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1. Introduction

In this work we will discuss the existence of Kähler-Einstein metric on a
complete noncompact Kähler manifold in terms of upper bound of holo-
morphic sectional curvature. In [22], Wu and Yau proved that if a compact
complex manifold supports a Kähler metric with negative holomorphic sec-
tional curvature, then it also supports a Kähler-Einstein metric with nega-
tive scalar curvature, under an additional assumption that the manifold is
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projective. Later, Tosatti and Yang [20] were able to remove the assump-
tion of projectivity. Using Kähler-Ricci flow, Normura [10] recovered the
result by proving that under the assumption that the holomorphic sectional
curvature is bounded above by a negative constant, the metric can be de-
formed under the normalized Kähler-Ricci flow to a Kähler-Einstein metric
with negative scalar curvature. In case that the holomorphic sectional curva-
ture is quasi-negative, namely it is nonpositive and is negative somewhere,
Diverio-Trapani [4] and Wu-Yau [23] proved that the canonical bundle is
ample and hence the existence of the Kähler-Einstein metric follows by a
well-known theorem of Yau [26].

In the noncompact case, it was proved by Wu and Yau [21] that if a non-
compact complex manifold supports a complete Kähler metric with holomor-
phic sectional curvature bounded between two negative constants, then it
also supports a complete Kähler-Einstein metric with negative scalar curva-
ture. It is well-known that if the holomorphic sectional curvature is bounded
then the curvature is bounded. In [18], the fourth author used Shi’s Kähler-
Ricci flow [15] for complete noncompact Kähler manifolds with bounded
curvature to show that the Kähler metric mentioned above can also be de-
formed under the normalized Kähler-Ricci flow to a Kähler-Einstein metric
with negative scalar curvature. In this work, we further generalize the results
in [18].

First, we will give a rather general condition for a normalized Kähler-
Ricci flow to converge to a Kähler-Einstein metric. We prove the following:

Theorem 1.1. Suppose there is a complete noncompact Hermitian metric
h on a complex manifold Mn compatible with the complex structure J such
that the torsion T̂ and the holomorphic sectional curvature Hh satisfy

Hh +
n

n+ 1
|∇̂∂̄ T̂ |h ≤ −k(1.1)

for some k > 0. Then any long-time complete solution to the normalized
Kähler-Ricci flow g(t) will converge in C∞

loc to the unique Kähler-Einstein
metric g∞ = −Ric(g∞). In particular, there is no complete Ricci flat Kähler
metric on M compatible with the same complex structure J .

Here ∇̂ is the derivative with respect to the Chern connection of h. See
[19] for more details on the Chern connection, its torsion and curvature. See
also [25] for a related assumption on the Hermitian metric. For the definition
of |∇̂∂̄ T̂ |h, see (3.4).
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By the theorem, to obtain a Kähler-Einstein metric, in some cases it
is sufficient to obtain a longtime solution to the Kähler-Ricci flow. In this
respect, we will prove the following:

Theorem 1.2. Let (Mn, g0) be a complete noncompact Kähler manifold
and h be a fixed complete Hermitian metric on M such that the following
hold.

(i) There exists a smooth exhaustion function ρ ≥ 1 such that

lim sup
ρ→∞

[ |∂ρ|h
ρ

(1 + |∇̂g0|h) +
|
√
−1∂∂̄ρ|h
ρ

]
= 0;

(ii) the holomorphic sectional curvature of h and torsion T̂ of h satisfy

Hh +
n

n+ 1
|∇̂∂̄ T̂ |h ≤ −k

for some constant k ≥ 0; and

(iii) there exists α > 1 such that on M , α−1g0 ≤ h ≤ αg0, |T̂ |h ≤ α.

Then there is β(n, α) > 0 such that the Kähler-Ricci flow has a complete
solution g(t) on M × [0,+∞) with g(0) = g0 and satisfies

βh ≤ g(t)

on M × [0,+∞).

It is known that if M has bounded curvature, then it will support an
exhaustion function ρ with bounded gradient and Hessian [14, 17]. Hence
if h is uniformly equivalent to a complete Hermitian metric with bounded
Riemannian curvature and bounded torsion, then condition (i) in the theo-
rem will be satisfied. See also a recent result in [6]. Therefore condition (i)
is more general than the condition that the curvature is bounded for Kähler
metrics.

Combining Theorems 1.1 and 1.2, we conclude that if (Mn, g0) is a com-
plete Kähler manifold, then there is a long-time solution of the normalized
Kähler-Ricci flow which will converge to the Kähler-Einstein metric with
negative scalar curvature in the following cases:

(a) The holomorphic sectional curvature is bounded above by −k for some
k > 0 and g0 supports an exhaustion function with bounded gradient
and bounded complex Hessian.
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(b) There exists a complete Hermitian metric h so that g0, h satisfy the
conditions in Theorem 1.2 with k > 0.

(c) g0 satisfies a Sobolev inequality, the curvature is bounded in some Lp

sense and the holomorphic sectional curvature is bounded above by
−k for some k > 0. (See more precise statement in Corollary 5.2.)

In case g0 has bounded curvature so that the holomorphic sectional curvature
is bounded above by −k < 0 for some constant k, then the conditions in (c)
will also be satisfied. Hence (a)–(c) are some generalizations to Wu-Yau’s
result [21].

The paper is organized as follows: In section 2, we will recall a short
time existence result of the Chern-Ricci flow. In section 3, we will derive
some a-priori estimates for the Chern-Ricci flow and apply them in section
4 to construct short time solution to the Chern-Ricci flow with estimate
on existence time. In particular, we will use this to prove Theorem 1.2. In
section 5, we will prove Theorem 1.1.

Acknowledgement: The second author Lee would like to thank Professor
Fangyang Zheng for answering his question. Part of the works was done when
the second author visited the Yau Mathematical Sciences Center of Tsinghua
University in Beijing, which he would like to thank for the hospitality. The
fourth author Tong would like to thank his advisor Prof. Duong H. Phong
for his advice and encouragement for this project. Finally, the authors would
like to thank referee for useful comments.

2. A short time existence lemma

Let (Mn, g0) be a complete noncompact Hermitian manifold with complex
dimension n. In the following, connection and curvature will be referred to
the Chern connection and curvature with respect to the Chern connection.
When the torsion vanishes, the Chern connection coincides with the Levi-
Civita connection. For basic facts on the Chern connection and curvature
of Hermitian manifolds, we refer readers to [19] for example. In this section,
we want to discuss the existence of the Chern-Ricci flow:

(2.1)

{
∂
∂t
gij̄ = −Rij̄ ;

g(0) = g0.

Here Rij̄ = −∂i∂j̄ log det(g(t)) is the Chern-Ricci curvature of g(t). This
equation is equivalent to the following parabolic complex Monge-Ampère
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equation:

(2.2)





∂
∂t
ψ = log

(ω0 − tRic(ω0) +
√
−1∂∂̄ψ)n

ωn
0

;

ψ(0) = 0.

