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Limiting case of an isoperimetric

inequality with radial

densities and applications

Georgios Psaradakis

We prove a sharp isoperimetric inequality with radial densities
whose functional counterpart corresponds to a limiting case for the
exponents of the Il’in (or Caffarelli-Kohn-Nirenberg) inequality in
L1. We show how the latter applies to obtain an optimal critical
Sobolev weighted norm improvement to one of the L1 weighted
Hardy inequalities of [29]. Further applications include an Lp ver-
sion with the best constant of the functional analogue of this
isoperimetric inequality and also a weighted Pólya-Szegö inequal-
ity.

1. Introduction

1.1. Overview, notation and central results

The Gagliardo-Nirenberg inequality in its sharp form states that

(1.1)

∫

Rn

|∇f | dx ≥ nω1/n
n

(

∫

Rn

|f |n/(n−1) dx

)1−1/n

∀ f ∈ C1
c (R

n),

Here and throughout the whole paper, ωn is the volume of a unit ball in
Rn, n ∈ N \ {1}, and | · | denotes both absolute value of numbers and length
of vectors. Also, whenever G ⊆ Rn is open, then C1

c (G) stands for the set
of continuously differentiable scalar functions with compact support in G
and C1

c (G;Rn) for all n-vector functions with C1
c (G) components. Inequal-

ity (1.1) was proved by Maz’ya in [23] and independently by Federer and
Fleming in [14]. It was shown in both papers that it is equivalent to the clas-
sical isoperimetric inequality in Rn. Nowadays this equivalence is formulated
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as follows (see [13, Section 5.6.2]): (1.1) is equivalent to

(1.2) P(E) ≥ nω1/n
n Ln(E)1−1/n,

valid for any Ln-measurable set E ⊂ Rn with finite perimeter P(E); that is

P(E) := sup

{

∫

E
divφ dx : φ ∈ C1

c (R
n;Rn), |φ| ≤ 1 in R

n

}

< ∞,

Recall that equality holds in (1.2) if E = BR(x0) :=
{

x ∈ Rn : |x− x0| <
R
}

, any R > 0, any x0 ∈ Rn.
Maz’ya and Shaposhnikova in [26, Corollary 5.1]- (see also [25, Corol-

lary in Section 4.8]), have obtained the best constant in the following scale
invariant weighted generalization of (1.1), the weights being powers of the
distance to the origin:

if 0 ≤ a < n− 1 and an/(n− 1) ≤ b ≤ a+ 1, then

∫

Rn

|∇f |

|x|a
dx ≥ Cn,a,b

(

∫

Rn

|f |(n−b)/(n−1−a)

|x|b
dx

)(n−1−a)/(n−b)

(1.3)

∀ f ∈ C1
c (R

n),

where Cn,a,b :=
(

nωn(n− b)(n−1−a)/(1+a−b)
)(1+a−b)/(n−b)

. The case a = 0 has
been established earlier in [24]. Without the sharp constant, inequality (1.3)
goes back to Il’in; see [22, Theorem 1.4, pg 367]. It is a subcase of the
Caffarelli-Kohn-Nirenberg interpolation inequality; see [8] and also the ex-
haustive work of Rabier [32]. As with (1.1), the sharp estimate (1.3) has the
isoperimetric counterpart

(1.4) P(E; |x|−a) ≥ Cn,a,b
(

Ln(E; |x|−b)
)(n−1−a)/(n−b)

,

valid for any Ln-measurable set E ⊂ Rn satisfying P(E; |x|−a) < ∞. Here
we have set (see [4])

P(E; |x|−α) := sup

{

∫

E
divφ dx : φ ∈ C1

c (R
n;Rn), |φ(x)| ≤ |x|−α in R

n

}

,

Ln(E; |x|−b) :=

∫

E
|x|−b dx.

Taking a = b = 0 in (1.4) we recover (1.2). If a ̸= 0 then
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- if b ̸= a+ 1, equality in (1.4) (resp. (1.3) formulated in BV (Rn)) holds
if E = BR(0) (resp. f = χBR(0)), that is to say the ball has to be cen-
tered at the origin. This is an effect of having weighted both sides by
powers of the distance to the origin. The obvious changes go through
if the distance is taken from a point x0 ∈ Rn.

- if b = a+ 1, the same as above is true for (1.4) but equality in (1.3)
is additionally achieved for any nonnegative, radially decreasing func-
tion f .

Section 3 of this paper is devoted to an extension of this last case (see the
first application in Section 1.2).

