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Positivity preserving along a flow over
projective bundles

XUEYUAN WAN

In this paper, we introduce a flow over the projective bundle
p: P(E*) — M, a natural generalization of both Hermitian-Yang-
Mills flow and Kéahler-Ricci flow. We prove that the semi-positivity
of curvature of the hyperplane line bundle Op(g-)(1) is preserved
along this flow under the null eigenvector assumption. As applica-
tions, we prove that the semi-positivity is preserved along the flow
if the base manifold M is a curve, which implies that the Grif-
fiths semi-positivity is preserved along the Hermitian-Yang-Mills
flow over a curve. And we also reprove that the nonnegativity of
holomorphic bisectional curvature is preserved under Kéahler-Ricci

flow.
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Introduction

In the celebrated paper [29], Siu and Yau presented a differential geometric
proof of the famous Frankel conjecture in Kéahler geometry states that a
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compact Kéahler manifold M™ with positive holomorphic bisectional curva-
ture must be biholomorphic to a complex projective space P". For a compact
Kéhler manifold with nonnegative holomorphic bisectional curvature, Mok
[24] proved a generalized Frankel conjecture and obtained a uniformization
theorem, and H. Gu [17] gave a new proof of Mok’s uniformization theorem.
They both used the Kéhler-Ricci flow and considered the variation of holo-
morphic bisectional curvature along this flow. Especially, the nonnegativity
of holomorphic bisectional curvature is preserved under Kéahler-Ricci flow
[24, Proposition 1.1]. Later on, there are many references about studying
and generalizing the Frankel conjecture by using Kéhler-Ricci flow, includ-
ing [8, 0, 18, 28].

In 1979, Mori [25] proved the famous Hartshorne’s conjecture. If the
ground field is C, a compact complex manifold M was proved biholomorphic
to P™ if its tangent bundle is ample, which implies the Frankel conjecture.
A holomorphic vector bundle F is ample in the sense of Hartshorne if and
only if the hyperplane line bundle Op( E*)(l) is a positive line bundle over
P(E*) (see [19, Proposition 3.2]), i.e., there is a positive curvature metric
on Op(g+)(1). If (E, h) is a Hermitian vector bundle with Griffiths positive
curvature (see Definition , then F is an ample vector bundle. Griffiths
conjectured its converse in [16] holds that E can admit a Hermitian metric
with Griffiths positive curvature if F is ample. Both Mori’s theorem and
Griffiths conjecture would be proved if one can deform the given positive
curvature metric to another “better” metric with positive curvature, for ex-
ample, the Kéhler metric with positive holomorphic bisectional curvature
for Mori’s theorem, and Hermitian metric with Griffiths positive curvature
for Griffiths conjecture. Naturally, one wants to define a certain flow over
the projective bundle P(E*) such that the positivity of the curvature of
Opg+)(1) is preserved under this flow. This is also the motivation for the
author to study the positivity preserving along the flow over the pro-
jective bundle.

Let M be a compact complex manifold of dimension n, and 7 : £ — M
be a holomorphic vector bundle of rank r over M. Let E* denote the dual
bundle of F, and p : P(E*) := (E*)°/C* — M denote the projective bundle,
where (E*)° denotes the set of all the nonzero elements in E*. For any
strongly pseudoconvex complex Finsler metric G on E* (see Definition ,
there exists the following canonical decomposition (see Remark (4))

V—=100log G = —V + wps(G),
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which is a curvature form of Op(g«)(1) and represents the first Chern class
2me1(Op(g+)(1)). Here W is called the Kobayashi curvature (see [I2) Defini-
tion 1.2]), which is given in (1.4), and wrg(G) is a positive (1, 1)-form along
each fiber of p: P(E*) — M, which is defined by (1.10]). According to this
decomposition, Kobayashi [20] characterized ample vector bundle, i.e., F is
ample if and only if a strongly pseudoconvex complex Finsler metric exists
on E* such that ¥ < 0.

Let w(G) = p*w, where w = v/=1g,5(G)dz" A dz” is a Kiihler metric on
M depending smoothly on a Finsler metric G. One can define a Hermitian
metric on P(E*) by

Q = w(G) + wrs(G),

Let G be a strongly pseudoconvex complex Finsler metric on E*, one has
wrs(Go) > 0 (means positive along fibers). Now we consider the following
flow over the projective bundle P(E*):

%logG = AqlogG,
(0.1) wrs(G) >0,
G(0) = Go.

Here Aq := /—1A00, A is the adjoint operator of Q A e.
One can also define a horizontal and real (1,1)-form 7" on P(E*) as
follow,

(0.2) (—V=D)T(u,7) := (V=TR(u, 1), ~¥)q — |i,,0" T}

for any horizontal vector u = uaéz%, where (v/—1R9(u, 1), —W)q :=
(f‘lf)aggo‘ﬁgngBﬁu“aT and ‘iu('“)vlll‘é = (log G)abaawagabqfﬁuamgﬂ,
RY denotes the Chern curvature of w. Now we assume that T satisfies the the
null eigenvector assumption (see Theorem, namely (—v/~1)T(U,U) >0
whenever 90 log G(U,U) > 0 and iy (09 log G) = 0 for a (1,0)-type vector U
of TP(E™). By using the maximum principle for real (1, 1)-forms, we obtain

Theorem 0.1 (=Theorem [2.4)). Let 7: (E*,Go) — M be a holomor-
phic Finsler wvector bundle over the compact Kdhler manifold M with
V—1001og Gy > 0. If the horizontal (1,1)-form T satisfies the null eigenvec-
tor assumption, then /—1901log G(t) > 0 along the flow for allt >0
such that the solution exists.

In this paper, we will give two applications of Theorem
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For the first application, we consider the case of the curve, i.e., dim M =
1. In this case, any Hermitian metric on M is Kahler automatically, and one
can prove that the (1,1)-form T satisfies the null eigenvector assumption.
By Theorem [0.1], we obtain

Proposition 0.2 (=Proposition [3.1). If M is a curve, then the semi-
positivity of the curvature of Opg-y(1) is preserved along the flow .

In particular, if Gy = héj v;0; comes from a Hermitian metric (héj ) of E*
and

(0.3) Q=p'w+wps(G)

for a fixed Hermitian metric w, by Remark (1), (0.1) is equivalent to the
following Hermitian-Yang-Mills flow:

hl- b ARM 4 (r — 1)1 =0,
(hz())>0

(0.4) 5
hi;(0) = (ho)g;-

Recall that

Definition 0.3 ([16]). The Chern curvature of the metric (h;;) is called
Griffiths positive (resp. Griffiths semi-positive) if

RﬁaBXiﬁYo‘W >0 (resp.>0)

for any two nonzero vectors X = X'e; € E and Y = Y2 5.= € TM. Here
Ris05 = 82(1}5;3 hik ‘g’;g %Z’}; denotes the Chern curvature of (h;;). For the
case of E'= T'M, the Hermitian metric (h;;) is called has posztwe (nonneg-
ative) holomorphic bisectional curvature if its Chern curvature is Griffiths

positive (semi-positive).

