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Using the parameterisation of the deformation space of GHMC
anti-de Sitter structures on S × R by the cotangent bundle of the
Teichmüller space of a closed surface S, we study how some geo-
metric quantities, such as the Lorentzian Hausdorff dimension of
the limit set, the width of the convex core and the Hölder exponent,
degenerate along rays of cotangent vectors.
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Introduction

Anti-de Sitter geometry has grown in interest after the pioneering work
of Mess ([Mes07]), who pointed out many similarities with hyperbolic ge-
ometry and connections with Teichmüller theory. Moreover, anti-de Sitter
geometry is a useful tool for the study of representations of the funda-
mental group of a closed, connected, oriented surface S into PSO0(2, 2) ∼=
PSL(2,R)× PSL(2,R): for instance, representations ρ = (j, σ), where j is
discrete and faithful and σ dominates j, are the holonomy representations
of closed anti-de Sitter manifolds, diffeomorphic to a circle bundle over S

1413
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([Kas09], [Sal00]), whereas representations ρ = (ρl, ρr) in which both fac-
tors are discrete and faithful correspond to globally hyperbolic maximally
Cauchy-compact (GHMC) anti-de Sitter structures on S × R ([Mes07]).

Mess thus deduced that the deformation space of GHMC anti-de Sit-
ter structures on S × R can be parameterised by Teich(S)× Teich(S). More
recently, using the unique maximal surface (i.e. with vanishing mean curva-
ture) embedded in every such manifold ([BBZ07], see also [BS10], [Tou16],
[Tam19a], [Tam20], [Tam21] for generalisations), Krasnov and Schlenker
found a new parameterisation in terms of the cotangent bundle of the Te-
ichmüller space of S: a point (h, q) ∈ T ∗Teich(S) corresponds to the GHMC
anti-de Sitter manifold containing a maximal surface whose induced met-
ric is conformal to h and whose second fundamental form is determined by
q. Since the maximal surface is also a Cauchy surface, in the sense that it
intersects every causal curve in exactly one point, Krasnov and Schlenker’s
parameterisation is an instance of the Choquet-Bruhat theorem for Ein-
stein’s equation and the fact that the first and second fundamental form of
a Cauchy hypersurface determines the space-time.

The main purpose of this paper is to study how relevant quantities that
describe the geometry of these manifolds behave along rays of quadratic dif-
ferentials. The first result is about the Lorentzian Hausdorff dimension of
the limit set, recently introduced by Glorieux and Monclair ([GM21]):

Theorem 3.13. Let Mt be the family of GHMC anti-de Sitter manifolds
parameterised by (h, tq1) ∈ T ∗Teich(S), for a fixed non-zero holomorphic
quadratic differential q1. Then the Lorentzian Hausdorff dimension of the
limit set tends to 0 if t goes to +∞.

We remark that the behaviour of the Lorentzian Hausdorff dimension along
other diverging sequences of GHMC anti-de Sitter structures has also been
studied in [Glo17]. However, in this paper we use a completely different ap-
proach. For instance, the proofs rely on the comparison between the critical
exponent defined through the exponential growth rate of a point in the or-
bit of π1(S) with respect to the Riemannian metric induced on the maximal
surface and that defined with respect to a Lorentzian distance on the convex
core of M , introduced in [GM21]. In particular, we obtain results about the
asymptotic behaviour of the induced metric on the maximal surface:
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Proposition 3.10. Let Mt be the family of GHMC anti-de Sitter mani-
folds parameterised by (h, tq1) ∈ T ∗Teich(S), for a fixed non-zero holomor-
phic quadratic differential q1. Then the induced metric It on the unique
maximal surface embedded in Mt satisfies

It
t
→ |q1| for t→ +∞

outside the zeros of q1, monotonically from above.

From this estimate, we deduce several interesting consequences: the critical
exponent for the induced metric on the unique maximal surface embedded
in Mt strictly decreases to 0 along the ray (Proposition 3.15), and the prin-
cipal curvatures of the maximal surface have also a precise behaviour:

Corollary 3.11. The positive principal curvature of the maximal surface
embedded in Mt monotonically increases to 1, outside the zeros of q1 .

Together with previous results by Seppi ([Sep19]), we deduce also the asymp-
totic behaviour of the width of the convex core of the family Mt:

Proposition 4.3. The width of the convex core of Mt tends to π/2 if t
goes to +∞.

Finally, we introduce another interesting quantity: the Hölder exponent
of a GHMC anti-de Sitter manifold. This is defined as follows: if M corre-
sponds to the pair (ρl, ρr) ∈ Teich(S)× Teich(S) in Mess’ parameterisation,
the Hölder exponent α(M) is the best Hölder exponent of a homeomor-
phism ϕ : RP1 → RP

1 such that ρr(γ) ◦ ϕ = ϕ ◦ ρl(γ) for every γ ∈ π1(S). In
Proposition 2.6 we give a geometric interpretation of this quantity: for every
γ ∈ π1(S), the isometry ρ(γ) = (ρl(γ), ρr(γ)) leaves two space-like geodesics
invariant. On each of them ρ acts by translation and the infimum over all
γ of the ratio between the difference and the sum of the two translation
lengths coincides with the Hölder exponent. We prove the following:

Theorem 2.7. Let Mt be the family of GHMC anti-de Sitter manifolds
parameterised by (h, tq1) ∈ T ∗Teich(S). Then α(Mt) tends to 0 if t goes to
+∞.

It seems more challenging to find coarse estimates for these geomet-
ric quantities, in terms of functions depending only on the two points in the
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Teichmüller space of S in Mess’ parameterisation, like the Weil-Petersson
distance, Thurston’s asymmetric distance or Lp-energies, as obtained for
the volume of GHMC anti-de Sitter manifolds in [BST17]. We leave these
questions for future work.

Outline of the paper

In Section 1, we review the basic theory of GHMC anti-de Sitter 3-manifolds.
The Hölder exponent is studied in Section 2. Section 3 deals with the be-
haviour of the Lorentzian Hausdorff dimension. In Section 4 we focus on the
width of the convex core.

1. Background

In this section we recall the basic theory of anti-de Sitter geometry. Good
references for the material covered here are [Mes07], [BB09] and [BBZ07].