Several mathematicians have shown interest on different aspects of
isoperimetric inequalities involving various kinds of weights; see for instance
[5], [6], [7], [10], [11], [12], [15], [18], [20], [27] and [28]. The work [3] contains
an extended list of the relevant references. Moreover, it gives new isoperimet-
ric inequalities of the type (1.3) and (1.4) in the case 0 > a > b− 1 (see The-
orem 1.1-(iii) and (iv) there) and applications to Caffarelli-Kohn-Nirenberg
inequalities. Let us mention that the preceded work [12] falls within this
particular range for the parameters (n = 2, b = 0 and 0 > a > −1) and uses
different methods. However, it seems that the above mentioned paper [26]
by Maz’ya and Shaposhnikova, where (1.4) is established, was unnoticed in
the corresponding to radial weights recent literature (see for instance the
reference given in [3] for inequality (1.4), which is stated as Theorem 1.1-(ii)
there).

The aim of this work is to investigate the end point case a = n− 1 in
(1.4) and (1.3) (this amounts to l +N = 0 in the notation of [3]). Note the
parameter assumptions for (1.3) to be valid force b to equal n in this case,
so the right hand side of (1.3) is infinite unless f is supported away from the
origin. We provide sharp substitutes for (1.4) and (1.3) by logarithmically
correcting the weights in both of their sides. More precisely, let

X(t) := (1− log t)−1, t ∈ (0, 1],

and observe limt→0+ X(t) = 0. Standard calculus shows that given R > 0,
for any δ ∈ (0, R] one has

∫

Bδ(0)
|x|−nX1+θ

( |x|

R

)

dx = nωn

∫ δ

0
r−1X1+θ

( r

R

)

dr < ∞

if and only if θ > 0.
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Keeping this in mind we read the basic result of the paper

Theorem A. Suppose Ω is a bounded domain in Rn, n ∈ N \ {1}, con-
taining the origin and set RΩ := supx∈Ω |x|. For all γ ∈ (0, n− 1] and any
f ∈ C1

c (Ω), it holds that
(1.5)
∫

Ω

|∇f |

|x|n−1
Xγ
( |x|

RΩ

)

dx ≥ Cn,γ

(

∫

Ω

|f |n/(n−1)

|x|n
X1+γn/(n−1)

( |x|

RΩ

)

dx

)1−1/n

,

with the best constant Cn,γ := nω
1/n
n

(

γ/(n− 1)
)1−1/n

.

Remark 1.1. Clearly, (1.5) fails for γ = 0. On the other hand, the restric-
tion γ ≤ n− 1 is not essential. Note for instance that 0 ≤ X(t) ≤ 1 for all
t ∈ [0, 1], so the right hand side will further decrease upon increasing the ex-
ponent on X. Of course the constant ceases to be optimal. We don’t search
for the best constant in case γ > n− 1 here. Our aim is to demonstrate that
taking γ > 0 smaller and smaller, the weight X1+γn/(n−1)(|x|/RΩ) relaxes
less the singularity at 0 of the weight |x|−n, but the estimate fails for γ = 0.
A similar open ended condition for the parameter indicating the power on
a logarithmic correction has appeared recently in the Leray-Trudinger esti-
mate of [31]. See [1], [16], [19] and [30] for examples where the range of γ
has to be in a closed interval for the purposes there.

Our isoperimetric inequality with radial densities will be a direct conse-
quence of Theorem A: with

Ln
(

E; |x|−nX1+γn/(n−1)(|x|/RΩ)
)

:=

∫

E
|x|−nX1+γn/(n−1)(|x|/RΩ) dx,

whenever E ⊆ Ω is Ln-measurable, we have

Corollary A. Suppose Ω is a bounded domain in Rn, n ∈ N \ {1}, contain-
ing the origin and set RΩ := supx∈Ω |x|. For all γ ∈ (0, n− 1] there holds

P
(

E; |x|1−nXγ(|x|/RΩ)
)

(1.6)

≥ Cn,γ

(

Ln
(

E; |x|−nX1+γn/(n−1)(|x|/RΩ)
)

)1−1/n
,

for any Ln-measurable set E ⊆ Ω satisfying P(E; |x|1−nXγ(|x|/RΩ)) :=

sup

{

∫

E
divφ dx : φ ∈ C1

c (Ω;R
n), |φ(x)| ≤ |x|1−nXγ(|x|/RΩ) in Ω

}

< ∞.
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Moreover, equality holds if E is a ball centered at the origin.