More precisely, if g(t) is a solution to (2.1), let

(2.3) ψ(x, t) =

∫ t

0
log

(
ωn(x, s)

ωn
0 (x)

)
ds,

where ω(t) and ω0 are the associated (1,1) forms of g(t), g0 respectively. Then
ψ satisfies (2.2). One can see that ω(t) = ω0 − tRic(ω0) +

√
−1∂∂̄ψ. Con-

versely, if ψ is a smooth solution to (2.2) so that ω0 − tRic(ω0) +
√
−1∂∂̄ψ >

0, then ω(t) defined by the above relation satisfies (2.1). We will say that ψ
is the solution of (2.2) corresponding to the solution g(t) of (2.1).

Let us recall the following definition of bounded geometry:

Definition 2.1. Let (Mn, g) be a complete Hermitian manifold. Let k ≥ 1
be an integer and 0 < α < 1. g is said to have bounded geometry of order
k + α if there are positive numbers r, κ1, κ2 such that at every p ∈M there
is a neighbourhood Up of p, and local biholomorphism ξp from D(r), which is
the Euclidean ball of radius r with center at the origin in Cn, onto Up with
ξp(0) = p satisfying the following properties:

(i) the pull back metric ξ∗p(g) satisfies:

κ1ge ≤ ξ∗p(g) ≤ κ2ge,

where ge is the standard metric on Cn; and

(ii) the components gij̄ of ξ
∗
p(g) in the natural coordinate of D(r) ⊂ Cn are

uniformly bounded in the standard Ck+α norm in D(r) independent
of p.

(M, g) is said to have bounded geometry of infinity order if instead of (ii) we
have for any k, the k-th derivatives of gij̄ in D(r) are bounded by a constant
independent of p. g is said to have bounded geometry of infinite order on a
compact set Ω if (i) and (ii) are true for all k for all p ∈ Ω.

In [9], it has been shown that when (M, g0) has bounded geometry of
infinite order, the Monge-Ampère equation (2.2) and hence the Chern-Ricci
flow equation (2.1) has a short time solution on M .
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Lemma 2.1 (see [1, 9]). Let (Mn, g0) be a complete noncompact Hermi-
tian metric. Suppose g0 has bounded geometry of infinite order, then (2.1)
has a solution g(t) on M × [0, S] for some S > 0 and there is a constant
C > 0 such that C−1g0 ≤ g(t) ≤ Cg0.

3. A-priori estimate for the Chern-Ricci flow

Let (Mn, g) be a Hermitian manifold. Under a local holomorphic coordinate
system (z1, ..., zn), the torsion tensor of g is defined by

Tijl̄ = ∂igjl̄ − ∂jgil̄.

Let T k
ij = gkl̄Tijl̄, then T k

ij = Γk
ij − Γk

ji where Γk
ij is the Chern connection.

T k
ij is usually called the torsion. Here we use Tijk̄ to denote the torsion. The

advantage is that it is invariant under the Chern-Ricci flow. If the torsion
tensor T = 0, then g is Kähler. The curvature tensor of the Chern connection
has components

Rij̄kl̄ = − ∂2gkl̄
∂zi∂z̄j

+ gqp̄
∂gkp̄
∂zi

∂gql̄
∂z̄j

.

It can be checked easily that for X,Y ∈ T 1,0M , R(X, X̄, Y, Ȳ ) is real-valued.
We introduce the following curvature condition.

Definition 3.1. We say that (M, g) has holomorphic sectional curvature
bounded above by κ if for any p ∈M , X ∈ T 1,0

p M ,

R(X, X̄,X, X̄) ≤ κ|X|4.

For notational convenience, we denote this condition by Hg ≤ κ.

Let g(t) be a solution of the Chern-Ricci flow with initial metric g(0) = g0
and h be another Hermitian metric on M . Now we wish to obtain some a-
priori estimates for g(t). First we list some evolution equations which are
related to the Chern-Ricci flow. In this work, the Laplacian for a Hermitian
metric g is defined by

(3.1) ∆u := gij̄uij̄ .

This is the usual Laplacian for Kähler metric.
The following lemma concerns the evolution equation for the lower bound

on evolving metric g with respect to fixed metric h while in [19, Proposition
3.1], Tosatti-Weinkove considered the upper bound of g, that is trh g.
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Lemma 3.1. Let Λ = trg h = gij̄hij̄. Then the evolution equation of Λ is
given by

(
∂

∂t
−∆

)
Λ = (I) + (II) + (III),(3.2)

where

(I) = −hkl̄gij̄gpq̄Ψk
piΨ

l
qj + 2Re

[
gij̄gkl̄gpq̄hkj̄Ψ

s̄
l̄q̄
(T0)pis̄

]
;

(II) = glk̄gjīgqp̄hjk̄(T0)p̄̄ir

[
T̂qls̄h

rs̄ − (T0)qls̄g
rs̄
]

+ gij̄gkl̄gpq̄hkj̄

[
∇̂p(T0)q̄l̄i + ∇̂l̄(T0)piq̄

]
;

(III) = gij̄gpq̄R̂pq̄ij̄ .

Here T0 and T̂ are the torsion of metric g0 and h respectively and

Ψk
ij := Γ̂k

ij − Γk
ij ,

where Γ̂,Γ are the Chern connections of h and g respectively.
In particular,

(I) ≤ hpr̄hcq̄h
kāgsr̄gcd̄gij̄gpq̄(T0)siā(T0)d̄j̄k.

Moreover, the evolution equation of log Λ is given by:

(
∂

∂t
−∆

)
log Λ = (IV) + Λ−1

[
(II) + (III)

]
(3.3)

with

(IV) ≤ Λ−1hpr̄hcq̄h
kāgsr̄gcd̄gij̄gpq̄(T0)siā(T0)d̄j̄k

+ 2Λ−2Re
[
hpr̄g

ar̄gil̄gpq̄(T0)ial̄∂q̄Λ
]
.

Proof.

∂t trg h = giq̄gpj̄hij̄Rpq̄.
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∆ trg h = gij̄gpq̄∇q̄∇phij̄

= gij̄gpq̄∇q̄

(
Ψk

pihkj̄

)

= gij̄gpq̄
[(
Rk

pq̄i − R̂k
pq̄i

)
hkj̄ +Ψk

piΨ
l̄
q̄j̄hkl̄

]
.

Using the fact that the torsion T of g(t) satisfies Tijk̄ = (T0)ijk̄, we have

Rpq̄il̄ = Ril̄pq̄ −∇pTq̄l̄i −∇l̄Tpiq̄

= Ril̄pq̄ −∇p(T0)q̄l̄i −∇l̄(T0)piq̄.

Hence,

gij̄gpq̄hkj̄R
k
pq̄i = gij̄gkl̄gpq̄hkj̄Rpq̄il̄

= gij̄gkl̄gpq̄hkj̄
[
Ril̄pq̄ −∇p(T0)q̄l̄i −∇l̄(T0)piq̄

]

= gij̄gkl̄hkj̄Ril̄ − gij̄gkl̄gpq̄hkj̄
[
∇p(T0)q̄l̄i +∇l̄(T0)piq̄

]
.