Anti-de Sitter space is a Lorentzian manifold diffeomorphic to a solid
torus, with constant sectional curvature −1. A convenient model for our
purposes is the following. Consider the quadratic form η = − det on the vec-
tor space gl(2,R) of 2-by-2 matrices. By polarisation, η induces a bilinear
form of signature (2, 2) and its restriction to the submanifold defined by the
equation η = −1 is a Lorentzian metric on SL(2,R). Since it is invariant by
multiplication by −Id, it defines a Lorentzian metric on

PSL(2,R) = SL(2,R)/{±Id} .

The projective model of 3-dimensional anti-de Sitter space AdS3 is thus
PSL(2,R) endowed with this Lorentzian metric. It is orientable and time-
orientable, and its group of orientation and time-orientation preserving isome-
tries is

Isom0(AdS3) = PSL(2,R)× PSL(2,R) ,

where the action of an element (α, β) ∈ Isom0(AdS3) is given by

(α, β) · γ = αγβ−1 ∀ γ ∈ AdS3 .

The boundary at infinity of AdS3 is defined as the projectivisation of rank
1 matrices:

∂∞AdS3 = P{α ∈ gl(2,R) | det(α) = 0, α ̸= 0} .
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We can identify ∂∞AdS3 with RP
1 × RP

1 in the following way: an equiva-
lence class of a rank 1 matrixM is sent to the pair of lines (Im(M),Ker(M)).
In this way, the action of Isom0(AdS3) extends to the boundary at in-
finity and corresponds to the obvious action of PSL(2,R)× PSL(2,R) on
RP

1 × RP
1.

Thinking of AdS3 ⊂ RP
3, geodesics are obtained as intersection between

projective lines and AdS3. In particular, geodesics through Id ∈ PSL(2,R)
are 1-parameter subgroups.

Projective duality (or, equivalently, orthogonality with respect to the
quadratic form η) induces a duality between points and space-like planes in
AdS3. Given a space-like plane P , the time-like geodesics orthogonal to P
intersect at a point P ∗ after a time π/2. Viceversa, given a point p, every
time-like geodesic starting at p intersects a unique space-like plane orthog-
onally after a time π/2.

1.1. GHMC anti-de Sitter manifolds

We are interested in a special class of manifolds locally isometric to AdS3.

We say that an anti-de Sitter three manifold M is Globally Hyperbolic
Maximally Cauchy-compact (GHMC) if it contains an embedded closed, ori-
ented surface S that intersects every inextensible causal curve in exactly one
point, and if M is maximal by isometric embeddings sending a Cauchy sur-
face to a Cauchy surface. It turns out thatM is necessarily diffeomorphic to
a product S × R ([Ger70]). Moreover, we will assume throughout the paper
that S has genus τ ≥ 2.

We denote with GH(S) the deformation space of GHMC anti-de Sitter
structures on S × R, i.e. the space of maximal globally hyperbolic anti-de
Sitter metrics on S × R up to diffeomorphisms isotopic to the identity.

Theorem 1.1 ([Mes07]). GH(S) is parameterised by Teich(S)× Teich(S).

The diffeomorphism is constructed as follows. Given a GHMC anti-
de Sitter structure, its holonomy representation ρ : π1(S) → Isom(AdS3)
induces a pair of representations (ρl, ρr) by projecting onto each factor.
Mess proved that both are faithful and decrete and thus define two points
in Teich(S). On the other hand, given a pair of Fuchsian representations
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(ρl, ρr), there exists a unique homeomorphism ϕ : RP1 → RP
1 such that

ρr(γ) ◦ ϕ = ϕ ◦ ρl(γ) for every γ ∈ π1(S). The graph of ϕ defines a curve
Λρ on the boundary at infinity of AdS3 and Mess contructed a maximal
domain of discontinuity D(ϕ) for the action of ρ(π1(S)) := (ρl, ρr)(π1(S)),
called domain of dependence, by considering the set of points whose dual
space-like plane is disjoint from Λρ. The quotient

M = D(ϕ)/ρ(π1(S))

is the desired GHMC anti-de Sitter manifold.

Manifolds corresponding to the diagonal in Teich(S)× Teich(S) are
called Fuchsian. In this case, the homeomorphism ϕ is the identity and the
corresponding curve on the boundary at infinity of AdS3 is the boundary of
the totally geodesic space-like plane

P0 = {α ∈ PSL(2,R) | trace(α) = 0} .

The representation ρ = (ρ0, ρ0) preserves P0 and, thus a foliation by equidis-
tant surfaces from P0. The quotient

MF = D(Id)/ρ(π1(S))

is thus isometric to
(

S ×
(

−
π

2
,
π

2

)

, gF = cos2(t)h0 − dt2
)

,

where h0 is the hyperbolic metric with holonomy ρ0.

Mess introduced also the notion of convex core. This is the smallest
convex subset of a GHMC anti-de Sitter manifold M which is homotopi-
cally equivalent to M . It can be concretely realised as follows. If ρ denotes
the holonomy representation of M and Λρ ⊂ ∂∞AdS3 is the limit set of the
action of ρ(π1(S)), the convex core of M is

C(M) = C(Λρ)/ρ(π1(S)) ,

where C(Λρ) denotes the convex-hull of the curve Λρ in AdS3.
IfM is Fuchsian, the convex core is a totally geodesic surface. Otherwise, it is
a three-dimensional domain, homeomorphic to S × [0, 1], the two boundary
components being space-like surfaces, endowed with hyperbolic metrics and
pleated along measured laminations.
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1.2. A parameterisation using maximal surfaces

In this paper we use another parameterisation of the deformation space
of GHMC anti-de Sitter structures on S × R, introduced by Krasnov and
Schlenker ([KS07]). We recall here the main steps of their construction.

LetM be a GHMC anti-de Sitter 3-manifold. It is well-known ([BBZ07])
that M contains a unique embedded maximal surface Σ, i.e. with vanish-
ing mean curvature. By the Fundamental Theorem of surfaces embedded in
anti-de Sitter space, Σ is uniquely determined by its induced metric I and
its shape operator B : TΣ → TΣ, which are related to each other by the
Gauss-Codazzi equations:

d∇IB = 0

KI = −1− det(B) ,

where we have denoted with KI the curvature of the metric I. The first
equation, together with the fact that B is traceless, implies that the second
fundamental form II = I(B·, ·) is the real part of a quadratic differential q
([Hop47]), which is holomorphic for the complex structure compatible with
the metric, in the following sense. For every pair of vector fields X and Y
on Σ, we have

ℜ(q)(X,Y ) = I(BX, Y ) .