1.2. Applications

The choice b = a+ 1 in (1.3) leads to the following L1 weighted Hardy in-
equality

(1.7)

∫

Rn

|∇f |

|x|s−1
dx ≥ (n− s)

∫

Rn

|f |

|x|s
dx ∀ f ∈ C1

c (R
n),

whenever s ∈ [1, n) (here we have switched from “b” to “s” to be consistent
with the notation in [29]). Actually, it takes only an integration by parts to
see that for any s ∈ R \ {n} there holds

(1.8)

∫

Rn

|∇f |

|x|s−1
dx ≥ |n− s|

∫

Rn

|f |

|x|s
dx,

valid for all f ∈ C1
c (R

n) if s < n, or all f ∈ C1
c (R

n \ {0}) if s > n. Moreover,
it is easy to check when s < n, that equality holds for any nonnegative,
radially decreasing function. In contrast, if s > n it is known (see [29, Section
2.1]) that the constant appearing in (1.8) is again optimal but the inequality
itself can be improved. More precisely, let Ω be any domain in Rn containing
the origin. For s ≥ n set

(1.9) I[f ] :=

∫

Ω

|∇f |

|x|s−1
dx− (s− n)

∫

Ω

|f |

|x|s
dx, f ∈ C1

c (Ω \ {0}).

We will establish the following improvement for (1.8).

Theorem B Let Ω be a bounded domain in Rn containing the origin, and
set RΩ := supx∈Ω |x|. Then for all γ > 0, s ≥ n, and any f ∈ C1

c (Ω \ {0}),
it holds that

I[f ] ≥
γ

Rs−n
Ω

∫

Ω

|f |

|x|n
X1+γ

( |x|

RΩ

)

dx(1.10)

+
Cn,γ

Rs−n
Ω

(

∫

Ω

|f |n/(n−1)

|x|n
X1+γn/(n−1)

( |x|

RΩ

)

dx

)1−1/n

,

where the second term on the right fails to appear when γ = 0.
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Remark 1.2. For the first term on the right, we already know (see [29,
Remark 2.6]) that it fails to appear when γ = 0. Hence the above inequal-
ity includes the optimal homogeneous weighted norm improvement and the
optimal critical Sobolev weighted norm improvement at the same time.

Other applications include a p-version of Theorem A with p ∈ (1, n) (see
Corollary 4.1 and Theorem 4.3 for the best constant) and also a weighted
Pólya-Szegö inequality (see Theorem 5.4).

Throughout the rest of this paper, Ω denotes a bounded domain in Rn,
n ∈ N \ {1}, containing the origin and RΩ := supx∈Ω |x|. Furhermore, Ln

stands for the Lebesgue measure in Rn and σ for the n− 1-dimensional
Hausdorff measure in Rn. Br(x) is the open ball in Rn having radius r > 0
and centre at x ∈ Rn; ∂Br(x) is its boundary. In particular Bn := B1(0) and
Sn−1 := ∂B1(0). Also, ωn := Ln

(

B1(x)
)

and so σ
(

∂B1(x)
)

= nωn.

2. Proof of Theorem A and Corollary A

The proof is based on the ideas in [9] and [21], as applied in [3] and [1].
We start noting that since 0 ∈ Ω, given f ∈ C1

c (Ω) we have f ∈ C1
c (BRΩ

(0))
and hence it suffices to establish (1.5) with Ω = BRΩ

(0). Moreover, being
invariant under scaling, it is enough to establish it for RΩ = 1.

Consider the transformation Bn ∋ x 7→ (t, θ) ∈ [1,∞]× Sn−1 given by

t := |x|1−n, θ := |x|−1x.

Then txi
= −(n− 1)tn/(n−1)θi, θxi

= t1/(n−1)(ei − θiθ), and writing g(t, θ)
for f(x) we have

fxi
= gttxi

+∇θg · θxi

= −(n− 1)tn/(n−1)gtθi + t1/(n−1)gθi .

Altogether,

|∇f | = (n− 1)tn/(n−1)
(

g2t +
(

(n− 1)t
)−2

|∇θg|
2
)1/2

.

Also, the absolute value of the determinant of the Jacobian matrix of this
transformation is

J(t, θ) = (n− 1)−1t−1−n/(n−1),
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therefore, with A :=
{

g ∈ C1([1,∞)× Sn−1) \ {0} : g(1, θ) = 0
}

, we have

nω1/n
n = inf

f∈C1
c (B

n)
f ̸≡0

∫

Bn |∇f | dx
(

∫

Bn |f |n/(n−1) dx
)1−1/n

(2.1)

= (n− 1)1−1/n inf
g∈A

∫∞
1

∫

Sn−1 t
−1
(

g2t +
(

(n− 1)t
)−2

|∇θg|
2
)1/2

dσ(θ)dt
(

∫∞
1

∫

Sn−1 t−1−n/(n−1)|g|n/(n−1) dσ(θ)dt
)1−1/n

.

Next we define

C := inf
f∈C1

c (B
n)

f ̸≡0

∫

Bn |x|1−n|∇f |Xγ(|x|) dx
(

∫

Bn |x|−n|f |n/(n−1)X1+γn/(n−1)(|x|) dx
)1−1/n

.

Consider this time the transformation Bn ∋ x 7→ (τ, θ) ∈ [1,∞]× Sn−1 given
by

τ := X−γ(|x|) = (1− log |x|)γ , θ := |x|−1x.

