θ(D) = θ(D) ◦ dλ for any D ∈ Der(h).

(iv) dµ ∗ ei = (−1)i tr(adµ ei)e1...7, for any i = 1, . . . , 7.

(v) d∗µ|Λkg∗ = (−1)k+1 ∗ dµ∗ and d∗λ|Λkh∗ = ∗dλ∗ for any k.

Proof. Parts (i) and (ii) clearly hold (see e.g. [L2, Lemma 5.12]), parts (iv)
and (v) are straightforward computations and part (iii) follows from the fact
that θ(D) is precisely minus the Lie derivative LXD

, where XD is the vector
field on Hλ attached to D. □

2.3. Subgroups of G2

In our study of ERP G2-structures in Section 4, we need to compute the
stabilizer of the 2-form τ := e12 − e56 in G2, as well as inside the subgroup
Uh ⊂ G2 leaving h invariant. It is well known (see e.g. [VM, Lemma 2.2.2])
that

(8) Uh := {h ∈ G2 : h(h) ⊂ h} =
[

1

SU(3)

]

∪
[

1

SU(3)

]

g̃,

where g̃ = Dg(−1, 1,−1, 1,−1, 1,−1) and SU(3) is defined by using J . Any
matrix in this section will be written in terms of the basis {e7, e3, e4, e1, e2,
e5, e6}.
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Lemma 2.3. The subgroup of G2

Uh,τ := {h ∈ G2 : h(h) ⊂ h, h · τ = τ} ,

is given by Uh,τ = U0 ∪ U0g, where

U0 :=

{[

1
h1

h2

h3

]

: hi ∈ SO(2), h1h2h3 = I

}

, g :=







−1
1
−1

1 0
0 −1

−1 0
0 1






.

Proof. Since for any h ∈ O(7), h · τ = τ if and only if

hJ1h
−1 = J1, J1 :=







0
0
0
0 −1
1 0

0 1
−1 0






,

it is not hard to see that

U0 = Uh,τ ∩
[

1

SU(3)

]

.

On the other hand, by using that g̃ ∈ G2 and g̃ · τ = −τ (see (8)), we obtain
that

g =







1
1
1

1 0
0 1

−1 0
0 −1






g̃ ∈ Uh,τ ∩

[

1

SU(3)

]

g̃.

Now if h = fg̃ ∈ Uh,τ , where fe7 = e7 and f0 := f |h ∈ SU(3), then

f0 =

[

f1
0 f2
f3 0

]

, f1f2f3 = −1,

as f0 must commute with J |h and J1|h, and therefore,

h =

[

1
f1

f2
−f3

]

g ∈ U0g, that is, Uh,τ ∩
[

1

SU(3)

]

g̃ = U0g,

concluding the proof. □
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Other subgroups of G2 we will need to consider are

(9) Ug1
:= {h ∈ G2 : h(g1) ⊂ g1} ,

where g1 := sp{e1, e2, e5, e6}, whose Lie algebra is well-known (see e.g. [VM])
to be given by

ug1
=























0 c −b
−c 0 a
b −a 0

0 −d b−e −f
d 0 −c+f −e

−b+e c−f 0 −a+d
f e a−d 0









: a, b, c, d, e, f ∈ R















,

and the corresponding subgroup stabilizing τ ,

(10) Ug1,τ := {h ∈ G2 : h(g1) ⊂ g1, h · τ = τ} ,

with Lie algebra,

ug1,τ =



































0 c −b
−c 0 a
b −a 0

0 −d 1

2
b − 1

2
c

d 0 − 1

2
c − 1

2
b

− 1

2
b 1

2
c 0 −a+d

1

2
c 1

2
b a−d 0













: a, b, c, d ∈ R























.

3. Closed G2-structures

A G2-structure on a 7-dimensional differentiable manifold M is a differen-
tial 3-form φ ∈ Ω3M such that φp is positive on TpM for any p ∈M , that
is, φp can be written as in (2) with respect to some basis {e1, . . . , e7} of
TpM . Each G2-structure φ defines a Riemannian metric g on M and an
orientation vol ∈ Ω7M (unique up to scaling) as in (3). Thus φ also de-
termines a Hodge star operator ∗ : ΩM −→ ΩM and the Hodge Laplacian
operator ∆ : ΩkM −→ ΩkM , ∆ := d∗d+ dd∗, where d∗ : Ωk+1M −→ ΩkM ,
d∗ = (−1)k+1 ∗ d∗, is the adjoint of d. The torsion forms of a G2-structure
φ on M are the components of the intrinsic torsion ∇φ, where ∇ is the
Levi-Civita connection of the metric g. They can be defined as the unique
differential forms τi ∈ ΩiM , i = 0, 1, 2, 3, such that

(11) dφ = τ0 ∗ φ+ 3τ1 ∧ φ+ ∗τ3, d ∗ φ = 4τ1 ∧ ∗φ+ τ2 ∧ φ.
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Two manifolds endowed with G2-structures (M,φ) and (M ′, φ′) are
called equivalent if there exists a diffeomorphism f :M −→M ′ such that
φ = f∗φ′.

In the case of a closed G2-structure φ on a 7-manifold M , the only
torsion that survives is a the 2-form τ := τ2 and one therefore has that,

(12) dφ = 0, τ = d∗φ = − ∗ d ∗ φ, d ∗ φ = τ ∧ φ, dτ = ∆φ.

In particular, φ is torsion-free (or parallel) if and only if τ = 0. Since τ ∈
Ω2
14M (see e.g. [B, Proposition 1]), all the useful conditions (4)-(6) hold for

τ at each p ∈M .
In this paper, we study left-invariant G2-structures on Lie groups, which

allows us to work at the Lie algebra level as in Section 2. The G2-structure is
determined by a positive 3-form on the Lie algebra g, which will be most of
the times the one given in (2). Two Lie groups endowed with left-invariant
G2-structures (G,φ) and (G′, φ′) are called equivariantly equivalent if there
exists a Lie group isomorphism F : G −→ G′ such that φ = f∗φ′, where
f := dF |e : g −→ g′ is the corresponding Lie algebra isomorphism.

Definition 3.1. (Gµ, φ) is the Lie group Gµ defined in Section 2.2 endowed
with the left-invariant G2-structure determined by the positive 3-form φ on
g given in (2).

Recall from (7) that Gµ depends only on the Lie bracket λ on h =
sp{e1, . . . , e6} and the map A ∈ Der(h, λ).

Proposition 3.2. Any Lie group endowed with a left-invariant closed G2-
structure is equivariantly equivalent to (Gµ, φ) for some µ = λ+ µA such
that the ideal (h, λ) is unimodular.

Remark 3.3. If the Lie group is not unimodular, then h = {X ∈ g :
tr adµX = 0}. On the other hand, the pair (ω, ρ+) defines an SU(3)-structure
on the Lie algebra h.

