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In this paper, we consider a shrinking flow of smooth, closed,
uniformly convex hypersurfaces in Euclidean Rn+1 with speed
fuασ−β

n , where u is the support function of the hypersurface,
α, β ∈ R1, and β > 0, σn is the n-th symmetric polynomial of the
principle curvature radii of the hypersurface. We prove that the
flow exists a unique smooth solution for all time and converges
smoothly after normalisation to a smooth solution of the equation
fuα−1σ−β

n = c in the following cases 1− nβ − 2β < α < 1 + nβ,
α ̸= 1− β and α = 0, β = 1 respectively, provided the initial hyper-
suface is origin-symmetric and f is a smooth positive even function
on Sn. For the case α ≥ 1 + nβ, β > 0, we prove that the flow con-
verges smoothly after normalisation to a unique smooth solution
of fuα−1σ−β

n = c without any constraint on the initial hypersuface
and smooth positive function f . When β = 1, our argument pro-
vides a uniform proof to the existence of the solutions to the Lp

Minkowski problem u1−pσn = ϕ for p ∈ (−n− 1,+∞) where ϕ is
a smooth positive function on Sn.
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1. Introduction

Let M0 be a smooth, closed and uniformly convex hypersurface in Rn+1,
and M0 encloses the origin. We study the following anisotropic shrinking
curvature flow

(1.1)

{
∂X
∂t

(·, t) = −f(ν) < X, ν >α Kβν,

X(·, 0) = X0(·),

where Mt is parametrized by the inverse Gauss map X : Sn → Mt ⊂ Rn+1

and encloses origin, K is the Gauss curvature of Mt, ν is the unit outer
normal at X(·, t), and f is a smooth positive function on Sn.

In 1974, Firey [20] firstly introduced the Gauss curvature flow as a model
for the shape change of tumbling stones. Huisken [30] considered the mean
curvature flow in 1984. Thereafter, a range of flows with the speed of the
symmetric polynomial of principal curvatures were studied, see [5, 6, 17, 18]
etc. For the curvature flow at the speed of α-power of the Gauss-Knonecker
curvature, in the affine invariant case α = 1

n+2 , Andrews[4] showed that the
flow converges to an ellipsoid. It was conjectured that the solution will con-
verge to a round point along the flow for α > 1

n+2 . Chow [17], Andrews
[1], Andrews et al.[7], Choi and Daskalopoulos [14], gave some partial an-
swers respectively. In [8], Brendle et al. finally resolved the conjecture for
all α > 1

n+2 in all dimensions recently. As a natural extension, anisotropic
flows usually provide alternative proofs and smooth category approach of
the existence of solutions to elliptic PDEs arising in convex geometry, see
[3, 15, 22, 32, 36, 44] etc.. For the existence problem of the prescribed poly-
nomial of the principal curvature radii of the hypersurface, Urbas[43], Chow
and Tsai[19], Gerhardt [21], Xia [45], Li, Sheng and Wang[37] studied the
convergence of the flows with the speed of F (λ1, . . . , λn), where F is a cer-
tain symmetric polynomial of the principal curvature radii λ1, . . . , λn of the
hypersurface. Especially in [3], Andrews studied an anisotropic shrinking
flow. By introducing some monotone quantities, he proved the flow con-
verges after normalisation to a smooth hypersurface which satisfies a soliton
equation.

Under the flow (1.1), the support function u satisfies

(1.2)

{
∂u
∂t
(x, t) = −f(x)uα(x, t)σ−β

n ,

u(·, 0) = u0(·).



✐

✐

“3-Sheng” — 2023/4/30 — 23:18 — page 1513 — #3
✐

✐

✐

✐

✐

✐

An anisotropic shrinking flow and Lp Minkowski problem 1513

where σn is the n-th elementary symmetric function for principal curvature
radii, i.e.

σn(., t) = λ1 · · ·λn,

λi (1 ≤ i ≤ n) is the principal curvature radii of hypersurface Mt. We prove
that the flow exists for all time and converges smoothly after normalisa-
tion to a soliton which is a solution of fuα−1σ

−β
n = c in the following cases:

1− nβ − 2β < α < 1 + nβ, α ̸= 1− β and α = 0, β = 1, respectively, if the
initial hypersurface is origin-symmetric and f is a smooth positive even func-
tion on Sn. For the case α ≥ 1 + nβ, β > 0, we prove that the flow converges
smoothly after normalisation to a unique smooth solution of fuα−1σ

−β
n = c

without any constraint on the initial hypersurface and the smooth positive
function f .

In fact, when β = 1, the elliptic equation fuα−1σ
−β
n = c is just the well-

known Lp Minkowski problem u1−pσn = ϕ for p ≥ −n− 1 in the smooth
category. The Lp Minkowski problem was introduced by Lutwak in [39],
where he asked for necessary and sufficient conditions that would guarantee
that a given measure on the unit sphere would be the Lp surface area measure
of a convex body. Our proof provides a uniform approach to the existence
of the solutions to the problem for the case −n− 1 < p < n+ 1 with the
assumption that the function ϕ is even, and the case p ≥ n+ 1 without any
constraint on ϕ. In [39] Lutwak proved the solution to the Lp Minkowski
problem is unique for p > 1 and p ̸= n if ϕ is an even positive function.
In [40]Lutwak and Oliker also proved the regularity of the solution in this
case. When p = −n− 1, it is the centro-affine Minkowski problem which was
studied by Chou-Wang [16], Lu-Wang [38], Zhu [46] and Li [35]. In [16] the
authors also considered the Lp Minkowski problem without the evenness
assumption on ϕ, and proved the existence of the C2 convex solution for
the case p ≥ 1 + n and the weak solution for the case 1 < p < n+ 1. The
uniqueness of the solution was also proved for p > n+ 1 in [16]. When p = 1,
it is the classical Minkowski problem, it was finally solved by Cheng-Yau[13]
and Pogorelev[41]. For the case 0 ≤ p < 1, Haberl et al. [24], Zhu [46] studied
the existence of the solutions, and Chen et al.[12] finally solved the problem.
Jian et al. [33] proved that the Lp Minkowski problem admits two solutions
when −n− 1 < p < 0. Y. He et al. [25] constructed multiple solutions for the
case −n− 1 < p < −n. The additional extensions for Lp Minkowski problem
can be learned, see, [10, 11, 27, 29] etc. for example. By constructing an
anisotropic expanding flow, Bryan et al. [9] also gave a unified flow approach
to the existence of smooth, even Lp Minkowski problems for p > −n− 1.
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Their approach is in C1 when p > n+ 1, and for a subsequence when p ∈
(−n− 1, 1). Our theorem will improve their result.

We define

ũ =
( |Sn|
Vn+1(u, u, . . . , u︸ ︷︷ ︸

(n+1)−times

)

) 1

n+1

u,

where the definition of Vn+1(u, u, . . . , u) may refer Section 2. In fact, it is
just the volume of convex body Ωt, where ∂Ωt = Mt. A direct calculation
shows

∫

Sn

ũσn[Wũ]dµ = |Sn|.(1.3)

Considering the following normalised flow of (1.2)

(1.4)

{
∂τu = −fuασ−β

n + u
∫
Sn fuασ1−β

n dxSn

|Sn| ,

u(., 0) = u0.

where we still use u instead of ũ for convenience, and

τ =

∫ t

0

( |Sn|
Vn+1(u, u, . . . , u)

) 1+nβ−α

n+1

ds.