Therefore,
(
∂

∂t
−∆

)
Λ = −hkl̄gij̄gpq̄Ψk

piΨ
l
qj + gij̄gpq̄R̂pq̄ij̄

+ gij̄gkl̄gpq̄hkj̄
[
∇p(T0)q̄l̄i +∇l̄(T0)piq̄

]

= −hkl̄gij̄gpq̄Ψk
piΨ

l
qj + gij̄gkl̄gpq̄hkj̄

[
Ψr

pi(T0)q̄l̄r +Ψs̄
l̄q̄
(T0)pis̄

]

+ gij̄gkl̄gpq̄hkj̄

[
∇̂p(T0)q̄l̄i + ∇̂l̄(T0)piq̄

]
+ gij̄gpq̄R̂pq̄ij̄

= −hkl̄gij̄gpq̄Ψk
piΨ

l
qj + 2Re

[
gij̄gkl̄gpq̄hkj̄Ψ

s̄
l̄q̄
(T0)pis̄

]

+ glk̄gjīgqp̄hjk̄(T0)p̄̄ir

[
T̂qls̄h

rs̄ − (T0)qls̄g
rs̄
]

+ gij̄gkl̄gpq̄hkj̄

[
∇̂p(T0)q̄l̄i + ∇̂l̄(T0)piq̄

]
+ gij̄gpq̄R̂pq̄ij̄ .

From this, the first part of the lemma follows. Thus,
(
∂

∂t
−∆

)
log Λ = Λ−1

(
∂

∂t
−∆

)
Λ + Λ−2gij̄∂iΛ ∂j̄Λ

=
1

Λ

[
(I) +

1

trg h
|∂Λ|2

]
+

1

Λ

[
(II) + (III)

]

= (IV) +
1

Λ

[
(II) + (III)

]
.
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In case that g0 is Kähler, it was shown by Yau [26] that the first bracket
term is nonpositive. In the Hermitian case, we estimate the first bracket fol-
lowing the idea [19]. For any tensor C, we consider the following nonnegative
quantity:

K := hkl̄g
ij̄gpq̄

(
Ψk

pi −
δki

trg h
∂pΛ + Ck

pi

)(
Ψl̄

q̄j̄ −
δ l̄
j̄

trg h
∂q̄Λ + C l̄

q̄j̄

)

= hkl̄g
ij̄gpq̄Ψk

piΨ
l̄
q̄j̄ −

1

trg h
|∂ trg h|2 + hkl̄g

ij̄gpq̄Ck
pi

(
Ψl̄

q̄j̄ −
δ l̄
j̄

trg h
∂q̄Λ

)

+ hkl̄g
ij̄gpq̄C l̄

q̄j̄

(
Ψk

pi −
δki
trgh

∂pΛ

)
+ hkl̄g

ij̄gpq̄Ck
piC

l̄
q̄j̄ .

Hence,

(I) +
1

Λ
|∂Λ|2 = −K + 2Re

[
gij̄gkl̄gpq̄hkj̄Ψ

s̄
l̄q̄
(T0)pis̄

]

+ 2Re
[
hkl̄g

ij̄gpq̄Ck
piΨ

l̄
q̄j̄

]

+ hkl̄g
ij̄gpq̄Ck

piC
l̄
q̄j̄ − 2Λ−1Re

[
hkl̄g

il̄gpq̄Ck
pi∂q̄Λ

]

= −K + hkl̄g
ij̄gpq̄Ck

piC
l̄
q̄j̄ − 2Λ−1Re

[
hkl̄g

il̄gpq̄Ck
pi∂q̄Λ

]

+ 2Re
[
Ψl̄

q̄j̄g
pq̄gij̄

(
Ck
pihkl̄ + gkr̄hpr̄(T0)ikl̄

)]
.

Therefore, if we choose the tensor C to be

Cq
pi = −gkr̄hql̄hpr̄(T0)ikl̄,

then the last term vanished. Hence,

(IV) ≤ Λ−1hpr̄hcq̄h
kāgsr̄gcd̄gij̄gpq̄(T0)siā(T0)d̄j̄k

+ 2Λ−2Re
[
hpr̄g

ar̄gil̄gpq̄(T0)ial̄∂q̄Λ
]
.

The estimate (I) follows the same line by considering a simpler quantity

K = hkl̄g
ij̄gpq̄(Ψk

pi − Ck
pi)(Ψ

l̄
q̄j̄ − C l̄

q̄j̄).

□

In [22], Wu-Yau made use of the Royden’s Lemma [12] which relates the
holomorphic sectional curvature with a bisectional curvature quantity. We
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follow their idea and generalize the Royden’s Lemma for Hermitian metrics.
In the following, |∇̂∂̄ T̂ |h(x) at a point x is defined as:

(3.4) |∇̂∂̄ T̂ |h = max |∇̂īT̂jlk̄|,

where the maximum is taken over all unitary frames ei of h at x. Define
|∇̂∂̄T0|h similarly.

Lemma 3.2. Let (M,h) be a Hermitian manifold and g be another Her-
mitian metric on M . Suppose that the holomorphic sectional curvature of h
at x is bounded above by κ(x). Suppose κ(x) ≤ κ0. Then we have

gij̄gkl̄R̂ij̄kl̄ ≤
(
n+ 1

2n
κ+

1

2
|∇̂∂̄ T̂ |h

)
(trg h)

2

+
1

2
κ0

[
− 1

n
(trg h)

2 + gij̄gkl̄hkjhil̄

]
.

Proof. Following the proof in [12] without appealing the symmetry of R̂, we
can deduce that at x,

gij̄gkl̄R̂ij̄kl̄ + gij̄gkl̄R̂il̄kj̄ ≤ κ(trg h)
2 + κgij̄gkl̄hkj̄hil̄.

By the “Kähler” identity for the Chern curvature, e.g. see [19], we have

gij̄gkl̄R̂ij̄kl̄ = gij̄gkl̄(R̂il̄kj̄ − ∇̂iT̂j̄ l̄k)

=
1

2
gij̄gkl̄(R̂il̄kj̄ + R̂ij̄kl̄ − ∇̂iT̂j̄ l̄k)

≤ κ

2
(trgh)

2 + gij̄gkl̄
(
κ

2
hkj̄hil̄ −

1

2
∇̂iT̂j̄ l̄k

)

≤ 1

2
(κ(x)− κ0)

[
(trg h)

2 + gij̄gkl̄hkjhil̄

]
+

1

2
(trg h)

2|∇̂∂̄ T̂ |h

+
1

2
κ0

[
(trg h)

2 + gij̄gkl̄hkjhil̄

]

≤ 1

2
(κ(x)− κ0)(1 +

1

n
)(trg h)

2 +
1

2
(trg h)

2|∇̂∂̄ T̂ |h

+
1

2
κ0

[
(trg h)

2 + gij̄gkl̄hkjhil̄

]

=

(
n+ 1

2n
κ+

1

2
|∇̂∂̄ T̂ |h

)
(trg h)

2

+
1

2
κ0

[
− 1

n
(trg h)

2 + gij̄gkl̄hkjhil̄

]
.