In a local conformal coordinate z, we can write q = f(z)dz2 and I = e2u|dz|2.
Thus, ℜ(q) is the bilinear form that in the frame {∂x, ∂y} is represented by

ℜ(q) =

(

ℜ(f) −Im(f)
−Im(f) −ℜ(f)

)

,

and the shape operator B can be recovered as B = I−1ℜ(q). Moreover, a
straightforward computation shows that the Codazzi equation for B is equiv-
alent to the Cauchy-Riemann equations for f . Therefore, we can define a
map

Ψ : GH(S) → T ∗Teich(S)

M 7→ (h, q)

associating to a GHMC anti-de Sitter structure the unique hyperbolic met-
ric in the conformal class of I and the quadratic differential q, constructed
from the embedding data of the maximal surface Σ embedded in M .
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In order to prove that Ψ is a homeomorphism, Krasnov and Schlenker
([KS07]) found an explicit inverse. They showed that, given a hyperbolic
metric h and a quadratic differential q that is holomorphic for the complex
structure compatible with h, it is always possible to find a smooth map
u : S → R such that I = e2uh and B = I−1ℜ(q) are the induced metric and
the shape operator of a maximal surface embedded in a GHMC anti-de Sit-
ter manifold. This is accomplished by noticing that the Codazzi equation
for B is trivially satisfied since q is holomorphic, and thus it is sufficient to
find u so that the Gauss equation holds. Now,

det(B) = det(e−2uh−1ℜ(q)) = e−4u det(h−1ℜ(q)) = −e−4u∥q∥2h

and

KI = e−2u(Kh −∆hu),

hence the Gauss equation translates into the quasi-linear PDE

(1) ∆hu = e2u − e−2u∥q∥2h +Kh .

Proposition 1.2 (Lemma 3.6 [KS07]). There exists a unique smooth
solution u : S → R to Equation (1). Moreover, for any non-trivial holomor-
phic quadratic differential q1, along the ray q = tq1, the solution ut depends
smoothly on t ∈ R.

Proof. Existence and uniqueness were proved in [KS07]. Let us now prove the
smooth dependence of the solution on t. Consider the mapping F : C2,α(S)×
R → C0,α(S) defined by

F (w, t) = ∆hw − e2w + e−2w∥tq1∥
2
h −Kh .

Notice that the solution ut to Equation (1) along the ray q = tq1 satisfies
F (ut, t) = 0. At any t0 ∈ R, the linearization

dFw(ut0 , t0) : C
2,α(S) → C0,α(S)

ψ 7→ ∆hψ − (2e2ut0 + 2e−2ut0∥t0q1∥
2
h)ψ

is a negative definite operator, hence invertible. By the Implicit Function
Theorem for Banach spaces, the solution ut to Equation (1) depends
smoothly on t in a neighbourhood of t0. □
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In Section 3, we will give precise estimates for the solution u in terms
of the quadratic differential q, and study its asymptotics along a ray q = tq1
for a fixed non-trivial holomorphic quadratic differential q1.

1.3. Relation between the two parameterisations

The theory of harmonic maps between hyperbolic surfaces provides a bridge
between the two parameterisations of GH(S).

Definition 1.3. A diffeomorphism m : (S, hl) → (S, hr) is minimal
Lagrangian if it is area-preserving and its graph is a minimal surface in
(S × Sl, h⊕ hr).

Minimal Lagrangian maps between hyperbolic surfaces have been exten-
sively studied ([TV95], [Sep19], [Tam19b], [Tam20]). We will use, in partic-
ular, the following fundamental result:

Theorem 1.4 ([Lab92], [Sch93]). Given two hyperbolic metrics hl and
hr on a closed surface S, there exists a unique minimal Lagrangian map
m : (S, hl) → (S, hr) isotopic to the identity.

This should remind the reader of the more classical existence and unique-
ness of harmonic maps between hyperbolic surfaces. Recall that a map
f : (N, g) → (N ′, g′) between Riemannian manifolds is harmonic if it is a
critical point of the Dirichlet energy functional

E(f) =

∫

N
∥df∥2dVg .

If (N ′, g′) is non-positively curved, harmonic maps are actually local mini-
mizers and are unique in a fixed homotopy class. Moreover, in the special
case of surface domains, the energy functional is conformally invariant, thus
harmonicity depends only on the conformal class of the Riemannian metric
on the domain.

If we specialize to harmonic maps between surfaces f : (S, h) → (S, h′)
and we fix a complex structure on S compatible with the metric h, we can
define the Hopf differential of f as Hopf(f) = (f∗h′)(2,0). The map f being
harmonic implies that Hopf(f) is a holomorphic quadratic differential on S
that measures how far f is from being conformal.
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Minimal Lagrangian diffeomorphisms are closely related to harmonic
maps in the following sense: a minimal Lagrangian diffeomorphism m :
(S, hl) → (S, hr) can be factorised ([BS10]) as m = f ′ ◦ f−1, where

f : (S, h) → (S, hl) and f ′ : (S, h) → (S, hr)

are harmonic with opposite Hopf differentials. We call h the center of the
minimal Lagrangian map.

Proposition 1.5 ([BS10]). Let hr and hl be hyperbolic metrics on S
with holonomy ρr and ρl. The center of the minimal Lagrangian map m :
(S, hl) → (S, hr) is the conformal class of the induced metric on the maximal
surface Σ contained in the GHMC anti-de Sitter manifold M with holonomy
ρ = (ρl, ρr). Moreover, the second fundamental form of Σ is (up to a factor
±i) the real part of the Hopf differential of the harmonic map factorising m.

This picture has been recently generalised to hyperbolic surfaces with
cone singularities ([Tou16]) and to other families of diffeomorphisms between
hyperbolic surfaces, called landslides ([BS18], [CT19]).

2. Hölder exponent

In this section we introduce the Hölder exponent of a GHMC anti-de Sitter
manifold and study its asymptotic behaviour along a ray of quadratic dif-
ferentials.

LetM be a GHMC anti-de Sitter manifold. Its holonomy representation
ρ : π1(S) → PSL(2,R)× PSL(2,R) gives rise, by projecting into each factor,
to two discrete and faithful representations ρl and ρr. Let ϕ : RP1 → RP

1

be the unique homeomorphism such that

ρr(γ) ◦ ϕ = ϕ ◦ ρl(γ) for every γ ∈ π1(S) .

It is well-known ([Thu98]) that ϕ is quasi-symmetric, and, in particular, has
Hölder regularity.