Proof. Let (G,ψ) be a Lie group G endowed with a closed G2-structure ψ.
If g is not unimodular, then we can take the codimension-one ideal h of g as
above and in the case when g is unimodular, it follows from the classification
obtained in [FR3, Main Theorem] that there exists a codimension-one ideal
h. Thus there exists an orthonormal basis {e1, . . . , e7} of g such that h =
sp{e1, . . . , e6} and φ can be written as in (2). It therefore follows that if λ :=
µ|h×h and A := ad e7|h, then the Lie bracket µ of g is given by µ = λ+ µA,
concluding the proof. □
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We therefore focus from now on on G2-structures of the form (Gµ, φ).
According to Lemma 2.2, (i), for (Gµ, φ) one has that,

dµφ = dλρ
+ + dλω ∧ e7 − θ(A)ρ+ ∧ e7,(13)

dµ ∗ φ = dλω ∧ ω + dλρ
− ∧ e7 + θ(A)ω ∧ ω ∧ e7.(14)

Thus (Gµ, φ) is closed if and only if the following two conditions hold:

(15) dλω = θ(A)ρ+, dλρ
+ = 0.

We now compute the torsion in terms of λ and A, which is the only data
varying.

Proposition 3.4. The torsion 2-form τµ of a closed G2-structure (Gµ, φ)
is given by τµ = τλ + τA, where

τλ := − ∗h (dλω ∧ ω) ∧ e7 − ∗hdλρ−, τA := (trA)ω + θ(At)ω.

Furthermore, dλω ∧ ω = −θ(A)ω ∧ ρ+.

Proof. It follows from (2) that

∗dA ∗ φ = ∗
(

1

2
θ(A)(ω ∧ ω) ∧ e7

)

= ∗
(

θ(A) ∗h ω ∧ e7
)

= ∗
(

−(trA) ∗h ω ∧ e7 − ∗hθ(At)ω ∧ e7
)

= −(trA)ω − θ(At)ω,

and

dλω ∧ ω = θ(A)ρ+ ∧ ω = θ(A)ω ∧ ρ+.

Using Lemma 2.1, (v) we now compute,

dµ ∗ φ =dλω ∧ ω + dλρ
− ∧ e7 + dA ∗ φ,

∗dµ ∗ φ = ∗ (dλω ∧ ω) + ∗hdλρ− + ∗dA ∗ φ
= ∗h (dλω ∧ ω) ∧ e7 + ∗hdλρ− − (trA)ω − θ(At)ω,

from which the desired formula follows. □
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Straightforwardly, one obtains that the above proposition and Lemma
2.2 give that for any closed G2-structure (Gµ, φ),

dµτµ = −dλ ∗h (dλω ∧ ω) ∧ e7 − dλ ∗h dλ ∗h ρ+ − θ(A) ∗h dλρ− ∧ e7(16)

+ (trA)dλω + (trA)θ(A)ω ∧ e7 + θ(A)θ(At)ω ∧ e7

+ dλθ(A
t)ω.

The following result shows that two left-invariant G2-structures on non-
isomorphic Lie groups can indeed be equivalent, in spite of they are not
equivariantly equivalent. This generalizes [L2, Proposition 5.6] beyond the
almost-abelian case and the proof also follows the lines of [H, Proposi-
tion 2.5].

Proposition 3.5. Let (Gµ, φ) be a G2-structure as above with µ = λ+ µA.
If D ∈ su(3) ∩Der(h, λ), [D,A] = 0 and we set µ1 := λ+ µA+D, then the
G2-structures (Gµ, φ) and (Gµ1

, φ) are equivalent.

Remark 3.6. The hypothesis on the matrix D means precisely that

[

D 0
0 0

]

∈ g2 ∩Der(g, µ), g2 ∩Der(g, µ1).

Note that the Lie groupsGµ, Gµ1
are in general not isomorphic. For instance,

if µ is not unimodular, then the spectra of D and A must coincide up to
scaling in order to µ and µ1 be isomorphic.

Proof. Let gµ denote the Lie algebra (g, µ) of Gµ. We consider the Lie group

F := Aut(Gµ1
) ∩Aut(Gµ1

, φ) ≃ Aut(gµ1
) ∩G2,

with Lie algebra f := Der(gµ1
) ∩ g2, the homomorphism α : gµ1

−→ f defined
by

α(e7) =

[

−D 0
0 0

]

, α|h ≡ 0,

and denote also by α the corresponding Lie group homomorphism Gµ1
−→

F . If L : Gµ1
−→ Aut(Gµ1

, φ) is the left-multiplication morphism, then

G1 := {Ls ◦ α(s) : s ∈ Gµ1
} ⊂ Aut(Gµ1

, φ),
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is a subgroup. Indeed, using that Gµ1
= expRe7 ⋉ exp h, one has for s = ah,

t = bg that,

Ls ◦ α(s) ◦ Lt ◦ α(t) = Ls ◦ Lα(s)(t)α(s)α(b) = Lsα(s)(t)α(s)α(bα(a)(g))

= Lsα(s)(t)α(s)α(α(a)(b)α(a)(g)) = Lsα(s)(t)α(sα(s)(t)).

Thus G1 is a connected and closed Lie subgroup of Aut(Gµ1
, φ) since s 7→

Ls ◦ α(s) is continuous and proper. Furthermore, G1 acts simply and transi-
tively on Gµ1

by automorphisms of φ, so the diffeomorphism f : G1 −→ Gµ1
,

f(Ls ◦ α(s)) := (Ls ◦ α(s))(e) = s defines an equivalence between the left-
invariant G2-structures (G1, f

∗φ) and (Gµ1
, φ). On the other hand, the Lie

algebra of G1 is given by

g0 := {dL|eX + α(X) : X ∈ g} ⊂ Lie (Aut(Gµ1
, φ)) ,

and if X = Xh + ae7, Y = Yh + be7 belong to g, then

[dL|eX + α(X), dL|eY + α(Y )]

= dL|eµ1(X,Y ) + dL|eα(X)Y − dL|eα(Y )X + α([X,Y ])

= dL|e (a(A+D)Yh − b(A+D)Xh + λ(Xh, Yh)− aDYh + bDXh + 0)

= dL|e (aDYh − bDXh + λ(Xh, Yh))

= dL|eµ(X,Y ) = (dL|e + α)µ(X,Y ).

This shows that df |−1
e = dL|e + α : gµ −→ g0 is a Lie algebra isomorphism

and so (Gµ, φ) is equivalent to (G1, f
∗φ), concluding the proof. □

Remark 3.7. By replacing φ by an inner product ⟨·, ·⟩ on g, Aut(Gµ1
, φ)

by Iso(Gµ1
, ⟨·, ·⟩) and G2 by O(g, ⟨·, ·⟩), the following Riemannian version can

be proved in exactly the same way as above for any dimension: (Gµ, ⟨·, ·⟩)
is isometric to (Gµ1

, ⟨·, ·⟩) for any µ = λ+ µA, µ1 = λ+ µA+D such that
D ∈ so(h, ⟨·, ·⟩) ∩Der(h, λ) and [D,A] = 0.