□
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Combining this with Lemma 3.1, we have:

Corollary 3.1. With the same assumptions and notation as in Lemma 3.1,
suppose the holomorphic sectional curvature of h is bounded above by κ(x) at
x and suppose n+1

2n κ(x) +
1
2 |∇̂∂̄ T̂ |(x) ≤ κ0 for some κ0 ≥ 0 for all x. Then

(
∂

∂t
−∆

)
Λ ≤ c(n)

(
Λ4|T0|2h + Λ3(|T0|h|T̂ |h + |∇̂∂̄T0|h) + Λ2κ0

)

for some constant c(n) > 0 depending only on n.

To get a C0 estimate, it is useful to consider the Chern scalar curvature
of g(t) which gives us information on the derivatives of the volume form.

Lemma 3.3. Under Chern-Ricci flow

∂

∂t
g = −Ric,

the Chern scalar curvature R = gij̄Rij̄ satisfies

(
∂

∂t
−∆

)
R = |Ric|2 ≥ 1

n
R2.

Proof.

∂tR = ∂t(g
ij̄Rij̄)

= Rij̄Rij̄ − gij̄∂i∂j̄(∂t log det g)

= |Ric|2 +∆R.

The inequality can be observed by taking a coordinate chart at p such that
gij̄ = δij and Rij̄ = λiδij . Then it follows immediately by Cauchy inequality.

□

For later applications, we need the following maximum principle.

Lemma 3.4. Let (Mn, h) be a complete noncompact Hermitian manifold
satisfying condition: There exists a smooth positive real exhaustion function
ρ such that |∂ρ|2h + |

√
−1∂∂̄ρ|h ≤ C1. Suppose g0 is another Hermitian met-

ric uniformly equivalent to h and g(t) is a solution to the Chern-Ricci flow
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with initial metric g(0) = g0 on M × [0, S). Assume for any 0 < S1 < S,
there is C2 > 0 such that

C−1
2 h ≤ g(t)

for 0 ≤ t ≤ S1. Let f be a smooth function on M × [0, S) which is bounded
from above such that (

∂

∂t
−∆

)
f ≤ 0

on {f > 0}. Suppose f ≤ 0 at t = 0, then f ≤ 0 on M × [0, S).

Proof. For any ϵ > 0, if supM×[0,T ](f − ϵρ− 2ϵC1C2t) > 0, then there is
(x0, t0) with t0 > 0 such that f − ϵρ− 2ϵC1C2t ≤ 0 on M × [0, t0] and f −
ϵρ− 2ϵC1C2t = 0 at (x0, t0). In particular, f(x0, t0) > 0. Hence at (x0, t0),
we have

0 ≤
(
∂

∂t
−∆

)
(f − ϵρ− 2ϵC1C2t) < 0,

which is impossible. Since ϵ is arbitrary, this completes the proof. □

Next we give a local estimate on the lower bound of the Chern scalar
curvature. Note that here we do not need global bounds on the Hessian and
gradient of the exhaustion function ρ. The estimate only depends on those
bounds on a compact set.

Lemma 3.5. Suppose h is a fixed Hermitian metric with a smooth positive
real exhaustion function ρ and g(t) is a solution to the Chern-Ricci flow
on M × [0, S] with g(t) ≥ α−1h for some α > 1. Then for any 0 < r1 < r2,
there exists C > 0 depending only on n, α and supUr2

(|∂ρ|+ |
√
−1∂∂̄ρ|) such

that for any x ∈ Ur1 and t ∈ [0, S], we have

R(x, t) ≥ −max

{
C[(r2 − r1)

−2 + 1], sup
ρ(y)<r2

R−(y, 0)

}
.

Here R− is the negative part of R and Ur = {x ∈M : ρ(x) < r}.

Proof. Let ϕ be a cutoff function on R such that ϕ ≡ 1 on (−∞, 1], vanishes
outside (−∞, 2] and satisfies ϕ−1|ϕ′|2 ≤ 100 and ϕ′′ ≥ −100ϕ. Define

Φ(x) = ϕ

(
ρ(x) + r2 − 2r1

r2 − r1

)
.
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When the function ΦR achieves its local minimum at (x0, t0) in which we
may assume R(x0, t0) < 0 and t0 > 0, it satisfies the following.

0 ≥
(
∂

∂t
−∆

)
(ΦR)

= Φ

(
∂

∂t
−∆

)
R−R∆Φ− 2Re

(
gij̄∂iΦ ∂j̄R

)

≥ 1

n
ΦR2 −R

[
ϕ′′

(r2 − r1)2
|∂ρ|2 + ϕ′

r2 − r1
∆ρ− 2

(ϕ′)2

(r2 − r1)2ϕ
|∂ρ|2

]

≥ 1

n
ΦR2 + CR[(r2 − r1)

−2 + 1].

Hence, at its minimum point (x0, t0),

ΦR ≥ −C[(r2 − r1)
−2 + 1].

The conclusion follows by the minimum principle. □

4. Existence of the Chern-Ricci flow

In this section, we will discuss the existence of the Chern-Ricci flow starting
from a Hermitian metric with holomorphic sectional curvature bounded from
above. We will give an estimate on the existence time. More generally, we
will consider initial metric which is uniformly equivalent to a Hermitian
metric with holomorphic sectional curvature bounded from above.

Lemma 4.1. Let (Mn, g0) be a Hermitian metric with bounded geometry
of infinite order. Suppose g0 is uniformly equivalent to a Hermitian metric h
with holomorphic sectional curvature Hh and torsion T̂ satisfying: Hh(x)
bounded above by κ(x) and n+1

n
κ(x) + |∇̂∂̄ T̂ |h(x) ≤ κ0 for some κ0 ≥ 0 for

all x, where ∇̂ is the derivative of h with respect to the Chern connection.
Assume

α−1h ≤ g0 ≤ αh,

for some α > 1. Then the Chern-Ricci flow has a solution g(t) with g(0) = g0
on M × [0, S] with the following properties:

(i) There is a constant c = c(n) > 0 so that

S ≥ 1

3c(nα+ 1)3s
=: S1,
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where

s = sup
M

(
|T0|2h + |T0|h|T̂ |h + |∇̂∂̄T0|h + κ0

)

and T0 is the torsion of g0; and

(ii) g(t) is uniformly equivalent to h with

trg h ≤
(

1

(nα+ 1)−3 − 3cst

) 1

3

on M × [0, S1].

Proof. (i) If s = ∞, then there is nothing to be proved. Suppose s <∞, then
by Lemma 2.1, there is a maximal S > 0 such that the Chern-Ricci flow
has a solution g(t) with g(0) = g0 on M × [0, S) so that g(t) is uniformly
equivalent to g0 on [0, S′] for all S′ < S. Let Λ = trg(t) h. By Corollary 3.1,

(
∂

∂t
−∆

)
Λ ≤c1

(
Λ4|T0|2h + Λ3(|T0|h|T̂ |h + |∇̂∂̄T0|h) + Λ2κ0

)

≤c1 (Λ + 1)4 s

on M × [0, S]. Here and below ci will denote positive constants depending
only on n. Let

v(t) =

(
1

(nα+ 1)−3 − 3c2st

) 1

3

.

