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An anisotropic shrinking flow and L,
Minkowski problem

WEIMIN SHENG AND CAIHONG YI

In this paper, we consider a shrinking flow of smooth, closed,
uniformly convex hypersurfaces in Euclidean R"™! with speed
fu®o, B where u is the support function of the hypersurface,
a,8 € R, and 8 > 0, 0, is the n-th symmetric polynomial of the
principle curvature radii of the hypersurface. We prove that the
flow exists a unique smooth solution for all time and converges
smoothly after normalisation to a smooth solution of the equation
fu®~lo# = c in the following cases 1 —nf — 23 < a < 1+np,
a#1—Fand a =0, 5 = 1respectively, provided the initial hyper-
suface is origin-symmetric and f is a smooth positive even function
on S™. For the case « > 1+ nf, § > 0, we prove that the flow con-
verges smoothly after normalisation to a unique smooth solution
of fu®~lo,# = ¢ without any constraint on the initial hypersuface
and smooth positive function f. When § = 1, our argument pro-
vides a uniform proof to the existence of the solutions to the L,
Minkowski problem u!~Pg,, = ¢ for p € (—n — 1, +00) where ¢ is
a smooth positive function on S™.
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1. Introduction

Let Mg be a smooth, closed and uniformly convex hypersurface in R™*!,
and Mg encloses the origin. We study the following anisotropic shrinking
curvature flow

(1.1) { Gt =—flv) < X,v>* Ky,

X(,O) ZX[)('),

where M, is parametrized by the inverse Gauss map X : S — M; C R**!
and encloses origin, K is the Gauss curvature of M;, v is the unit outer
normal at X(-,t), and f is a smooth positive function on S™.

In 1974, Firey [20] firstly introduced the Gauss curvature flow as a model
for the shape change of tumbling stones. Huisken [30] considered the mean
curvature flow in 1984. Thereafter, a range of flows with the speed of the
symmetric polynomial of principal curvatures were studied, see [5}, [6l, 17, [18]
etc. For the curvature flow at the speed of a-power of the Gauss-Knonecker
curvature, in the affine invariant case oo = 7%27 Andrews[4] showed that the
flow converges to an ellipsoid. It was conjectured that the solution will con-
verge to a round point along the flow for a > %H Chow [I7], Andrews
[1], Andrews et al.[7], Choi and Daskalopoulos [14], gave some partial an-
swers respectively. In [§], Brendle et al. finally resolved the conjecture for
all a > 7%1—2 in all dimensions recently. As a natural extension, anisotropic
flows usually provide alternative proofs and smooth category approach of
the existence of solutions to elliptic PDEs arising in convex geometry, see
[3L 15l 22] B2, [36], [44] etc.. For the existence problem of the prescribed poly-
nomial of the principal curvature radii of the hypersurface, Urbas[43], Chow
and Tsai[l9], Gerhardt [21], Xia [45], Li, Sheng and Wang[37] studied the
convergence of the flows with the speed of F(A1,...,\,), where F is a cer-
tain symmetric polynomial of the principal curvature radii Ay, ..., A\, of the
hypersurface. Especially in [3], Andrews studied an anisotropic shrinking
flow. By introducing some monotone quantities, he proved the flow con-
verges after normalisation to a smooth hypersurface which satisfies a soliton
equation.

Under the flow , the support function u satisfies

W(g,t) =—fla)u(,t)or",
(1.2) { 5~,0) = ug(")-
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where o, is the n-th elementary symmetric function for principal curvature
radii, i.e.

Tn(t) = A1+ An,

Ai (1 <4 < n) is the principal curvature radii of hypersurface M;. We prove
that the flow exists for all time and converges smoothly after normalisa-
tion to a soliton which is a solution of fu® ‘o, # = ¢in the following cases:
l—-nB—-28<a<l+nf,a#1—pand a=0, 8 =1, respectively, if the
initial hypersurface is origin-symmetric and f is a smooth positive even func-
tion on S". For the case a > 1 +nf, 5 > 0, we prove that the flow converges
smoothly after normalisation to a unique smooth solution of fu®~'o, F=c
without any constraint on the initial hypersurface and the smooth positive
function f.

In fact, when 8 = 1, the elliptic equation fu® 'o,” = c is just the well-
known L, Minkowski problem u!~P¢, = ¢ for p> —n —1 in the smooth
category. The L, Minkowski problem was introduced by Lutwak in [39],
where he asked for necessary and sufficient conditions that would guarantee
that a given measure on the unit sphere would be the L,, surface area measure
of a convex body. Our proof provides a uniform approach to the existence
of the solutions to the problem for the case —n — 1 < p < n + 1 with the
assumption that the function ¢ is even, and the case p > n + 1 without any
constraint on ¢. In [39] Lutwak proved the solution to the L, Minkowski
problem is unique for p > 1 and p # n if ¢ is an even positive function.
In [40]Lutwak and Oliker also proved the regularity of the solution in this
case. When p = —n — 1, it is the centro-affine Minkowski problem which was
studied by Chou-Wang [16], Lu-Wang [38], Zhu [46] and Li [35]. In [16] the
authors also considered the L, Minkowski problem without the evenness
assumption on ¢, and proved the existence of the C? convex solution for
the case p > 1+ n and the weak solution for the case 1 < p <n—+ 1. The
uniqueness of the solution was also proved for p > n + 1 in [16]. When p = 1,
it is the classical Minkowski problem, it was finally solved by Cheng-Yau[L3]
and Pogorelev[4]]. For the case 0 < p < 1, Haberl et al. [24], Zhu [46] studied
the existence of the solutions, and Chen et al.[I2] finally solved the problem.
Jian et al. [33] proved that the L, Minkowski problem admits two solutions
when —n — 1 < p < 0. Y. He et al. [25] constructed multiple solutions for the
case —n — 1 < p < —n. The additional extensions for L, Minkowski problem
can be learned, see, [10} 11}, 27, 29] etc. for example. By constructing an
anisotropic expanding flow, Bryan et al. [9] also gave a unified flow approach
to the existence of smooth, even L, Minkowski problems for p > —n — 1.