We still use t instead of τ to denote the time variable if no confusions
arise, and we set

η(t) =

∫
Sn fu

ασ
1−β
n dx

|Sn| ,(1.5)

hence the flow (1.4) can be written as

(1.6)

{
∂tu = −fuασ−β

n + η(t)u,
u(., 0) = u0.

Now we introduce a quantity which is similar to the one introduced by
Andrews in [3],

Zp(u(·, t)) =
∫

Sn

uσn(fu
α−1σ−β

n )pdx,

where p ∈ R1. When p = 0, Z0(u(·, t)) =
∫
Sn uσndx = |Sn|, see (1.3). We will

show the quality Zp(u(·, t)) plays a key role in this paper.
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When p = 1
β
, consider the following functional

(1.7) J (u(·, t)) =





Z 1

β

(u(·, t)),
if α > 1− nβ − 2β, α ̸= 1− β, β > 0,∫

Sn f log udx∫
Sn fdx

− 1
n+1 log

∫
Sn uσndx,

if α = 0, β = 1.

where the last functional were introduced by Huang et al. [28]. We will
show in Lemma 2.4, Lemma 2.5 and Lemma 2.6 that J (u(·, t)) is strictly
monotone along the flow (1.6) and d

dt
J (u(·, t)) = 0 if and only if u(·, t) solves

(1.8) fuα−1σ−β
n = η(t).
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The monotonicity of the functional ensures that the normalised flow (1.6)
converges to the elliptic equation

(1.9) fuα−1σ−β
n = c,

for some positive constant c as t→ ∞. When α ̸= 1 + nβ, if (1.9) has a uni-

formly convex solution u, then c
1

1+nβ−αu is just a solution of elliptic equation
of fuα−1σ

−β
n = 1 by homogeneity. Note that when α = 1− β, the elliptic

equation becomes fu−βσ
−β
n = 1 which is the equation f̄u−1σ−1

n = 1 with

f̄ = f
1

β and α = 0, β = 1. In order to prove the long time existence of the
smooth solution to the flow (1.6), we need to prove the a priori estimates (C0

estimates, C1 estimates and C2 estimates) by the Evans-Krylov’s regularity
theory for parabolic equations. The key step is to get the C0 estimates and
the uniform upper bound of η(t) in our argument. We conclude the flow 1.6
exists for all times t > 0 and u(·, t) remains positive, smooth and uniformly
convex. By the monotonicity of J (u(·, t)), there is a sequence of ti → ∞
such that u(·, ti) → u∞(·) which solves (1.9), where c = limti→∞ η(ti) is a
positive constant.

In this paper, we will prove the following

Theorem 1.1. Let M0 be a smooth, closed, uniformly convex, and origin-
symmetric hypersurface in Rn+1, n ≥ 2, enclosing the origin. For the cases
1− β < α < 1 + nβ and α = 0, β = 1, respectively, the flow (1.2) has a
unique smooth and uniformly convex solution Mt provided that f is a smooth
positive even function on Sn. After normalisation, the rescaled hypersurfaces
M̃t converge smoothly to a smooth solution of (1.9), which is a minimiser
of the functional (1.7).

Theorem 1.2. Let M0 be a smooth, closed, uniformly convex, and origin-
symmetric hypersurface in Rn+1, n ≥ 2, enclosing the origin. When 1−
nβ − 2β < α < 1− β, suppose f is a smooth positive even function on Sn,
then the flow (1.2) has a unique smooth and uniformly convex solution Mt.

After normalisation, the rescaled hypersurfaces M̃t converge smoothly to a
smooth solution of (1.9), which is a maximiser of the functional (1.7).

Theorem 1.3. Let M0 be a smooth, closed and uniformly convex hyper-
surface in Rn+1, n ≥ 2, enclosing the origin. Suppose α ≥ 1 + nβ, β > 0,
Then for any smooth positive function f on Sn, the flow (1.2) has a unique
smooth and uniformly convex solution Mt. After normalisation, the rescaled
hypersurfaces M̃t converge smoothly to a unique smooth solution of (1.9),
which is a minimiser of the functional (1.7).
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Remark 1.1. In this paper, we focus on the convergence of the normalized
flow (1.6) by discussing the relationship between α and β. When 1 < α < 1 +
nβ, we prove the uniqueness of the solution to the elliptic equation fuασ−β

n =
c in Section 4 Proposition 4.1. Hence the rescaled hypersurfaces M̃t converge
smoothly to a unique smooth solution of (1.9) for α > 1.

By Theorems 1.1-1.3, we obtain the following result for Lp Minkowski
problem.

Corollary 1.4. Let M be a smooth, closed and uniformly convex hypersur-
face in Rn+1, n ≥ 2, enclosing the origin.

(i) When −n− 1 < p < n+ 1, suppose M is origin-symmetric and ϕ is a
smooth positive even function on Sn, then the Lp Minkowski problem
u1−pσn([∇2u+ uI]) = ϕ has an origin-symmetric smooth solution;

(ii) When p ≥ 1 + n and ϕ is a smooth positive function on Sn, then the
Lp Minkowski problem u1−pσn([∇2u+ uI]) = ϕ has a unique smooth
solution. The uniqueness for p = n+ 1 is up to a dilation.

This paper is organised as follows. In Section 2, we recall some prop-
erties of convex hypersurfaces. We give the uniform upper bound on η(t)
to ensure the normalised flow (1.6) being well-defined, and show that the
functional (1.7) is strictly monotone along the flow (1.6) unless u satisfies
the elliptic equation (1.9). In Section 3, we establish the a priori estimates,
which implies the uniqueness and the long time existence of the normalised
flow (1.6). In Section 4, we prove Theorems 1.1-1.3. We also give the proof
of the uniqueness of the elliptic equation (1.9) for the case 1 < α < 1 + nβ

in Proposition 4.1.

2. Preliminary

We recall some basic notations at first. Let M be a smooth, closed, uni-
formly convex hypersurface in Rn+1, enclosing the origin. Assume thatM is
parametrized by the inverse Gauss map X : Sn → M ⊂ Rn+1 and encloses
origin. The radial function r is defined by

X = rξ,
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where ξ = X
|X| is the unit radial vector. The support function u : Sn → R1

of M is defined by

u(x) = sup
y∈M

⟨x, y⟩.

The supermum is attained at a point y = X(x), x is the outer normal of M
at y. Hence

u(x) = ⟨x,X(x)⟩.
Let e1, · · · , en be a smooth local orthonormal frame field on Sn, and ∇ the
covariant derivative on Sn. Denote by gij , g

ij , hij the metric, the inverse of
the metric and the second fundamental form of M, respectively. Then the
second fundamental form of M is given by (see e.g.[43])

hij = ∇i∇ju+ uδij .

By the Gauss-Weingarten formula

∇ix = hjkg
kl∇lX,

we get

δij = ⟨∇ix,∇jx⟩ = hikg
klhjmg

ms⟨∇lX,∇sX⟩ = gklhikhjl.