As an application of Proposition 3.5, one obtains that the one-parameter
family of extremally Ricci pinched G2-structures given in [FR2, Example 6.4]
is pairwise equivalent.
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3.1. ERP G2-structures

The following nice estimate for a closed G2-structure φ on a compact man-
ifold M was proved by R. Bryant (see [B, Corollary 3]):

∫

M

scal2 ∗1 ≤ 3

∫

M

|Ric |2 ∗ 1,

and equality holds if and only if

(17) dτ =
1

6
|τ |2φ+

1

6
∗ (τ ∧ τ).

The factor of 3 on the right hand side, being much smaller than 7, shows
that the metric is always far from being Einstein.

Definition 3.8. The distinguished closedG2-structures for which condition
(17) holds and τ ̸= 0 were called extremally Ricci-pinched (ERP for short)
in [B, Remark 13].

We begin with some general results on such structures.

Proposition 3.9. [B] Let (M,φ) be a manifold endowed with an ERP G2-
structure and assume that it is locally homogeneous. Then,

(i) τ ∧ τ ∧ τ = 0.

(ii) d(τ ∧ τ) = 0.

(iii) d ∗ (τ ∧ τ) = 0.

(iv) Ric |P = −1
6 |τ |2I, Ric |Q = 0 and ⟨RicP,Q⟩ = 0, where

P := {X ∈ TM : ιX(τ ∧ τ) = 0}, Q := {X ∈ TM : ιX ∗ (τ ∧ τ) = 0},

and dimP = 3, dimQ = 4.

Proof. Parts (i), (ii) and (iii) follow from [B, (4.53)], [B, (4.55)] and [B,
(4.51)], respectively, and the fact that d|τ |2 = 0 since M is locally homoge-
neous. If we write τ as in (5) at each p ∈M , then b = 0 and c = −a must
hold, since τ ∧ τ ∧ τ = 0 by (i), and so τ = a(e12 − e56). To prove part (iv),
we consider the formula given in [L3, (16)] for q = 1

6 , so in terms of the
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ordered basis {e7, e3, e4, e1, e2, e5, e6},

Ric =− 1

6
|τ |2I − 1

3
τ2 = −1

3
a2I − 1

3
Dg(−a2,−a2, 0, 0,−a2,−a2, 0)

=− a2

3
Dg(0, 0, 1, 1, 0, 0, 1) = −1

6
|τ |2Dg(0, 0, 1, 1, 0, 0, 1).

As τ ∧ τ = −2ae1256 and ∗(τ ∧ τ) = −2ae347, it follows that P =
sp{e7, e3, e4}, Q = sp{e1, e2, e5, e6} and therefore (iv) holds, concluding
the proof. □

4. Structure

Our aim in this section is to discover and prove structural results for ex-
tremally Ricci-pinched G2-structures on Lie groups.

Recall from Section 3 that the Lie groups endowed with a G2-structure
of the form (Gµ, φ) (see Definition 3.1) cover the whole closed case up to
equivariant equivalence (see Proposition 3.2). The Lie algebra of Gµ decom-
poses as g = Re7 ⊕ h, where h = sp{e1, . . . , e6} is a unimodular ideal, and φ
is always given as in (2).

The following proposition shows that under the ERP condition, the tor-
sion 2-form can be diagonalized in a very convenient way relative to the Lie
algebra structure, which is certainly the starting point toward the structure
results we will obtain in this section.

Proposition 4.1. Any Lie group endowed with a left-invariant ERP G2-
structure is equivariantly equivalent to (Gµ, φ), up to scaling, for some µ =
λ+ µA with (h, λ) unimodular and τµ = e12 − e56.

Remark 4.2. The SU(3)-structure (ω, ρ+) on the Lie algebra h is therefore
half-flat, i.e. dλω ∧ ω = 0 and dλρ

+ = 0 (see Proposition 3.4 and (15)).

Proof. Let (G,φ) be a Lie group endowed with a left-invariant ERP G2-
structure. Consider the basis {e1, . . . , e7} of the Lie algebra g of G such that
φ has the form (2). Since the torsion form of (G,φ) τ belongs to Λ2

14g
∗,

it follows from (5) and Proposition 3.9, (i) that it can be assumed to be
given by τ = e12 − e56 (up to scaling). As a first consequence, de347 = 0 by
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Proposition 3.9, (iii) and so if cijk := ⟨[ei, ej ], ek⟩, then

0 = de347 = de3 ∧ e47 − e3 ∧ de4 ∧ e7 + e34 ∧ de7

= −
∑

i=1,2,5,6

ci33e
i347 −

∑

i=1,2,5,6

ci44e
i347 −

∑

i=1,2,5,6

ci77e
i347

= −
∑

i=1,2,5,6

tr ad ei|g0
ei347,

which implies that

(18) tr ad ei|g0
= 0, ∀i = 1, 2, 5, 6,

where g0 := sp{e3, e4, e7} is a Lie subalgebra by Proposition 3.9, (ii). On the
other hand, g1 := sp{e1, e2, e5, e6} is also a subalgebra (see Proposition 3.9,
(iii)) and hence by using Lemma 2.2, (i), we obtain that

dτ = (θ(ad e3|g1
)τ) ∧ e3 + (θ(ad e4|g1

)τ) ∧ e4 + (θ(ad e7|g1
)τ) ∧ e7 + dg1

τ,

where dg1
: Λkg∗1 → Λk+1g∗1 denotes the exterior derivative of g1. But the

ERP condition on (G,φ) reads dτ = 1
3φ− 1

3e
347, so it follows from (1) that

dg1
τ = 0 and

θ(ad e3|g1
)τ =

1

3
ω3, θ(ad e4|g1

)τ =
1

3
ω4, θ(ad e7|g1

)τ =
1

3
ω7.

This implies that the 2-forms τ, ω3, ω4, ω7 are all closed on the 4-dimensional
Lie algebra g1 by using that the maps ad ei|g1

are derivations of g1 (see
Lemma 2.2, (iii)), from which it is easy to see with the help of a computer
that g1 is abelian. From this and (18), we obtain that g1 is contained in
the ideal u of g given by u := {X ∈ g : tr adX = 0}. If G is not unimodular,
then g = RX0 ⊕ u is an orthogonal decomposition for some X0 ∈ ⟨e3, e4, e7⟩,
|X0| = 1. It follows that there exists h in the group Ug1,τ given in (10) such
that h(X0) = e7. The map h therefore defines an equivariant equivalence
between (G,φ) and (Gµ, φ), where µ := h · [·, ·], and we have that h(u) = h

(since h is orthogonal) and τµ = h · τ = τ .
In the case when G is unimodular, it is proved in [FR2, Theorem 6.7]

that g must be isomorphic to certain solvable Lie algebra. In the present
proof, we only use that g is solvable and we argue as in the beginning of the
proof of [FR2, Theorem 6.7]. Recall from Proposition 3.9, (iv) that Ric ≤ 0
and the kernel of Ric is g1. The nilradical n of g is therefore contained in g1
by [D, Lemma 1] and since g is solvable, [g, g] ⊂ n. Hence h is an ideal of g,
concluding the proof. □
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The following example shows that the above proposition is not valid in
general for closed G2-structures.