Then v(t) is defined on [0, S1) with S1 = 1/
[
3c2(nα+ 1)3s

]
, with

dv

dt
= c2sv

4

and v(0) ≥ (Λ + 1)|t=0. Suppose S < S1. Since Λ and v are bounded on
[0, S′] for all 0 < S′ < S, by Lemma 3.4 as in the proof of [9, Theorem 4.2],
one can conclude that

Λ ≤ v(t)− 1

on M × [0, S). In particular,

(4.1) h ≤ c3(v(t)− 1)g(t).

If S < S1, then v(t) ≤ C1 <∞ on [0, S] for some C1. Hence Λ ≤ C1 on
M × [0, S).
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On the other hand, since g0 has bounded geometry of infinite order,
by Lemma 3.5, we conclude that R(x, t) ≥ −C2 on M × [0, S) for some C2.
Since

∂

∂t

(
log

det(g(t))

det(h)

)
= −R ≤ C2,

we conclude that det(g(t)) ≤ C3 det(h). Together with (4.1), we conclude
that

C−1
3 g0 ≤ g(t) ≤ C3g0

on M × [0, S) for some C3 > 0. Here we have used the fact that g0 is uni-
formly equivalent to h. Using the fact that g0 has bounded geometry of
infinite order and by the local estimates of [13], g(t) can be extended to be a
solution of the Chern-Ricci flow which is uniformly equivalent to g0 beyond
S. Hence we have S ≥ S1. This proves (i).

(ii) Follows from (4.1). □

Let (Mn, h) be a complete noncompact Hermitian manifold satisfying
the following:

(a) There exists smooth exhaustion ρ ≥ 1, and constant β > 0 such that

|∂ρ|h + |
√
−1∂∂̄ρ|h ≤ βρ

if ρ is large enough.

(b) The holomorphic sectional curvature at x is bounded from above by
κ(x), and the torsion T̂ of h is such that

n+ 1

n
κ+ |∇̂∂̄ T̂ |h ≤ κ0

for some κ0 ≥ 0.

Theorem 4.1. Let (Mn, h) be a complete Hermitian metric as above. Let
g0 be another Hermitian metric with torsion T0. Suppose the following are
true:

(i) α−1g0 ≤ h ≤ αg0 and |T̂ |h ≤ α for some α > 1;

(ii) |T0|2h + |T̂ |h|T0|h + |∇̂∂̄(T0)|h ≤ β; and

(iii) |∂ρ|h|∇̂g0|h ≤ βρ for ρ large enough.
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Then there exist constants c1(n) depending only on n and c2(n, α) de-
pending only on n, α such that there is a solution g(t) for the Chern-Ricci
flow on M × [0, S) with g(0) = g0, where

S =
1

3c1(nα+ 1)3s
,

and s = κ0 + c2β(1 + β). Moreover,

trg h ≤ v(t)− 1

on M × [0, S), where

v(t) =

(
1

(nα+ 1)−3 − 3c1st

) 1

3

.

We want to apply Lemma 4.1 to prove the theorem. However, in general
it is not true that g0 has bounded geometry of all order, we cannot apply
Lemma 4.1 directly to obtain a solution of the Chern-Ricci flow. We now
proceed as in [8, 9] to construct a Hermitian approximation.

Let τ ∈ (0, 18), f : [0, 1) → [0,∞) be the function:

(4.2) f(s) =





0, s ∈ [0, 1− τ ];

−log

[
1−

(
s− 1 + τ

τ

)2
]
, s ∈ (1− τ, 1).

Let φ ≥ 0 be a smooth function defined on [0, 1) such that

(4.3) φ(s) =

{
0, s ∈ [0, 1− τ + τ2];
1, s ∈ (1− τ + 2τ2, 1).

and
2

τ2
≥ φ′ ≥ 0. Define

F(s) :=

∫ s

0
φ(τ)f ′(τ)dτ.

From [8], we have:

Lemma 4.2. Suppose 0 < τ < 1
8 . Then the function F ≥ 0 defined above is

smooth and satisfies the following:

(i) F(s) = 0 for 0 ≤ s ≤ 1− τ + τ2.
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(ii) F′ ≥ 0 and for any k ≥ 1, exp(−kF)F(k) is uniformly bounded.

(iii) For any 1− 2τ < s < 1, there is τ̃ > 0 with 0 < s− τ̃ < s+ τ̃ < 1
such that

1 ≤ exp(F(s+ τ̃)− F(s− τ̃)) ≤ (1 + c2τ); τ̃ exp(F(s0 − τ̃)) ≥ c3τ
2

for some absolute constants c2 > 0, c3 > 0.

Fix 0 < τ < 1
8 . For any ρ0 > 0, let Uρ0

be the component of

{x| ρ(x) < ρ0}

which contains a fixed point and ρ is the positive exhaustion function men-
tioned above. Hence Uρ0

will exhaust M as ρ0 → ∞.
Let ρi > 1 be a sequence increasing to +∞, let F (i)(x) = F(ρ(x)/ρi). Let

g0,i = e2F
(i)

g0. In the following, F (i) will be denoted simply by F if there is
no confusion.

Then (Uρi
, g0,i) is a complete Hermitian metric, (e.g. see [5]) and gi,0 = g0

on {ρ(x) < (1− τ + τ2)ρ0}. Moreover, the new manifold has a very nice
structure.

Lemma 4.3 ([9]). For each ρi > 1 sufficiently large, (Uρi
, g0,i) has bounded

geometry of infinite order.

In the following, we will estimate the torsion and the holomorphic sec-
tional curvature after performing conformal change.

Lemma 4.4. Let g0 and h be as in Theorem 4.1. For i→ ∞, let g0,i be as
in Lemma 4.3 and hi = e2Fh for the corresponding F = F (i). Let T0,i be the
torsion of g0,i. Then there is a constant c(n, α) depending only on n and α
so that as i→ ∞, there

(i) |T0,i|2hi
≤ cβ(1 + β);

(ii) |T0,i|hi
|T̂ (i)|hi

≤ cβ(1 + β);

(iii) |∇̂(i)

∂̄
T0,i|hi

≤ cβ(1 + β), where ∇̂(i) is derivative with respect to the
Chern connection of hi;
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(iv)

n+ 1

n
κi(x) + |∇̂(i)

∂̄
Ti|hi

(x) ≤ κ0 + cβ(1 + β),

where κi(x) is the upper bound of holomorphic sectional curvature of
hi at x and Ti is the torsion of hi.

Proof. In the following, ci will denote a positive constant depending only on
n, α.

(i)

(T0,i)pkq̄ = ∂p(e
2F (g0)kq̄)− ∂k(e

2F (g0)pq̄)

= 2e2F (Fp(g0)kq̄ − Fk(g0)pq̄) + e2F (T0)pkq̄

= 2e2Fρ−1
0 F′ (ρp(g0)kq̄ − ρk(g0)pq̄) + e2F (T0)pkq̄.