By Proposition we have

Corollary 0.4 (=Corollary [3.2). If M is a curve, the Griffiths semi-
positivity is preserved along the Hermitian- Yang-Mills flow .
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For the second application, we assume that £ = T M and take

w(G) = V—1g,5dz" A dz”,

where (g,5) denotes the inverse of the matrix ( afi%ﬁ) (see Section [1| for

the definition of afj%ﬁ). Let Gog = gg‘ﬁ v, be the strongly pseudoconvex
complex Finsler metric on T*M induced by the following Kéahler metric

wo = V' —1(g0) 45d2" N dz°.
Then the flow (0.1)) is equivalent to the following K&hler-Ricci flow

%—‘; + Ric(w) + (n — 1)w =0,
(0.5) w >0,
w(0) = wp.

The solution of is induced from the Kéahler metric w = v/—1g, gdz" A
dz”. In this case, the (1,1)-form T can also be proved to satisfy the null
eigenvector assumption (see [5, Page 254, Claim 2.2]). From Theorem
and Definition |0.3] we can reprove the following Mok’s proposition, which is
contained in [24, Proposition 1.1] (see also [5, Theorem 5.2.10]).

Proposition 0.5 (|24, Proposition 1.1]). If (M,wo) is a compact Kihler
manifold with nonnegative holomorphic bisectional curvature, then the non-
negativity is preserved along the Kdhler-Ricci flow .

Remark 0.6. By and , the flow (0.1)) is a natural generalization of
both Hermitian-Yang-Mills flow and Ké&hler-Ricci flow. And there are some
other flows, which are also the generalizations of the Kéahler-Ricci flow. For
example, Gill [I5] introduced the Chern-Ricci flow on Hermitian manifolds,
and many properties of the flow were established in [33] 34]. Especially, Yang
[38] proved the nonnegativity of the holomorphic bisectional curvature is not
necessarily preserved under the Chern-Ricci flow. In [30], Streets and Tian
introduced the Hermitian curvature flow, proved short time existence for
this flow, and derived basic long-time blowup and regularity results, and in
[31, 132] they introduced a parabolic flow of pluriclosed metrics and obtained
some regularity results for solutions to this equation. For a particular version
of the Hermitian curvature flow, Ustinovskiy [35] proved that the property
of Griffiths positive (nonnegative) Chern curvature is preserved along this
flow.
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This article is organized as follows. In Section[I} we shall fix the notation
and recall some basic definitions and facts on complex Finsler vector bundles,
Griffiths positivity (semi-positivity), and maximal principle for real (1,1)-
forms. In Section [2, we will define a flow over projective bundle P(E*) and
study the positivity along this flow; Theorem [0.I] will be proved in this
section. In Section [3] we will give two applications of Theorem and we
will prove Proposition Corollary and Proposition

Acknowledgements. [ am grateful to Professors Kefeng Liu and Huitao
Feng for their invaluable guidance over the years. I also appreciate Professor
Xiaokui Yang for his insightful discussions. Furthermore, I extend my appre-
ciation to the anonymous reviewers for their constructive feedback, which
significantly improved the paper’s quality.

1. Preliminaries

In this section, we shall fix the notation and recall some basic definitions
and facts on complex Finsler vector bundles, Griffiths positivity (semi-
positivity), and maximal principle for real (1,1)-forms. For more details
we refer to [I, 2, 7, [0}, (1214}, (16, B0, 23, 26, 36].

1.1. Complex Finsler vector bundle

Let M be a compact complex manifold of dimension n, and let 7 : & — M
be a holomorphic vector bundle of rank r over M. Let z = (z!,--- ,2") be a
local coordinate system in M, and {e;}1<i<, be a local holomorphic frame
of E. With respect to the local frame of F, an element of F can be written
as
v=1'e; € E ,

where we adopt the summation convention of Einstein. In this way, one gets
a local coordinate system of the complex manifold E:

(1.1) (z;0) = (21, -+, 200, 0",
Definition 1.1 ([20]). A Finsler metric G on the holomorphic vector bun-
dle F is a continuous function G : E — R satisfying the following conditions:

F1): G is smooth on E° = E \ O, where O denotes the zero section of E;

F2): G(z,v) >0 for all (z,v) € E with 2€ M and v € 771(2), and
G(z,v) =0 if and only if v = 0;
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F3): G(z,\) = |A\]?G(z,v) for all A € C.
Moreover, G is called strongly pseudoconvex if

F4): the Levi form v/—199G on E° is positive-definite along each fiber
E,=1"Y2) for z € M.

For any Hermitian metric on E, one can associate it with a strongly
pseudoconvex complex Finsler metric on E.
We write

G;=0G/ov', G;=0G/ov, Gj=0>G/ov'ov,
Gia = 0°G/00'02", G5 =0°G/ov'0v 07", etc,

to denote the differentiation with respect to v*, %7 (1 <i,j <r), 2%,2% (1 <
a, 3 < n). In the following lemma, we collect useful identities related to a
Finsler metric G.

Lemma 1.2 ([7, 20]). The following identities hold for any (z,v) € E°,
reC:

J
(2, 0)0 = G5z, v)v"@j‘: G(z,v);
k(2 0V = Gz, 0)07 = 0.

Gi(z, ) = A\Gi(z,v), Gi5(z, v) = G5(z,v) = Gj(2,v);

Suppose G is a strongly pseudoconvex complex Finsler metric on M. In
that case, there is a canonical h-v decomposition of the holomorphic tangent
bundle TE° of E° (see [7, §5] or [12), §1]).

TE°=HoV.
In terms of local coordinates,
1) 0 e O
H:Spanc{M:M—Ga‘jG‘y avk,lgaﬁn},

V:spanc{aavi,lgigr}.
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The dual bundle T*E° also has a smooth h-v decomposition T*E° = H* @
2

(1.2) H* = spanc{dz®,1 < a < n},
V* = spanc{ov’ = dv' + GﬁGajdza, 1<i<r}.

Moreover, the differential operators

9 @ot, o = _— @dz°.

vV _
(1.3) O =

are well-defined.

With respect to the h-v decomposition (1.2), the (1,1)-form
v/—=10010g G has the following decomposition. For readers’ convenience, we
give proof of the following lemma due to Kobayashi and Aikou (cf. [2, 20]).