SinceM is uniformly convex, hij is invertible. Hence the principal curvature
radii are the eigenvalues of the matrix

bij = hikgjk = hij = ∇iju+ uδij ,

By a simple calculation (see [36]), we know

gij = r2δij + rirj ,(2.1)

x =
rξ −∇r√
r2 + |∇r|2

,(2.2)

ℏij =
−rrij + 2rirj + r2δij√

r2 + |∇r|2
,(2.3)

r =
√
u2 + |∇u|2,(2.4)
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u =
r2√

r2 + |∇r|2
.(2.5)

Let Ω be a convex body enclosing the origin, ∂Ω = M. The dual body of Ω
with respect to the origin, denoted by Ω∗, is defined as

Ω∗ = {y ∈ Rn+1|x · y ≤ 1, ∀x ∈ Ω}.(2.6)

Its support function u∗(ξ, t) = 1
r(ξ,t) , and its radial function r∗(x, t) = 1

u(x,t)

(see [28] for details).
Next we introduce some basic concepts about the Minkowski mixed vol-

ume Vn+1(u
1, u2, . . . , un+1), where u1, u2, . . . , un+1 are the support functions

of some convex bodies Ω1,Ω2, . . . ,Ωn+1 respectively. Let σk(A), 1 ≤ k ≤ n,
be the k-th elementary symmetric function defined on the set Mn of n× n

matrices and σk(A1, . . . , Ak) be the complete polarization of σk for Ai ∈ Mn,
i = 1, . . . , k, i.e.

σk(A1, . . . , Ak) =
1

k!

n∑

i1,...,ik=1;j1,...,jk=1

δ
i1,...,ik
j1,...,jk

(A1)i1j1 · · · (Ak)ikjk .

Let Γk be Garding’s cone

Γk = {A ∈ Mn : σi(A) > 0, i = 1, . . . , k}.

For a function u ∈ C2(Sn), we denote by Wu the matrix

Wu := ∇2u+ uI.

In the caseWu is positive definite, the eigenvalue ofWu is the principal radii
of a strictly convex hypersurface with support function u. Let ui ∈ C2(Sn),
i = 1, . . . , n+ 1. Set

Vn+1(u
1, u2, . . . , un+1) :=

∫

Sn

u1σn[Wu2 , . . . ,Wun+1 ]dx,

Vk+1(u
1, u2, . . . , uk+1) := Vn+1(u

1, u2, . . . , uk+1, 1, . . . , 1).

Here, we state the well-known Alexandrov-Fenchel inequality.
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Lemma 2.1. ([26]) Let ui ∈ C2(Sn), i = 1, 2, . . . , k be such that ui > 0
and Wui ∈ Γk for i = 1, 2, . . . , k. Then for any v ∈ C2(Sn), the Alexandrov-
Fenchel inequality holds:

Vk+1(v, u
1, . . . , uk)2 ≥ Vk+1(v, v, u

2, . . . , uk)Vk+1(u
1, u1, u2, . . . , uk),

the equality holds if and only if v = au1 +
∑n+1

l=1 alxl for some constants
a, a1, . . . , an+1.

We consider the flow (1.6). We set

ρ = fuα−1σ
−β
n , σ[f ] = σn[Wf ,Wu, . . . ,Wu].

Then the flow (1.6) can be written as ∂u
∂t

= −ρu+ uη(t), and Zp(u(·, t)) =∫
Sn uσn(fu

α−1σ
−β
n )pdx =

∫
Sn uσnρ

pdx, where p ∈ R1, η(t) = Z1

|Sn| , and

Z0(u(·, t)) =
∫
Sn uσndx = |Sn|. By a similar calculation in [3], we have

d

dt
Zp(u(·, t)) =

∫

Sn

(−ρu+ u
Z1

|Sn|)σnρ
pdx+

∫

Sn

nuσ[−ρu+ u
Z1

|Sn| ]ρ
pdx

+

∫

Sn

pρp−1uσn

(
(α− 1)fuα−2(−ρu+ u

Z1

|Sn|)σ
−β
n

− nβfuα−1σ−β−1
n σ[−ρu+ u

Z1

|Sn| ]
)
dx

= −Z1+p +
Z1Zp

|Sn| − n

∫

Sn

uσ[ρu]ρpdx+ n
Z1Zp

|Sn|

− p(α− 1)Z1+p + p(α− 1)
Z1Zp

|Sn|

+ nβp

∫

Sn

uσ[ρu]ρpdx− nβp
Z1Zp

|Sn|

= −
(
1 + (α− 1)p

)(
Z1+p −

Z1Zp

|Sn|
)

− n(1− βp)
(∫

Sn

uρpσ[ρu]dx− Z1Zp

|Sn|
)
.

Since hij satisfies Codazzi equations, we have
∑

i∇iσ
ij = 0 ([2], [3]), and

∫

Sn

uρpσn[ρu, u, . . . , u]dx =

∫

Sn

uρpσ[ρu]dµ

=

∫

Sn

uρpσij
(
∇i∇j(uρ) + δijuρ

)
dx
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=

∫

Sn

uρpσij(hijρ+ 2∇iu∇jρ+ u∇i∇jρ)dx

= Z1+p − p

∫

Sn

u2ρp−1σij∇iρ∇jρdx

= Z1+p −
4p

(1 + p)2

∫

Sn

u2σij∇i(ρ
1+p

2 )∇j(ρ
1+p

2 )dx.

By the Alexandrov-Fenchel inequality in Lemma 2.1, we have

(∫

Sn

uψσn[u, u, . . . , u]dx
)2

(2.7)

≥
∫

Sn

uσn[u, u, . . . , u]dx

∫

Sn

uψσn[uψ, u, . . . , u]dx

= |Sn|
(∫

Sn

uσnψ
2dx−

∫

Sn

u2σij∇iψ∇jψdx
)
,

Set ψ = ρ
1+p

2 in the Alexandrov-Fenchel inequality (2.1), we obtain

∫

Sn

u2σij∇iρ
1+p

2 ∇jρ
1+p

2 dµ−Z1+p +
Z2

1+p

2

|Sn| ≥ 0.

Thus

d

dt
Zp(u(·, t)) = −[1 + (α− 1)p+ n(1− pβ)]

(
Zp+1 −

Z1Zp

|Sn|
)

+
4pn(1− pβ)

(1 + p)2

(
Z1+p −

Z2
1+p

2

|Sn|
)

+
4pn(1− pβ)

(1 + p)2

(∫

Sn

u2σij∇iρ
1+p

2 ∇jρ
1+p

2 dx−Z1+p +
Z2

1+p

2

|Sn|
)
.

Lemma 2.2. η(t) has a uniform upper bound for the cases α ≥ 0, β > 1;
α > 1− nβ − 2β, α ̸= 1− β, 0 < β ≤ 1 and α = 0, β = 1, respectively.

Proof. Let p = 1, we have

d

dt
Z1 = −α

(
Z2 −

Z2
1

|Sn|
)
+ n(1− β)

( ∫

Sn

u2σij∇iρ∇jρdx−Z2 +
Z2
1

|Sn|
)

where the Hölder inequality shows that Z2 ≥ Z2
1

|Sn| .