B
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Their approach is in C! when p > n + 1, and for a subsequence when p €
(—n —1,1). Our theorem will improve their result.

We define
- ( 5™ ) Tu
Vir1(u,uy .o u) ’
(n+1)—times
where the definition of V,,41(u,u,...,u) may refer Section 2. In fact, it is

just the volume of convex body €2;, where 0€); = M;. A direct calculation
shows

(1.3) / o[ Walde = |57

Considering the following normalised flow of ([1.2)

(1.4) Oru = —fuvon’ + UW’
‘ U(,O) = ug.

where we still use u instead of u for convenience, and

/t 5" e
0o \Voi1(u,u, ... u)

We still use t instead of 7 to denote the time variable if no confusions

arise, and we set

= s fueor P da
- 57| ’

(1.5) n(t)
hence the flow ([1.4)) can be written as

o =—fuo,” +nt)u,
(16) {ut(.,O) = up.

Now we introduce a quantity which is similar to the one introduced by
Andrews in [3],

Zyult) = [ uon(fu oy P,

where p € R'. When p = 0, Zo(u(-,t)) = Jgn uondz = [S"|, see ([L.3)). We will
show the quality Z,(u(-,t)) plays a key role in this paper.
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When p = %, consider the following functional

(1.7)

T (u(-, 1)) =

23 (u(- 1),
ifa>1—-nB8—-28,a#1—-p3,8>0,

Jon flogudx 1
S~ e 108 [ uonde,
fa=0,0=1

where the last functional were introduced by Huang et al. [28]. We will
show in Lemma Lemma and Lemma that J(u(-,t)) is strictly
monotone along the flow (L.6) and 27 (u(-,t)) = 0 if and only if u(-, t) solves

-1 _—
(1.8) fu~lo? =n(t).
N | a=1+ns
<y
n+1
1 d{iiu) <0, fis even.
- B
Ry
N
AN
AN
\ N
\ ) ot
\%Zo,fiseven. N
—n—1—- __\ \\
\ \a—1~5
\a:l—nﬁ_zg
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The monotonicity of the functional ensures that the normalised flow (|1.6|)
converges to the elliptic equation

(1.9) fut o P =,

for some positive constant ¢ as t — co. When a # 1 + npg, if has a uni-
formly convex solution u, then TRy is just a solution of elliptic equation
of fu*~lo, =1 by homogeneity. Note that when o =1 — 3, the elliptic
equation becomes fu Po;, % =1 which is the equation fu~lo,! =1 with
f= fflf and a =0, § = 1. In order to prove the long time existence of the
smooth solution to the flow , we need to prove the a priori estimates (C°
estimates, C! estimates and C? estimates) by the Evans-Krylov’s regularity
theory for parabolic equations. The key step is to get the C° estimates and
the uniform upper bound of 7(t) in our argument. We conclude the flow
exists for all times ¢ > 0 and u(-,¢) remains positive, smooth and uniformly
convex. By the monotonicity of J(u(-,t)), there is a sequence of t; — oo
such that u(-, ;) = uoo(-) which solves (L.9), where ¢ = limy, 00 7(%;) is a
positive constant.
In this paper, we will prove the following

Theorem 1.1. Let Mg be a smooth, closed, uniformly convezx, and origin-
symmetric hypersurface in R"1, n > 2, enclosing the origin. For the cases
l1-B<a<l+nf and a=0, =1, respectively, the flow has a
unique smooth and uniformly convex solution M, provided that f is a smooth
positive even function on S™. After normalisation, the rescaled hypersurfaces
My converge smoothly to a smooth solution of , which is a minimiser

of the functional (1.7)).

Theorem 1.2. Let Mg be a smooth, closed, uniformly convex, and origin-
symmetric hypersurface in R"1, n > 2, enclosing the origin. When 1 —
nfB —20 <a<1-—4, suppose f is a smooth positive even function on S™,
then the flow has a unique smooth and uniformly convex solution M;.
After normalisation, the rescaled hypersurfaces My converge smoothly to a
smooth solution of , which is a mazimiser of the functional .

Theorem 1.3. Let Mg be a smooth, closed and uniformly convexr hyper-
surface in R"1, n > 2, enclosing the origin. Suppose o > 1+n3, >0,
Then for any smooth positive function f on S™, the flow has a unique
smooth and uniformly convex solution My. After normalisation, the rescaled
hypersurfaces My converge smoothly to a unique smooth solution of ,
which is a minimiser of the functional .
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Remark 1.1. In this paper, we focus on the convergence of the normalized
flow by discussing the relationship between o and 3. When1l < a < 1+
nfB3, we prove the uniqueness of the solution to the elliptic equatioanuaaEB =
c in Section 4 Proposition . Hence the rescaled hypersurfaces My converge

smoothly to a unique smooth solution of (L1.9) for a > 1.

By Theorems we obtain the following result for L, Minkowski
problem.

Corollary 1.4. Let M be a smooth, closed and uniformly convex hypersur-
face in R"1, n > 2, enclosing the origin.