Lemma 1.3 ([2, 20]). Let G be a strongly pseudoconver complex Finsler
metric on E. One has

V—=1001log G = =V + wy,

where W is called the Kobayashi curvature (see [12, Definition 1.2]),

vipd 0?log G . | ,
_ o e 08 _ i —
(1.4) U = \/_lRijaﬂ?dz ANdZ7, wy =+v-—1 501057 v A 0V,
with
R »=— 0*Gy; i 0Gi 9G;
GaB T 9redzh 9z 978
Proof. By , we have
2] . . 21 . - , -
(1.5) %vfagvf Sut A 6T = %vfgf(dvl + GGldz) A (do + G GIvdz")
- i 5J YT L =B
= Huidm dv' A dv? + D00 G, G dv" N dz
82 10gG [Z a —j
50105 G ;G"dz™ Ndv
0?log G

i) GGG 3G d2" A d2P.
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For the last three terms in the RHS of (1.5]), one has from Lemma

0?log G
iovI

GG —GiG; |

B 9?log G
 OviozEP

(1.6) S GGk dvt A dZP =

dv' A dZ°,

PlogCG g o0 i GG -GGG - h
WGOJ_G dZ /\dU —TG G dZ /\d’U
8210gG
022007

(1.7)

dz" A dv?

and

0?log G
oviovd
GG;—GiG; . & . o i

= G—G GG 5GT*dz A dZ°

GGG G — GaGa)dz A dZ°.

(1.8) GGG 3G d2" A dP

G2(
Submitting (1.6} and ( into , we obtain

0?logG _ ; i #logG ;i 0logG
oo OV N0V = Gyiger N 5
0?log G
J
82“31}1 dz“ A dv
+ @(GG”“G Grg — GaGp)dz® N dZ’
= 00log G +

dv' A dzP

G(leGaleﬁ Gop)dz® A dz°
v ’U

= 9010g G + (G™G ;1G5 — Gi5ap) Fd=" Nz
=00logG — V-1V,

which completes the proof. O
Let ¢ denote the natural projection

q: E° = P(E):=E°/C" (z0) = (2 [0]) = (21, 2% o'y -, 07)),
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which gives a local coordinate system of P(F) by

(1.9) (zrw) = (2!, 2w w™ )
1 'U kal ,Uk+1 "
77... ’7,7’... ’Uik

on Ug := {(z,[v]) € (5) vt # 0},

Denote by ((log G)**)1<ap<r—1 the inverse of the matrix

9% log G
((logem = f_b>
WIW” S <qb<r—1

and set
dw® = dw® + (log G) 3 (log G)Badza.
One can define a vertical (1,1)-form on P(E) by

0?log G
Owadwb

(1.10) wrs(G) == V1 Sw? A d?,
which is well-defined (see e.g. [14, Section 1]). Moreover,
Lemma 1.4. By the pullback ¢* : AV (P(E)) — AY1(E°), one has

(1.11) q*wFS(G) = wy.

Proof. We only need to prove (|1.11)) at one point (z, [v]) € Uy. Without loss
of generality, we assume that k = r. For any point (z, [v]) € U,, one has from

(1.9

(1.12) q*( 0 > _ 9
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By (1.12)), one has

0?log G - o 0
(113) awaau_}b = (8810gG)(w,W)
~ , 0 . 0
= (001og G) (g« (v 87)a),q*(v @))
* 2 T a ~=T a

=¢"(001log G)(v %ﬂf w)

_| T‘282 log G

1 e

Similarly,
(1.14) 8210gG_@T8210gG OQIOgG_vTWlogG
) 0z0wd  0z0000 " Owedz T OvedzP

and

82logG__ 1 qi’é)QlogG

ovedu  |ur]2 0" Qwerowd’

2 a 92
(1.15) 0 log_G:_ 1 v*0 log_G,

dvr Oob |7 |2 v" Qwerdwb

0?log G B v 0% log G

ovrdvT  |ur|* Owerdw®

By direct checking, one has

G

1.1 ] ba _
(1.16) (log G) o

|Ur|2 or

By (|1.14)) and (1.16)), we have

ot 1

(@r)2G ) (Gig — GGBGi)
i 0 i
= 0G5~ GG

_ ba _ (1 b
(log G),5(log G)™ = <v”G

a _ _ mboa 50
(_ZTGbT + Gba + vv G — UGTa> )

1551
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So

(1.17) ¢*(6a®) = ¢*(di® + (log G) ,5(log G)**d=")
b

= _(dt® + GG ) - (;’T)Q (di" + G7G,3d°)
1., o
= —0v’ — (17’”)251} .

From (|1.13]), (1.15)) and (1.17]), we obtain

0?%log G
¢ wrs(G) = ¢ (\/—1 o8

o aawbéwa A 51Db>

0%logG [ 1 v® 1 o?
— /11,72 iy v r ~ossb =T
=V—1p" S0a 05 <UT5U (UT)Qév ) (1_)?«50 (Q_JT)25U )
_ \/782 IOgG

OvaOp®

—b
<5v“ A S0 — %61;“ A ST

a ~b
~sum A + 2L sum A G
N ‘/UT’2
0?log G j
=/ — Z ERE Sv' A 6T = wy. O

7‘7_

Remark 1.5. (1) By (1.12)) and (1.16)), we get

1) i 0
0z ( vk )
2 o
0z

)= = GG

Q*(
0

ow?

la _ir
(UTGalG (,UT)QGalG )

(log G),5(log G)*

= 920 owe’

For convenience, we will identify 5Za with g ( 52&) and denote N? :=
(1og G) 15(log )1, so

5 9 .9
(1.18) 5z~ an Nagga

(2) For any smooth function f € C*°(P(FE)), the vertical Laplacian is de-
fined by
82
dwrdwb

AV f = (log G)P f.
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By identifying f with ¢* f, one has from ([1.12)) and ( -

2 _ 2

9 _
Y qqi
OwaOwb f=6G OVt OvI

AV f = (log G)™ f.

(3) For the Hermitian metric
Q=w(G) +wrs(G)
on P(E), where w(G) = v/—1g,5dz% A dz®, then one can define the

horizontal laplacian by

s 0 )
520" 078
for any smooth function f € C*(P(E)).
(4) Note that g@é logG is a (1,1)-form on P(E), which represents the
first Chern class ¢1(Op(g)(1)). And ¥ is also a (1,1)-form on P(E),

combining Lemma with Lemma one has when restricting to
P(E)

(1.19) A f =g (00f) (=

(1.20) V—=1901og G = —¥ + wrs(G).

Proposition 1.6. A Finsler metric G is strongly pseudoconvez if and only
if wps(G) is positive along each fiber of p: P(E) — M.

Proof. By Definition G is strongly pseudoconvex if (G;5) is a positive
definite matrix, which gives an inner product (-, ) on the vertical subbundle
V.