Case (i): α ≥ 0, β > 1, we obtain d
dt
η =

d

dt
Z1

|Sn| ≤ 0, then η(t) ≤ C, where
C depending on the initial hypersuface.
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Case (ii): α > 1− nβ − 2β, α ̸= 1− β, 0 < β ≤ 1, we have Z1(u) ≤(
Z0(u)

)1−β(
Z 1

β

(u)
)β

by the Hölder inequality. Hence we only need to prove

that Z 1

β

(u) ≤ C, for some positive constant C. Let p = 1
β
, we have

d

dt
Z 1

β

(u) =
1− α− β

β

(
Z1+ 1

β

−
Z1Z 1

β

|Sn|
)
.

For α > 1− β, we have d
dt
Z 1

β

(u) ≤ 0 since Z1+ 1

β

≥
Z1Z 1

β

|Sn| by the Hölder in-

equality. Then Z 1

β

(u) ≤ C, and η(t) ≤ C, where C depends on the initial

hypersuface. For 1− nβ − 2β < α < 1− β, d
dt
Z 1

β

(u) ≥ 0 since Z1+ 1

β

≥
Z1Z 1

β

|Sn|

by the Hölder inequality. Hence

Z 1

β

(u0) ≤ Z 1

β

(u) =

∫

Sn

f
1

β u
α−1+β

β dx ≤ (max
Sn

f)
1

β

∫

Sn

u
α−1+β

β dx,

that is

(2.8) c = Z 1

β

(u0)(max
Sn

f)−
1

β ≤
∫

Sn

u
α−1+β

β dx.

In this part, we shall use the Blaschke-Santaló inequality

Vol(Ω)Vol(Ω∗) ≤ Vol(B1)
2,

where Ω is the convex body enclosing the origin, Ω∗ is the polar body of
Ω, Vol(Ω) =

∫
Sn r

n+1dξ, Vol(Ω∗) =
∫
Sn r

∗n+1dx =
∫
Sn(

1
u
)n+1dx, the equal-

ity holds if and only if Ω is a ellipsoid.
Set q = α−1+β

β
, −n− 1 < q < 0, we refer to the result of Chou-Wang[16]:

If origin-symmetric convex body Ω satisfies c ≤
∫
Sn u

qdx, q < 0, Vol(Ω) =∫
Sn uσndx = |Sn|, then the diameter of convex body Ω enclosed by M,
d(Ω) ≤ C, for some positive C, where d(Ω) = 2maxSn u for the origin-
symmetric convex body Ω. We give the same argument as follows. Suppose
there is a sequence origin-symmetric convex body Ωtj satisfying (2.8), but

the diameter of Ωtj , dj → ∞ as tj → T . Let
Etj

n+1 be the origin-symmetric

John ellipsoid associated with Ωtj , as is well known, see [42],
Etj

n+1 ⊂ Ωtj ⊂
Etj ,

uEj

n+1 < uj < uEj
. we set Sn = S1 ∪ S2 ∪ S3, where

S1 = Sn ∩ {uEj
< δ}, S2 = Sn ∩ {δ ≤ uEj

<
1

δ
}, S3 = Sn ∩ {uEj

≥ 1

δ
}.
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where δ ∈ (0, 14) is a fixed constant. Then

c ≤
∫

Sn

u
q
jdx <

∫

Sn

(
uEj

n+ 1
)qdx.

Suppose uj attains the maximum at x0, where x0 ∈ Sn, that is, uj(x0) =
maxSn uj , and maxSn uj = maxSn rj by (2.4). Since uj(y) ≥ 1

2dj |x0 · y| for
any y ∈ Sn, we obtain |S1|, |S2| → 0 as dj → ∞.

As dj → ∞, for any fixed δ, we have

∫

S1

(
uEj

n+ 1
)qdx ≤ (

1

n+ 1
)q
(∫

Sn

1

un+1
Ej

) −q

n+1 |S1|
q+n+1

n+1 ≤ C1|S1|
q+n+1

n+1 → 0,

by the Blaschke-Santaló inequality. Noting |S2| → 0 as dj → ∞, and

∫

S3

(
uEj

n+ 1
)qdx ≤

∫

S3

( 1(
n+ 1)δ

)q
dx =

( 1

(n+ 1)δ

)q|S3| ≤ C2δ
−q.

Hence, we have

c ≤ ◦(1) + C3δ
−q.

for any δ ∈ (0, 14). Let δ → 0, we reach a contradiction. It implies
maxSnu(·, t) ≤ C, for some positive constant C.

Next we derive the lower bound for u(·, t). It is well known that

∫

Sn

u(x)σndx =

∫

Sn

rn+1(ξ)dξ = Vol(Ωt),

where Ωt denotes the convex body enclosed by Mt. By (2.4), it is easy
to see rmax(t) = umax(t), rmin(t) = umin(t). We may assume that rmax(t) =
maxSn r(e1, t) and rmin(t) = r(en+1, t) by rotating the coordinates. Since Ωt

is origin-symmetric, we find that Ωt is contained in a cube

Qt = {z ∈ Rn+1 : −rmax(t) ≤ zi ≤ rmax(t)

for 1 ≤ i ≤ n,−rmin(t) ≤ zn+1 ≤ rmin(t)}.

Therefore

|Sn| = Vol(Ωt) ≤ 2n+1rnmax(t)rmin(t)

Using rmax(t) ≤ C, we get rmin(t) ≥ 1
C

for some positive constant C, then

Z 1

β

=
∫
Sn f

1

β u
α−1+β

β dx ≤ (maxSn f)
1

β u
α−1+β

β

min |Sn| ≤ C. Hence Z1 ≤ C, for

some positive constant C.



✐

✐

“3-Sheng” — 2023/4/30 — 23:18 — page 1524 — #14
✐

✐

✐

✐

✐

✐

1524 W. Sheng and C. Yi

Case (iii): α = 0, β = 1, we obtain η(t) =
∫
Sn fdx

|Sn| = c, where c is a posi-
tive constant. □

In Case (ii) of the proof, we have obtained the C0 estimates of the
solutions to the equation (1.6): 1

C
≤ u ≤ C for the case 1− nβ − 2β < α <

1− β for some positive constant C.
When α > 1 + nβ, β > 0, we also need the uniform lower bound on η(t)

to obtain the priori estimate in the next section.

Lemma 2.3. Suppose α > 1 + nβ, β > 0, η(t) is uniformly bounded.

Proof. Since α > 1 + nβ, β > 0, we set θ ≤ 1+n
1+nβ−α

< 0, α > 1 + nβ, we
have

d

dt
Zθ(u) = −[1 + (α− 1)θ + n(1− θβ)]

(
Zθ+1 −

Z1Zθ

|Sn|
)

+
4θn(1− θβ)

(1 + θ)2

(
Z1+θ −

Z2
1+θ

2

|Sn|
)

+
4θn(1− θβ)

(1 + θ)2

(∫

Sn

u2σij∇iρ
1+θ

2 ∇jρ
1+θ

2 dx−Z1+θ +
Z2

1+θ

2

|Sn|
)

≤ 0

since θ ≤ 1+n
1+nβ−α

< 0, and by the Hölder inequality, we get Z1+θ ≤ Z1Zθ

|Sn|

and Z1+θ ≥
Z2

1+θ
2

|Sn| . Hence, Zθ(u) ≤ Zθ(u0). By the Hölder inequality again,
we have

|Sn| =
∫

Sn

uσndx

≤
( ∫

Sn

fuασ1−β
n dx

) −θ

1−θ

( ∫

Sn

uσn(fu
α−1σ−β

n )θdx
) 1

1−θ

= Z
−θ

1−θ

1 Z
1

1−θ

θ .