(i) When —n —1 < p <n+ 1, suppose M is origin-symmetric and ¢ is a
smooth positive even function on S™, then the L, Minkowski problem
uPo, ([V2u + ul]) = ¢ has an origin-symmetric smooth solution;

(i) When p > 1+mn and ¢ is a smooth positive function on S™, then the
L, Minkowski problem u'~Po,([V?u+ ul]) = ¢ has a unique smooth
solution. The uniqueness for p=n+1 is up to a dilation.

This paper is organised as follows. In Section 2, we recall some prop-
erties of convex hypersurfaces. We give the uniform upper bound on 7(t)
to ensure the normalised flow being well-defined, and show that the
functional is strictly monotone along the flow unless u satisfies
the elliptic equation . In Section 3, we establish the a priori estimates,
which implies the uniqueness and the long time existence of the normalised
flow . In Section 4, we prove Theorems We also give the proof
of the uniqueness of the elliptic equation for the case 1 < a <1+ np

in Proposition

2. Preliminary

We recall some basic notations at first. Let M be a smooth, closed, uni-
formly convex hypersurface in R"*!, enclosing the origin. Assume that M is
parametrized by the inverse Gauss map X : S™ — M C R""! and encloses
origin. The radial function r is defined by

X =r¢,
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where £ = % is the unit radial vector. The support function u : S — R!
of M is defined by

u(x) = sup (z,y).
yeM

The supermum is attained at a point y = X (x), x is the outer normal of M
at y. Hence

u(z) = (z, X(x)).
Let e1, - , e, be a smooth local orthonormal frame field on 5", and V the
covariant derivative on S™. Denote by g;;, g%/, h;; the metric, the inverse of

the metric and the second fundamental form of M, respectively. Then the
second fundamental form of M is given by (see e.g.[43])

hij = V;iVju + ud;;.
By the Gauss-Weingarten formula
Vizr = hjrg™V, X,
we get
8ij = (Vix, V;z) = hixg" hjmg™ (Vi X, Vs X) = ¢" hixhji.

Since M is uniformly convex, h;; is invertible. Hence the principal curvature
radii are the eigenvalues of the matrix

bij = hikgjk = hij = Viju + 'LL(SZ‘j,
By a simple calculation (see [30]), we know
(21) Gij = T2(Sij + riry,

ré —Vr

(2.2) x =

—rri; + 2riry + 128

(2.3) hij =

(2.4) r=\u?+ |Vul?,
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?”2

Let © be a convex body enclosing the origin, 02 = M. The dual body of Q
with respect to the origin, denoted by Q*, is defined as

(2.5) u =

(2.6) Q' ={ye R"z-y <1,vVz € Q}.

Its support function u*(&,t) = ﬁ, and its radial function r*(z,t) =
(see [28] for details).

Next we introduce some basic concepts about the Minkowski mixed vol-
ume Vo1 (ut, u?, ... w1, where ul,u?, ... u"! are the support functions
of some convex bodies 1,9, ..., Q41 respectively. Let o, (A), 1 < k <n,
be the k-th elementary symmetric function defined on the set M,, of n x n
matrices and o (Aq, ..., Ax) be the complete polarization of o for A; € M,,,

1=1,...,k, ie.

u(z,t)

op(AL, ... Ay) = % i S (Ar)ingy - (Ak)igg
i1 yeemyin =131,y =1
Let I'y, be Garding’s cone
I'e={AeM,:0i(A)>0,i=1,...,k}
For a function u € C?(S™), we denote by W,, the matrix

W, = V2u + ul.

In the case W, is positive definite, the eigenvalue of W, is the principal radii
of a strictly convex hypersurface with support function u. Let u® € C?(S™),
i=1,...,n4+ 1. Set

Vn+1(u1,u27.--,u”+1) ;:/ ulon[Wu27--"WU"'“]d$v

Vit (ul,u?, . uP ) = Vo (uh u?, L e L),

Here, we state the well-known Alexandrov-Fenchel inequality.
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Lemma 2.1. ([26]) Let u' € C*(S"), i =1,2,...,k be such that u® >0
and Wy € Ty, fori=1,2,...,k. Then for any v € C%(S™), the Alexandrov-
Fenchel inequality holds:

Vk+l(v7u17 L) uk)Q > Vk+1(U, ’U,’U,2, s 7uk>Vk+1(u1a ula uza s 7uk)a

the equality holds if and only if v = au' + Z?Ill ajx; for some constants
a,ay,...,0n41-
We consider the flow (|1.6]). We set
p:fuo‘_laﬁ’g, olf] = on[We, Wy, ..., W]

Then the flow 1’ can be written as % = —pu +un(t), and Z,(u(-,t)) =
fSn uan(fuo‘_laﬁ VPdr = fS” uoppPdx, where p € R!, n(t) = é—l‘, and
Zo(u(-,t)) = [g. uopdz = |S™|. By a similar calculation in [3], we have

4
dt

Zy(u(-t) = /n(—pu+ué:L|)anppdx+ /nnua[—pu—l—u|§i]ppdl‘

-1 - a—2_ Z1, g
+ [t (@ = D gt u b

Z
_ nﬁfua—lagﬂ—lg[—pu +u |STIL| ])d$
2,2, u/ 2.2,
=—Zi4p+——n [ wuopulpPdx+n
s : 5]
ZZ,
—pla =12, +pla - DIg"
Z1Z
) =

= —(1+ (= 1p) (210~ Ti)

—n(l— 51))(/"’ upPolpuldr — T;ff)

Since h;; satisfies Codazzi equations, we have Y. V;0 = 0 ([2], [3]), and

/" upPonlpu, u,. .. uldr = / wpPopuldp

= / upPc'? (V;V;(up) + dijup)dx
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—/ uppaij(hijp—i-QViuVjp—i—uvivjp)d:c
Sn
=Z14p —p/ wpP oV pV pd
dp 2 _ij e =E
= Zi4p — (1+p)2/3nu cVi(p = )V;(p= )da.