(4.4)

Hence

|T0,i|2hi
≤ c1β(1 + β).

This proves (i). The proof of (ii) is similar using the assumption |T̂ |h ≤ α.
(iii)

∇̂(i)

l̄
(T0,i)pkq̄ = ∇̂(i)

l̄
[2e2Fρ−1

0 F′ (ρp(g0)kq̄ − ρk(g0)pq̄) + e2F (T0)pkq̄]

= 2e2Fρ−1
0 F′(ρpl̄(g0)kq̄ − ρkl̄(g0)pq̄)

+ (2e2Fρ−2
0 F′′ + 4e2Fρ−2

0 (F′)2)(ρpρl̄gkq̄ − ρkρl̄gpq̄)

+ 2e2FF′ρ−1
0

(
ρp∇̂(i)

l̄
(g0)kq̄ − ρk∇̂(i)

l̄
(g0)pq̄

)

+ 2e2Fρ−1
0 F′ρl̄(T0)pkq̄ + e2F ∇̂(i)

l̄
(T0)pkq̄.

(4.5)

Using the fact that

(Γ̂(i) − Γ̂)lpq = 2Fpδ
l
q = 2ρ−1

0 F′ρpδ
l
q

and hence

∇̂(i)

l̄
(g0)kq̄ = (∇̂(i)

l̄
− ∇̂l̄)(g0)kq̄ + ∇̂l̄(g0)kq̄

= −2ρ−1
0 F′ρl̄(g0)kq̄ + ∇̂l̄(g0)kq̄.

(4.6)

We may further infer that (iii) is true using the assumption |∂ρ|h|∇̂g0|h ≤
βρ and equivalence of g0 and h.
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Now we examine the holomorphic sectional curvature after conformal
change. Let e1 ∈ T 1,0UR be such that |e1|hi

= 1, |e1|h = e−F . Let κ(x) be
the upper bound of the holomorphic sectional curvature of h at x,

R̂11̄11̄ = −∂1∂1̄(e2Fh11̄) + e−2Fhpl̄∂1(e
2Fh1l̄) · ∂1̄(e2Fhp1̄)

= −∂1(e2F∂1̄h11̄ + 2e2Fh11̄F1̄)

+ e−2Fhpl̄
(
e2F∂1h1l̄ + 2ĥ1l̄F1

)(
e2F∂1̄hp1̄ + 2ĥp1̄F1̄

)

= e2F R̃11̄11̄ − 2ĥ11̄F11̄

≤ e−2Fκ− 2F11̄

≤ e−2Fκ+ c2(β + β2).

(4.7)

Estimate |∇̂(i)

∂̄
Ti|hi

in a similar way as above, we may conclude that

n+ 1

n
κi(x) + |∇̂(i)

∂̄
Ti|hi

≤ e−2Fκ0 + c3β(1 + β).

From this (iv) is true. □

Now we are able to construct a solution of the Chern-Ricci flow on M .

Proof of Theorem 4.1. For each sufficiently large ρi, (Uρi
, g0,i) has bounded

geometry by Lemma 4.3. By Lemma 4.4, using the notation in the lemma,
we have:

n+ 1

n
κi(x) + |∇̂(i)

∂̄
Ti|hi

≤ κ0 + c(β + β2) =: κ0,i.

Let

si := sup
M

(
|T0,i|2hi

+ |T0,i|hi
|T̂i|hi

+ |∇̂(i)

∂̄
T0,i|hi

+ κ0,i

)
.

Then by Lemma 4.4,

si ≤ κ0 + cβ(1 + β) =: s.

By Lemma 4.1, there is a solution gi(t) on Uρi
× [0, S) with initial metric

g0,i where

S =
1

3c1(nα+ 1)3s

for some constant c1 = c1(n). Moreover, gi is uniformly equivalent to g0,i
and

(4.8) trgi hi ≤ v(t)− 1
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on Uρi
× [0, S) where

v(t) =

(
1

(nα+ 1)−3 − 3c1st

) 1

3

.

Fix any compact subset K ⊂M and any S′ ∈ (0, S). Then for suf-
ficiently large i, gi(t) is a solution of the Chern-Ricci flow defined on
Uρi

⊃ U2r ⊃ Ur ⊃ K for some large r > 0. By Lemma 3.5, for any (x, t) ∈
K × [0, S′],

Rgi(t) ≥ −max

{
C(n, α, β, S′, r), sup

ρ(y)<2r
R−(y, 0)

}
,

where we have used the fact that hi = h on U2r for sufficiently large ρi. In
particular, it is bounded from below uniformly. Since

∂

∂t

(
log

det gi(t)

deth

)
= −Rgi(t) ≤ C(n,K, α, β, g0, S

′, h),

so on K × [0, S′],

C(n, α, β, S′)h ≤ g(t) ≤ C(n,K, α, β, g0, S
′, h)h.

By the local estimate of the Chern-Ricci flow [13], for any k ∈ N, there is
C(n, k, g0, h, β, α,K, S

′) such that for any (x, t) ∈ K × [0, S′],

|∇̂kgi(t)|h ≤ C(n, k, g0, h, β, α,K, S
′).

By taking diagonal subsequence and using Arzelà-Ascoli theorem, we may
obtain a limiting solution of g(t) defined on M × [0, S). The conclusion on
trg h follows from (4.8). This completes the proof of the theorem. □

Next we apply Theorem 4.1 to prove Theorem 1.2. Let us restate the
theorem:

Theorem 4.2. Let (Mn, g0) be a complete noncompact Kähler manifold
and h be a fixed complete Hermitian metric on M such that the following
hold.

(i) There exists a smooth exhaustion function ρ ≥ 1 such that

lim sup
ρ→∞

[ |∂ρ|h
ρ

(1 + |∇̂g0|h) +
|
√
−1∂∂̄ρ|h
ρ

]
= 0;
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(ii) the holomorphic sectional curvature of h and torsion T̂ of h satisfy

Hh +
n

n+ 1
|∇̂∂̄ T̂ |h ≤ −k

for some constant k ≥ 0; and

(iii) there exists α > 1 such that on M , α−1g0 ≤ h ≤ αg0, |T̂ |h ≤ α.

Then there is β̃(n, α) > 0 such that the Kähler-Ricci flow has a complete
solution g(t) on M × [0,+∞) with g(0) = g0 and satisfies

β̃h ≤ g(t)

on M × [0,+∞).