It is easy to see, Z1 ≥ C, by case(i) and case(ii) in Lemma 2.2, we get the
uniform bound on η(t) for α > 1 + nβ, β > 0. □

Lemma 2.4. The functional (1.7) is non-increasing along the normalised
flow (1.6) for the case α > 1− β, β > 0, and the equality holds if and only
if Mt satisfies the elliptic equation (1.9).
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Proof. From the above calculation process, when p = 1
β
, we obtain along the

normalised flow (1.6)

d

dt
J (u) =

d

dt
Z 1

β

(u) =
1− α− β

β

(
Z1+ 1

β

−
Z1Z 1

β

|Sn|
)
≤ 0.

The last inequality holds from the Hölder inequality, and the equality holds
if and only if fuα−1σ

−β
n = c(t) for some function c(t). Indeed, by (1.5), if

fuα−1σ
−β
n = c(t) occurs, then

η(t) =

∫
Sn fu

ασ
1−β
n dx

|Sn| =

∫
Sn uσnc(t)dx

|Sn| = c(t).

□

Lemma 2.5. The functional (1.7) is non-decreasing along the normalised
flow (1.6) for the case 1− nβ − 2β < α < 1− β, and the equality holds if
and only if Mt satisfies the elliptic equation (1.9).

Proof. From the above calculation, when p = 1
β
, we obtain along the nor-

malised flow (1.6)

d

dt
J (u) =

d

dt
Z 1

β

(u) =
1− α− β

β

(
Z1+ 1

β

−
Z1Z 1

β

|Sn|
)
≥ 0.

The last inequality holds from the Hölder inequality, and the equality holds
if and only if fuα−1σ

−β
n = c(t) for some function c(t). In the same way as in

the proof of Lemma 2.4, we can show η(t) = c(t). □

For α = 0, β = 1, it it easy to see, η(t) =
∫
Sn fdx

|Sn| = c, where c is a positive
constant.

Lemma 2.6. The functional (1.7) is non-increasing along the normalised
flow (1.6) for α = 0, β = 1, and the equality holds if and only if Mt satisfies
the elliptic equation (1.9).

Proof.

d

dt
J (u) =

∫
Sn fu

−1utdx−
∫
Sn fdx∫

Sn uσndx

∫
Sn utσndx

∫
Sn fdx

=

∫
Sn ut

(
fu−1 − ησn

)
dx∫

Sn fdx
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=
−
∫
Sn u

−1σn
(
fσ−1

n − ηu
)2
dx∫

Sn fdx

≤ 0

The equality holds if and only if fu−1σ−1
n = c where c =

∫
Sn fdx

|Sn| is a positive
constant. □

3. A priori estimates

We firstly show the uniformly lower and upper bound of the solution to (1.6).

Lemma 3.1. Let Mt, t ∈ [0, T ), be an origin-symmetric solution to (1.6).
For the following cases: 1− nβ − 2β < α < 1 + nβ, α ̸= 1− β and α = 0,
β = 1, there is a positive constant C depending only on α, β, f and initial
hypersurface, such that

1

C
≤ u(·, t) ≤ C.

Proof. Let rmin(t) = minSnr(·, t) and rmax(t) = maxSn r(·, t). We may as-

sume that rmax(t) = maxSn r(e1, t) by rotating the coordinates. Since M̃t is

origin-symmetric, the points ±rmax(t)e1 ∈ M̃t. Hence

u(x, t) = sup{p · x : p ∈ M̃t} ≥ rmax|x · e1|, ∀x ∈ Sn.

For the case 1− β < α < 1 + nβ, we obtain

J (u) =

∫

Sn

f
1

β u
α−1+β

β dx ≥ r
α−1+β

β

max (t)

∫

Sn

f
1

β |x · e1|
α−1+β

β dx

≥ C0(min
Sn

f)
1

β r
α−1+β

β

max (t),

where α− 1 + β > 0. By Lemma 2.4, d
dt
J (u) ≤ 0, we conclude

J (u0) ≥ J (u(t)) ≥ C0(min
Sn

f)
1

β r
α−1+β

β

max (t).

This implies rmax ≤ C for some positive constant depending on α, β, f and
initial hypersurface.

For the case 1− nβ − 2β < α < 1− β, the uniform bounds of u(·, t) is
obtained from the proof case (ii) in Lemma 2.2.
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Now we consider the case α = 0, β = 1. For J (u) =
∫
Sn f log udx∫

Sn fdx
−

1
n+1 log

∫
Sn uσndx, we have proved d

dt
J (u) ≤ 0. Since

∫

Sn

f(x) log u(x, t)dx ≥
( ∫

Sn

f(x)dx
)
log rmax(t) +

∫

Sn

f(x) log |x · e1|dx

≥
( ∫

Sn

f(x)dx
)
log rmax(t)− Cmax

Sn
f,

we have J (u0) ≥ J (u(t)) ≥ log rmax(t)− C maxSn f
|Sn|minSn f

− 1
n+1 log |Sn|, which

implies rmax ≤ C. Since umax(t) = rmax(t), we therefore get the uniformly
upper bound of u(·, t). For origin-symmetric convex body Ωt, by rotating
the coordinates and constructing the cube Qt just as the same way of Case
(ii) in the proof of Lemma 2.2, we have

|Sn| = Vol(Ωt) ≤ 2n+1rnmax(t)rmin(t).

Therefore we get the uniform lower bound of u(·, t) since umin(t) = rmin(t).
Hence we complete the proof. □

Lemma 3.2. Let Mt, t ∈ [0, T ), be a solution to (1.6). If α ≥ nβ + 1 and
β > 0, there is a positive constant C depending only on α, β and the initial
hypersurface such that

1

C
≤ u(., t) ≤ C.

Proof. For the case α > nβ + 1, let umin(t) = minx∈Sn u(., t), we have

dumin

dt
≥ −umin(fu

α−nβ−1
min − η).

Hence, umin ≥ min{( min η
maxSn f

)
1

α−nβ−1 , umin(0)}.
Similarly, we have umax ≤ max{( max η

minSn f
)

1

α−nβ−1 , umax(0)}, where we have
used the uniform upper and lower bounds of η(t) for α > nβ + 1, β ≥ 1 in
Lemma 2.3.

Next we study the case α = nβ + 1 by the following three steps.
Step 1: Consider the function

Q = fuα−1σ−β
n .