By the Alexandrov-Fenchel inequality in Lemma [2.1] we have
2
(2.7) (/ upop|u,u, ..., u]daz)
S‘n,
> / uop[u, u, . .. 7u]d:c/ wpo,[uh, u, ..., uldx
Sn Sn
= 15" (/ uopp?dr — / u%ijvi@pvwda:),
Sn S'n.

1+p

Set 1) = p=> in the Alexandrov-Fenchel inequality (2.1)), we obtain
e 2,
/ uw o ?Vip 2 Vip 2z dp— Z14p + ﬁ > 0.
Thus
d 2z
g Z(00) = =L+ (= Dp o+ (1= pA)) (211 — 52
2
4pn(1—pﬁ)( : _le‘“>
+p? B Tgn)
4pn(1 —pB) 2 ij 14p 1tp = Z%*-TP
7(1_’_]))2 ( n’U,U Vip™2 Vjp =2 dr — 1+p+7’Sn‘>.

Lemma 2.2. n(t) has a uniform upper bound for the cases o >0, > 1;
a>1-nB-28,a#1—-6,0<<1and a=0, 8=1, respectively.

Proof. Let p =1, we have

izl :—a(Zg— Z )+n(1ﬁ)(/ w20V, pVipda — Zo + Zp )
dt |57 S ’ |57
where the Holder inequality shows that Z5 > é}? -

Case (i): a > 0, 8 > 1, we obtain %77 — <0, then n(t) < C, where

Is™
C depending on the initial hypersuface.
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Case 1) a>1—n5—25, a#1-03, 0< <1, we have Z;(u) <
( ) (Z 1 ) by the Holder inequality. Hence we only need to prove

B
that Z1 ( ) < C, for some positive constant C. Let p = 6’ we have

W=7

d 1—a—6( _ZlZ;)

For o > 1 — 3, we have %Zﬁ( u) < 0 since Zl+1 > \S"I by the Holder in-

equality. Then Z%g (u) < C, and n(t) < C, where C depends on the initial

2.2y
hypersuface. For 1 —nff — 2 < a<1-— 4, %Z (u )>OsmceZl+1 > Tel ‘

by the Holder inequality. Hence

a—14p5

() € Z3(0) = [ fhuFE Cdo < () [ 0

n

that is

(2.8) ¢ = 2. (uo)(max /) ¥ < / emen

B

In this part, we shall use the Blaschke-Santal6 inequality
Vol(Q)Vol(2*) < Vol(By)?,

where () is the convex body enclosing the origin, Q* is the polar body of
Q, Vol(Q) = [g, r"ldg, Vol(Q*) = [q, " da = [g, ()" dx, the equal-
ity holds 1f and only if 2 is a elhpso1d

Set ¢ = O‘_TW, —n — 1 < q < 0, we refer to the result of Chou-Wang[16]:
If origin-symmetric convex body € satisfies ¢ < [, uldzx, ¢ <0, Vol(Q) =
Jgn uopdz = |S™|, then the diameter of convex body Q enclosed by M,
d(2) < C, for some positive C, where d(€2) = 2maxg» u for the origin-
symmetric convex body 2. We give the same argument as follows. Suppose
there is a sequence origin-symmetric convex body Q, satisfying , but

the diameter of €, dj — 0o as t; — T. Le

symmetrlc

John elhpsmd associated with €y , as is well known, see [42], ~ +1 C Yy, C
Eq, n+1 <uj <ug,. we set S" =51 U Sy US3, where

1
Sy = S" M {ug, <8}, Sp= S”ﬂ{5<uE<} S5 = 5" N {ug, > 5}.
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where § € (0, 1) is a fixed constant. Then

q UE;
¢ < / ujdr < /97L(n+1)qu.

Suppose u; attains the maximum at xg, where xg € S”, that is, u;j(zg) =
maxg» uj, and maxgs u; = maxg~ r; by (2-4). Since u;(y) > 3d;|zo - y| for
any y € S™, we obtain |Si|, |S2| = 0 as dj — oo.

As d; — oo, for any fixed 6, we have

UE; \q 1 1 P gtntl gtntl
— 7 N dr < Q(/ ) Sy T < 1151 _)O
/1(”+1) L= (n+1) o u%“ |51 1151

by the Blaschke-Santal6 inequality. Noting |Sa| — 0 as dj — oo, and

UE; 1 a, 1 q B
Lg(n+l)qu</S3 (m) dx = (m) |S5] < Cp67.

Hence, we have

c < 0(1) + Cgé_q.

for any 6 € (0,%). Let 6§ =0, we reach a contradiction. It implies
maxgnu(-,t) < C, for some positive constant C'.
Next we derive the lower bound for u(-,t). It is well known that

/ ) = / e = Vol(),

where €); denotes the convex body enclosed by M;. By , it is easy
t0 see Tmaz (t) = Umaz (), Tmin(t) = Umin(t). We may assume that rpax(t) =
maxgn r(e1,t) and 7, (t) = r(ent1,t) by rotating the coordinates. Since €2
is origin-symmetric, we find that 2 is contained in a cube

Qt = {Z S Rn+1 . _Tmax(w <z < rmam(t)
for 1 <i <n, —rmin(t) < 2ns1 < Tmin(t) }-

Therefore
|S™| = Vol(Qy) < 2" ()7 (1)

max

Using 7maz(t) < C we get Trin(t) > 2 o, for some positive constant C, then

a—

1

21 _fsnfﬁu a d:v<(maxsnf)ﬁu 2 |S"|§C. Hence 2, < C, for

min
some positive constant C.
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Case (iii): « = 0, 8 = 1, we obtain n(t) = figi‘ldar = ¢, where c is a posi-

tive constant. |

In Case (ii) of the proof, we have obtained the C” estimates of the
solutions to the equation : % <u<C forthecase ] —nf -2 < a<
1 — B for some positive constant C'.