Proof. By Theorem 4.1 and the assumptions, one can apply this theorem
to g0 with β arbitrarily small because the torsion T0 of g0 vanishes. Hence
one can find solution gi(t) to the Chern-Ricci flow with gi(0) = g0 on M ×
[0, Ti] with Ti → ∞. Moreover, trg h ≤ c(n, α). Using the local estimate of
scalar curvature in Lemma 3.5 as in the proof of Theorem 4.1, the results
follow. □

5. Existence of the Kähler-Einstein metric

In this section, we discuss the existence of the Kähler-Einstein metric on M
via the Kähler-Ricci flow. Let us recall Theorem 1.1:

Theorem 5.1. Suppose there is a complete noncompact Hermitian metric
h on a complex manifold Mn compatible with the complex structure J such
that the torsion T̂ and the holomorphic sectional curvature Hh satisfy

Hh +
n

n+ 1
|∇̂∂̄ T̂ |h ≤ −k(5.1)

for some k > 0. Then any long-time complete solution of the normalized
Kähler-Ricci flow g(t) will converge in C∞

loc to the unique Kähler-Einstein
metric g∞ = −Ric(g∞). In particular, there is no complete Ricci flat Kähler
metric on M compatible with the same complex structure J .

Combining this theorem with Theorem 4.2, we have the following corol-
laries which generalize the result by Wu-Yau [21]:
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Corollary 5.1. Let (Mn, g0) be a complete noncompact Kähler manifold
with holomorphic sectional curvature bounded above by a negative constant.
SupposeM supports an exhaustion function with uniformly bounded gradient
and uniformly bounded complex Hessian, which is the case if M has bounded
curvature. Then Mn supports a unique Kähler Einstein metric with negative
scalar curvature.

Corollary 5.2. Let (Mn, g0) be a complete noncompact Kähler manifold
with holomorphic sectional curvature bounded from above by a negative con-
stant. Suppose there exist K1, r, A0, r > 0, p > n such that for all x ∈M ,
f ∈ C∞

0 (Bg0(x, 4r)),

(5.2)





Hg0 ≤ κ0 < 0;∫
−

Bg0
(x,r)

|Rm(g0)|p dµg0 ≤ K1;

(
∫
−

Bg0 (x,4r)
|f |

2n

n−1 dµg0)
n−1

n ≤ A0r
2

∫
−

Bg0 (x,4r)
|∇f |2 dµg0 .

Then M supports a unique Kähler-Einstein metric with negative scalar cur-
vature.

Proof. By [24], there is a complete short time solution g(t) to the Ricci flow
with g(0) = g0 such that |Rm(g(t))| ≤ Ct−a for some 0 < a < 1

2 and hence

|∇Rm(g(t))| ≤ Ct−a− 1

2 by [15]. On the other hand for fixed g(t), there is
an exhaustion function ρ with uniformly bounded gradient and uniformly
bounded Hessian. Since g(t) is uniformly equivalent to g0 and ∇g(t)g0 is
bounded, ρ is also an exhaustion function ρ with uniformly bounded gradient
and uniformly bounded Hessian with respect to g0. By Corollary 5.1, the
result follows. □

We also want to discuss metrics which are uniformly equivalent to g0
as in the previous corollaries. The following is an immediate consequence of
Theorem 4.2 and Theorem 5.1.

Corollary 5.3. Let (Mn, g0) be a complete Kähler manifold and h is a fixed
complete Hermitian metric on M such that g0, h satisfy the assumptions in
Theorem 4.2 with k > 0. Then M supports a unique Kähler-Einstein metric
with negative scalar curvature.

Let us prove Theorem 5.1. Here we do not assume existence of a good
exhaustion function for h. However, the distance function d(x, t) in a Ricci
flow behaves well. First using the idea by Chen [2], we have the following:
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Lemma 5.1. Let (Mm, g(t)) be a complete noncompact solution to the Ricci
flow on M × [0, T ] with 0 < T <∞, where m ≥ 2 is the real dimension of
M . Let Q be a smooth function so that

(
∂

∂t
−∆

)
Q ≤ −αQ2 + β

for some α, β > 0 at the point where Q > 0. Then

tQ(x, t) ≤ 1 +
√

1 + 4αβT 2

2α
.

on M × (0, T ].

Proof. Let x0 ∈M , and let r0 > 0 be small enough so that:

Ric(x, t) ≤ (m− 1)r−2
0

for x ∈ Bt(x0, r0), t ∈ [0, T ]. By [11] (see also [2]), we then have

(
∂

∂t
−∆

)
dt(x, x0) ≥ −5(m− 1)

3
r−1
0(5.3)

whenever dt(x, x0) ≥ r0 in the sense of barrier, where dt(x, x0) is the distance
function from x0 with respect to g(t). In the following, argue as in [7], we
may assume that dt(x, x0) to be smooth when applying maximum principle.
We consider the function

u(x, t) = tφ

(
1

Ar0

[
dt(x, x0) +

5(m− 1)t

3r0

])
Q(x, t),

where A is sufficiently large so that Ar0 >>
5(m−1)T

3r0
, and φ is a fixed smooth

nonnegative non-increasing function such that φ ≡ 1 on (−∞, 12 ], vanishes

outside [0, 1] and satisfies |2 (ϕ′)2

ϕ
|+ |φ′′| ≤ c1 for some absolute constant.

Note that u also depends on A. However,

u(x0, t) = tQ(x0, t),

if Ar0 ≥ 10(m−1)T
3r0

.
If u ≤ 0, then we are done. Suppose the function u > 0 somewhere, then

there exists (x1, t1) with 0 < t1 ≤ T so that u attains its maximum at (x1, t1).
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At (x1, t1) we have

0 ≤
(
∂

∂t
−∆

)
u; ∇Q = −∇ϕ

ϕ
Q.

Suppose dt1(x1, x0) < r0, then u(x, t) = tQ(x, t) near (x1, t1) provided Ar0
is large enough. Then at (x1, t1), we have

0 ≤
(
∂

∂t
−∆

)
u

=t1

(
∂

∂t
−∆

)
Q+Q

≤− αt1Q
2 + βt1 +Q

and so

0 ≤ −αu2 + u+ βT 2

which implies

(5.4) u(x0, t) ≤ u(x1, t1) ≤
1 +

√
1 + 4αβT 2

2α
.

for t ∈ [0, T ].
Suppose dt1(x1, x0) ≥ r0, then at (x1, t1),

0 ≤
(
∂

∂t
−∆

)
u

= Qt

(
∂

∂t
−∆

)
φ+ φ

(
∂

∂t
−∆

)
(Qt)− 2t⟨∇φ,∇Q⟩

≤ Qtφ′ 1

Ar0

[(
∂

∂t
−∆

)
dt(x, p) +

5

3
(m− 1)r−1

0

]

+ |φ′′| 1

(Ar0)2
tQ+ φ

(
−αtQ2 + βt+Q

)
+ 2tQ

1

(Ar0)2
· (ϕ

′)2

ϕ

≤ −αtφQ2 + φQ+ βtφ+ c1Qt
1

(Ar0)2
.

Multiply both the inequality by tφ = t1φ, we have

0 ≤ −αu2 +
(
1 +

c1T

A2r20

)
u+ βT 2.
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Hence we have

(5.5) u(x0, t) ≤ u(x1, t1) ≤
1 + c1T

A2r20
+

√(
1 + c1T

A2r20

)2
+ 4αβT 2

2α

for 0 < t ≤ T . Let A→ ∞ together with (5.5) and the fact that x0 is any
point in M , we conclude the lemma is true. □

As an application of the lemma, we can recover the following well-
known result on uniqueness of complete Kähler-Einstein metric. Here we do
not assume the curvature is bounded, see also [21]. Note that the result can
also be obtained by using elliptic theory.