. Denote T = v*-2;. If G is strongly pseudoconvex, for any X = X° ay )
then

(—V=Dwy (X, X) = (GG, GG X' X/

G2
= @(HXIPIITH2 - (X, T)]*) >0,

the equality holds if and only if X = AT for some constant A € C. So wy has
r — 1 positive eigenvalues and one zero eigenvalue. Since wy (7,T) = 0 and
¢+(T) = 0, by Lemma wrs(QG) is positive along each fiber of p : P(E) —
M.

Conversely, if wpg(G) is positive along each fiber, then wy = ¢wrs(G)
has r — 1 positive eigenvalues and one zero eigenvalue, and wy(7,T) = 0.
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So
L 1 ) _
G X' X7 = 5|GZ~XZ\2 + G(—V-1Dwy (X, X) > 0.
Moreover, G;; X' X7 = 0 if and only if X = AT and G; X' = 0, if and only if
A= 0. So (G;;) is a positive definite matrix. O

Let (h;;) be a Hermitian metric on £ with respect to a local holomorphic
frame {e; }1<i<,. The Hermitian metric (h;;) induces a strongly pseudocon-
vex complex Finsler metric on £* by

G = hi v;0;.
By Remark we have the following decomposition
V—=1001log G = =¥ + wrs(G),
where

-~ ik
U =— Zaﬂvgjjx/ 1d2* A dzP Rkl-aﬁG G Y/ de® A dEP

From Proposition wrs(G) is positive along fibers. So

Proposition 1.7. The Chern curvature of (h;;) is Griffiths positive (resp.
semi-positive)if and only if \/—1001log G is a positive (resp. semi-positive)
(1,1)-form on P(E*).

1.2. Maximum principle for real (1, 1)-forms

This subsection recalls the maximum principle for real (1, 1)-forms. For more
details, one can refer to [4, 10, 24, 27]. The following version maximum
principle is the same as the tensor maximum principle [10, Theorem 4.6], so
we omit its proof.

Theorem 1.8 ([10, Theorem 4.6]). Let w(t) = v —1g,5(t)d=" A dzP be
a smooth 1-parameter family of Hermitian metrics on a compact complex
manifold M. Let n(t) = v/—1n,5(t)dz* A dz” be a real (1,1)-form satisfying

577 > Aw(t)n + o,

where A ) —gaﬁv aV o, V denotes the Chern connection of w(t),
o(w,t) is a real (1, 1) form whzch is locally Lipschitz in all its arguments




Positivity preserving along a flow over projective bundles 1555
and satisfies the null eigenvector assumption that
(—V=-1)o(V,V)(2,1) = (0,5V*VP)(2,1) > 0
whenever V (z,t) = VO‘% is a null eigenvector of n(t), that is whenever
(1a5V®)(2,) = 0.

If n(0) > 0, then n(t) > 0 for all t > 0 such that the solution exists.

2. A flow over projective bundles
2.1. Definition of the flow
Let M be a compact complex manifold of dimension n. Let 7 : E — M be a

holomorphic vector bundle of rank r over M. Let E* denote the dual bundle
of B, {é *_; be a local holomorphic frame of £*. Then

(Z,U) = (Zlv"' 7Zn;vla"' 1”7‘)

gives a local coordinate system of the complex manifold E*, which represents
the point v'e; € E*. For any strongly pseudoconvex complex Finsler metric
G on E*, by Remark we have the following decomposition

V—=1901og G = =¥ 4 wrs(G).

By Proposition wrs(QG) is positive along each fiber of p: P(E*) — M.
Let

w(G) = vV —1g,5(G)dz" A dz?
be a horizontal (1,1)-form on P(E*) depending smoothly on the Finsler
metric G, which is positive on horizontal directions, namely (g,5(G)) is a

positive definite matrix.
Then one can define a Hermitian metric on P(E*) by

Q= w(G) +wrs(G).
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Let Gg be a strongly pseudoconvex complex Finsler metric on E*. We
consider the following flow:

%logG = AqlogG,

G(0) = Go.
Here Aq := +/—1A09, A is the adjoint operator of Q A e.
Note that
(2.2) Aqlog G = AV—1901log G = Ay (—¥) + (r — 1)

is a smooth function on P(E™*), then
G(t) _ efot Aq lOngtGo,

By Definition one sees that G(t) is always a complex Finsler metric
on E*. Moreover, G is strongly pseudoconvex, i.e. wps(Go) > 0, so G(t) is
strongly pseudoconvex automatically as ¢ small.

Remark 2.1. 1) For the case
w(G) = V—1g,5dz" A dz?

is a fixed Kahler metric on M, and G = hf)j v;V; comes from a Hermi-
tian metric (hg) of E*, then

(2.3) 0= glogG — AqlogG
1 0G
55 + A v — (7’ — 1)
v;U; [ ORY(t) B i -
— e o — 1)RpI
G((,ﬁ Yo PRI~ (D) ),
ij _ 02G(t) .
where h'(t) := F- o5, From the above equation, one has
ORI(t) | . i
o ; —1)R(t) = 0.
5 +g 0,00, (R o3V vj) —(r—=1)K'(t)=0

Since hi (0 (0) = hg i is a Hermitian metric, which is independent of the
vertical coordmates {vi, 1 <i<r}, so h”( ) is also a Hermitian metric.
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In fact, by induction, we assume that (akhi;)h:o is independent of

ot
fibers, then
A XI0)) * (.5 O i
Tk =0 = 5% <—9 ’BW(RJQ-W%‘) + (r =1 (t)> |t=0
10V

- 92 ok = oF -

— _ 0B ZRY N e _ = Ry,
af o* ij oF 7t

=~ (R (=0 + (= DG,

which is also independent of fibers, because g—;Rij of is the combina-

tion by 77" and Zrhi', 1 <1< k. It follows that

DR (t)
ot

A% R (t)

Wi(t) = h(0) + o

lt=ot + -+ +

|t:0tk + ...

is independent of fibers for small ¢. By Proposition[L.6land wpg(G) > 0,
h7'(t) is a positive definite matrix, so (h’*(t)) is a Hermitian metric
on E*.

Therefore, ([2.3)) is equivalent to

DR (t)

(2.4) =

+ g™ (R = (r - DA (t) = 0.

Multiplying by hy; to both sides of ([2.4), one has

oh S Ohy: 4
oy TAR 4 (r =11 = hﬂ—a:" +g*(RM)i 5+ (r = 1)3}, =0,

h*l

which is exactly the Hermitian-Yang-Mills flow [3, [I1] (see also [21]).
2) For the case of E = TM. Let

w(@) = V—1g,5dz" A dz”?,

where (g,5) denotes the inverse of the matrix ( af%ﬂ). Let Gy =

9 p vaUg be a strongly pseudoconvex complex Finsler metric on T M
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induced by the Hermitian metric
wo = V—1(g0),5d2" N dz°.