When a > 1+ nf, g > 0, we also need the uniform lower bound on 7(t)
to obtain the priori estimate in the next section.

Lemma 2.3. Suppose o > 1+np, >0, n(t) is uniformly bounded.

Proof. Since a«>1+npB, >0, we set 8 < 1}” <0, a>1+np, we
have

d ZZ
rZo(w) = =[L+ (a = D+ n(1 - 68)) (2011 - 1)
dt |Sn‘
2
M( c =)
40n(1 — ) o i L 140 Z3.,
nt = 0P) O e I )
(140)2 </nu0 Vip 2 Vjp T = 1+9+‘Sn|
<0
since 6 < +1+ﬁ" < 0, and by the Holder inequality, we get Zj49 < %7};"9
and 21,9 > T Sn| Hence, Zy(u) < Zy(up). By the Holder inequality again,
we have

|S”|:/ uondz

< ( fuacr,ll_ﬁda:)lee(/ ucrn(j‘"uo‘_lo';ﬁ)edzn)ﬁ
Sn n

1

—o 1
— 211—9 Z@l—ﬂ
It is easy to see, Z1 > C, by case(i) and case(ii) in Lemma we get the

uniform bound on 7(t) for & > 1+ npg, g > 0. O

Lemma 2.4. The functional (1.7)) is non-increasing along the normalised
flow (L.6]) for the case o >1— (3, B >0, and the equality holds if and only

if My satisfies the elliptic equation ((1.9)).
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Proof. From the above calculation process, when p = %, we obtain along the

normalised flow (/1.6

Z1 2,

d _d _1-a-p i
&7 = E 0 =5 (B ~ 7y ) <0

The last inequality holds from the Holder inequality, and the equality holds
if and only if fu®lo,” = c(t) for some function c(t). Indeed, by (L.5), if
fuelon? = ¢(t) occurs, then

Jsn fueorPda Jgn uonc(t)dz
e T e

n(t)
O

Lemma 2.5. The functional (1.7) is non-decreasing along the normalised
flow (1.6]) for the case 1 —nf —20 < a <1— [, and the equality holds if
and only if My satisfies the elliptic equation (1.9)).

Proof. From the above calculation, when p = %, we obtain along the nor-

malised flow (/1.6

2121

i . d 1-a-5 L
a” (W= g2 = T(ZH% 57| ) >0

The last inequality holds from the Holder inequality, and the equality holds
if and only if fu®~lo,” = c(t) for some function ¢(t). In the same way as in

the proof of Lemma we can show 7(t) = c(t). O
For a =0, =1, it it easy to see, 1(t) = fs|"sf:|d$ = ¢, where c is a positive
constant.

Lemma 2.6. The functional (1.7)) is non-increasing along the normalised
flow (1.6) for « =0, B =1, and the equality holds if and only if M, satisfies
the elliptic equation (1.9)).

Proof.
d j( ) o fSﬂ fu_lutdﬂf — %\fsn utgndx
« v fs fde

_ Jgu ut(fu=t — noy)da
fs'n fdx
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= JgeuTton(fo,t - nu)ZdJ:
fsn fdz

<0

The equality holds if and only if fu='o,! = ¢ where ¢ = fs&flcldx is a positive

constant. O

3. A priori estimates
We firstly show the uniformly lower and upper bound of the solution to (1.6]).

Lemma 3.1. Let My, t € [0,T), be an origin-symmetric solution to (L.6).
For the following cases: 1 —nf —28<a<1l4+nB, a#1—03 and a =0,
B =1, there is a positive constant C depending only on «, B, f and initial
hypersurface, such that

1

Proof. Let ryin(t) = ming»7(-,t) and ryax(t) = maxg» 7(-,). We may as-
sume that ryax(t) = maxgn r(e1,t) by rotating the coordinates. Since M is
origin-symmetric, the points 4r,,,,(t)e1 € M;. Hence

w(z,t) =sup{p-z:p € My} > rmax|a - €1],Vz € S™.

For the case 1 — 8 < a < 1 + nf, we obtain

1 a-1+4p a—1+p 1 a—1+p
j(u):/ feu 5 dxr > Tmar (t)/ felz-el| 7 dx
Sn Sn
1

a—1+48

2 CO (Hélnn f)Ermai: (t),

where o — 1+ 8 > 0. By Lemma %j(u) < 0, we conclude

a—1+43

I (u0) = T (u(t)) = Colwin /)5 rmai (1),

This implies 74, < C for some positive constant depending on «, 5, f and
initial hypersurface.

For the case 1 —nf — 28 < a <1 — f, the uniform bounds of (-, ) is
obtained from the proof case (ii) in Lemma
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. fsn flog udx

Now we consider the case a=0, f=1. For J(u) T fdz
sn

n%rl log fsn uopdz, we have proved %j(u) < 0. Since

f(x)logu(z,t)dz > ( (z)dz) 10g rmax(t) + / f(z)log|z - e1|dx
Sn Sn

Sn

> ( Sanm)dw)logrnmx@)-—(7ngy¢f,

we have J (ug) > J(u(t)) > log rmax(t) — C’mﬁ — -7 log 5™, which
implies Tmax < C. Since Umax(t) = rmax(t), we therefore get the uniformly
upper bound of u(-,t). For origin-symmetric convex body €, by rotating
the coordinates and constructing the cube Q)¢ just as the same way of Case

(ii) in the proof of Lemma we have
1S™| = Vol() < 2" (£)rmin(t).