Example 4.3. Consider (Gµ, φ) with λ(e1, e2) = e3, λ(e2, e3) = 4e5 and

A =





1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 2 0 0
0 0 0 0 −1 0
0 1 0 0 0 −3



 ,

with respect to the basis {e1, . . . , e6}. It is straightforward to check that
dµφ = 0 and τµ = −2e12 − e16 − 4e34 − e37 + 6e56. Since h is the nilradical of
µ, the torsion 2-form τµ1

of any (Gµ1
, φ) equivariantly equivalent to (Gµ, φ)

will satisfy that τµ1
(e7, ·) is not identically zero. Indeed, any orthogonal

isomorphism between Gµ and Gµ1
must stabilize both h and Re7.

The diagonalization of τ obtained in Proposition 4.1 makes the equiva-
lence problem much simpler to tackle. Recall the subgroups Uh,τ and Ug1,τ

of G2 described in Section 2.3.

Proposition 4.4. Assume that (Gµ1
, φ) and (Gµ2

, φ) have τµ1
= τµ2

=
e12 − e56. Then they are equivariantly equivalent if and only if µ2 = h · µ1
for some h ∈ U ⊂ G2, where

(i) U = Uh,τ if they are not unimodular; and

(ii) U = Ug1,τ if they are unimodular and g1 = sp{e1, e2, e5, e6} is their
nilradical.

Proof. In the non-unimodular case (i), h is a characteristic ideal of both Lie
algebras by Proposition 3.2 and so any equivariant equivalence h between
them must leave h invariant and stabilize τ , that is, h ∈ Uh,τ . On the other
hand, part (ii) follows from the fact that h must leave g1 invariant (i.e.
h ∈ Ug1

) being g1 the nilradical of both Lie algebras, and so h ∈ Ug1,τ since
h · τ = τ (see Section 2.3).

The converse easily follows from the fact that U ⊂ G2. □

In the light of Proposition 4.1, we consider from now on a closed G2-
structure (Gµ, φ) such that

(19) τ := τµ = e12 − e56.

In that case,

(20) dλω ∧ ω = 0,
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by Proposition 3.4, τ ∧ τ = −2e1256 and ∗(τ ∧ τ) = −2e347. This implies that
(Gµ, φ) is ERP if and only if

(21) dµτ =
1

3
φ− 1

3
e347,

which is equivalent by Lemma 2.2, (i) to

(22) dλτ =
1

3
ρ+, θ(A)τ =

1

3
(e12 + e56).

It follows from (15) and Lemma 2.2, (iii) that

dλω = dλ(e
12 + e56) + dλe

34 = 3dλθ(A)τ + dλe
34

= 3θ(A)dλτ + dλe
34 = θ(A)ρ+ + dλe

34 = dλω + dλe
34,

and consequently,

(23) dλe
34 = 0.

Some algebraic and geometric consequences of Proposition 3.9 follow.

Proposition 4.5. If (Gµ, φ) is ERP with τ = e12 − e56, then,

(i) g0 := sp{e7, e3, e4}, g1 := sp{e1, e2, e5, e6} and h1 := sp{e3, e4} are Lie
subalgebras of g.

(ii) The Ricci operator Ricµ of (Gµ, ⟨·, ·⟩) is diagonal with respect to {ei}
and Ricµ |g0

= −1
3I, Ricµ |g1

= 0.

(iii) If Qµ is the unique symmetric operator of g such that θ(Qµ)φ = dµτ ,
then

Ricµ = −1

3
I − 2Qµ; in particular, Qµ|g0

= 0, Qµ|g1
= −1

6
I.

Remark 4.6. It follows from part (iii) that Qµ ∈ Der(g), and in particular
(Gµ, φ) is a steady Laplacian soliton (see [L2, Theorem 3.8]) and (Gµ, ⟨·, ·⟩)
is an expanding Ricci soliton (see [L1, (5)]), if and only if g1 is an abelian
ideal of g.

Proof. It is well known that the kernel of any closed k-form on a Lie algebra
is a Lie subalgebra. Since τ ∧ τ = −2e1256 and ∗(τ ∧ τ) = −2e347, it follows
from Proposition 3.9 (ii), (iii) that g0 and g1 are Lie subalgebras of g. In
particular, h1 = h ∩ g0 is also a subalgebra. Parts (ii) and (iii) are direct
consequences of [L3, (15)] (for q = 1

6) and [L3, (12)]. □
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We will now show that the ERP condition actually imposes much stronger
constraints on the structure of the Lie algebra. Let us first introduce some
notation. Consider

sp(g1, τ) := {E ∈ gl(g1) : −θ(E)τ = τ(E·, ·) + τ(·, E·) = 0} , τ = e12 − e56,

and note that E ∈ sp(g1, τ) if and only if written in terms of the basis
{e1, e2, e5, e6},

(24) E =

[

E11 E12 E15 E16

E21 −E11 E25 E26

E26 −E16 E55 E56

−E25 E15 E65 −E55

]

.

We also consider the following three matrices,

(25) T7 :=

[− 1

3

0
1

3

0

]

, T3 :=

[

1

3

0
0

1

3

]

, T4 :=

[

0
− 1

3

0
− 1

3

]

.

for which it is easy to check that

(26) θ(T7)τ =
1

3
ω7, θ(T3)τ =

1

3
ω3, θ(T4)τ =

1

3
ω4.

The following is our main structural result. Recall from Proposition 4.1
that any left-invariant ERP G2-structure on a Lie group is equivariantly
equivalent to some (Gµ, φ) with τ = e12 − e56 and h = sp{e1, . . . , e6} uni-
modular (g = Re7 ⊕ h).

Theorem 4.7. Let (Gµ, φ) be an ERP G2-structure with τ = e12 − e56 and
h unimodular. Then, the following conditions hold:

(i) g0 = sp{e7, e3, e4} is a Lie subalgebra and g1 = sp{e1, e2, e5, e6} is an
abelian ideal of g. In particular, g = g0 ⋉ g1 and g is solvable.

(ii) h1 = sp{e3, e4} is an abelian subalgebra (so h = h1 ⋉ g1).

(iii) There exist E,F,G ∈ sp(g1, τ) such that

A2 = E + T7, B2 = F + T3, C2 = G+ T4,

where A1 := A|h1
, A2 := A|g1

, B2 := ad e3|g1
and C2 := ad e4|g1

. In
particular, trA2 = trB2 = trC2 = 0 and [B2, C2] = 0.
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Proof. We first prove part (iii). Recall that g0, g1 and h1 are all Lie subal-
gebras of g. It was shown in the proof of Proposition 4.1 that,

θ(A2)τ =
1

3
ω7, θ(B2)τ =

1

3
ω3, θ(C2)τ =

1

3
ω4,

and thus A2 − T7, B2 − T3 and C2 − T4 all belong to sp(g1, τ) and the first
assertion in part (iii) follows. Note that trA2 = trB2 = trC2 = 0 and so
λ(e3, e4) = 0 (i.e. h1 abelian) follows from the fact that h is unimodular,
completing the proof of parts (ii) and (iii).