Definition 2.1. Given a Hölder map f : RP1 → RP
1, we define the Hölder

exponent of f as

α(f) = sup{α ∈ (0, 1] | ∃C > 0 dRP1(f(x), f(y)) ≤ CdRP1(x, y)α ∀x, y ∈ RP
1} .
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The Hölder exponent α(M) of M is the minimum between the Hölder expo-
nents of ϕ and ϕ−1.

Remark 2.2. This definition takes into account that ϕ and ϕ−1 have in
general different Hölder exponents. On the other hand, the manifolds with
holonomies (ρl, ρr) and (ρr, ρl) are isometric, because the map

PSL(2,R) → PSL(2,R)

A 7→ A−1

induces an orientation-reversing isometry of AdS3 which swaps the left and
right holonomies in Mess’ parameterisation. Hence, we expect a geometric
interesting quantity to be invariant under this transformation.

An explicit formula for the Hölder exponent of ϕ is well-known:

Theorem 2.3 (Chapter 7 Proposition 14 [GH90], Theorem 6.5
[BS11]). Let ρr and ρl be Fuchsian representations. The Hölder exponent
of the unique homeomorphism ϕ : RP1 → RP

1 such that

ρr(γ) ◦ ϕ = ϕ ◦ ρl(γ) for every γ ∈ π1(S)

is

α(ϕ) = inf
γ∈π1(S)

ℓr(γ)

ℓl(γ)

where ℓr(γ) and ℓl(γ) denote the lengths of the geodesic representatives of γ
with respect to the hyperbolic metrics with holonomy ρr and ρl, respectively.

Therefore, the Hölder exponent of a GHMC anti-de Sitter manifold with
holonomy ρ = (ρl, ρr) is given by

(2) α(M) = inf
γ∈π1(S)

min

{

ℓr(γ)

ℓl(γ)
,
ℓl(γ)

ℓr(γ)

}

.

Remark 2.4. Since the formula for α(M) is homogeneous and weighted
simple closed curves are dense in the space of measured foliations, the above
formula is equivalent to

α(M) = inf
µ∈MF(S)

min

{

ℓr(µ)

ℓl(µ)
,
ℓl(µ)

ℓr(µ)

}

.

We easily deduce a rigity property of the Hölder exponent:



✐

✐

“7-Tamburelli” — 2023/4/24 — 21:45 — page 1424 — #12
✐

✐

✐

✐

✐

✐

1424 Andrea Tamburelli

Proposition 2.5 (Mostow). The Hölder exponent of a GHMC anti-de
Sitter manifold is equal to 1 if and only if M is Fuchsian.

Proof. The result can be deduced from the proof of Mostow’s rigidity [Mos73].
We provide here a brief argument based on Thurston’s work on Lipschitz
maps between hyperbolic surfaces ([Thu98]).

If M is Fuchsian ℓr(γ) = ℓl(γ) for every γ ∈ π1(S), hence the Hölder ex-
ponent is equal to 1. On the other hand, if M is not Fuchsian, there exists
a curve γ ∈ π1(S) such that ℓl(γ) > ℓr(γ), hence α(M) < 1. □

Before studying the asymptotics of the Hölder exponent along rays of
quadratic differentials, we want to give a new interpretation of the Hölder
exponent that is more related to anti-de Sitter geometry.

Let ρ = (ρr, ρl) be the holonomy representation of a GHMC anti-de Sit-
ter structure. Let us suppose first that ρl ̸= ρr. Since ρl and ρr are the
holonomies of hyperbolic structures on S, for every γ ∈ π1(S), the elements
ρl(γ) and ρr(γ) are hyperbolic isometries of the hyperbolic plane. Therefore,
there exist A,B ∈ PSL(2,R) such that

Aρl(γ)A
−1 =

(

eℓl(γ)/2 0

0 e−ℓl(γ)/2

)

Bρr(γ)B
−1 =

(

eℓr(γ)/2 0

0 e−ℓr(γ)/2

)

.

We thus notice that the isometry of AdS3 given by ρ(γ) = (ρl(γ), ρr(γ))
leaves two space-like geodesics invariant

σ∗(t) = A

(

et 0
0 e−t

)

B−1 and σ(t) = A

(

0 et

e−t 0

)

B−1 .

An easy computation shows that the isometry ρ(γ) acts on σ∗ by translation
with translation length

β∗(γ) =
|ℓl(γ)− ℓr(γ)|

2

and acts by translation on σ with translation length

β(γ) =
ℓl(γ) + ℓr(γ)

2
.

We claim that only the geodesic σ is contained in the convex hull of the
limit set Λρ. Recall that the limit set can be constructed as the graph of the
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homeomorphism ϕ : RP1 → RP
1 ([Mes07]) such that

ρr(γ) ◦ ϕ = ϕ ◦ ρl(γ) for every γ ∈ π1(S) .

In particular, ϕ sends the attactive (resp. repulsive) fixed point of ρl(γ) into
the attractive (resp. repulsive) fixed point of ρr(γ). Therefore, we must have

ϕ(A[1 : 0]) = B[1 : 0] and ϕ(A[0 : 1]) = B[0 : 1] .

Now, the geodesic σ has ending points

σ(−∞) = (A[0 : 1], B[0 : 1]) ∈ RP
1 × RP

1

and

σ(+∞) = (A[1 : 0], B[1 : 0]) ∈ RP
1 × RP

1 ,

whereas the geodesic σ∗ has ending points

σ∗(−∞) = (A[0 : 1], B[1 : 0]) ∈ RP
1 × RP

1

and

σ∗(+∞) = (A[1 : 0], B[0 : 1]) ∈ RP
1 × RP

1

hence only the ending points of σ lie on the limit curve Λρ. As a consequnce,
σ is contained in the convex hull of Λρ and its projection is a closed space-
like geodesic in the convex core of M . On the other hand, the geodesic σ∗

does not even belong to the domain of dependence of Λρ. In fact, it it easy to
check that the dual space-like plane of any point of σ∗ contains the geodesic
σ, thus its boundary at infinity is not disjoint from the limit curve Λρ.

In the special case, when ρr = ρl, the point [Id] ∈ AdS3 is fixed and
its dual space-like plane P0 is left invariant. By definition of the dual plane
(see Section 1),

P0 = {A ∈ PSL(2,R) | trace(A) = 0}

is the dual of [Id] ∈ AdS3 and it is easy to check that it is a copy of the
hyperbolic plane. With this identification, ρ(γ) acts on P0 as the hyperbolic
isometry ρr(γ) = ρl(γ) does on H

2.