Therefore we get the uniform lower bound of u(-,t) since Umin(t) = rmin ().
Hence we complete the proof. Il

Lemma 3.2. Let My, t € [0,T), be a solution to (1.6)). If « > nB + 1 and
B > 0, there is a positive constant C' depending only on a, B and the initial

hypersurface such that
1

& Sul-t) <C

Proof. For the case a > nf + 1, let umin(t) = mingegn u(.,t), we have

Hence, tupin > min{ (mr;‘)l{rslj f)a—fffl  Unmin(0)}.

Similarly, we have umax < max{(#;"f) ﬁf*—l, Umax(0)}, where we have
used the uniform upper and lower bounds of n(t) for a >nf+1, > 11in
Lemma 2.3

Next we study the case @ = nf3 + 1 by the following three steps.

Step 1: Consider the function
Q= fulo,”.

Since
(fuaagﬁ)ij = Qiju + Qiuj + Qju; + Quyyj,
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we get
0Q = —(a = 1)f*u** 20, % + (e — 1 —nf) fu~'o,”
n
T Bf2u2a710g2,371 Z quli + ,Bfuaflagﬁ’lay(fuaarfﬁ)ij
i

= —(a—1-nB)Q* +n(a—1—np)Q + Bfuc,’oiQy;
+268fu o, P o Qiu;
= Bfuo, P10 Qi; + 28 fu* o, P e U Quuy

It is easy to see
(3.1) clt<Q<c,

where C' depends only on the initial hypersurface.
Step 2: Let w = logu. Then

hij = Ui + ud}j = u(wz-j + wjw; + 6@']‘)

We may prove |Vw| < A, for some positive constant A > 0 along the flow.
Otherwise there is a point (zy,,tp) where to is the first time, such that
|Vul|? — Au? =0, A >0 is a constant to be determined later. Hence at
the point (zy,,t0), Vi|Vw|?> =0 and 8;|Vw|? > 0. Choosing an orthonor-
mal frame and rotating the the coordinates, such that w; = [Vw|, w; =0
for i =2,--- ,n, and (w;;) is diagonal at (x,,%p). We then get

(aij) == (wij + wyw; + 0;5) = diag(1 + w%, 1+ wae, -+, 1+ W),
and

0 < 0y(|Vul* — Au?)
= —2u;(fu)io,” + 28 fuo, P oMV b + 2A fut o, P
< —2ui(fu®)ioy” + Anffuoy” =28 fut o P Z o
— 2Bfu%e, P o hyhy; + 2A(nB 4 1) fu® e, P Z
n

n
— 248 fuct?q, AL Z ol 4 ZABfuaJ_ﬁ_laiLjuiuj
i

+ 268 fu®oy, P Lot uu;.
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Substituting u; = uw; and w} = A into the above inequality, denoting that
on = on(a;j), we have

11
0< A(l +n5—a)+\ﬁ| My ong - (A+1)B"

On
11

—(A+ 1)522 T A4+ 157

< f'v‘ﬂ +2n8 — (A+1)5E;"".

n

Then (A +1)Coon ™ < (A+ 1)ﬂ¥ < \/Z@ +2nf, since % >
C’(n)ag " by the classic Newton-MacLaurin inequality, and J;Z(aij) _

uoy, " [W,] is bounded by (3.1]). Let A be large enough, we then get a con-
tradiction. Hence we obtain

(3.2) |Vlogu| < C.

Step 3: For the normalised flow (L.6), [q. uandx = ]S"\ is constant. By

Step 1, there is a positive constant C, such that C~! <™ ’8 < C'. Hence
we have

, nd i
Crultl(t) < Js» vonda _ 1< Crulis(®)

min |Sn| max
We therefore obtain the uniform upper and lower bounds on u from (3.2)). O

Since % <u < C, for some positive constant C, by the convexity of the
hypersurface (2.4)), it is easy to get the following gradient estimate.

Corollary 3.3. Let u(-,t) be a solution to the flow (1.6)). Then we have the
gradient estimate

[Vu(, 1) < C,

where the positive constant C depends only on o, B, f and the initial hyper-
surface.

Similarly we have the estimates for the radial function r.
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Lemma 3.4. Let My be the solution to the flow (1.6). Then we have the
estimate

min _u <7r(,t) < max u,
S7x (0,77 S7x(0,T]

and
|Vr(,t)] < C,

where C' > 0 depends only on o, B, f and the initial hypersurface.

Proof. By (2.4) and ({2.5)), we infer that

N

. . r
H&ﬁnu("t) = rg{bnr(-,t), n%%xu(',t) = r%%xr(',t) and |Vr| < ”

Therefore, the two estimates follow from Lemmata directly. O

Lemma 3.5. Let X(-,t) be a uniformly convexr solution to the normalised
flow (L.6)) which encloses the origin for t € [0,T). Then there is a positive
constant C' depending only on f, a, 8 and the initial hypersurface, such that

on([wy]) > C.
Proof. Consider the following auxiliary function

oo T +nu fuo‘CfEB’

u—e€ U — €

where €= %minsnx[o’ﬂ u. Suppose that Gmax(t) = maxgesn G(z,t) =
G(x4,t), at x4, we then have

—ug +nu;  (—ug + nu)u;