It was also obtained in the proof of Proposition 4.1 that g1 is abelian. We
now prove that g1 is an ideal, which will conclude the proof of the theorem.
If we set B := ad e3|h and C := ad e4|h, then from (15),

0 =dλρ
+ = dλω3 ∧ e3 + ω3 ∧ dλe3 + dλω4 ∧ e4 + ω4 ∧ dλe4

=dg1
ω3 ∧ e3 − θ(C2)ω3 ∧ e34 − ω3 ∧ θ(B)e3 ∧ e3 − ω3 ∧ θ(C)e3 ∧ e4

+ dg1
ω4 ∧ e4 + θ(B2)ω4 ∧ e34 − ω4 ∧ θ(B)e4 ∧ e3 − ω4 ∧ θ(C)e4 ∧ e4

=(−θ(C2)ω3 + θ(B2)ω4) ∧ e34 −
(

ω3 ∧ θ(B)e3 + ω4 ∧ θ(B)e4
)

∧ e3

−
(

ω3 ∧ θ(C)e3 + ω4 ∧ θ(C)e4
)

∧ e4.

Since θ(B)e3, θ(B)e4, θ(C)e3, θ(C)e4 ∈ Λ1g∗1, it follows that

0 = ω3 ∧ θ(B)e3 + ω4 ∧ θ(B)e4 =
∑

1,2,5,6

(

ω3 ∧ ci33ei + ω4 ∧ ci34ei
)

= (c133 − c234)e126 + (c233 + c134)e
125 + (c353 − c364)e256

+ (c363 + c354)e
156,

and

0 = ω3 ∧ θ(C)e3 + ω4 ∧ θ(C)e4 =
∑

(

ω3 ∧ ci43ei + ω4 ∧ ci44ei
)

= (c143 − c244e)e126 + (c243 + c144)e
125 + (c453 − c464)e256

+ (c463 + c454)e
156.

Moreover,

0 = dλe
34 = dλe

3 ∧ e4 − e3 ∧ dλe4

= −
(

θ(B)e3 + θ(C)e4
)

∧ e34 =
∑

1,2,5,6

(c3i3 + c4i4)e
i34.
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Summarizing, we have obtained that

c133 = −c144 = c234 = c243, c353 = c364 = −c454 = c463,(27)

c134 = c143 = −c233 = c244, c354 = −c363 = c453 = c464.

As before,

0 = ⟨[ad e1, ad e2]e4, e3⟩ = ⟨ad e1 ad e2e4 − ad e2 ad e1e4, e3⟩

=

7
∑

i=1

⟨c24i ad e1(ei)− c14i ad e2(ei), e3⟩ =
7

∑

i,j=1

⟨c24ic1ijej − c14ic2ijej , e3⟩

=

7
∑

i=1

(c24ic1i3 − c14ic2i3) = c243c133 + c244c143 − c143c233 − c144c243

= 2(c2133 + c2134).

In much the same way, one obtains that 0 = ⟨[ad e5, ad e6](e4), e3⟩ = 2(c2353 +
c2354). Thus, c133 = c134 = c353 = c354 = 0 and so it follows from (27) that
[g1, h] ⊂ g1.

Therefore, it only remains to show that [g1, e7] ⊂ g1. It follows from
τ = e12 − e56, h unimodular and g1 abelian that

0 = ⟨e13, τ⟩ vol = e13 ∧ ∗τ = −e13 ∧ d ∗ φ
= −d(e13 ∧ ∗φ) + de13 ∧ ∗φ = −d(e123467) + ⟨de13, φ⟩ vol
= tr(ad e5) vol+⟨de1 ∧ e3, φ⟩ vol+⟨e1 ∧ de3, φ⟩ vol = −c273.

In the same manner, we can see that 0 = ci7j for each i ∈ {1, 2, 5, 6} and
j ∈ {3, 4, 7}. This implies that ⟨[g1, e7], g0⟩ vanishes and so g1 is an ideal, as
desired. □

The following geometric consequence of Theorem 4.7 follows from Re-
mark 4.6.

Corollary 4.8. Any left-invariant ERP G2-structure on a Lie group is both
a steady Laplacian soliton and an expanding Ricci soliton.

Recall that all the examples of Laplacian solitons found in [L2, N] are
expanding.

We now give the converse of Theorem 4.7, which paves the way to the
search for examples and eventually, to a full classification. In addition to (1),
we denote by

ω3 := e26 + e15, ω4 := e16 − e25.
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τ ω7 ω3 ω4 ω3 ω4

T7
1
3ω7

1
3τ 0 1

3 ω̄4 0 −1
3ω4

T3
1
3ω3

1
3ω3

1
3τ 0 −1

3ω7 0

T4
1
3ω4

1
3ω4 0 1

3τ 0 −1
3ω7

Table 1: Ti-actions on 2-forms

Proposition 4.9. Let µ denote a Lie bracket on g whose only nonzero
structural constants are given by A1, A2, B2 and C2 as in Theorem 4.7.
Then (Gµ, φ) is ERP with τµ = e12 − e56 if and only if there exist E,F,G ∈
sp(g1, e

12 − e56) (see (24)) such that the following conditions hold:

(i) A2 = E + T7, B2 = F + T3 and C2 = G+ T4, where the Ti’s are de-
fined as in (25).

(ii) θ(Et)ω7 + θ(F t)ω3 + θ(Gt)ω4 = −(trA1)ω7.

Remark 4.10. The Jacobi condition for such a µ is equivalent to

[A2, B2] = aB2 + cC2, [A2, C2] = bB2 + dC2, [B2, C2] = 0,(28)

where A1 =
[

a b
c d

]

.

Proof. We first suppose that (Gµ, φ) is ERP with τµ = e12 − e56. Part (i)
follows from Theorem 4.7. In order to prove (ii), we now proceed to compute
τµ by using the formula given in Proposition 3.4 and Table 1 (recall from
(20) that dλω ∧ ω = 0):

− ∗h dλρ− = − ∗h (e3 ∧ dλω4 − e4 ∧ dλω3)

= − ∗h (e34 ∧ (θ(C2)ω4 + θ(B2)ω3))

= − ∗g1
θ(C2)ω4 − ∗g1

θ(B2)ω3

= θ(Ct
2) ∗g1

ω4 + θ(Bt
2) ∗g1

ω3

= θ(Ct
2)ω4 + θ(Bt

2)ω3

= θ(Gt)ω4 + θ(T4)ω4 + θ(F t)ω3 + θ(T3)ω3

= θ(Gt)ω4 + θ(F t)ω3 +
2

3

(

e12 − e56
)

,
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and on the other hand,

(trA)ω + θ(At)ω = (trA1)e
34 + (trA1)ω7 + θ(At

2)ω7 + θ(At
1)e

34

= (trA1)ω7 + θ(Et)ω7 +
1

3
(e12 − e56).

