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We study the one-parameter family of generalized Kahler Taub-
NUT metrics (discovered by Donaldson), along with two excep-
tional Taub-NUT-like instantons, and understand them to the ex-
tent that should be sufficient for blow-up and gluing arguments.
In particular we parameterize their geodesics from the origin, de-
termine curvature fall-off rates and volume growth rates for metric
balls, and find blow-down limits.
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1. Introduction

We provide information on the generalized Kähler Taub-NUT class of met-
rics and two related exceptional metrics. These are complete, scalar-flat
metrics, each with two commuting holomorphic Killing fields, on the un-
derlying complex manifold C2. Understanding the characteristics of these
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metrics will be important in numerous contexts, such as blow-up analysis of
singularities in the extremal Kähler context, and gluing constructions.

The generalized Taub-NUT metrics were discovered by Donaldson [6]
and further studied by Abreu and Sena-Dias [3] [17]; the two “exceptional”
instanton metrics are from [19]. We examine asymptotics such as curvature
fall-off and volume growth, and compute L2 curvature energy in a fairly
simple way. For the non-exceptional cases, we show that curvature fall-off is
strictly quadratic, except for the standard Taub-NUT metric where curva-
ture fall-off is cubic (as is well known). We show that both of the exceptional
instantons have infinite L2 energy, and actually have quartic volume growth,
despite not being ALE.

We also investigate blowdown limits: in the standard Taub-NUT the
blowdown is flat R3, whereas in the generalized case we never obtain smooth
manifolds. By “blowdown” we mean scaling the metric gϵ = ϵ2g, sending
ϵ → 0, and taking a pointed Gromov-Hausdorff limit. Limits in our case
are always unique, but the naive expectation that limits be 3-dimensional is
wrong; they may be either 2- or 3-dimensional. To determine this, we find an
explicit expression for the collapsing field near infinity and then determine
that on spherical shells the leaf-space of this field also foliates the Hopf tori.
This foliation might be rational or irrational, and the collapsing behavior is
related to the fact that S3 might collapse to either a 2-sphere (perhaps with
orbifold points), or to a line segment, depending on whether the collapsing
field is rational or irrational.

The two exceptional instantons have even more peculiar blowdowns.
Their volume growth is quartic, but their Gromov-Hausdorff blowdowns are
3-manifolds. Their limiting metrics both have curvature singularities along
the entirety of a 1-dimensional submanifold.

The instantons (N4, g4, J,X 1,X 2) we consider are scalar-flat toric Kähler
4-manifolds with commuting real-holomorphic Killing fields X 1, X 2. The
fields X 1, X 2 give the complex manifold (N4, J) = C× C one of two symme-
try structures: rotation on both factors (the generalized Taub-NUT metrics
and exceptional Taub-NUT), and translation on one factor and rotation on
the other (the exceptional half-plane metric). We remark that scalar-flat in-
stantons on C× C with two translational fields are always flat, by Corollary
4.5 of [19].

Taking the metric quotient by the Killing fields produces a 2-manifold
Σ2 (with boundary) and a metric gΣ; the pair (Σ2, gΣ) is called the metric
polytope associated to the instanton. All metric and curvature information
on N4 is encoded in this polytope. The Ricci curvature is encoded in the
Ricci potentials and the Ricci pseudo-volume form defined in Section 2.3.
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In the appendix we study W− and show that it takes a surprisingly simple
form on the generalized Taub-NUT metrics:

(1.1) W+ = 0, W− = −KΣ

(
6|ρ|−2ρ⊗ ρ− 2Id∧−

)

where ρ is the manifold’s Ricci form. The computation of W+ is due to
Derdzinski [5]. Noteworthy is that W− has just two distinct eigenvalues
instead of three. On general toric Kähler 4-manifolds the Weyl tensor has
three distnct eigenvalues; it is only on the generalized Taub-NUT metrics
where it has two. In the Appendix we prove the following proposition.

Proposition 1.1. Assume (N4, g4, J) is any scalar-flat toric Kähler 4-
manifold, and let ω− = dφ1 ∧ dφ2 + Jdφ1 ∧ Jdφ2. Then ω− ∈

∧− and is
an eigenform of the Weyl tensor: W−(ω−) = 2KΣ.

If, more particularly, (N4, g4, J) is a generalized Taub-NUT then the
Ricci form ρ ∈

∧− is an eigenform of the Weyl tensor: W−(ρ) = −4KΣρ,
and W− is given by (1.1).