3.3 0=G; = _
(33 B
(3.4) 0>Gy; = —ugij +nui  (—wt nuz)uij,
u—e€ (u—e€)
and
0,G = Mt +mutnue  (—ue+ m;)ut
u—e€ (u—€)
_ Oéfua_luto';ﬁ - /Bfuao'gﬁ_lfﬁzj (Utij + utéij) —a [
- u-—e€ uU—€
< aGuu~ ! + *Bfuaggﬁ_la%(G“ij — nui; — usdij) G Uy

u—e€ u—€
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Bfuon” ol (hi; — ubij)

< aG( Y+ (G —n) —
+ Bfuto, ! Za;j(c: - +oe- )
(nﬁ+1—a+ )G2+n(a—nﬁ—7)G BG2ZZ

On

Without loss of generality, we assume G > 1.
For the case « >0, 8>1;a>1—-npf—-26,a#1—-5,0< <1 and
a =0, 8 =1, we have n(t) < C for some posmve constant C by Lemma[2.2]

Applying G < G? and the inequality 2.9, ’" > Cop, ™, we get

<a —nf - ui‘g) ' 62— o 2%

On

8tG§}<nﬁ+1—a+ )’G2+n

< 162 — CRG2Gon.

For the case v <0, > 1, we obtain n(t) = % < COG(xt, )ﬁff
since G = % and u 18 umformly bounded. Applying G 5 < G at xy

and the inequality Z"' = > Cop, ™, we get

(a—nﬂ— uu>’G2 —eﬁGzM

—€ On

8tG§‘<n,8—|—1—a+ )]G2

< O1G? = CyG2Gn |

It is easy to see that there exists a positive constant Cs , s.t. G < (3, where
C5 is a constant depending only on f, a, 8 and the initial hypersurface.
Hence we obtain o, ([wy]) > C, where C'is a constant depending only on f,
«, B and the initial hypersurface. O

Hence we get n(t) < C for the case a >1—nf —28, a #1—F, 5> 0 and
a=0, =1 by Lemma and Lemma Next we prove the principal
curvature radii of My is bounded. We study an expanding flow of Gauss
curvature for the dual hypersurface of M;. The method is inspired by [36].
Similar idea was previously used by Ivaki in [31].

Under the evolution equation , the radial function of the hypersur-
face M evolves as

(3.5) (e t) = YR KB g
r(.,0) =g
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where K is the Gauss-Kronecker curvature of M.
Let Q be a convex body enclosing the origin, 92 = M. The dual body of
) with respect to the origin, denoted by Q*. Its support function u*(&,t) =

=TT +2rim 412045
’"(flvt)’ hence h:j = vij% + %51'9’ = % and
deth 1 deten dete-~ 1
(36) K = “ 9 7* = 1] 9 ) == 2n—2 2 2\ °
det g’LJ g, det h"] det g” r (T + ‘VT| )

Hence by (2.5) and ([3.6)), we obtain the following equality

U(l’, t)n+2u* (5’ t)n+2
K(p)K*(p*)

where p € M, p* satisfies the polar relation p-p* =1 and p* € M7, K* is
the Gauss curvature at p*. x, £ are the unit outer normals of M; and My
respectively. Therefore, by the normalised flow and the relation ,
we obtain the flow for the support function u*

(3.7) —1

w* (& 4)) IR (r (1)) ORI (K) T — (€, )
(6, 0) B (1 (1, )10 0 1, ) — (€, ).
where 7*(x,t) = \/(u*)2 + |Vu*|2(&,t), 0f = 0p[Wy:] and W, = V2u* +
ul.

By Lemma H, % <wu* < C and |Vu*| < C for some C only depending on
the initial hypersurface.

Lemma 3.6. Let X(-,t) be the solution to the normalised flow which
encloses the origin. Then there is a constant C' depending only on the initial
hypersurface and f, o, B, such that the principal curvature radii of X (-,t)
are bounded from above and below

cl< () <C
forallt €[0,T) and i =1,...,n.

Proof. Let hj; = uj; + u*d;5, and hY be the inverse matrix of h;;. Consider
the auxiliary function

M
w(é,t,7) = logh” — elogu” + —(u** + |Vu'[?),
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where 7 is a unit vector in the tangential space of S™, while ¢ and M are
large constants to be decided. Assume w achieve its maximum at (o, o)
in the direction 7 = (1,0,---,0). By a coordinate rotation, hf; and hy are
diagonal at this point. Then at the point (o, to).

M
w = log hl! —elogu* + ?(u*2 + [Vu*|?),

Viu*
(3.8) 0= Viw=—h'V;h}, — 8% + Mutul + MVu* Vigu®,
(3.9) 0> Vijw=—hl'Vi;hi; + 20 BNV R Vi by — (h)?Vibi, Vb,
_ EvijU* i 8Viu*v2ju*
* u*
+ MVkiu*iju* + kau*vkiju*

+ Muju; + Mu*u;;

Set @ = f(u*)1+5"+25(r*)l_a_w—ﬁ", we have

a
0 < 0w = —hlt oy —e—— + Mu*V ™ + MV pu*Vigu*

— (@110:/3 n zﬁa:f ViOV10k + B(8 — 1ot 2(Vyi07)?

_ do*P — pu*
+ 50030 10—ty + @0y - 2T

+ Mu* (90 — nu*) + Mul (907 — nu*)y,
— _plt (@11(;*5 + 2807 V1 @RIV 1R + B(B — 1)@a’ (W V1 k)
+ B0y (WIVihiy +n = Wiy YR = IR (Vihi)? + (WIV1h55)°)

u*

d *0 *
—nhi, + (I)O';;ﬁ) _ 2% TN

+ Mu,*;(q)a;ﬁ —nu¥)g

+ Mu* (0P — nu*)

U*

By (3.9) and multiplying @fla;"fﬁ the two sides of the above inequality,we
obtain

h
P i (( P

+ ,6( SRR REE B Vi + (hI)2RIT VR VhY, + et !