Then τxi
= −γτ1−1/γeτ

1/γ−1θi, θxi
= eτ

1/γ−1(ei − θiθ), and writing h(τ, θ)
for f(x) we get

fxi
= hττxi

+∇θh · θxi

= eτ
1/γ−1

(

− γτ1−1/γhτθi + hθi
)

.

These imply

|∇f | = eτ
1/γ−1

(

γ2τ2(1−1/γ)h2τ + |∇θh|
2
)1/2

.

The absolute value of the determinant of the Jacobian matrix of the trans-
formation is

J(τ, θ) =
1

γ
τ1/γ−1e−n(τ1/γ−1),

and taking into account that the transformation says |x| = e1−τ1/γ

and
Xγ(|x|) = τ−1, an elementary computation implies

(2.2) C = γ1−1/n inf
h∈A

∫∞
1

∫

Sn−1 τ
−1
(

h2τ +
(

γτ1−1/γ
)−2

|∇θh|
2
)1/2

dσ(θ)dτ
(

∫∞
1

∫

Sn−1 τ−1−n/(n−1)|h|n/(n−1) dσ(θ)dτ
)1−1/n

.
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To compare the two infima in (2.1) and (2.2) we observe that since γ ∈
(0, n− 1] and τ ≥ 1, we know

γτ1−1/γ ≤ (n− 1)τ.

Hence we may combine these equations to conclude

C ≥ nω1/n
n

( γ

n− 1

)1−1/n
.

The rest is a routine procedure. Supposing that R ∈ (0, RΩ) we choose E =
BR(0) and f = χBR(0), the characteristic function of BR(0). Translating for
the moment |∇f | dx as the variation measure of f , it is known in this case
that both

∫

Ω

|∇f |

|x|n−1
Xγ
( |x|

RΩ

)

dx and P
(

E; |x|1−nXγ(|x|/RΩ)
)

,

are equal to
∫

∂BR(0)
|x|1−nXγ(|x|/RΩ) dσ = R1−nXγ(R/RΩ)σ

(

∂BR(0)
)

= nωnX
γ(R/RΩ).

On the other hand
∫

Ω

|f |n/(n−1)

|x|n
X1+γn/(n−1)

( |x|

RΩ

)

dx =

∫

BR(0)

1

|x|n
X1+γn/(n−1)

( |x|

RΩ

)

dx

= nωn

∫ R

0
r−1X1+γn/(n−1)

( r

RΩ

)

dr.

Noting that d
dr

[

Xγn/(n−1)(r/RΩ)
]

=
(

γn/(n− 1)
)

r−1X1+γn/(n−1)(r/RΩ), we
conclude

(

∫

Ω

|f |n/(n−1)

|x|n
X1+γn/(n−1)

( |x|

RΩ

)

dx

)1−1/n

=
(

ωn
n− 1

γ

)1−1/n
Xγ(R/RΩ)

=
nωnX

γ(R/RΩ)

Cn,γ
,

as required. This together with a standard mollification of the BV (Ω) func-
tion χBR(0) shows that the constant Cn,γ in (1.5) is the best possible. At the
same time we have shown that equality holds in (1.6) whenever E is a ball
centered at the origin. □
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3. Proof of Theorem B

By pushing further an argument of [29] we deduce here the following im-
provement for (1.8)

Proposition 3.1. For all s ≥ n, γ ≥ 0 and any f ∈ C1
c (Ω \ {0}), it holds

that

I[f ] ≥
γ

Rs−n

∫

Ω

|f |

|x|n
X1+γ

( |x|

RΩ

)

dx+
1

Rs−n

∫

Ω

|∇f |

|x|n−1
Xγ
( |x|

RΩ

)

dx.

Proof. Let φ ∈ C1(Ω \ {0};Rn). Integrating by parts we easily get

(3.1)

∫

Ω
|∇f ||φ| dx ≥

∫

Ω
|f |divφ dx,

for all f ∈ C1
c (Ω \ {0}). Choosing

φ(x) = −
[

1−
( |x|

RΩ

)s−n
Xγ
( |x|

RΩ

)]

|x|−sx, x ∈ Ω \ {0},

there holds |φ(x)| =
(

1− (|x|/RΩ)
s−nXγ(|x|/RΩ)

)

|x|1−s for x ∈ Ω \ {0},
hence

(3.2)

∫

Ω
|∇f ||φ| dx =

∫

Ω

|∇f |

|x|s−1
dx−

1

Rs−n

∫

Ω

|∇f |

|x|n−1
Xγ
( |x|

RΩ

)

dx.