Since

(fuασ−β
n )ij = Qiju+Qiuj +Qjui +Quij ,
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we get

∂tQ = −(α− 1)f2u2α−2σ−2β
n + η(α− 1− nβ)fuα−1σ−β

n

+ βf2u2α−1σ−2β−1
n

n∑

i

σiin + βfuα−1σ−β−1
n σijn (fu

ασ−β
n )ij

= −(α− 1− nβ)Q2 + η(α− 1− nβ)Q+ βfuασ−β−1
n σijnQij

+ 2βfuα−1σ−β−1
n σijnQiuj

= βfuασ−β−1
n σijnQij + 2βfuα−1σ−β−1

n σijnQiuj

It is easy to see

(3.1) C−1 ≤ Q ≤ C,

where C depends only on the initial hypersurface.
Step 2: Let w = log u. Then

hij = uij + uδij = u(wij + wiwj + δij)

We may prove |∇w| < A, for some positive constant A > 0 along the flow.
Otherwise there is a point (xt0 , t0) where t0 is the first time, such that
|∇u|2 −Au2 = 0, A > 0 is a constant to be determined later. Hence at
the point (xt0 , t0), ∇i|∇w|2 = 0 and ∂t|∇w|2 ≥ 0. Choosing an orthonor-
mal frame and rotating the the coordinates, such that w1 = |∇w|, wi = 0
for i = 2, · · · , n, and (wij) is diagonal at (xt0 , t0). We then get

(aij) := (wij + wiwj + δij) = diag(1 + w2
1, 1 + w22, · · · , 1 + wnn),

and

0 ≤ ∂t(|∇u|2 −Au2)

= −2ui(fu
α)iσ

−β
n + 2βfuασ−β−1

n σkln ∇ihklui + 2Afuα+1σ−β
n

≤ −2ui(fu
α)iσ

−β
n + 4nβfuα+1σ−β

n − 2βfuα+2σ−β−1
n

n∑

i

σiin

− 2βfuασ−β−1
n σijn hlihlj + 2A(nβ + 1)fuα+1σ−β

n

− 2Aβfuα+2σ−β−1
n

n∑

i

σiin + 2Aβfuασ−β−1
n σijn uiuj

+ 2βfuασ−β−1
n σijn uiuj .
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Substituting ui = uwi and w
2
1 = A into the above inequality, denoting that

σn = σn(aij), we have

0 ≤ A(1 + nβ − α) +
√
A
|∇f |
f

+ 2nβ − (A+ 1)2β
σ11n
σn

− (A+ 1)β

∑n
i σ

ii
n

σn
+A(A+ 1)β

σ11n
σn

≤
√
A
|∇f |
f

+ 2nβ − (A+ 1)β

∑n
i σ

ii
n

σn
.

Then (A+ 1)C0σ
− 1

n
n ≤ (A+ 1)β

∑
n

i
σii
n

σn
≤

√
A

|∇f |
f

+ 2nβ, since
∑

n

i
σii
n

σn
≥

C(n)σ
− 1

n
n by the classic Newton-MacLaurin inequality, and σ

− 1

n
n (aij) =

uσ
− 1

n
n [Wu] is bounded by (3.1). Let A be large enough, we then get a con-

tradiction. Hence we obtain

(3.2) |∇ log u| ≤ C.

Step 3: For the normalised flow (1.6),
∫
Sn uσndx = |Sn| is constant. By

Step 1, there is a positive constant C, such that C−1 ≤ unβσ
−β
n ≤ C. Hence

we have

C
− 1

β un+1
min (t) ≤

∫
Sn uσndx

|Sn| = 1 ≤ C
1

β un+1
max(t)

We therefore obtain the uniform upper and lower bounds on u from (3.2). □

Since 1
C
≤ u ≤ C, for some positive constant C, by the convexity of the

hypersurface (2.4), it is easy to get the following gradient estimate.

Corollary 3.3. Let u(·, t) be a solution to the flow (1.6). Then we have the
gradient estimate

|∇u(·, t)| ≤ C,

where the positive constant C depends only on α, β, f and the initial hyper-
surface.

Similarly we have the estimates for the radial function r.
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Lemma 3.4. Let Mt be the solution to the flow (1.6). Then we have the
estimate

min
Sn×(0,T ]

u ≤ r(·, t) ≤ max
Sn×(0,T ]

u,

and

|∇r(·, t)| ≤ C,

where C > 0 depends only on α, β, f and the initial hypersurface.

Proof. By (2.4) and (2.5), we infer that

min
Sn

u(·, t) = min
Sn

r(·, t), max
Sn

u(·, t) = max
Sn

r(·, t) and |∇r| ≤ r2

u
.

Therefore, the two estimates follow from Lemmata 3.1-3.2 directly. □

Lemma 3.5. Let X(·, t) be a uniformly convex solution to the normalised
flow (1.6) which encloses the origin for t ∈ [0, T ). Then there is a positive
constant C depending only on f , α, β and the initial hypersurface, such that

σn([wu]) ≥ C.

Proof. Consider the following auxiliary function

G =
−ut + ηu

u− ϵ
=
fuασ

−β
n

u− ϵ
,

where ϵ = 1
2 minSn×[0,T ) u. Suppose that Gmax(t) = maxx∈Sn G(x, t) =

G(xt, t), at xt, we then have

0 = Gi =
−uti + ηui

u− ϵ
− (−ut + ηu)ui

(u− ϵ)2
,(3.3)

0≥Gij =
−utij + ηuij

u− ϵ
− (−ut + ηu)uij

(u− ϵ)2
,(3.4)

and

∂tG =
−utt + ηtu+ ηut

u− ϵ
− (−ut + ηu)ut

(u− ϵ)2

=
αfuα−1utσ

−β
n − βfuασ

−β−1
n σ

ij
n (utij + utδij)

u− ϵ
−G

ut

u− ϵ

≤ αGutu
−1 +

βfuασ
−β−1
n σ

ij
n (Guij − ηuij − utδij)

u− ϵ
−G

ut

u− ϵ
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≤ αG
(
η −G

u− ϵ

u

)
+ (G− η)

βfuασ
−β−1
n σ

ij
n (hij − uδij)

u− ϵ

+ βfuασ−β−1
n

∑

i

σiin (G− ηu

u− ϵ
) +G(G− ηu

u− ϵ
)

= (nβ + 1− α+
ϵα

u
)G2 + η(α− nβ − u

u− ϵ
)G− ϵβG2

∑
i σ

ii
n

σn
.

Without loss of generality, we assume G≫ 1.
For the case α ≥ 0, β > 1; α > 1− nβ − 2β, α ̸= 1− β, 0 < β ≤ 1 and

α = 0, β = 1, we have η(t) ≤ C for some positive constant C by Lemma 2.2.

Applying G < G2 and the inequality
∑

i
σii
n

σn
≥ Cσ

− 1

n
n , we get

∂tG ≤
∣∣∣
(
nβ + 1− α+

ϵα

u

)∣∣∣G2 + η

∣∣∣∣
(
α− nβ − u

u− ϵ

)∣∣∣∣G
2 − ϵβG2

∑
i σ

ii
n

σn

≤ C1G
2 − C2G

2G
1

βn .

For the case α < 0, β > 1, we obtain η(t) =
∫
Sn fuασ1−β

n dx

|Sn| ≤ C0G(xt, t)
β−1

β

since G = fuασ−β
n

u−ϵ
and u is uniformly bounded. Applying G

β−1

β < G at xt

and the inequality
∑

i
σii
n

σn
≥ Cσ

− 1

n
n , we get

∂tG ≤
∣∣∣
(
nβ + 1− α+

ϵα

u

)∣∣∣G2 +

∣∣∣∣
(
α− nβ − u

u− ϵ

)∣∣∣∣G
2 − ϵβG2

∑
i σ

ii
n

σn

≤ C1G
2 − C2G

2G
1

βn .