Thus part (ii) follows from the fact that τµ = e12 − e56.
Conversely, assume that parts (i) and (ii) hold. Using part (i), (15) and

Table 1 , it is easy to see that dµφ = 0 if and only if

θ(F )ω7 + aω3 + cω4 = θ(E)ω3 −
1

3
ω3,

θ(G)ω7 + bω3 + dω4 = θ(E)ω4,(29)

θ(F )ω4 = θ(G)ω3.

But straightforwardly, one obtains that these equalities respectively follow
by just evaluating θ([A2, B2]), θ([A2, C2]) and θ([B2, C2]) at τ and using the
Jacobi condition (28). On the other hand, since

dλω ∧ ω =
1

2
dλ(ω ∧ ω) = dλ(e

1234 + e3456 + e1256) = dλ(e
1256)

= θ(B2)e
1256 ∧ e3 + θ(C2)e

1256 ∧ e4

= − trB2e
12356 − trC2e

12456 = 0,

we obtain from part (ii) that τµ = e12 − e56. It now follows from (22) and
part (i) that (Gµ, φ) is ERP, which concludes the proof of the proposition.

□

The strong conditions on the Ricci curvature imposed by ERP (see
Proposition 4.5, (iii)) produce very useful constraints on the matrices in-
volved.

Proposition 4.11. If (Gµ, φ) is ERP with τµ = e12 − e56, say µ = (A1, A2,
B2, C2), then the following conditions hold:

(i) trS(A1)
2 + trS(A2)

2 = 1
3 .

(ii) 1
2 [A2, A

t
2] +

1
2 [B2, B

t
2] +

1
2 [C2, C

t
2] = (trA1)S(A2).

(iii) trS(A2)S(B2) = trS(A2)S(C2) = 0.

(iv)
[

trS(B2)2 trS(B2)S(C2)
trS(B2)S(C2) trS(C2)2

]

− 1
2 [A1, A

t
1] + (trA1)S(A1) =

[

1

3
0

0 1

3

]
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Proof. All the items follow from Proposition 4.5, (ii) by just applying the
formula for the Ricci operator of a solvmanifold given in [L1, (25)]. □

We also note that if (Gµ, φ) is ERP with τµ = e12 − e56, then (Gµ, ⟨·, ·⟩)
is a solvsoliton; indeed, in terms of the decomposition g = g0 ⊕ g1,

Ricµ = −1

3
I +

[

0
1
3I

]

∈ RI +Der(µ).

This allows us to use, in addition to Proposition 4.11, the structure theorem
for solvsolitons [L1, Theorem 4.8].

5. Examples and structure refinements

Acording to Theorem 4.7, for any ERP (Gµ, φ) with τ = e12 − e56, g1 =
sp{e1, e2, e5, e6} is an abelian ideal of the Lie algebra (g, µ). Thus the nil-
radical n of (g, µ) contains g1 and so dim n ≥ 4. Recall from Proposition
4.9 that the Lie bracket has always the form µ = (A1, A,B,C) for certain
matrices A1 ∈ gl2(R) and A,B,C ∈ gl4(R) such that [B,C] = 0.

We can use Proposition 4.4 to consider the equivalence problem. The
action of the group Uh,τ on µ = (A1, A,B,C) can be described as follows
(see Section 2.3). If h ∈ U0, say with h1 =

[ x y
−y x

]

, x2 + y2 = 1 and h2 :=
[

h3 0
0 h4

]

, h3, h4 ∈ SO(2), then

(30) h · µ =
(

h1A1h
−1
1 , h2Ah

−1
2 , h2(xB − yC)h−1

2 , h2(yB + xC)h−1
2

)

,

and if g1 :=
[

1
−1

]

and g2 :=

[

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

]

, then

(31) g · µ =
(

−g1A1g
−1
1 ,−g2Ag−1

2 , g2Bg
−1
2 ,−g2Cg−1

2

)

.

Let (Gµ, φ) be an ERP G2-structure with τ = e12 − e56 and nilradical n,
say µ = (A1, A,B,C). If µ is unimodular, then n = g1 (see Proposition 5.1
below) and in the non-unimodular case, g1 ⊂ n ⊂ h. In any case, A1 and A
are necessarily normal matrices by [L1, Theorem 4.8].

In what follows, we separately study each of the cases dim n = 4, 5, 6;
note that µ can not be nilpotent since Ric ≤ 0 (see [W, M]).
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5.1. Case dimn = 4

In the unimodular case, some necessary algebraic conditions proved by I.
Dotti [D] for Ric ≤ 0 give rise to the following characterization.

Proposition 5.1. If (Gµ, φ) is ERP with τ = e12 − e56, say µ = (A1, A,
B,C), then the following conditions are equivalent:

(i) µ is unimodular (i.e. trA1 = 0).

(ii) A1 = 0 (in particular, A,B,C pairwise commute).

(iii) g1 is the nilradical of µ (in particular, {A,B,C} is linearly indepen-
dent).

Proof. Recall from Proposition 3.9, (iv) that Ric ≤ 0 and the kernel of Ric
is g1. If µ is unimodular, then the nilradical n of g is contained in g1 by [D,
Lemma 1], but g1 ⊂ n as g1 is an abelian ideal of g, so n = g1. Since the image
of any derivation of a solvable Lie algebra is contained in the nilradical, we
obtain that A1 = 0. The remaining implications trivially hold. □

Proposition 5.2. If (Gµ, φ) is ERP with τ = e12 − e56 and µ is unimodu-
lar, say µ = (0, A,B,C), then the 4× 4 matrices A,B,C are all symmetric,
they pairwise commute and the set

{√
3A,
√
3B,
√
3C

}

is orthonormal.

Remark 5.3. In particular, Gµ is isomorphic to the Lie group given in
[L3, Example 4.7] and Example 5.4 below. This has been proved in [FR2,
Theorem 6.7]. We note however that there could be other non-equivalent
ERP G2-structures on Gµ.

Proof. From equation (ii) in Proposition 4.11 (recall that A1 = 0), we ob-
tain that the matrices A,B,C are all normal, by just multiplying with each
of the three terms (alternatively, one can just apply [L1, Theorem 4.8]).
Thus A,B,C, S(A), S(B), S(C) is a commuting family of normal 4× 4 ma-
trices, which are all non-zero by Proposition 4.11, (i) and (iv). The only
possibility for this to happen is that they are all symmetric, and so the set
{√

3A,
√
3B,
√
3C

}

is orthonormal by Proposition 4.11, (i), (iii) and (iv), as
desired. □
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Example 5.4. Consider µJ := (0, A,B,C), where

A =





− 1

6

− 1

6

1

2

− 1

6



 , B =





0 −
√

2

6
0 1

3

−
√

2

6
0 0 0

0 0 0 0
1

3
0 0 0



 , C =





√
2

6
0 0 0

0 −
√

2

6
0 − 1

3

0 0 0 0
0 − 1

3
0 0



 .