On the other hand,

div(v) = (s− n)|x|−s + γRn−s
Ω |x|−nX1+γ

(

|x|/RΩ

)

, x ∈ Ω \ {0},

thus

(3.3)

∫

Ω
|f | divφ dx = (s− n)

∫

Ω

|f |

|x|s
dx+

γ

Rs−n
Ω

∫

Ω

|f |

|x|n
X1+γ

( |x|

RΩ

)

dx.

The proposition now follows by inserting (3.2) and (3.3) in (3.1). □
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Proof of Theorem B. The inequality of Theorem B readily follows from
Theorem A and Proposition 3.1. In order to establish the optimality asser-
tion, consider the function

(3.4) fδ(x) := χBη\Bδ
(x); x ∈ R

n,

where, for any r > 0, by Br we denote (until the end of this proof), the open
ball of radius r centered at the origin. Here 0 < δ < η < RΩ and η is fixed.
It is easily seen that the distributional gradient of fδ is given by

∇fδ = ν⃗∂Bδ
δ∂Bδ

− ν⃗∂Bη
δ∂Bη

,

where, for any r > 0, ν⃗∂Br
stands for the outward pointing unit normal

vector field along ∂Br, and by δ∂Br
we denote the Dirac measure on ∂Br.

Also the variation measure of fδ is

|∇fδ| dx = δ∂Bδ
+ δ∂Bη

.

Using (3.4) we showed in [29, Remark 2.4 and Remark 2.6] that the constant
s− n in the inequality I[f ] ≥ 0 for all f ∈ C1

c (Ω \ {0}) (see (1.9) for the
definition of I[f ]) is optimal and that if γ = 0, the first term on the right
of (1.10) fails to appear. In the same fashion we have

I[fδ]
(

∫

Ω |fδ|n/(n−1)|x|−nX(|x|/RΩ) dx
)1−1/n

=
δ1−sσ(∂Bδ) + η1−sσ(∂Bη)− (s− n)nωn

∫ η
δ rn−1−s dr

(

nωn

∫ η
δ r−1X(r/RΩ) dr

)1−1/n

= (nωn)
1/n 2ηn−s

(

log
(

X(η/RΩ)
)

− log
(

X(δ/RΩ)
)

)1−1/n

= oδ(1).

A standard mollification of the BV (Ω) function fδ applies to see that the
above computation holds in the limit. This shows that if γ = 0, the second
term on the right of (1.10) fails to appear. □
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4. Limiting case in the Caffarelli-Kohn-Nirenberg inequality

Performing a weighted variant of a classical argument of [14] (see also [13,
Section 4.5.1, pg 140]) we obtain next a substitute for the end point case
(a = n− p) of the parameters in the following p-version of (1.3):

if 1 ≤ p < n, 0 ≤ a < n− p and an/(n− p) ≤ b ≤ a+ p, then

∫

Rn

|∇f |p

|x|a
dx ≥ Cn,p,a,b

(

∫

Rn

|f |(n−b)p/(n−p−a)

|x|b
dx

)(n−p−a)/(n−b)

(4.1)

∀ f ∈ C1
c (R

n).

This was also established by Il’in in [22] and reproved later in [8] as a particu-
lar case of a multiplicative embedding inequality with weights; the Cafarelli-
Kohn-Nirenberg inequality. The best constant in (4.1) when p > 1 goes back
at least to [21, Lemma 3.3]. It can also be found in [26, Corollary 5.1] as a
particular case of a more general inequality involving Lorenz spaces; see [26,
Theorem 5.2].

Corollary 4.1. If 1 ≤ p < n, then for all α ∈ (1− p, n+ 1− 2p] and any
f ∈ C1

c (Ω), it holds that

∫

Ω

|∇f |p

|x|n−p
Xα
( |x|

RΩ

)

dx(4.2)

≥ Cp
n,α,p

(

∫

Ω

|f |np/(n−p)

|x|n
X1+(α+p−1)n/(n−p)

( |x|

RΩ

)

dx

)1−p/n

,

where Cn,α,p = (n− p)nω
1/n
n

(

(α+ p− 1)/(n− p)
)1−1/n

/
(

p(n− 1)
)

.

Proof. For p = 1 this is (1.5). Let 1 < p < n. We replace |f | by |f |θ in (1.5),
where θ > 1 will be selected below. With β := 1 + γn/(n− 1), we find

Cn,γ

(

∫

Ω

|f |θn/(n−1)

|x|n
Xβ
( |x|

RΩ

)

dx

)1−1/n

≤ θ

∫

Ω

|f |θ−1|∇f |

|x|n−1
Xγ
( |x|

RΩ

)

dx

= θ

∫

Ω

{ |f |θ−1

|x|n(p−1)/p
Xβ(p−1)/p

( |x|

RΩ

)}{ |∇f |

|x|(n−p)/p
Xγ−β(p−1)/p

( |x|

RΩ

)}

dx

≤ θ

(

∫

Ω

|f |(θ−1)p/(p−1)

|x|n
Xβ
( |x|

RΩ

)

dx

)1−1/p(
∫

Ω

|∇f |p

|x|n−p
Xγp−β(p−1)