Proposition 5.1. Suppose ω1 and ω2 are complete noncompact Kähler Ein-
stein metrics on M with Ric(ωi) = −ωi for i = 1, 2. Then ω1 = ω2 on M .

Proof. Let Let ω̃1(t) = (t+ 1)ω1 and ω̃2(t) = (t+ 1)ω2. Then both ω̃1, ω̃2 are
solutions to the Kähler-Ricci flow onM × [0,+∞). Define F (x, t) = F (x) to
be the function

F (x, t) = log

[
ω̃n
2

ω̃n
1

] 1

n

= log

[
ωn
2

ωn
1

] 1

n

which is independent of t. The function F is independent of t > 0 but we
treat it as a function over the Kähler-Ricci flow. Let ∆ be the Laplacian of
ω̃1. Then it satisfies

(
∂

∂t
−∆

)
F =

1

t+ 1

(
1− 1

n
trω1

ω2

)

≤ 1

t+ 1

(
1− eF

)

≤ −1

4
F 2

whenever F > 0 on M × [0, 1].
Apply Lemma 5.1 on M × [0, 1], tF ≤ 4. In particular, F (x) is bounded

from above uniformly on M . By interchanging ω1 and ω2, we conclude that
F is a bounded function on M . Let ∆1 be the Laplacian of ω1, we have as
above

−∆1F ≤ 1− eF .

By the generalized maximum principle [3], we conclude that F ≤ 0. Inter-
changing the roles of ω1 and ω2, we can prove similarly that F ≥ 0. Hence
F = 0. So ∂∂̄F = 0 and ω1 = ω2 because they are Kähler-Einstein. □
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Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let g(t) and h be as in the Theorem. Let Λ = trg h.
By Corollary 3.1, we have

(
∂

∂t
−∆

)
Λ ≤ −c1kΛ2,

for some c1 depending only on n. By Lemma 5.1 with β = 0, we conclude
that

(5.6) Λ(x, t) ≤ 1

c1kt

on M × (0,∞).
On the other hand, let R(x, t) be the scalar curvature of g(t) at x and

let R−(x, t) be its negative part. For any ϵ > 0, let f = 1
2

(
(R2 + ϵ2)

1

2 −R
)
.

Note that if ϵ→ 0, then f → R−. Using the fact that
(
∂

∂t
−∆

)
R ≥ 1

n
R2,

direct computations show that
(
∂

∂t
−∆

)
f ≤ − 1

n
f(f − 2c1ϵ) ≤ − 1

n
(f − c1ϵ)

2 + c2ϵ

for some absolute constant c1 > 0 and c2 > 0 depending only on n. By
Lemma 5.1, we conclude that

t(f − c1ϵ) ≤
n

2

(
1 +

√
1 +

4c2ϵ

n

)

on M × (0,∞). Let ϵ→ 0, we conclude that

(5.7) tR(x, t) ≥ −n.

Since
∂

∂t
log

(
det g(t)

deth

)
= −R ≤ n

t
,

we conclude for any bounded open set Ω, there is a constant C1 depending
only on Ω, g(1), h, n such that

det g(t)

deth
≤ C1t

n
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on Ω× [1,∞). Combining this with (5.6), we conclude that

C−1
2 th ≤ g ≤ C2th

on Ω× [1,∞) for some constant C2 > 0 depending only on Ω, g(1), h, k, n.
Consider the normalized metric

g̃(x, s) = e−sg(x, es).

Then we have

(5.8)
∂

∂s
g̃ = −Ric(g̃)− g̃

on M × [0,∞), and

(5.9) C−1
2 h ≤ g̃(s) ≤ C2h

on Ω× [0,∞).
In the following, let ω(t), ω̃(s) be the Kähler forms of g(t), g̃(s) respec-

tively. By [16, Theorem 2.17], we conclude that for any bounded open set in
M and ℓ ≥ 0, there is a constant C3 depending only on Ω, g(1), h, k, n and ℓ
such that

(5.10) ||ω̃(s)||Cℓ(Ω,g̃0) ≤ C3.

On the other hand, let

ϕ̃(x, s) = e−s

∫ s

0
eτ log

(
(ω̃(τ))n

(ω̃(0))n

)
dτ.

Then

(5.11) ω̃(s) = e−sω̃(0)− (1− e−s)Ric(ω̃(0)) +
√
−1∂∂̄ϕ̃(s).

Moreover,

(5.12)

{
∂
∂s
ϕ̃ = log

(
ω̃n

(ω̃(0))n

)
− ϕ̃ in M × [0,∞);

ϕ̃(0) = 0 on M .
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Denote ∂sϕ̃ by ϕ̃′ etc., and let R̃ be the scalar curvature of g̃, then

ϕ̃′′ + ϕ̃′ =− R̃− n

=− esR(g(es))− n

=− es
(
R(g(es)) + e−sn

)

≤0

(5.13)

by (5.7). Hence ϕ̃′ + ϕ̃ is non-increasing and ϕ̃′ + ϕ̃ ≤ 0 because ϕ̃′ + ϕ̃ = 0
at s = 0. On the other hand, by (5.10) and (5.12), we conclude that for any
bounded open set Ω, there exists si → ∞ such that

(ϕ̃′ + ϕ̃)(si)

converges uniformly in C∞ norm in Ω. By the monotonicity of ϕ̃′ + ϕ̃, we
conclude that ϕ̃′ + ϕ̃ converges in C∞ norm in Ω to some function.

By (5.13), we have

(esϕ̃′)′ ≤ 0,

and so ϕ̃′ ≤ 0 because ϕ̃′ = 0 at s = 0. Combine this with (5.10) and (5.11),
we conclude that ϕ̃ also converges in C∞ norm to some function ϕ̃∞. Hence
ϕ̃′ also converge in C∞ norm to some function. However, by (5.9) we conclude
that ϕ is bounded from below. This implies that ϕ̃′ → 0 as s→ ∞. Moreover,
ω̃(s) → ω̃∞ in C∞ norm in Ω as s→ ∞ with

ω̃∞ = −Ric(ω̃(0)) +
√
−1∂∂̄ϕ̃∞.

Note that ω̃∞ is a Kähler form of a Kähler metric by (5.9). Moreover,

ϕ̃∞ = log

(
ω̃n

(ω̃(0))n

)
.

Taking ∂∂̄ to both sides, we conclude that

Ric(ω̃∞) = −ω̃∞.

Suppose ω̄ is a complete Ricci flat metric compatible with the same com-
plex structure of h. Then ω(t) = ω̄ is a steady solution of the Kähler-Ricci
flow. By the convergence of normalized Kähler-Ricci flow, t−1ω(t) converges
to a Kähler Einstein metric on M which is impossible since t−1ω(t) ≡ t−1ω̄
converges to a zero tensor on M . This completes the proof. □
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