Of some interest is a new set of explicit examples of singular metrics
we find. In studying certain generalized blowdown limits in Section 4, we
find a family of scalar-flat Kähler 4-manifolds with metrics that are smooth
except at one point, where an irremovable curvature singularity exists. The
underlying manifolds continue to be C2, but the metrics (while remaining
scalar-flat and Kähler) are singular.

1.1. Description of the Kähler Reduction

Here we sketch out the objects under study. After outlining the momentum
construction, we describe the exceptional half-plane instanton, the general-
ized Taub-NUTs, and the exceptional Taub-NUT. A fuller development is
in Section 2.

1.1.1. The moment description and classification. From a con-
struction originating in classical mechanics, the infinitesimal symplectomor-
phisms X 1, X 2 lead to canonical “action-angle” coordinates (φ1, φ2, θ1, θ2),
where the “angles” θ1, θ2 parametrize the integrated flows of the symme-
try fields X 1, X 2 and the “actions” φ1, φ2 parametrize the X 1-X 2 leaves
themselves.

Any metric g4 on such an instanton can be written explicitly though
unenlighteningly in these coordinates. Projecting to the (φ1, φ2)-plane pro-
duces exactly the Riemannian projection onto the metric polytope; this is
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known as the moment map (φ1, φ2) : N4 → Σ2. The image is a polygon in
the φ1-φ2 plane with an inherited metric—in the subjects of our study the
“polygon” is either the quarter-plane or the half-plane.

In [6],[3],[17],[19], many instantons were studied, in part, by using a set
of coordinates called volumetric normal coordinates. Denoting these coordi-
nates (x, y), we first set

(1.2) x =

√
|X 1|2|X 2|2 − ⟨X 1,X 2⟩2,

which is the parallelogram area of {X 1,X 2}. Remarkably, when N4 is scalar
flat, this function is harmonic in the natural polytope metric gΣ. Then y is
defined as the harmonic conjugate of x, meaning a solution of dy = − ∗ dx.
The map z = x+

√
−1y into C is analytic, and if the polytope has connected

boundary, it is an unbranched map onto the closed right half-plane H2 ⊂ C.
The polytope boundary ∂Σ2 maps bijectively onto the imaginary axis. Then
φ1, φ2 can be expressed in terms of x, y, and the metrics gΣ and g4 can
be written down explicitly in terms of the transition functions. Indeed in
(x, y)-coordinates, the polytope metric is simply

(1.3) gΣ =
1

x
det

(
∂φ1

∂x
∂φ2

∂x
∂φ1

∂y
∂φ2

∂y

)
(dx⊗ dx + dy ⊗ dy) .

The moment variables φ1, φ2 are now functions of (x, y), where they are
constrained by the degenerate-elliptic PDE

(1.4) x
(
φi
xx + φi

yy

)
− φx = 0.

In [19] a Liouville-type theorem was used to classify pairs (φ1, φ2) of solu-
tions to this degenerate-elliptic system, under the condition that the cor-
responding polytope be closed and have connected boundary. When the
polytope is the quarter-plane, it was found in [19] that the only possible
metrics are the generalized Taub-NUT metrics first written down in [6] and
the exceptional Taub-NUT metric.

In the case that the polytope is the half-plane, the metric must be ei-
ther the flat metric on C× C, or a multiple of the exceptional half-plane
instanton.

1.1.2. The exceptional half-plane instanton. This is the case the
polytope is a half-plane, which we may take to be Σ2 = {φ1 ≥ 0}. As a
complex manifold N4 is C× C and the holomorphic actions X 1, X 2 are
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rotational and translational, respectively. It was proven in [19] that, after
possible affine recombination, the one-parameter family of solutions

(1.5) φ1 =
1

2
x2, φ2 = y + Myx2

where M ≥ 0 are the only solutions of (1.4) that produce the half-
plane polytope. From (1.3) the corresponding polytope metric is gΣ =
1
2

(
1 + M

2 x
2
) (

(dx)2 + (dy)2
)
. The parameter M simply scales the metric,

as seen by the coordinate change x 7→ x/
√
M , y 7→ y/

√
M . The resulting 4-

dimensional instanton is called the exceptional half-plane instanton. Its full
metric g4 = gΣ +Gijdθi ⊗ dθj and a description of its properties are given
in Section 6. The choice M = 0 produces the flat metric.