It is straightforward to check that all the conditions in Proposition 4.9 hold
for these matrices, thus (GµJ

, φ) is an ERP G2-structure with τ = e12 − e56,
and also that the map

h :=
1

6













0 0 3
√
2 3

√
2 0 0 0

0 0
√
6 −

√
6 −2

√
6 0 0

−3
√
2 −3

√
2 0 0 0 0 0

−
√
6

√
6 0 0 0 0 2

√
6

0 0 0 0 0 −6 0
0 0 −2

√
3 2

√
3 −2

√
3 0 0

−2
√
3 2

√
3 0 0 0 0 −2

√
3













∈ G2

defines an equivariant equivalence between (GµJ
, φ) and [L3, Example 4.7].

The difficulty in finding new examples in this case relies on the com-
plicated structure of the 4-dimensional group Ug1,τ (see (10)) providing the
equivariant equivalence.

5.2. Case dimn = 5

By acting with Uh,τ if necessary (see (30)), we can assume in this case
that up to equivariant equivalence, n = Re4 ⊕ g1. Let (Gµ, φ) be an ERP
G2-structure with τ = e12 − e56 and n as above, say µ = (A1, A,B,C). It
follows from [L1, Theorem 4.8] that A1, A,B are normal and [A,B] = 0,
and since [e7, n] ⊂ n, one further obtains that

A1 =
[

0 0
0 d

]

, d ̸= 0, [A,C] = dC, [B,C] = 0.

By acting with g if necessary as in (31), one can assume up to equivariant
equivalence that d > 0.

The following two Lie brackets provide new examples of ERP G2-
structures (Gµ, φ) with τ = e12 − e56 and n = Re4 ⊕ g1 by Proposition 4.9.
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Example 5.5. Consider µM2 := (A1, A,B,C), where

A1 =
[

0
1

3

]

, A =

[− 1

3

0
0

1

3

]

, B =





− 1

6
0 0 0

0 1

6

1

3
0

0 1

3

1

6
0

0 0 0 − 1

6



 , C =





0
− 1

3
0

1

3
0 0

0 − 1

3

1

3
0



 .

Note that the nilradical n is 3-step nilpotent.

Example 5.6. Consider µM3 := (A1, A,B,C), where

A1 =
1

6

[

0 0
0
√
6

]

, A =
1

12





−2 0 −
√
2 0

0 −2 0 −
√
2

−
√
2 0 2 0

0 −
√
2 0 2



 ,

B =
1

6





0
√
2 0 1√

2 0 1 0
0 1 0 −

√
2

1 0 −
√
2 0



 , C =
1

12





−
√
2 0 2−

√
6 0

0
√
2 0 −2+

√
6

2+
√
6 0

√
2 0

0 −2−
√
6 0 −

√
2



 .

The nilradical n is 2-step nilpotent in this case.

By considering the possible forms for the normal matrices A and B
under the condition given in Proposition 4.9, (i), it can be shown with some
computer assistance that [A,B] = 0 never holds unless A and B are both
symmetric.

5.3. Case dimn = 6

We have that n = h in this case, so B and C are nilpotent. Let (Gµ, φ)
be an ERP G2-structure with τ = e12 − e56 and nilradical n = h, say µ =
(A1, A,B,C). By using (30), we can assume that up to equivariant equiva-
lence,

(i) either A1 =
[

a 0
0 d

]

, with a ≤ d, a+ d > 0 (in particular, [A,B] = aB,
[A,C] = dC),

(ii) or A1 =
[

a b
−b a

]

, with a > 0, b ̸= 0 (in particular, [A,B] = aB − bC,
[A,C] = bB + aC).

Example 5.7. We now present in the format µB := (A1, A,B,C) the ex-
ample given by R. Bryant in [B, Example 1], as well as in [CI, Section 6.3]
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and [L3, Examples 4.13, 4.10]. Consider,

A1 =
[

1

3

1

3

]

, A =





− 1

6

− 1

6

1

6

1

6



 , B =

[

0 0
0 0

0 1

3

1

3
0

]

, C =

[

0 0
0 0

1

3
0

0 − 1

3

]

.

Note that n is 2-step nilpotent.

The following is a new example with a 4-step nilpotent nilradical of
dimension 6.

Example 5.8. Consider µM1 := (A1, A,B,C), where

A1 :=
1

30

[√
30 0
0 2

√
30

]

, A :=
1

60





−10−
√
30 0 −2

√
5 0

0 −10+
√
30 0 −2

√
5

−2
√
5 0 10−

√
30 0

0 −2
√
5 0 10+

√
30



 ,

B :=
1

30





0 −
√
5 0 5−

√
30

5
√
5 0 5 0

0 5+
√
30 0

√
5

5 0 −5
√
5 0



 , C :=
1

30





−
√
5 0 5−

√
30 0

0
√
5 0 −5+

√
30

5+
√
30 0

√
5 0

0 −5−
√
30 0 −

√
5



 .

Remark 5.9. It is worth pointing out that the five examples we have
given in this section (i.e. Examples 5.4, 5.5, 5.6, 5.7, 5.8) are pairwise non-
equivalent (even up to scaling). Indeed, the underlying solvable Lie groups
are pairwise non-isomorphic, and since they are all completely solvable, the
corresponding left-invariant metrics can never be isometric up to scaling
(see [A]).

6. Deformations and rigidity

We study in this section deformations and two notions of rigidity for ERP
G2-structures on Lie groups.

As in Section 2, we fix a 7-dimensional real vector space g endowed with
a basis {e1, . . . , e7} and the positive 3-form defined in (2), whose associated
inner product ⟨·, ·⟩ is the one making the basis {ei} oriented and orthonor-
mal.

Let L ⊂ Λ2g∗ ⊗ g denote the algebraic subset of all Lie brackets on g

and for every µ ∈ L, denote by Gµ the simply connected Lie group with
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Lie algebra (g, µ). Each µ ∈ L will be identified with the left-invariant G2-
structure determined by φ on Gµ:

µ←→ (Gµ, φ).

The isomorphism class of µ, GL7(R) · µ, therefore stands for the set of all
left-invariant G2-structures on Gµ, due to the equivariant equivalence,

(Gh·µ, φ) ≃ (Gµ, φ(h·, h·, h·)), ∀h ∈ GL7(R).

Thus one has in L, all together, all the Lie groups endowed with left-invariant
G2-structures. Note that two elements in L are equivariantly equivalent as
G2-structures if and only if they belong to the same G2-orbit, and that they
are in the same O(7)-orbit if and only if they are equivariantly isometric as
Riemannian metrics. Both assertions hold without the word ‘equivariantly’
for completely real solvable Lie brackets.

In this light, the following G2-invariant algebraic subsets,

Lc := {µ ∈ L : dµφ = 0} ,(32)

Lerp :=
{

µ ∈ Lc : dµτµ = 1
6 |τµ|

2φ+ 1
6 ∗ (τµ ∧ τµ)

}

,

parametrize the spaces of all closed (or calibrated) and all ERPG2-structures
on Lie groups, respectively. Thus the quotient

Lerp/G2

parametrizes the set of all ERP G2-structures on Lie groups, up to equiv-
ariant equivalence. Note that a given Lie group Gµ admits a closed (resp.
ERP) G2-structure if and only if the orbit GL7(R) · µ meets Lc (resp. Lerp).