Similar to the above case, the flow ({2.1]) is equivalent to the following
Hermitian curvature flow

99,5

(2.5) -

+ 9% Rosap + (1= 1)g,5 =0,

which was first given in [30, (3)], and many results were obtained there
on this kind of flow with an arbitrary quadratic tensor @) in the torsion.
This flow was also appeared in [22, (7.11)], and by [22, Theorem
7.1] (or [22, Remark 7.2]), if the initial metric wp is a Kéahler metric,
then this flow is reduced to the usual Kéhler-Ricci flow (see [6]).

2.2. Positivity preserving along the flow

In this subsection, we shall discuss the positivity preserving along the flow
(2.1). We assume that the initial metric G(0) = Gy satisfies v/—199 log Gy >
0, and will prove

Proposition 2.2. Let (zo,[vo],t0) be a point and time such that
V—=1901og G > 0 for all 0 <t < to, and there is a (1,0)-type vector u such
that i,,(001og G)(zo, [vo],t0) = 0. Then

0 = — _ . 2
5 (0010g G(U,U)) = A (0910g G(U,U)) + (R (u,w), —¥)q — |i,0V U], .

at this point (zo, [vol,t0), where U is defined by , which is a locally
extended vector field of u, and

(V—-1RI(u,w), —W)q := (—¥),59" g”‘sRﬁgy/Bﬁu

‘zuavllf‘ﬂ (log G)aba \I/aﬁab\llwu u”gTﬁ

Ql

Here Q = w(G) + wrs(G), w(G) = p*w, w is a Kdahler metric on M depend-
ing on the Finsler metric G.
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Firstly, let € > 0 small enough such that
(2.6) Qe = w(G) + /=100 10g G
2
1
= V19,5 — €¥,5)dz" A dz® + e\/—la 0g G

w

is a Hermitian metric on P(E*), where W5 is given by ¥ = /—1¥ 5dz A
dz®. Denote by V¢ the Chern connection of the Hermitian metric §2., which is

the unique connection preserving the holomorphic structure and the metric
Q.. For any two (1,0)-type vector fields X,Y of P(E*), then

(27) VY = (VY el (T, o s Gy
R I S (S
T A (e
::Xacg;nﬁmg;+wapwm@p§ﬁn¢“;;

o 1 5e O
L ba Y
+ X(Y ’8wb>€e(10gG) e

where YV denotes the vertical part of Y, (¢”®), denotes the inverse of g_, 5=
9o — Yo (-, )¢ is the inner product defined by €.

Denote by Z4 the coordinates z® or w?, 1 < A < n+r — 1. We rewrite
Q. as the following form:

(2.8) Qe =V—-1Q_45dZ* NdZP.

In this form, the Chern connection is given by

€ 0 0 aQeBD DC
(2.9) Vit 078 FAB@ZC’ Fip = gzA ke

Here (2PC) denotes the inverse of the matrix (Q.op). The Chern curvature
tensor of €)¢ is defined by

0 0 0 0

(210) Rapen = Rgzx 578 570 570
6 € € € € € 8
=572 (Vi Vie = Vo Voo = Ve, 2))575)
o OB,

AE 3, C -
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The Chern connection V€ induces a natural connection on the cotangent
bundle T*P(E*) ( resp. T*P(E*) ) by

(2.11) Via(fedZ®) = (9afo — Thcfr)dZ,
(vesp. V(fpdZ") = (9pfp — Tpfr)dZ°)

for any smooth (1,0)-form fodZ¢ (resp. (0,1)-form fpdZP), where V¢ :=
V¢, . For convenience, we denote

0zA

(2.12) Vafc=0afc —T8cfe, Vfp=05fp —TEpfs
and
(2.13) (Vfop)dz® ndzP = Ve%(chdZC AdZP),

Vafep = 9afep —Ticlsp-
By using the above notations, we have
(2.14) Vi = 0aQcp — TicQepp = 0.

By taking 00 to the both sides of the first equation of (2.1)), one has

(2.15) ;88 log G = 00Aq log G = 80(tr ) (—¥)),

where the last equality follows from ([2.2)). Since lim¢_,o(w(G) — €¥) = w(G),
SO

0 .5 . A
(2.16) aaa logG = ll_% D0(try(gy—cw(—V))
= lim 90Agq, log G
e—0 -
= lim c0p(Q2B0,0510g G)dZC N dZP.
€—

Denote f :=logG and

Jap :=0405f, fapc = 040g0cf, fapcp :=040p0cipf, etc..
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By (2.13) and (2.14), one has
(217)  9c0p(P 0405108 G) = dodp (P fap) = Va5 fa5)
= Qe fap
= Q??VEC(fABD —TBpfan)
= Q% (fapep — Teafrap — 0cThpfam

~T85(face — TEafrp))-

Similarly,

2.18)  QAB(V4Vsfen) = QP (fasep — Thefrep

- 8AFngC’E - 11%1:)(f,40133 - FichE))-

Combining (2.17) with (2.18), we obtain

(219)  9cOp(QAF f4p) — QA (V4VSfop)
= Q2B —TE) fepp + QAP (CE, —TBp) face
+ Q?B(EFEA - @Fic)fm?
+ QABOATE  fop — QAPOCTE s fap
= Q2B —TE)V s frp + QAP (T, —TEp)Vafen

ABOFE ABOFE
- Qe QE R;“DABfCE + Qe Qs R}‘BchAE'
Substituting (2.19)) into (2.16)), we have

0 = _1; AB e we )
(2:20) 0910g G = lim (Q V4,V (0010g G)
+ (B (The ~ TEAV pfrp + Q2P (0, ~ TE )V alcr

~QPQIP RS g fon + Q?BQfER}BchAE) dz¢ A dZD> .

As in the proof of Theorem we assume that /=190 1og G > 0 for all

0 <t < tg, and (20, [vg], o) is a point and time, and u = u agA is a vector

such that

(2.21) fopu€ (20, [vo], to) = (8cdp log G)u® (20, [vo], to) = 0
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and
(2.22)  (891log G(W,W))(z, [v],t) = (8cdp log GYWEWD (2, [v],t) > 0

for all (z,[v]) € P(E"), t € [0,%], and tangent vectors W € T, ,))P(E£").
This implies that

(2.23) u= ua% € ¢.H.

Indeed, one may assume that u = u; + uz, where u; = u® 5;5&, u2 =u 83&

are the horizontal and vertical parts of u respectively. By ( and
wrs(G) > 0, one has

(v/—10010g G)(u, @)

(vV/—10010g G)(uy + ug, Uy + U2)
(v/—10d1og G)(ul,m) + wrs(G)(u2, u2)
wrs(G)(u2, uz) >

(2.24)

Y

and all equalities hold if and only if ue = 0, namely v = u;. From Lemma

and ([2.23)), (2.21)) is equivalent to
(2.25) (1) (20, [vo], to) = 0.