We thus obtain another way of computing the Hölder exponent of a
GHMC anti-de Sitter manifold:
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Proposition 2.6. Let M be a GHMC anti-de Sitter manifold with holon-
omy ρ. Let β(γ) and β∗(γ) be the translation lengths of the isometries ρ(γ)
for every γ ∈ π1(S). Then

α(M) = inf
γ∈π1(S)

β(γ)− β∗(γ)

β(γ) + β∗(γ)
.

Proof. This is a direct consequence of the explicit formulas for β(γ) and
β∗(γ) and Theorem 2.3. □

We can now describe the asymptotic behaviour of the Hölder exponent:

Theorem 2.7. Let Mt be the family of GHMC anti-de Sitter manifolds
parameterised by the ray (h, tq1) ∈ T ∗Teich(S) for a non-zero quadratic dif-
ferential q1. Then

lim
t→+∞

α(Mt) = 0 .

Proof. Let ρt = (ρl,t, ρr,t) be the holonomy representation ofMt. Let hl,t and
hr,t be the hyperbolic metrics on S with holonomy ρl,t and ρr,t, respectively.
By Proposition 1.5, we can suppose that the identity maps

id : (S, h) → (S, hl,t) id : (S, h) → (S, hr,t)

are harmonic with Hopf differentials itq1 and −itq1, respectively.
Associated to itq1 are two measured foliations λ+t and λ−t : in a natural
conformal coordinate z = x+ iy outside the zeros of iq1, we can express
itq1 = dz2. The foliations are then given by

λ+t = (y = const, z∗|dy|) and λ−t = (x = const, z∗|dx|) .

Notice, in particular, that the support of the foliation is fixed for every t > 0
and only the measure changes, being it multiplied by t1/2. We can thus write

λ+t = t1/2λ+1 and λ−t = t1/2λ−1

where λ±1 are the measured foliations associated to iq1. Moreover, multiply-
ing a quadratic differential by −1 interchanges the two foliations.

By Wolf’s compactification of Teichmüller space (Section 4.2 [Wol89]),
we know that

lim
t→+∞

ℓl,t(γ)

2t1/2
= ι(λ+1 , γ)

for every γ ∈ π1(S), where ℓl,t(γ) denotes the length of the geodesic rep-
resentative of γ with respect to the hyperbolic metric hl,t. By density, the
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same holds for every measured foliation on S. Therefore, using Remark 2.4,

0 ≤ lim sup
t→+∞

α(Mt) = lim sup
t→+∞

inf
µ∈MF(S)

min

{

ℓl,t(µ)

ℓr,t(µ)
,
ℓr,t(µ)

ℓl,t(µ)

}

≤ lim sup
t→+∞

ℓl,t(λ
+
1 )

ℓr,t(λ
+
1 )

= lim sup
t→+∞

ℓl,t(λ
+
1 )

2t1/2
2t1/2

ℓr,t(λ
+
1 )

=
ι(λ+1 , λ

+
1 )

ι(λ−1 , λ
+
1 )

= 0

because every measured foliation has vanishing self-intersection and
ι(λ−1 , λ

+
1 ) ̸= 0 by construction, since λ±1 are the horizontal and vertical foli-

ations of a quadratic differential. □

3. Critical exponents

In this section we study the asymptotic behaviour of the Lorentzian Haus-
dorff dimension of the limit curve Λρ associated to a GHMC anti-de Sitter
manifold.

3.1. Lorentzian Hausdorff dimension

Let M be a GHMC anti-de Sitter manifold with holonomy representation ρ.
In Section 1, we saw that the limit set of the action of ρ(π1(S)) is a simple
closed curve Λρ in the boundary at infinity of AdS3. Moreover, Λρ is the
graph of a locally Lipschitz function, thus its Hausdorff dimension is always
1. Recently, Glorieux and Monclair defined a notion of Lorenztian Hausdorff
dimension, that manages to describe how far the representiation ρ is from
being Fuchsian. This resembles the usual definition of Hausdorff dimension,
where instead of considering coverings consisting of Euclidean balls, they
used Lorentzian ones ([GM21, Section 5.1]). They also gave an equivalent
definition in terms of critical exponent related to a distance-like function in
AdS3.

Definition 3.1. Let Λρ ⊂ ∂∞AdS3 be the limit set of the holonomy of a
GHMC anti-de Sitter structure. The Lorentzian distance

dAdS : C(Λρ)× C(Λρ) → R≥0
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is defined as follows. Let x, y ∈ C(Λρ) and let γx,y be the unique geodesic
connecting x and y. We put

dAdS(x, y) :=

{

length(γx,y) if γx,y is space-like

0 otherwise

The function dAdS is a distance-like function in the following sense: it is
symmetric, and there exists a constant kρ depending on the representation
ρ such that

dAdS(x, z) ≤ dAdS(x, y) + dAdS(y, z) + kρ

for every x, y, z ∈ C(Λρ) ([GM21, Theorem 3.4]).

Definition 3.2. The critical exponent of ρ(π1(S)) relative to the Lorentzian
distance dAdS is

δAdS(ρ) = lim sup
R→+∞

1

R
log(#{γ ∈ π1(S) | dAdS(ρ(γ)x0, x0) ≤ R}) ,

where x0 ∈ C(Λρ) is a fixed base point.

Remark 3.3. By the above weak triangle inequality, the critical exponent
δAdS(ρ) does not depend on the choice of the basepoint x0.

The link between the critical exponent for the Lorentzian distance dAdS

and the Lorentzian Hausdorff dimension is provided by the following result:

Theorem 3.4 (Theorem 1.1 [GM21]). Let Λρ be the limit set of the
holonomy representation ρ of a GHMC anti-de Sitter structure. Then

LHdim(Λρ) = δAdS(ρ) .

3.2. Critical exponent of the maximal surface

Another natural quantity that can be associated to a GHMC anti-de Sitter
structure is the critical exponent that computes the exponential growth rate
of a point in the orbit of π1(S) with respect to the Riemannian metric in-
duced on the unique maximal surface. We will use this in the next subsection
to provide an upper-bound for the Lorentzian Hausdorff dimension of the
limit set.
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Let g be a Riemannian metric or a flat metric with conical singularity
on the surface S. Let S̃ be the universal cover of S. The critical exponent
of π1(S) relative to g can be defined as

δ(g) = lim sup
R→+∞

1

R
log(#{γ ∈ π1(S) | dg(γ · x0, x0) ≤ R}) ∈ R

+

where x0 ∈ S̃ is an arbitrary base point.