0< —hlt )2+ B2 (hYV1h;)?) — b B2 (RIVihi;)?
—¢c Z K — ehPuiwiut ™% — MAIRGRS, + nMu® — thjuzvkh;‘j>

— WY (1 nB) + B3 W+ BRIKERY (V1h)? + Mu® + M V(’;)
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u*2 4 |vu*|2 el et+1
Porh e 77(1)0;;5
< =280, W WV Vb + B(hy!)2 R Yk, V kT

+ BRI RN (Vahi)? 4 B — By B+ B ) B+ Mu

+ BMRPZupNhi; — nM

(2
V1P * ViV® *VkCD
+ hil(T)2 + M Bnu* — hi! s T Mukiq)
Mr*? —ec -1
p— =
Poxh
V9 ViV Vi®
< Co— Be — 1AM + A (-22)2 — pI 212 ppyp 5
d ) )
Mr*? — ¢ —1

where we use the Cauchy inequality 28 %hij Vihj; < (ng)2 +
B%(h'V1hi;)? for the second term.
Since V@ = Vj,(f(u*)1HAn+28 (px)1=a=26-6n) "and it is direct to calculate

* * * * * *
e + Do uiu  uphg,
k — ¥ - ¥

* 0k * * * 0k * * * * 1k *
oo utuy Fupuy o uiug, + 3 uhuy  upuyhi by
Tkl = e (r*)3

hence, by (3.8]), we obtain

Vi®
P

<Chl'+Cc+cC

VV,i® LV,

1
hn+C@%&f+CM

+ Chitujuiyy + CMEujuihiy,

1
11
<Ol + O

o

)2 — plt

+C+Ce+CM

Choosing M > —<tL_the inequality becomes

min7r*2?

1
Rl
< —Behl +Chl' + Ce+CM

0< —Be—Dh'+CrI' +C-—= +C+Cec+CM
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By choosing ¢ large to get
0 < C, — Cohlt.

That is, hl! < C3, where C3 is a constant depending only on f, «, 3 and
the initial hypersurface. Hence the Gauss curvature of M}, K* < C. From
, we know o, = A1 - - - A, < Cy. Therefore we get the C? estimate C~! <
A< C,i=1,...,n by Lemma for the solutions to the normalised flow

[0). 0
4. Proof of Theorems [1.1H1.3l

Proof of Theorems[I.1{1.9. From the estimates obtained in Lemma [3.6] we
know that the equations (1.6)) are uniformly parabolic. By the C° estimates
Lemmas and Lemma the gradient estimates (Lemma the C?
estimates Lammas and the Krylov’s theory [34], we get the Holder
continuity of V?u and u;. Then we can get higher order derivation estimates
by the regularity theory of the uniformly parabolic equations. Therefore we
get the long time existence and the uniqueness of the smooth solution to the

normalized flows (1.6)). Recall the Lemma Lemma and Lemma

we complete the proof. O

Proof of Theorem[1.3. For the case a>1+4ngB, > 0. To complete the
proof of Theorem it suffices to show that the solution of ([1.9)) is unique.
Case 1: a > 1+ np. Let uj ,uz be two smooth solutions of (1.9), i.e.

fu?_lU;ﬁ(VQM +uil) =g, fug‘_la;ﬁ(v2u2 +ugl) = c.

Suppose M = Z—; attains its maximum at Xg € S, then at xg,

0= Vieg M = Y _ Vuz
u1 ug ’
0> Viog M = Vi _ VZuy
; uy Uug '
Hence at xg, we get
Cw o (VR + D) us T e (T )

1= — 21 > Ma—l—n,B.
ug_laﬁﬁ(V%Q + uol) ug_l_"ﬁaﬁﬁ(vu—:? +1)

Since « >1+npf, M(zyp) =maxg. M <1. Similarly one can show
ming- M > 1. Therefore u; = us.
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Case 2: a=1+np, the elliptic equation can be written as
f %UnO'; ! = ¢, the uniqueness of the solution has been proved in [39], and
Chou-Wang [16] also provide a method to get the solutions for equation dif-
fer only by a dilation. We omit the proof here. Hence we complete the proof

of Theorem [L.3 O
Proposition 4.1. For 1 < a <14 ng, the solution of 1S UNLQUE.
Proof. Let u; ,us be two smooth solutions of , i.e.

fuS o, P (VP +un D) = ¢, fus o, P (VPug + usl) = c.

Using the same argument in [23], by the Alexandrov-Fenchel inequality
in Lemma we have

/nu1u2 (cf 1~ Fda

= / w10y (Vg + upl)dz = Vi1 (un, ug, - -+, u2)

> Vi1 (uz, g, -+ yu2) w1 Vg (ug, g, -+ ) oo

a=148 = L a=li8 L
= (/ (cfH~ Bu2 ? dx) " (/ (cf ™ Fuy ° da:)"Jr :
On the other hand, Holder inequality gives
/ ulu (Cf )
<([ et a) T [ ey de) T
Combining the above two inequalities, for 1 < a < 1+ ng, 8 > 1, we have

. o—1+48 a—1+8
/ (cf N 7Fu, ? dmZ/ (cfH~ ﬂu2 7o dx.

Similar argument by interchanging the role of w; and usy gives

1 a—1+48 a—1+48
[ttt dez [ ey e de

Therefore all the above inequalities are equalities. Using the equality con-
dition in the Alexandrov-Fenchel inequality in Lemma we have u; =
u9g. O
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