For any € > 0, by parallel translation, one can extend u to a vec-
tor field U, = UA agA defined in a neighborhood of (zy, [vg],to) such that
Ue(20, [vo], to) = u and

(2.26) 88Ut (20, [vo], o) = 0, (V<UL)(20, [v0] o) = O.

This can be done by parallel translating u along radial rays with respect to
the connection V¢, and then by extending to be independent of time t.
We assume that

0 0
€ ) 7t = & ¢ N
U (Z [U] 0) Ue 520 + Ue O
By , one has
€ 3 el aq( b g
(227)  VUe = U+ (O(UC guas) + ULONE)e(108 C) ) 977 5

0

+0(U(log G) 43 (log G)* e
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So the second equation of (2.26)) is equivalent to

oUe =0,
B(~USNE +U2) =0
OUE geap) + ULO(NG)e(log G)yp = 0,

€
A(UL(log G) 3)(log G)* = 0,

(2.28)

at the point (zo, [vg], t0). By (2.23), U% = 0 at the point (zo, [vo], to), so (2.28)

is equivalent to

oU = 0,
UL = u®dNg,
(2.29) o
oUg + ge 0g.,qu" = 0,

U = 0.

Since lime—0 geng = Yo 5,80 lime_,0 Ue = U which satisfies the following equa-
tions:

U =0,
oU* = u*ONZ,
(2.30) _
ou® + gﬁaagVBUV =0,
oUu® =0

and %—g = 0 at the point (2, [vo],t0). By 1) 1j and 1) one has

at the point (2o, [vo], to),

(2.31) gt (9910 G(U, ) = lim (Qfév;v;;(aé log G)(u, @)
+ (2 (The = TEAV pfrp + Q2P (OF, ~ TE)Valcr
~QABQIP Ry b apfon + QEABQeFER;BchAE) “CﬂD)

~ lim (QfBE)AZ?B(aé log G(U.,T.))
+ (92 (The ~TEAV pfrp + Q2P (5, ~ TE)Valcr

LB Ry o ) uCaP)
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In order to deal with ([2.31]), we assume that w(G) = p*w for some Kéhler
metric w on M, so

(2.32) Qe = w(G) + ev/—1901og G

is a Kéhler metric on P(E*) for ¢ > 0 small enough. Thus, (2.31)) is reduced
to

2 (00105 (U, D)

— lim (217040500108 G(U., T.)) + QPO Ry o fapua®)

(2.33)

For the first term in the RHS of (2.33)), we have

(2.34) QA8 ,405(0010g G(U, U))
= v/—=1A30(00log G(U, U.))
= A§ (001og G(U., Ue)) + A, (001og G(U., U)).

Here AV = Llog @ ba__0°__ i the vertical Laplacian, while AZ f =
€ Jwe* 0w Q.
Podf) (L —5,3 is the horizontal Laplacian (see Remark [1.5). Since
o0z
90p and lim. o U, = U, so

||Q

hme_m 9eafs
(2.35) lim Af (901og G(U., U.)) = Afy (0910g G(U,T)).

By Remark (1), one has

(2.36) A&aﬁbga¢avaw:A5uaviﬁw+A&«—wuan®

a 82 c7rd
f bawaa b(fCJU€UE)
7fab 82
e’ Owrdwb

For the first term in the RHS of (2.36), by (2.29) and U® =0 at the
point (2o, [vo], to), we have

(~0),5U2T7).

82
Ow*Ow

1 _
(2.37) - fab (f.gUT ) f“b FoqOsUS 0y U
- Ef“bfcdm P OpNED, NB

The following lemma is proved in [37, (3.46)]. For readers’ convenience,
we give a proof here.
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Lemma 2.3.

e 02 = o 0

(2.38) fb“iawa 505 (~ag = 09 logdet(fu5) (5 5—5)
) )
v av 9
- 5z0“a 5,25)’
where 5 5 )
av_ v Y be 7
0 5204' 8 ( fabf )6 awc
and
<5Vi 5Vi> = fPg NSO N f
52077 5287 b pled:

Proof. Let (=W¥),5 denote the coefficient of -V, ie. —VU=
V=1(=¥),5d2% A dz?, then

(239) (_\Ij)oaB - faB - foachJCch'
In fact, by the decomposition (|1.20]), one has
(W) = (VD) (5 105
of 52" 625

9 ba 9 ab
= (O — S s o~ T )

ds
= faB - fadf Cfclg7
which proves (2.39).

For any fixed point (z,[v]) € P(E*)|,, 2 € M, we take normal coordi-
nates near (z,[v]) such that f,;(z, [v]) = 0ap, fuie(2, [v]) = 0. Evaluating at
(z,[v]) we see that

82
uedih Vas
ba_ 0 de
= f_ Seday Job ~ faaf“ fop)
= fba (fal_)ozB - fozéal_) cB — fOéEchal_) + faJ al_)dEfCB - faéachE - faél_) cBa)
_ _ - 5 5 _ B _
= fba(—a(afa&fdc)fcé)(@a (Szfﬁ) - fbaal}(—faade)aa(—fkéfkl)fdl’

_ ) 1) v 0 = 0
= 3310gdet(fa5)((5277 ﬁ) - <3V@a V@f

fBa

which completes the proof. O
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By Lemma [2.3]and (2.29), one has

82
Aw*Owb

1 ab o — 775 «
= f (95~ W) o507 + Dal W) o550

+ O3~ 0) 5 OuUET + O UL TN W), 5)

Qa0) Lt (- 0),5UTY)

1. - 1 = .
= ~00log det(f,5)(u, 1) — —f* £ qu W RN, NG

€ €

— 210,950, U7uTW g7" + Oe),

where the last equality follows from
QaUE = =92 Buger gt = €g2°0u W, gu” = O(e).

Substituting (2.37]) and (| into , we obtain

(2.41) Ag, (001og G(U., U.))
= éaglog det(f,;)(u, ) — 2 ‘iuavlﬂ‘é + O(e).