( |x|

RΩ

)

dx

)1/p

.
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Choose θ so that θn/(n− 1) = (θ − 1)p/(p− 1). Then θn/(n− 1) = np/(n−
p). Thus

Cn,γ

θ

(

∫

Ω

|f |np/(n−p)

|x|n
Xβ
( |x|

RΩ

)

dx

)1/p−1/n

≤

(

∫

Ω

|∇f |p

|x|n−p
Xα
( |x|

RΩ

)

dx

)1/p

,

where we have set α := γp− β(p− 1). Since β = 1 + γn/(n− 1), we have

γ = (α+ p− 1)(n− 1)/(n− p).

From this, condition 0 < γ ≤ n− 1 is translated to 1− p < α ≤ n+ 1− 2p
and also

β = 1 + γn/(n− 1) = 1 + (α+ p− 1)n/(n− p),

as required. □

Remark 4.2. The above estimate was known only for α = 0 when p = 2
(see [16, Lemma 3.2]) and for α = 2− p when p ∈ (1, 2) (see [19, Section 3]).

The best constant in (4.2) for α = 0 when p = 2 was found in [1], while for
α = 2− p when p ∈ (1, 2) and n ≥ 3 can be extracted from the computations
performed in [19, Section 3]. We can obtain the best constant for the whole
range of the parameters n, α, p introduced in the above corollary, by arguing
as in the proof of Theorem A.

Theorem 4.3. If 1 ≤ p < n, then for all α ∈ (1− p, n+ 1− 2p], the best
constant in (4.2) is given by

Sn,α,p =
(α+ p− 1

n− p

)1−1/n
Sn,p,

where Sn,p is the best constant in the Sobolev inequality (see [2] and [33]).

Proof. To avoid repetition with the proof of Theorem A, we present only
the basic tasks towards the proof of (4.2) and leave their verification to the
reader. As before, we may assume f ∈ C1

c

(

Bn
)

. Consider the transformation
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Bn ∋ x 7→ (t, θ) ∈ [1,∞]× Sn−1 given by

t := |x|p−n, θ := |x|−1x.

Then, working as in the proof of Theorem A, we obtain

Sp
n,p = inf

f∈C1
c (B

n)
f ̸≡0

∫

Bn |∇f |p dx
(

∫

Bn |f |np/(n−p) dx
)1−p/n

(4.3)

= (n− p)p(n−1)/n inf
g∈A

∫∞
1

∫

Sn−1 t
p−2
(

g2t +
(

(n− p)t
)−2

|∇θg|
2
)p/2

dσ(θ)dt
(

∫∞
1

∫

Sn−1 t−1−n/(n−p)|g|np/(n−p) dσ(θ)dt
)1−p/n

,

where A is as in the proof of Theorem A.
Next we define

S
p
n,α,p := inf

f∈C1
c (B

n)
f ̸≡0

∫

Bn |x|p−n|∇f |pXα(|x|) dx
(

∫

Bn |x|−n|f |np/(n−p)X1+(α+p−1)n/(n−p)(|x|) dx
)1−p/n

.

Consider this time the transformation Bn ∋ x 7→ (τ, θ) ∈ [1,∞]× Sn−1 given
by

τ := X−α−p+1(|x|) = (1− log |x|)α+p−1, θ := |x|−1x.

It is not difficult to see that this gives

S
p
n,α,p

(α+ p− 1)p(1−1/n)

(4.4)

= inf
h∈A

∫∞
1

∫

Sn−1 τ
p−2
(

h2τ +
(

(α+ p− 1)τ1−1/(α+p−1)
)−2

|∇θh|
2
)p/2

dσ(θ)dτ
(

∫∞
1

∫

Sn−1 t−1−n/(n−p)|h|np/(n−p) dσ(θ)dt
)1−p/n

.

To compare the two infima in (4.3) and (4.4) we observe that since α ∈
(1− p, n+ 1− 2p] and τ ≥ 1, we know

(α+ p− 1)τ1−1/(α+p−1) ≤ (n− p)τ.
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Hence we may combine these equations to conclude

Sn,α,p ≥
(α+ p− 1

n− p

)1−1/n
Sn,p.

It remains to show that the reverse inequality is also true. This is a
consequence of the fact that the infimum in (4.3) is attained by radially
symmetric functions (see [2] and [33]), which in turn means the value of the
infimum in (4.3) is the same if we consider admissible functions depending
on t only. With this in mind we read

Sn,α,p ≤ S
(radial)
n,α,p =

(α+ p− 1

n− p

)1−1/n
S(radial)
n,p =

(α+ p− 1

n− p

)1−1/n
Sn,p,

and the proof is complete. □

Remark 4.4. The analogous remark of Remark 1.1 applies to the above
theorem.