We introduce the function δ : T ∗Teich(S) → R that associates to a point
(h, q) ∈ T ∗Teich(S) the critical exponent relative to the Riemannian metric
I = e2uh, where u is the solution to Equation (1). Namely, δ(h, q) is the crit-
ical exponent relative to the Riemannian metric induced on the unique max-
imal surface embedded in the GHMC anti-de Sitter manifold corresponding
to (h, q). By identifying T ∗Teich(S) with GH(S) (see Section 1), we will of-
ten denote this map as δ(ρ), where ρ is the holonomy representation of the
corresponding GHMC anti-de Sitter structure.

Notice that, since in Equation (1) only the h-norm of the quadratic dif-
ferential q appears, the function δ is invariant under the natural S1 action
on T ∗Teich(S) given by (h, q) 7→ (h, eiθq).

3.3. Estimates for the induced metric on the maximal surface

In this section we study the asymptotic behaviour of the induced metric
It on the maximal surface Σt along a ray tq1 of quadratic differentials. We
deduce also estimates for the principal curvatures of Σt.

Let us start finding a lower bound for It.

Proposition 3.5. Let ut be the solution to Equation (1) for q = tq1. Then

ut >
1

2
log(t∥q1∥h) .

In particular, It > t|q1|.

Proof. The main idea of the proof lies on the fact that 1
4 log(∥tq1∥

2
h) is a

solution to Equation (1), outside the zeros of q1. To be precise, let st :
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S \ q−1
1 (0) → R be the function such that

e2sth = t|q1|

at every point. Then, outside the zeros of q1, we have

∆hst = h−1∂̄∂ log(∥tq1∥
2
h) = h−1∂̄∂[log(t2q1q̄1)− log(h2)]

= −
1

2
∆h log(h) = Kh

and

e2st − t2e−2st∥q1∥
2
h = t∥q1∥h − t∥q1∥h = 0 ,

hence st is a solution of Equation (1) outside the zeros of q1. We observe,
moreover, that at the zeros of q1, st tends to −∞. Therefore, the function

u− =

{

1
4 log(∥tq1∥

2
h) ∥tq1∥h ≥ 1

0 ∥tq1∥h < 1

is a subsolution for Equation (1), being it the maximum of two subsolutions,
and we deduce, in particular, that ut > st.

Now, the strong maximum principle ([Jos07, Thereom 2.3.1]) implies
that on any domain where st is continuous up to the boundary, we have
either ut > st or ut ≡ st. Thus if ut(p) = st(p) for some p ∈ S (and clearly
p cannot be a zero for q1 in this case), then ut and st must agree in the
complement of the zeros of q1, but this is not possible, since st diverges to
−∞ near the zeros, whereas ut is smooth everywhere on S.

In particular, we deduce that It = e2uth > e2sth = t|q1|. □

Corollary 3.6. Let λt be the positive principal curvature of the maximal
surface Σt, then λt < 1.

Proof. Recall that the shape operator of Σt can be written as

Bt = I−1
t IIt = e−2uth−1ℜ(tq1) .

Therefore, λ2t = − det(Bt) = e−4utt2∥q1∥
2
h < 1, by the previous proposition.

□

In order to find an upper bound for It, we introduce a new metric on
the surface S. Let U be a neighbourhood of the zeros of q1. We consider a
smooth metric g on S in the conformal class of h such that g = |q1| in the
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complement of U and ∥q1∥
2
g ≤ 1 everywhere on S. This is possible because

∥q1∥
2
g = 1 on S \ U and it vanishes at the zeros of q1. Let wt be half of the

logarithm of the density of It with respect to g, i.e wt : S → R satisfies

e2wtg = It .

Comparing the curvatureKIt of the metric It and the curvature of the metric
e2wtg (see Section 1.2), we deduce that wt is the solution to Equation (1),
where the background metric is now g, i.e.

∆gwt = e2wt − t2e−2wt∥q1∥
2
g +Kg .

We can give an upper-bound to the induced metric It by estimating the
function wt.

Proposition 3.7. Let K be the minimum of the curvature of g and let St
be the positive root of the polynomial rt(x) = x2 +Kx− t2. Then e2wt ≤ St.

Proof. By compactness of S, the function wt has maximum at some point
p ∈ S. At that point, we have

0 ≥ ∆gwt(p) = e2wt(p) − t2e−2wt(p)∥q1(p)∥
2
g +Kg(p)

= e−2wt(p)(e4wt(p) + e2wt(p)Kg(p)− t2∥q1(p)∥
2
g)

≥ e−2wt(p)(e4wt(p) +Ke2wt(p) − t2) = e−2wt(p)rt(e
2wt(p))

The biggest possible value in which this inequality is true is for e2wt(p) = St.
Since p is a point of maximum of wt we deduce that e2wt ≤ St everywhere
on S. □

Corollary 3.8. Along a ray tq1, the induced metric It on the maximal
surface satisfies

It = t|q1|(1 + o(1)) for t→ +∞

outside the zeros of q1.

Proof. Combining Proposition 3.5 and Proposition 3.7 we have

t|q1| ≤ It ≤ Stg .
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Now, we notice that St

t is the biggest positive root of the polynomial r̃t(x) =
x2 + K

t x− 1, hence

St
t

→ 1 when t→ +∞ .

Moreover, outside of U , by definition g = |q1|, thus

|q1| ≤
It
t
≤
St
t
|q1|

t→+∞
−−−−→ |q1|

and the proof is complete. □

We can actually be more precise about the way the induced metrics It
t

converge to the flat metric |q1|.

Lemma 3.9. Let ut be the solution to Equation (1) along the ray tq1. Then,
for every t0 ≥ 0, we have u̇t0 ≥ 0 everywhere on S.

Proof. Along the ray tq1, Equation (1) can be re-written as

(3) ∆hut = e2ut − e−2utt2∥q1∥
2
h − 1 .

Taking the derivative at t = t0 we obtain

(4) ∆hu̇t0 = 2e2ut0 u̇t0 − 2t0∥q1∥
2
he

−2ut0 + 2t20u̇t0e
−2ut0∥q1∥

2
h .