It is easy to see that there exists a positive constant C3 , s.t. G ≤ C3, where
C3 is a constant depending only on f , α, β and the initial hypersurface.
Hence we obtain σn([wu]) ≥ C, where C is a constant depending only on f ,
α, β and the initial hypersurface. □

Hence we get η(t) ≤ C for the case α > 1− nβ − 2β, α ̸= 1− β, β > 0 and
α = 0, β = 1 by Lemma 2.2 and Lemma 3.5. Next we prove the principal
curvature radii of Mt is bounded. We study an expanding flow of Gauss
curvature for the dual hypersurface of Mt. The method is inspired by [36].
Similar idea was previously used by Ivaki in [31].

Under the evolution equation (1.6), the radial function of the hypersur-
face M evolves as

(3.5)





∂tr(ξ, t) = −f
√

r2+|∇r|2

r
uαKβ + ηr

r(., 0) = r0
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where K is the Gauss-Kronecker curvature of M.
Let Ω be a convex body enclosing the origin, ∂Ω = M. The dual body of

Ω with respect to the origin, denoted by Ω∗. Its support function u∗(ξ, t) =
1

r(ξ,t) , hence ℏ
∗
ij = ∇ij

1
r
+ 1

r
δij =

−rrij+2rirj+r2δij
r3

and

(3.6) K =
det ℏij
det gij

,
1

σ∗n
=

det eij
det ℏ∗ij

,
det eij
det gij

=
1

r2n−2(r2 + |∇r|2) .

Hence by (2.5) and (3.6), we obtain the following equality

u(x, t)n+2u∗(ξ, t)n+2

K(p)K∗(p∗)
= 1(3.7)

where p ∈ Mt, p
∗ satisfies the polar relation p · p∗ = 1 and p∗ ∈ M∗

t , K
∗ is

the Gauss curvature at p∗. x, ξ are the unit outer normals of Mt and M∗
t

respectively. Therefore, by the normalised flow (3.5) and the relation (3.7),
we obtain the flow for the support function u∗

∂tu
∗(ξ, t) = ∂t

1

r(ξ, t)

= f(x)(u∗(ξ, t))1+βn+2β(r∗(x, t))1−α−2β−βn(K∗)−β − ηu∗(ξ, t)

= f(x)(u∗(ξ, t))1+βn+2β(r∗(x, t))1−α−2β−βn(σ∗n[wu∗ ])β − ηu∗(ξ, t).

where r∗(x, t) =
√

(u∗)2 + |∇u∗|2(ξ, t), σ∗n = σn[Wu∗ ] and Wu∗ = ∇2u∗ +
uI.
By Lemma 3.4, 1

C
≤ u∗ ≤ C and |∇u∗| ≤ C for some C only depending on

the initial hypersurface.

Lemma 3.6. Let X(·, t) be the solution to the normalised flow (1.6) which
encloses the origin. Then there is a constant C depending only on the initial
hypersurface and f , α, β, such that the principal curvature radii of X(·, t)
are bounded from above and below

C−1 ≤ λi(., t) ≤ C

for all t ∈ [0, T ) and i = 1, ..., n.

Proof. Let h∗ij = u∗ij + u∗δij , and h
ij
∗ be the inverse matrix of h∗ij . Consider

the auxiliary function

w(ξ, t, τ) = log hττ∗ − ε log u∗ +
M

2
(u∗2 + |∇u∗|2),
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where τ is a unit vector in the tangential space of Sn, while ϵ and M are
large constants to be decided. Assume w achieve its maximum at (ξ0, t0)
in the direction τ = (1, 0, · · · , 0). By a coordinate rotation, h∗ij and hij∗ are
diagonal at this point. Then at the point (ξ0, t0).

w = log h11∗ − ε log u∗ +
M

2
(u∗2 + |∇u∗|2),

0 = ∇iw = −h11∗ ∇ih
∗
11 − ε

∇iu
∗

u∗
+Mu∗u∗i +M∇ku

∗∇kiu
∗,(3.8)

0 ≥ ∇ijw = −h11∗ ∇ijh
∗
11 + 2h11∗ h

kk
∗ ∇1h

∗
ik∇1h

∗
kj − (h11∗ )2∇ih

∗
11∇jh

∗
11(3.9)

− ε
∇iju

∗

u∗
+ ε

∇iu
∗∇ju

∗

u∗2
+Mu∗iu

∗
j +Mu∗u∗ij

+M∇kiu
∗∇kju

∗ +M∇ku
∗∇kiju

∗

Set Φ = f(u∗)1+βn+2β(r∗)1−α−2β−βn, we have

0 ≤ ∂tw = −h11∗ ∂th∗11 − ε
∂tu

∗

u∗
+Mu∗∇tu

∗ +M∇ku
∗∇ktu

∗

= −h11∗
(
Φ11σ

∗
n
β + 2βσ∗n

β−1∇1Φ∇1σ
∗
n + β(β − 1)Φσ∗n

β−2(∇1σ
∗
n)

2

+ βΦσ∗n
β−1∇11σ

∗
n − ηh∗11 +Φσ∗n

β
)
− ε

Φσ∗n
β − ηu∗

u∗

+Mu∗(Φσ∗n
β − ηu∗) +Mu∗k(Φσ

∗
n
β − ηu∗)k

= −h11∗
(
Φ11σ

∗
n
β + 2βσ∗n

β∇1Φh
ij
∗ ∇1h

∗
ij + β(β − 1)Φσ∗n

β(hij∗ ∇1h
∗
ij)

2

+ βΦσ∗n
β
(
hij∗ ∇ijh

∗
11 + n− h∗11

∑

i

hii∗ − hii∗ h
jj
∗ (∇1h

∗
ij)

2 + (hij∗ ∇1h
∗
ij)

2
)

− ηh∗11 +Φσ∗n
β
)
− ε

Φσ∗n
β − ηu∗

u∗
+Mu∗(Φσ∗n

β − ηu∗)

+Mu∗k(Φσ
∗
n
β − ηu∗)k

By (3.9) and multiplying Φ−1σ∗n
−β the two sides of the above inequality,we

obtain

0 ≤ −h11∗
∇11Φ

Φ
+ h11∗

(
(
∇1Φ

Φ
)2 + β2(hij∗ ∇1h

∗
ij)

2
)
− h11∗ β

2(hij∗ ∇1h
∗
ij)

2

+ β
(
− 2h11∗ h

ij
∗ h

kk
∗ ∇1h

∗
ik∇1h

∗
jk + (h11∗ )2hij∗ ∇ih

∗
11∇jh

∗
11 + nεu∗−1

− ε
∑

i

hii∗ − εhij∗ u
∗
iu

∗
ju

∗−2 −Mhij∗ h
∗
ikh

∗
jk + nMu∗ −Mhij∗ u

∗
k∇kh

∗
ij

)

− h11∗ (1 + nβ) + β
∑

i

hii∗ + βh11∗ h
ii
∗ h

jj
∗ (∇1h

∗
ij)