5. A Pólya-Szegö inequality

In this section, whenever x ∈ Ω \ {0} and γ ∈ (0, n− 1], we write for conve-
nience

v(x) := |x|−nX1+γn/(n−1)(|x|/RΩ),

w(x) := |x|1−nXγ(|x|/RΩ).

Definition 5.1. For any Ln-measurable E ⊆ Ω we define successively:

(i) E⋆ ⊂ Rn to be the ball centered at the origin and satisfying

(5.1) Ln(E; v) = Ln(E⋆; v),

(ii) χ⋆
E : Rn 7→ {0, 1} to be the characteristic function of E⋆; that is χ⋆

E :=
χE⋆ .

(iii) the v-weighted rearrangement of a Borel measurable f : Ω → R given
by

f⋆(x) :=

∫ ∞

0
χ⋆
{|f |>t}(x) dt.

Remark 5.2. Since Ω contains the origin, given E ⊆ Ω, we know E⋆ ⊆
BRΩ

(0). Hence the radius of E⋆ never exceeds RΩ. As a consequence, the
argument of X on the right hand side of (5.1) is well defined.



✐

✐

“6-Psaradakis” — 2023/4/24 — 15:28 — page 1405 — #15
✐

✐

✐

✐

✐

✐

An isoperimetric inequality with radial densities 1405

Remark 5.3. The function f⋆ is nonnegative, measurable, radial and ra-
dially non-increasing. Moreover, {|f | > t}⋆ = {f⋆ > t} for all t ≥ 0, which
together with (5.1) implies the weighted equimeasurability formula

(5.2) Ln
(

{|f | > t}; v
)

= Ln
(

{f⋆ > t}; v
)

for all t ≥ 0.

The two statements of Corollary A together with (5.1) imply

P
(

E;w
)

≥ Cn,γ

(

Ln(E; v)
)1−1/n

= Cn,γ

(

Ln(E⋆; v)
)1−1/n

= P
(

E⋆;w
)

.

In particular, if E ⊆ Ω is a sufficiently smooth domain this reads

(5.3)

∫

∂E
w dσ ≥

∫

∂E⋆

w dσ.

With this at hand, performing a weighted variant of a standard argument
(we follow the presentation of [17, Theorem 3.1] for this), we establish here
the following Pólya-Szegö inequality with radial density.

Theorem 5.4. Let f ∈ C1
c (Ω), p ≥ 1 and γ ∈ (0, n− 1]. Then

(5.4)

∫

Ω

|∇f |p

|x|n−p
Xϑ
( |x|

RΩ

)

dx ≥

∫

Ω⋆

|∇f⋆|p

|x|n−p
Xϑ
( |x|

RΩ

)

dx,

where ϑ is given by ϑ := γp−
(

1 + γn/(n− 1)
)

(p− 1).

Proof. We first recall some facts from basic geometric measure theory. In
particular we are going to use the coarea formula; [25, Theorem 1.2.4]. It
asserts that

(5.5)

∫

Ω
|∇u|Φ dx =

∫ ∞

0

∫

{|u|=t}
Φ dσdt,

whenever Φ is a Borel measurable nonnegative function in Ω and u : Ω → R

is Lipschitz. Rademacher’s theorem asserts u is differentiable Ln-a.e. in Ω
and setting Nu := {x ∈ Ω : ∇u(x) = 0}, we may take Φ = χNu

in (5.5) to
obtain

0 =

∫

Nu

|∇u| dx =

∫ ∞

0
σ
(

{|u| = t} ∩ Nu

)

dt.

Hence σ
(

{|u| = t} ∩ Nu

)

= 0 for L1-a.e. t ≥ 0. This implies (5.5) can take
the form

(5.6)

∫

{|u|>s}
g dx =

∫ ∞

s

∫

{|u|=t}

g

|∇u|
dσdt for L1-a.e. s ≥ 0,
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whenever g ∈ L1(Ω) is nonnegative (simply choose Φ = gχ{|u|>s}/(|∇u|+ ε),
ε > 0, in (5.5), and then take the limit as ε → 0 using the monotone con-
vergence theorem). We performed the above analysis in order to show that
the assumption essinf|∇u| > 0 for (5.6) to hold true (see [13, Proposition 3,
Section 3.4.4]) is redundant. Observe finally that (5.6) implies

(5.7)
d

dt

[

Ln
(

{|u| > t}; g
)

]

= −

∫

{|u|=t}

g

|∇u|
dσ for L1-a.e. t ≥ 0.