At a point p of minimum for u̇t0 we have

0 ≤ ∆hu̇t0(p) = 2u̇t0(p)(e
2ut0

(p) + e−2ut0
(p)t20∥q1(p)∥

2
h)− 2t0∥q1(p)∥

2
he

−2ut0
(p)

which implies, since t0 ≥ 0, that u̇t0(p) ≥ 0. Hence, u̇t0 ≥ 0 everywhere on
S. □

Proposition 3.10. Outside the zeros of q0,

It
t
→ |q1| when t→ +∞

monotonically from above.
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Proof. Recall that we can write It = e2uth, where ut is the solution of Equa-
tion (1) for q = tq1. By Proposition 3.5, we know that

ut >
1

2
log(t∥q1∥h) .

It is thus sufficient to show that φt = ut −
1
2 log(t∥q1∥h) > 0 is monotone de-

creasing in t. Outside the zeros of q1, the function φt satisfies the differential
equation

∆hφt = ∆hut −
1

2
∆h log(t∥q1∥h) = e2ut − t2∥q1∥

2
he

−2ut

= t∥q1∥h(e
2utt−1∥q1∥

−1
h − t∥q1∥he

−2ut)

= t∥q1∥h(e
2φt − e−2φt) = 2t∥q1∥h sinh(2φt) .

Taking the derivative at t = t0, we obtain

(5) ∆hφ̇t0 = 2∥q1∥h sinh(2φt0) + 4t0∥q1∥h cosh(2φt0)φ̇t0 .

We would like to evaluate Equation (5) at a point of maximum, but up
to now the function φ̇t is defined only on the complement of the zeros of
q1, and may be unbounded. However, since e2ute−2φt = t∥q1∥h, taking the
derivative in t = t0 we deduce that

2∥q1∥ht0(u̇t0 − φ̇t0) = ∥q1∥h ,

hence, outside the zeros of q1, we have

φ̇t0 = u̇t0 −
1

2t0
,

which implies that φ̇t0 extends to a smooth function at the zeros of q1
because u̇t0 does and, moreover, they share the same points of maximum
and minimum.

In particular, we can show that φ̇t0 does not assume maximum at a point
p which is a zero of q1. Otherwise, this would be also a point of maximum
for u̇t0 and we would have

0 ≥ ∆hu̇t0(p) = 2e2ut0
(p)u̇t0(p)− 2t0∥q0(p)∥

2
he

−2ut0
(p)

+ 2t20u̇t0(p)e
−2ut0

(p)∥q0(p)∥
2
h

= 2e2ut0
(p)u̇t0(p)
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which would imply that u̇t0 ≤ 0, and, together with Lemma 3.9, this would
imply that u̇t0 should vanish identically. But then

0 = ∆hu̇t0 = −2t0∥q1∥
2
he

−2ut0

would give a contradiction.
Therefore, φ̇t0 takes maximum at a point p outside the zeros of q1, and

we have

0 ≥ ∆hφ̇t0(p) = 2∥q1(p)∥h sinh(2φt0(p)) + 4t0∥q1(p)∥h cosh(2φt0(p))φ̇t0(p)

> 4t0∥q1(p)∥h cosh(2φt0(p))φ̇t0(p) > 4t0∥q1(p)∥hφ̇t0(p) ,

which implies that φ̇t0 < 0 everywhere on S, and φt is monotone decreasing
in t as desired. □

Corollary 3.11. Let λt be the positive principal curvature of the maximal
surface Σt. Then λt → 1 monotonically outside the zeros of q1, when t goes
to +∞

Proof. Recall that the shape operator of Σt can be written as

Bt = I−1
t IIt = e−2uth−1ℜ(tq1) .

Therefore, λ2t = − det(Bt) = e−4utt2∥q1∥
2
h and this is monotonically increas-

ing to 1 by the previous proposition. □

3.4. Asymptotics and rigidity of the Lorentzian Hausdorff
dimension

We now compare the Lorentzian Hausdorff dimension of the limit set of
a GHMC anti-de Sitter manifold with the critical exponent of the unique
maximal surface.

Lemma 3.12 ([GM21]). Let ρ be the holonomy representation of a GHMC
anti-de Sitter manifold M with limit set Λρ. Then

LHdim(Λρ) ≤ δ(ρ) .

Proof. Let Σ be the unique maximal surface embedded in M . We identify
the universal cover of M with the domain of dependence D(Λρ) of the limit
set. In this way, Σ is lifted to a minimal disc Σ̃ in AdS3 with asymptotic
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boundary Λρ, contained in the convex hull C(Λρ). We fix a base point x0 ∈ Σ̃.
By definition,

δ(ρ) = lim sup
R→+∞

1

R
log(#{γ ∈ π1(S) | dI(ρ(γ)x0, x0) ≤ R}) ,

where I is the induced metric on Σ̃, and by Theorem 3.4

LHdim(Λρ) = lim sup
R→+∞

1

R
log(#{γ ∈ π1(S) | dAdS(ρ(γ)x0, x0) ≤ R}).

Therefore, it is sufficient to show that for every pair of points x, y ∈ Σ̃, we
have

dI(x, y) ≤ dAdS(x, y) .

Since Σ is a Cauchy surface forM , the geodesic connecting x and y is space-
like. We can thus find a Lorentzian plane P ⊂ AdS3 containing x and y.
In an affine chart, this is isometric to (R× (−π/2, π/2), dt2 − cosh2(t)ds2),
where t is the arc-length parameter of the space-like geodesic between x and
y. By intersecting P with Σ̃ we obtain a curve γ ⊂ Σ̃ with length

length(γ) =

∫ dAdS(x,y)

0

√

1− cosh2(t)s′(t)dt ≤ dAdS(x, y) .

As a consequence, the distance between x and y in the induced metric of Σ̃
must be smaller than dAdS(x, y). □

Theorem 3.13. Let Mt be the sequence of GHMC anti-de Sitter manifolds
parameterised by the ray (h, tq1) ∈ T ∗Teich(S) for some non-zero holomor-
phic quadratic differential q1. Let Λt be the limit sets of the corresponding
holonomy representations. Then

lim
t→+∞

LHdim(Λt) = 0

Proof. By Lemma 3.12, it is sufficient to show that the critical exponent
relative to the induced metric on the maximal surface tends to 0 when t
goes to +∞. Since the metrics It = e2uth are bounded from below by the
flat metrics with conical singularities gt = t|q1| (Proposition 3.5), we deduce
that

δ(ρt) ≤ δ(gt) .