Here we denote \@'ua \IJ‘Q = f¢ b9, v, abllfwuo‘ﬂgw
For the second term in the RHS of -, we have

ABOFE C-D
1 _
a 8 pe ab pe o-T
= (- \I/)M;geﬁ v Ry,@m“ u’ —|— f Ry u’u’”,
€ _ pe(_ 0o ) 9 € _ pe(_0 o) ) )
Where R =R (527’ 8§28 527 §ZT) and RaboT =R (B’w“ ) Qwb? §290 57

and -, one has

) ) ) 1)
2.4 € —R(— -
( 3) R'V,BO'T R ((52’7’ 5257 52’0” 527_)
5 € € € € € (5
= G Ve Ve =V Ve = Vi ))5s)e
5 6 0 5 —aq 0O
( age’yls gE )geaﬁ> (ga g) - ede(;Zio-Nﬂg
= R;,. +0(e),
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0%g.5 =0 O 0
where Rg Bor T 82;(755, + g™ (ag;f 89;,5 denotes the Chern curvature of the

Kéhler metric w = v/—1g,3dz" A dz®. And

9 0 5 o
Owe’ wb’ 627’ 6z

) o=T

O—=T
u’u

a. 0’ 1 (Z_ €
(2.44) f bRabM =5 PR
(Vs V&5 — V< V& —Ve,

ab
2f <8wa 5o 5e 5o 5T [5zrvazo])8wb>
a dc 0 —b 0 a T
_7f b(a(afad_'fd )ch) (’LL, ) 52 o‘Nﬁ(S TN fbge

:—faalogdet(f ) (u, +|zu8V\II}Q+O €),

where the last equality follows from the following equalities:

J

= Nadas = (05 = ferf 06 (Faad ™) o
= fabs fadfdafabfy S foop + fcryfcefadfdafabe
= 813( abfbafav)
= 05(— )

Substituting (2.43)) and (| into (| , we have

_ _ 1 -
(2.45) QABQEFRS - 5 fapuCal = —=091og det(f,5)(u, )

+ ‘zuav\lf‘g (RI(u,w), —U)q + O(e).

Here we denote (v/—1R9(u,u),—V¥)q = (—\I/)aggaBQVSRzBﬁu”ﬁT.
Substituting (2.39)), (2.41]) and (2.45)) into (2.33)), we obtain

(2.46) gt (0010g G(U,U)) = A{(9010g G(U,T))
+ (V=IRI(u,w), —W)q — [i,0" 07, .

at the point (zo, [vo], to), which completes the proof of Proposition
Now we define a horizontal and real (1,1)-form T as follow,

(2.47) (—V=DT(X,X) = (V=1RI(X,X),~W)q — |ix0" O[,

for any horizontal vector X = X< 52&. And we assume that T satisfies the
null eigenvector assumption (see Theorem [1.8]), by Theorem we obtain
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Theorem 2.4. Let 7 : (}?*, Go) — M be a holomorphic Finsler vector bun-
dle over M with v/—1001log Gg > 0. Consider the following flow over the
projective bundle p : P(E*) — M:

%logG = AqlogG,
(2.48) wrs(G) >0,
G(0) = Go,

where Q = w(G) + wps(G), w(G) =p*w, w is a Kahler metric on M de-
pending on the Finsler metric G. If the horizontal (1,1)-form T satisfies the
null eigenvector assumption, then

V—1001log G(t) > 0

for all t > 0 such that the solution exists.

3. Applications

This section will give two applications of Theorem

3.1. The case of curve

In this subsection, we consider the case of dim M =1, i.e., M is a curve. In
this case, any Hermitian metric

w=+v—-1gdz Ndz

on M is Kéhler automatically. The Gaussian curvature is then given by

(3.1) K=-=

ZZZZ°

1
) =. 72Rg
g
Now we assume that

(3.2) Q=p'w+wrs(G),
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where w = w(G) is a metric on M depending smoothly on the Finsler metric
G. Then at the point (2o, [vo], to), by , one has
(3.3)
(—V=D)T(u,w) = (V=1R(u, 1), ~W)q — |i,0" ¥[}
= (~0)szg *Rlzzluf* — [0, V.20, Vsuf?y
=K -V/-1¥(u, )
— 1 (u( V=TV, D)) + V=TU(9,U, w) Dp¥zg ™"
= O,

since i, ¥ = 0 and /=1¥ (U, U) attains its local minimal value at the point
(20, [vo], to). Therefore, we prove

Proposition 3.1. If M is a curve, then the semi-positivity of the curvature
of Op(g~)(1) is preserved along the flow .

In particular, if Go = héj v;0j comes from a Hermitian metric (héj ) of E*
and

(3.4) Q=p'w+wrs(G)

for a fixed Hermitian metric w, by Remark (1), (2.48) is equivalent to
the following Hermitian-Yang-Mills flow:

Wt 9 L AR+ (r— 1)1 =0
(hzg())>0
i7(0) = (ho)5-

By Proposition [I.7] and Proposition [3.1} we have

(3.5)
h

Corollary 3.2. If M is a curve, the Griffiths semi-positivity is preserved
along the Hermitian- Yang-Mills flow .

3.2. Kahler-Ricci flow

In this section, we assume that £ = T M. As the discussion in Remark
(2), if we take

w(G) = V—1g,5dz" N dZ",
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where (g,3) denotes the inverse of the matrix ( 85) 5 ) And Gy = goﬁ Vo Ug

is a strongly pseudoconvex complex Finsler metric on T*M induced by the
following Kéahler metric

wo = V' —1(g0)a5d2" A dz°.
By (2.5)), the flow ([2.48) is equivalent to the following K&hler-Ricci flow

%—‘2’ + Ric(w) 4+ (n — 1)w = 0,
(3.6) w >0,
w(0) = wo.

The solution of 1} is induced from the Kahler metric w = v/—1g,3dz% A
dz®. In this case,

(37) <V —]_Rg(u’ﬂ), _lIl>Q = (_‘1}) g g'ﬂ;Rz,@o‘T cu’
1
uo VT— v pY O~T
GR,uVoa(Sg 9 UTg g R’yﬁUT u
dim M
= > RI(V,V, ea,e5) R (eg,Ca,u,T0),
a,f=1

where V = Tg "y 8(30 and {ey} is a local orthonormal basis of (T'M,w).

On the other hand, by (2.2F)), one has at the point (20, [vo), to),

(3.8) |0V 02 = fagaaqfagab\yﬁuamgﬂ
1
= E(Rg)“ (Rg) "U(Su g,ul/g g
dim M
= > |RY(V,eq,u,e5)]*.
a,f=1
Therefore,

(3.9) (—v )T ()
dim M
= > (R, V. ca, @) R (s, 0,0, @) — [ RV, a,u.25)*) = 0
a,f=1
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by [5, Page 254, Claim 2.2]. From Proposition and Theorem we can
reprove the following Mok’s proposition, which is contained in [24, Proposi-
tion 1.1] (see also [5, Theorem 5.2.10]).

Proposition 3.3 ([24, Proposition 1.1]). If (M,wy) is a compact Kihler
manifold with nonnegative holomorphic bisectional curvature, then the non-
negativity is preserved along the Kdhler-Ricci flow .

References

[1] M. Abate, G. Patrizio, Finsler Metrics- A Global Approach, LNM 1591,
Springer-Verlag, Berlin Heidelberg, 1994.