2 +Mu∗ +Mu∗k
∇kΦ

Φ
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+ βMhij∗ u
∗
k∇kh

∗
ij − ηM

u∗2 + |∇u∗|2
Φσ∗n

β
− εu∗−1 + η

ε+ 1

Φσ∗n
β

≤ −2βh11∗ h
ij
∗ h

kk
∗ ∇1h

∗
ik∇1h

∗
kj + β(h11∗ )2hij∗ ∇ih

∗
11∇jh

∗
11

+ βh11∗ h
ii
∗ h

jj
∗ (∇1h

∗
ij)

2 + β
nε

u∗
− βε

∑
hii∗ + β

∑

i

hii∗ +Mu∗

+ h11∗ (
∇1Φ

Φ
)2 +Mβnu∗ − h11∗

∇1∇1Φ

Φ
+Mu∗k

∇kΦ

Φ

− η
Mr∗2 − ε− 1

Φσ∗n
β

≤ C0 − β(ε− 1)h11∗ + h11∗ (
∇1Φ

Φ
)2 − h11∗

∇1∇1Φ

Φ
+Mu∗k

∇kΦ

Φ

− η
Mr∗2 − ε− 1

Φσ∗n
β

,

where we use the Cauchy inequality 2β∇1Φ
Φ h

ij
∗ ∇1h

∗
ij ≤ (∇1Φ

Φ )2 +

β2(hij∗ ∇1h
∗
ij)

2 for the second term.

Since ∇kΦ = ∇k

(
f(u∗)1+βn+2β(r∗)1−α−2β−βn

)
, and it is direct to calculate

r∗k =
u∗u∗k +

∑
i u

∗
iu

∗
ik

r∗
=
u∗kh

∗
kk

r∗

r∗kl =
u∗u∗kl + u∗ku

∗
l +

∑
i u

∗
iu

∗
ikl +

∑
i u

∗
iku

∗
il

r∗
− u∗ku

∗
l h

∗
kkh

∗
ll

(r∗)3

hence, by (3.8), we obtain

h11∗ (
∇1Φ

Φ
)2 − h11∗

∇1∇1Φ

Φ
+Mu∗k

∇kΦ

Φ

≤ Ch11∗ + C + C
1

h11∗
+ Ch11∗ (u∗11)

2 + CM

+ Ch11∗ u
∗
ku

∗
k11 + CMΣku

∗
ku

∗
kh

∗
kk

≤ Ch11∗ + C
1

h11∗
+ C + Cε+ CM

Choosing M ≥ ε+1
min r∗2 , the inequality becomes

0 ≤ −β(ε− 1)h11∗ + Ch11∗ + C
1

h11∗
+ C + Cε+ CM

≤ −βεh11∗ + Ch11∗ + Cε+ CM
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By choosing ε large to get

0 ≤ C1 − C2h
11
∗ .

That is, h11∗ ≤ C3, where C3 is a constant depending only on f , α, β and
the initial hypersurface. Hence the Gauss curvature of M∗

t , K
∗ ≤ C. From

(3.7), we know σn = λ1 · · ·λn ≤ C1. Therefore we get the C
2 estimate C−1 ≤

λi ≤ C, i = 1, . . . , n by Lemma 3.5 for the solutions to the normalised flow
(1.6). □

4. Proof of Theorems 1.1-1.3

Proof of Theorems 1.1-1.2. From the estimates obtained in Lemma 3.6, we
know that the equations (1.6) are uniformly parabolic. By the C0 estimates
Lemmas 3.1 and Lemmas 3.2, the gradient estimates (Lemma 3.3) the C2

estimates Lammas 3.6, and the Krylov’s theory [34], we get the Hölder
continuity of ∇2u and ut. Then we can get higher order derivation estimates
by the regularity theory of the uniformly parabolic equations. Therefore we
get the long time existence and the uniqueness of the smooth solution to the
normalized flows (1.6). Recall the Lemma 2.4, Lemma 2.5 and Lemma 2.6,
we complete the proof. □

Proof of Theorem 1.3. For the case α ≥ 1 + nβ, β > 0. To complete the
proof of Theorem 1.3, it suffices to show that the solution of (1.9) is unique.

Case 1: α > 1 + nβ. Let u1 ,u2 be two smooth solutions of (1.9), i.e.

fuα−1
1 σ−β

n (∇2u1 + u1I) = c, fuα−1
2 σ−β

n (∇2u2 + u2I) = c.

Suppose M = u1

u2
attains its maximum at X0 ∈ Sn, then at x0,

0 = ∇logM =
∇u1
u1

− ∇u2
u2

,

0 ≥ ∇2logM =
∇2u1

u1
− ∇2u2

u2
.

Hence at x0, we get

1 =
uα−1
1 σ

−β
n (∇2u1 + u1I)

uα−1
2 σ

−β
n (∇2u2 + u2I)

=
u
α−1−nβ
1 σ

−β
n (∇

2u1

u1
+ I)

u
α−1−nβ
2 σ

−β
n (∇

2u2

u2
+ I)

≥Mα−1−nβ .

Since α > 1 + nβ, M(x0) = maxSn M ≤ 1. Similarly one can show
minSn M ≥ 1. Therefore u1 ≡ u2.
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Case 2: α = 1 + nβ, the elliptic equation (1.9) can be written as

f
1

β unσ−1
n = c, the uniqueness of the solution has been proved in [39], and

Chou-Wang [16] also provide a method to get the solutions for equation dif-
fer only by a dilation. We omit the proof here. Hence we complete the proof
of Theorem 1.3. □

Proposition 4.1. For 1 < α < 1 + nβ, the solution of (1.9) is unique.

Proof. Let u1 ,u2 be two smooth solutions of (1.9), i.e.

fuα−1
1 σ−β

n (∇2u1 + u1I) = c, fuα−1
2 σ−β

n (∇2u2 + u2I) = c.

Using the same argument in [23], by the Alexandrov-Fenchel inequality
in Lemma 2.1, we have

∫

Sn

u1u
α−1

β

2 (cf−1)−
1

β dx

=

∫

Sn

u1σn(∇2u2 + u2I)dx = Vn+1(u1, u2, · · · , u2)

≥ Vn+1(u2, u2, · · · , u2)
n

n+1Vn+1(u1, u1, · · · , u1)
1

n+1

=
(∫

Sn

(cf−1)−
1

β u
α−1+β

β

2 dx
) n

n+1

(∫

Sn

(cf−1)−
1

β u
α−1+β

β

1 dx
) 1

n+1

.

On the other hand, Hölder inequality gives
∫

Sn

u1u
α−1

β

2 (cf−1)−
1

β dx

≤
(∫

Sn

(cf−1)−
1

β u
α−1+β

β

1 dx
) β

α−1+β

(∫

Sn

(cf−1)−
1

β u
α−1+β

β

2 dx
) α−1

α−1+β

.

Combining the above two inequalities, for 1 < α < 1 + nβ, β ≥ 1, we have
∫

Sn

(cf−1)−
1

β u
α−1+β

β

1 dx ≥
∫

Sn

(cf−1)−
1

β u
α−1+β

β

2 dx.

Similar argument by interchanging the role of u1 and u2 gives
∫

Sn

(cf−1)−
1

β u
α−1+β

β

2 dx ≥
∫

Sn

(cf−1)−
1

β u
α−1+β

β

1 dx

Therefore all the above inequalities are equalities. Using the equality con-
dition in the Alexandrov-Fenchel inequality in Lemma 2.1, we have u1 ≡
u2. □
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