The proof is then completed by noticing that δ(t|q1|) = t−1δ(|q1|). □
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In order to prove a rigidity result for the critical exponent relative to
the induced metric on the maximal surface and the Lorentzian Hausdorff
dimension, we study the derivative of the critical exponent along a ray. To
this aim, we need the following useful formula for its variation along a path
of smooth Riemannian metrics:

Theorem 3.14 ([KKW91]). Let gt be a smooth path of negatively curved
Riemannian metrics on a closed manifold S. Then

d

dt
δ(gt)|t=t0

= −
δ(gt0)

2

∫

T 1S

d

dt
gt(v, v)|t=t0

dµt0

where µt0 denotes the Bowen-Margulis measure on the unit tangent bundle
T 1S of (S, gt0).

Proposition 3.15. The critical exponent relative to the induced metric on
the maximal surface of a GHMC anti-de Sitter manifold is decreasing along
a ray tq1 for t ≥ 0.

Proof. The induced metrics on the maximal surfaces are It = e2uth, thus,
using Lemma 3.9, for every unit tangent vector v ∈ T 1S

d

dt
It(v, v)|t=t0

= 2u̇t0e
2ut0h(v, v) ≥ 0 .

Since the induced metrics It are negatively curved by the Gauss equation
and Corollary 3.6, we can apply Theorem 3.14 and deduce that the critical
exponent is non increasing.

To prove that it is decreasing, we notice that

d

dt
δ(It)|t=t0

= −
δ(It0)

2

∫

T 1S

d

dt
It(v, v)|t=t0

dµt0 = 0

if and only if u̇t0 vanishes identically on S, because the Bowen-Margulis
measure is positive in all non empty open sets. But in this case, Equation (4)
reduces to

0 = 2t0∥q1∥
2
he

−2ut0

which implies that t0 = 0, because q1 is not identically zero. □

Recall that we denoted by δ(h, q) the critical exponent relative to the
induced metric on the maximal surface embedded in the GHMC anti-de
Sitter manifold corresponding to (h, q) ∈ T ∗Teich(S).
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Corollary 3.16. δ(h, q) ≤ 1 for every (h, q) ∈ T ∗Teich(S) and δ(h, q) = 1
if and only if q = 0.

Proof. If q = 0, the function u = 0 is the unique solution to Equation (1).
Hence, the induced metric on the maximal surface is hyperbolic, and it is
well-known that the critical exponent of the hyperbolic metric is 1.

On the other hand, since the function δ(h, tq1) is decreasing for t ≥ 0,
for every non-zero quadratic differential q we have δ(h, q) < δ(h, 0) = 1. □

We then obtain a new proof of the rigidity of the Lorentzian Hausdorff
dimension ([GM21]):

Theorem 3.17. Let M be a GHMC anti-de Sitter manifold and let Λ be
its limit set. Then

LHdim(Λ) = 1

if and only if M is Fuchsian.

Proof. If M is Fuchsian, the holonomy representation ρ = (ρ0, ρ0) preserves
the totally geodesic space-like plane P0, that is isometric to the hyperbolic
plane. Fix the base point x0 on P0. Since for every γ ∈ π1(S), the isometry
ρ(γ) acts on the plane P0 like the hyperbolic isometry ρ0(γ) on H

2 (see
Section 2), the critical exponent relative to dAdS coincides with the critical
exponent relative to the hyperbolic metric associated to ρ0, which is equal
to 1.

Viceversa, suppose that LHdim(Λ) = 1, then by Lemma 3.12 the critical
exponent relative to the induced metric on the maximal surface embedded
in M is at least 1. By Corollary 3.16, we deduce that M is Fuchsian. □

4. Width of the convex core

Another geometric quantity associated to GHMC anti-de Sitter manifolds is
the width of the convex core. This has already been extensively studied in
[Sep19]. Combining the aformentioned work with our estimates in Section 3,
we can describe its asymptotic behaviour.

We recall that the convex core of a GHMC anti-de Sitter manifold M
is homeomorphic to S × [0, 1], unless M is Fuchsian, in which case it is a
totally geodesic surface. The width of the convex core expresses how far M
is from being Fuchsian, as it measures the distance between the two bound-
ary components of the convex core. More precisely, let Λρ be the limit set
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of the holonomy representation ρ of M . The convex core can be realised as
the quotient of the convex hull of Λρ in AdS3 by the action of ρ(π1(S)).

Definition 4.1. The width w(M) of the convex core of M is the supremum
of the length of a time-like geodesic contained in C(Λρ).

We can give an equivalent definition by introducting a time-like distance
in AdS3. Given two points x, y ∈ AdS3, we denote with γx,y the unique
geodesic connecting the two points. We define

dt : AdS3 ×AdS3 → R≥0

as

dt(x, y) =

{

length(γx,y) if γx,y is time-like

0 otherwise

where the length of a time-like curve γ : [0, 1] → AdS3 is

length(γ) =

∫ 1

0

√

−∥γ̇(t)∥2dt ,

where ∥γ̇(t)∥ denotes the norm of the tangent vector γ̇(t) ∈ Tγ(t)AdS3 with
respect to the Lorentzian metric on AdS3. Therefore, Definition 4.1 is equiv-
alent to

w(M) = sup
p∈C(M)+

q∈C(M)−

dt(p, q)

where C(M)± denotes the upper- and lower-boundary of the convex core.
Notice, in particular, that w(M) = 0, if and only if M is Fuchsian.

Seppi found an estimate for the width of the convex core in terms of
the principal curvatures of the maximal surface:

Theorem 4.2 (Theorem 1.B [Sep19]). There exist universal constants
C > 0 and δ ∈ (0, 1) such that if Σ is a maximal surface in a GHMC anti-de
Sitter manifold with principal curvatures λ satisfying δ ≤ ∥λ∥∞ < 1, then

tan(w(M)) ≥

(

1

1− ∥λ∥∞

)
1

C

.

We consider now a family of GHMC anti-de Sitter manifolds Mt pa-
rameterised by the ray (h, tq1) ∈ T ∗Teich(S) for a non-zero holomorphic
quadratic differential q1.
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Proposition 4.3. The width of the convex core w(Mt) converges to π/2
when t goes to +∞.

Proof. By Theorem 4.2, it is sufficient to show that the positive principal
curvature λt of the maximal surface Σt embedded inMt converges to 1. This
is exactly the content of Corollary 3.11 □
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