A C1 curve µ : (−ϵ, ϵ) −→ Λ2g∗ ⊗ g is said to be a deformation (of ERP
G2-structures) if µ(t) ∈ Lerp for all t. Examples of deformations are given by
µ(t) = h(t) · µ, where µ ∈ Lerp and h(t) ∈ G2, which are trivial in the sense
that the family {µ(t)} is in such case pairwise equivariantly equivalent. Given
µ ∈ Lerp, let TµLerp denote the set of all velocities µ′(0) such that µ(t) is
a deformation with µ(0) = µ (notice that TµLerp is not necessarily a vector
space). It follows that,

g2 · µ ⊂ TµLerp ⊂ TµLerp,

where g2 · µ coincides with the tangent space Tµ(G2 · µ) and TµLerp is the
vector space determined by the linearization of both the Jacobi condition
and the remaining equations defining Lerp given in (32).
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It is therefore natural to call a µ ∈ Lerp equivariantly rigid when

g2 · µ = TµLerp.

However, it is worth pointing out that according to Proposition 3.5, there
might exist linear deformations of the form µ(t) = µ+ tµD, where D is a
suitable derivation of µ. Such deformations are also trivial as µ(t) is equiv-
alent to µ for all t, though in general they are not equivariantly equivalent.
This shows that weaker notions of rigidity should also come into play.

In the case when h = sp{e1, . . . , e6} is an ideal of µ ∈ L, one has that
µ = λ+ µA as in Section 2.2 and µ↔ (Gµ, φ) is indeed the structure we
have studied in Sections 3 and 4. It follows from Proposition 3.2 that the
G2-orbit of any µ ∈ Lc meets the algebraic subset

Lc,h := {µ ∈ Lc : µ(g, h) ⊂ h, tr adµ ei = 0, i = 1, . . . , 6} ,

and that the equivariant equivalence between non-unimodular elements in
Lc,h is determined by the group Uh given in (8). In the same vein, Proposi-
tion 4.1 asserts that any ERP G2-structure µ ∈ Lerp is equivariantly equiv-
alent to an element in

Lerp,h,τ := {µ ∈ Lc,h : τµ = τ} ,

where τ := e12 − e56. In this case, the subgroups Uh,τ , Ug1,τ ⊂ G2 computed
in Section 2.3 are the ones providing equivariant equivalence among Lerp,h,τ
in the non-unimodular and unimodular cases, respectively (see Proposi-
tion 4.4).

This motivates the study of deformations within Lerp,h,τ . Analogously,
for each µ ∈ Lerp,h,τ one has that,

u · µ = Tµ(U · µ) ⊂ TµLerp,h,τ ⊂ TµLerp,h,τ ,

where u, U are either uh,τ , Uh,τ or ug1,τ , Ug1,τ , depending on whether µ
is non-unimodular or unimodular. Here TµLerp,h,τ is the linearization of
the conditions defining Lerp,h,τ given in Proposition 4.9. Thus µ ∈ Lerp,h,τ is
equivariantly rigid if and only if u · µ = TµLerp,h,τ . Note that dim uh,τ · µ ≤ 2
and dim ug1,τ · µ ≤ 4 for any µ.

According to the structural results proved in Section 4 (see Theorem 4.7
and Proposition 4.9), each µ ∈ Lerp,h,τ only depends on one 2× 2 matrix A1
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and three 4× 4 matrices A, B and C; in this way,

µ = λB,C + µ[

A1 0
0 A

].

Thus any deformation µ(t) ∈ Lerp,h,τ such that µ(0) = µ and µ′(0) = µ has
the following form:

µ = (A1, A,B,C), µ(t) = (A1(t), A(t), B(t), C(t)), µ = (A1, A,B,C),

A1 =
[

a b
c d

]

, A1(t) =
[

a(t) b(t)
c(t) d(t)

]

, A1 =
[

a b
c d

]

.

It follows from Proposition 4.9 that a vector µ = (A1, A,B,C) belongs to
TµLerp,h,τ if and only if the following conditions hold:

A,B,C ∈ sp(g1, τ),(33)

[A,B] + [A,B] = aB + aB + cC + cC,(34)

[A,C] + [A,C] = bB + bB + dC + dC,(35)

[B,C] + [B,C] = 0,(36)

θ(A
t
)ω7 + θ(B

t
)ω3 + θ(C

t
)ω4 = −(a+ d)ω7.(37)

We now describe the linear deformations mentioned above. Given µ =
(A1, A,B,C) ∈ Lerp,h,τ , consider the vector space Dµ of all pairs (D1, D2) ∈
gl2(R)× gl4(R) such that

[D1, A1] = 0, [D2, A] = 0, [D2, B] = rB + tC,

[D2, C] = sB + uC, D1 = [ r s
t u ] ,

that is,

D :=
[

D1 0
0 D2

]

defines a derivation of µ vanishing at e7 (see Remark 3.6). It follows from
Proposition 3.5 that each of these (D1, D2) satisfying that D ∈ su(3) deter-
mines a linear deformation of µ given by µ(t) := µ+ tµD, or equivalently,

A1(t) = A1 + tD1, A(t) = A+ tD2, B(t) ≡ B, C(t) ≡ C,

forming the vector space

dµ := {µ = (D1, D2, 0, 0) : (D1, D2) ∈ Dµ, D ∈ su(3)} ⊂ TµLerp,h,τ .
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This suggests the following weaker version of rigidity: µ ∈ Lerp,h,τ is said to
be rigid if

dµ + u · µ = TµLerp,h,τ .

In the unimodular case, one always has that dµ = 0 and ug1,τ · µ is 4-
dimensional. Indeed, any skew-symmetric derivation D of µ = (0, A,B,C)
must stabilize the nilradical g1 (see Proposition 5.1) and commute with the
maximal abelian subalgebra sp{A,B,C} ⊂ sym(4) (see Corollary 5.2), so
D = 0. This implies that a unimodular µ ∈ Lerp,h,τ is equivariantly rigid, if
and only if it is rigid, if and only if dimTµLerp,h,τ = 4.

In the non-unimodular case, Dµ = Der(µ) ∩ g2 and it is easy to see
that dµ ⊥ uh,τ · µ. Moreover, since Der(µ) ∩ uh,τ ⊂ dµ, one always has that
dim (dµ + uh,τ · µ) ≥ 2.

By solving the linear system (33)-(37) and computing the derivations be-
longing to g2 for all the examples given in Section 5, we obtain the following
information:

• µJ (Example 5.4): ug1,τ · µ = TµLerp,h,τ (4-dimensional), dµ = 0.

• µM2 (Example 5.5): uh,τ · µ = TµLerp,h,τ (2-dimensional), dµ = 0.

• µM3 (Example 5.6): uh,τ · µ = TµLerp,h,τ (2-dimensional), dµ = 0.

• µB (Example 5.7): uh,τ · µ = 0, dµ = TµLerp,h,τ (2-dimensional).

• µM1 (Example 5.8): uh,τ · µ = TµLerp,h,τ (2-dimensional), dµ = 0.

It follows that they are all equivariantly rigid, except for Example 5.7,
which is only rigid.
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