To prove the theorem we take u = f and Φ = |∇f |p−1|x|p−nXϑ(|x|/RΩ) in
(5.5) to obtain

∫

Ω

|∇f |p

|x|n−p
Xϑ
( |x|

RΩ

)

dx =

∫ ∞

0

∫

{|f |=t}

|∇f |p−1

|x|n−p
Xϑ(|x|/RΩ) dσ(x)dt

≥

∫ ∞

0

(

∫

{|f |=t}
w dσ

)p(
∫

{|f |=t}

1

|∇f |
v dσ

)1−p

dt

≥

∫ ∞

0

(

∫

{f⋆=t}
w dσ

)p(

−
d

dt

[

Ln
(

{|f | > t}; v
)

]

)1−p

dt

where we have applied first Hölder’s inequality to reach the middle line, and
then (5.3) together with (5.7) for g = v to reach the last line. Note that the
level sets of f are smooth enough by virtue of Sard’s lemma. Hence, using
(5.2)

∫

Ω

|∇f |p

|x|n−p
Xϑ
( |x|

RΩ

)

dx

≥

∫ ∞

0

(

∫

{f⋆=t}
w dσ

)p(

−
d

dt

[

Ln
(

{f⋆ > t}; v
)

]

)1−p

dt

=

∫ ∞

0

(

∫

{f⋆=t}
w dσ

)p(
∫

{f⋆=t}

1

|∇f⋆|
v dσ

)1−p

dt,

because of (5.7) for g = v but with u = f⋆ this time. On the other hand,
taking u = f⋆ and Φ = |∇f⋆|p−1|x|p−nXϑ(|x|/RΩ) in (5.5)

∫

Ω⋆

|∇f⋆|p

|x|n−p
Xϑ
( |x|

RΩ

)

dx =

∫ ∞

0

∫

{f⋆=t}

|∇f⋆|p−1

|x|n−p
Xϑ
( |x|

RΩ

)

dσ(x)dt

=

∫ ∞

0

(

∫

{f⋆=t}
w dσ

)p(
∫

{f⋆=t}

1

|∇f⋆|
v dσ

)1−p

dt,
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since |∇f⋆| is constant on the level sets of f⋆. □

As a final result we will apply Theorem 5.4 to produce an embedding
inequality in weighted Lorentz spaces (see [25, Section 4.8]). This is an im-
provement of the embedding implied by Corollary 4.1 with α = ϑ. Recall that
the weighted Lorentz space L(P,Q; v), P > 1, Q ≥ 1, is defined through the
seminorm

[f ]L(P,Q;v) :=

(

∫ Ln(Ω;v)

0

(

f∗(s)
)Q

d(sQ/P )

)1/Q

,

where

f∗(s) :=

∫ ∞

0
χ[

0,Ln({|f |>t};v)
)(s) dt.

Corollary 5.5. Under the assumptions of Theorem 5.4, there holds

∫

Ω

|∇f |p

|x|n−p
Xϑ
( |x|

RΩ

)

dx ≥ ωp/n
n

( γ

n− 1

)p(1−1/n)(n− p

p

)p−1n

p
[f ]pL(np/(n−p),p;v).

Proof. By the fact that

d

dr

[

Xγn/(n−1)(r/RΩ)
]

=
(

γn/(n− 1)
)

r−1X1+γn/(n−1)(r/RΩ),

we find first

Ln
(

B|x|(0); v
)

=
n− 1

γ
ωnX

γn/(n−1)
( |x|

RΩ

)

, x ∈ Ω.

Hence, noting f⋆(x) = f∗
(

Ln
(

B|x|(0); v
))

, we compute

∫

Ω⋆

|∇f⋆|p

|x|n−p
Xϑ
( |x|

RΩ

)

dx

=

∫

Ω⋆

∣

∣[f∗]′
(

Ln
(

B|x|(0); v
))

∇xL
n
(

B|x|(0); v
)∣

∣

p

|x|n−p
Xϑ
( |x|

RΩ

)

dx

= (nωn)
p+1

∫ R

0

∣

∣

∣
[f∗]′

(n− 1

γ
ωnX

γn/(n−1)
( r

RΩ

))∣

∣

∣

p
Xγp+1+γn/(n−1)

( r

RΩ

) dr

r

= (nω1/n
n )p

( γ

n− 1

)p(1−1/n)
∫ Ln(Ω⋆;v)

0

∣

∣

∣

d

ds
[f∗(s)]

∣

∣

∣

p
sp(1−1/n) ds,
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where R is the radius of the ball Ω⋆. The one dimensional weighted Hardy
inequality (see [25, Section 1.3.1]) applies to deduce

∫

Ω⋆

|∇f⋆|p

|x|n−p
Xϑ
( |x|

RΩ

)

dx

≥ ωp/n
n

( γ

n− 1

)p(1−1/n)(n− p

p

)p
∫ Ln(Ω⋆;v)

0

(

f∗(s)
)p
s−p/n ds,

which is the desired estimate. □
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