[2] T. Aikou, Finsler Geometry on complex vector bundles, Riemann-
Finsler Geometry, MSRI Pulblications 50, (2004), 83-105.

[3] M. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces,
Phil. Trans. Roy. Soc. London A 308 (1982), 524-615.

[4] S. Bando, On three-dimensional compact Kihler manifolds of nonnega-
tive bisectional curvature, J. Differential Geometry 19 (1984), 283-297.

[5] S. Boucksom, P. Eyssidieux, V. Guedj, An Introduction to the Kahler-
Ricci Flow, 2086 (2013), Springer.

[6] H.-D. Cao, Deformation of Kdhler metrics to Kdhler-Einstein metrics
on compact Kdhler manifolds, Invent. Math. 81 (1985), no. 2, 359-372.

[7] J. Cao, P.-M. Wong, Finsler geometry of projectivized vector bundles,
J. Math. Kyoto Univ. 43 (2003), no.2, 396-410.

[8] X. Chen, On Kdihler manifolds with positive orthogonal bisectional cur-
vature, Advance in Mathematics 215 (2007), 427-445.

[9] X. Chen, S. Sun, G. Tian, A note on Kdhler-Ricci soliton, Int. Math.
Res. Not. IMRN 2009, no. 17, 3328-3336.

[10] B. Chow, D. Knopf, The Ricci flow: an introduction, Mathematical
Surveys and Monographs, vol. 110, American Mathematical Society,
Providence, RI, 2004.

[11] S. K. Donaldson, Anti-self-dual Yang-Mills connections over complex
algebraic surfaces and stable vector bundles, Proc. London Math. Soc.
50 (1985), 1-26.



1572 Xueyuan Wan

[12] H. Feng, K. Liu, X. Wan, Chern forms of holomorphic Finsler vec-
tor bundles and some applications, Inter. J. Math. 27 (2016), no. 4,
1650030.

[13] H. Feng, K. Liu, X. Wan, A Donaldson type functional on a holomorphic
Finsler vector bundle, Math. Ann. 369 (2017), no. 3-4, 997-1019.

[14] H. Feng, K. Liu, X. Wan, Geodesic-Einstein metrics and nonlinear sta-
bilities, Trans. Amer. Math. Soc. 371 (2019), no. 11, 8029-8049.

[15] M. Gill, Convergence of the parabolic complex Monge-Ampére equation
on compact Hermitian manifolds, Comm. Anal. Geom. 19 (2011), 277—
303.

[16] P. Griffiths, Hermitian differential geometry, Chern classes, and pos-
itive vector bundles, Global Analysis, papers in honor of K. Kodaira,
Princeton Univ. Press, Princeton (1969), 181-251.

[17] H. Gu, A new proof of Mok’s generalized Frankel conjecture theorem,
Proc. Amer. Math. Soc. 137 (2009), no. 3, 1063-1068.

[18] H. Gu, Z. Zhang, An extension of Mok’s theorem on the generalized
Frankel conjecture, Science China Mathematics 53 (2010), no. 5, 1253~
1264.

[19] R. Hartshorne, Ample vector bundles, Inst. Hautes Etudes, Sci. Publ.
Math. No. 29 (1966), 63-94.

[20] S. Kobayashi, Negative vector bundles and complex Finsler structures,
Nagoya Math. J. Vol. 57 (1975), 153-166.

[21] S. Kobayashi, Differential Geometry of Complex Vector Bundles,
Iwanami-Princeton Univ. Press, 1987.

[22] K. Liu, X. Yang, Geometry of Hermitian manifolds, International Jour-
nal of Mathematics 23 (2012), no. 6, 1250055 1-40.

[23] K. Liu, X. Sun, X. Yang, Positivity and vanishing theorems for ample
vector bundles, J. Algebraic Geom. 22 (2013), no. 2, 303-331.

[24] N. Mok, The uniformization theorem for compact Kdhler manifolds
of nonnegative holomorphic bisectional curvature, J. Differ. Geom. 27
(1988), no. 2, 179-214.

[25] S. Mori, Projective manifolds with ample tangent bundles, Ann. of Math.
(2) 110 (1979), no. 3, 593-606.



Positivity preserving along a flow over projective bundles 1573

[26] G. Munteanu, Complex Spaces in Finsler, Lagrange and Hamilton Ge-
ometries, Kluwer Academic Publishers, 2004.

[27] Y. Niu, Mazimum principles for real (p,p)-forms on Kdhler manifolds,
Geom Dedicata 149 (2010), 363-371.

[28] D. H. Phong, J. Song, J. Sturm, B. Weinkove, The Kdhler-Ricci flow
with positive bisectional curvature, Invent. Math. 173 (2008), no. 3,
651-665.

[29] Y.-T. Siu, S.-T. Yau, Compact Kahler manifolds of positive bisectional
curvature, Invent. Math. 59 (1980), 189-204.

[30] J. Streets, G. Tian, Hermitian curvature flow, Journal of the European
Mathematical Society, 13 (2011), 601-634.

[31] J. Streets, G. Tian, A parabolic flow of pluriclosed metrics, Int. Math.
Res. Not. IMRN 2010, no. 16, 3101-3133.

[32] J. Streets, G. Tian, Regularity results for pluriclosed flow, Geom. Topol.
17 (2013), no. 4, 2389-2429.

[33] V. Tosatti, B. Weinkove, On the evolution of a Hermitian metric by its
Chern-Ricci form, J Differential Geom. 99 (2015), 125-163.

[34] V. Tosatti, B. Weinkove, X. Yang, Collapsing of the Chern-Ricci flow
on elliptic surfaces, Math Ann, 362 (2015), 1223-1271.

[35] Y. Ustinovskiy, The Hermitian curvature flow on manifolds with non-
negative Griffiths curvature, Amer. J. Math. 141 (2019), no. 6, 1751—
1775.

[36] X. Wan, Holomorphic sectional curvature of complex Finsler manifolds,
The Journal of Geometric Analysis, J. Geom. Anal. 29 (2019), no. 1,
194-216.

[37] X. Wan, G. Zhang, The asymptotic of curvature of direct image bundle
associated with higher powers of a relatively ample line bundle, Geom.
Dedicata 214 (2021), 489-517.

[38] X. Yang, The Chern-Ricci flow and holomorphic bisectional curvature,.
Sci. China Math. 59 (2016), no. 11, 2199-2204.



1574 Xueyuan Wan

MATHEMATICAL SCIENCE RESEARCH CENTER
CHONGQING UNIVERSITY OF TECHNOLOGY
CHONGQING 400054, CHINA

E-mail address: xwan@cqut.edu.cn

RECEIVED FEBRUARY 1, 2018
ACCEPTED MARCH 2, 2020



	Introduction
	Preliminaries
	A flow over projective bundles
	Applications
	References