1.1.3. The generalized and exceptional Taub-NUT metrics. This
is the case of the quarter-plane polytope, which we may take to be the
first quadrant: Σ2 = {φ1 ≥ 0, φ2 ≥ 0}. The underlying complex manifold
is N4 = C× C with two rotational symmetry fields. After possible affine
recombination of φ1, φ2 there is a precisely two-parameter family of solutions

(1.6)

φ1 =
1√
2

(
−y +

√
x2 + y2

)
+

α

2
x2, α ≥ 0

φ2 =
1√
2

(
y +

√
x2 + y2

)
+

β

2
x2, β ≥ 0

that produces this polytope [19]. These were written down by Donaldson
[6] in slightly different coordinates. The corresponding toric 4-manifolds are
the generalized Taub-NUT instantons. If we set M = α+β

2
√
2
and k = α−β

α+β , the

polytope metric is

(1.7) gΣ =
1 + 2M

(
k y +

√
x2 + y2

)

√
x2 + y2

(dx⊗ dx+ dy ⊗ dy) .

The parameter M ≥ 0 is just scale, as can be seen by the coordinate change
x 7→ x/M , y 7→ y/M . The choice M = 0 gives the flat metric on C2, and the
choice M = 1 gives the standard scale, where supN4 | sec | = 1. The param-
eter k ∈ [−1, 1] is called the instanton’s chirality number, and parametrizes
the family of inequivalent Taub-NUT metrics.

The instantons given by k and −k are isometric and the corresponding
polytope metrics on Σ2 are enantiometric (isometric but with flipped orien-
tation), as seen by simply exchanging the two momentum coordinates. The
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case k = 0 is the standard Taub-NUT (which is achiral and Ricci-flat), and
the extreme case k = 1,−1 is the exceptional Taub-NUT, whose properties
are qualitatively different from the other Taub-NUTs. Choices of k outside
the [−1, 1] range produce topological and curvature singularities.

1.2. Description of results

The first step is choosing better isothermal coordinates on Σ2. We change
to quadratic normal coordinates u, v via the fourth-degree polynomial tran-
sitions

(1.8) φ1 =
v2√
2M

(
1 + (1 + k)u2

)
, φ2 =

u2√
2M

(
1 + (1− k)v2

)
,

which is a diffeomorphism of the first quadrant to itself. The N4 metric
expressed in (u, v, θ1, θ2) coordinates is

(1.9)
g4 =

2

M

(
1 + (1 + k)u2 + (1− k)v2

) (
(du)2 + (dv)2

)

+Gijdθi ⊗ dθj

where the matrix (Gij) is a function of u, v the parameter k, and the scale
factor M , but whose particular form is unimportant just now (we write it
down in (3.3)). In these coordinates we seeM explicitly as a scale parameter.

In Section 4 where we explore blowdowns of our metrics, we find that
the symplectomorphic Killing field X = (1− k)X 1 − (1 + k)X 2 is nearly an
eigenvector of Gijdθi ⊗ dθj , and asymptotically is precisely an eigenvector.
The corresponding eigenvalue asymptotically approaches a constant multi-
ple of 1/M . The field X is the collapsing field at infinity in the sense of
Cheeger-Gromov collapsing theory [4]. The three remaining eigenvalues of
g4 asymptotically grow linearly with distance, reflecting the fact that the
manifold’s asymptotic volume growth is cubic.

To find parametrized geodesics from the origin (u, v) = (0, 0), we use the
form of the metric in (1.9) and a separation method to solve the Eikonal
equation |∇S| = 1 explicitly in a certain variety of cases. Characteristic
curves of any Eikonal equation are geodesics, as any function satisfying
|∇S| = 1 is a distance function, and we find enough of these characteristics
to allow explicit parametrization of all geodesics based at the origin. From
this we explicitly compute the polytope metric in exponential polar coordi-
nates (equation (3.19)), and then compute the key asymptotic quantities.
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We summarize our results in the following four theorems. The first the-
orem is well-known and is included for completeness.

Theorem 1.2 (The standard Taub-NUT [9]). These are the metrics of
(1.9) with k = 0. The collapsing field at infinity is X1 −X2. These metrics
are Ricci-flat and have total curvature

(1.10)

∫
|Rm |2 = 32π2.

Volume growth of geodesic balls is cubic: Vol B(R) = O(R3) and curvature
decay is cubic: |Rm | = O(R−3). Its Gromov-Hausdorff blowdown is flat R3.

Remark. In some works one sees
∫
|Rm |2 = 8π2 for the Taub-NUTmetric.

The difference is a factor of 4, and is due to a different choice of norms.
Denoting by |Rm |op the norm of Rm as an operator Rm :

∧2 →
∧2 and

denoting by |Rm |2tensor the standard tensor norm, we have |Rm |2tensor =
4|Rm |2op. Throughout this paper we choose the tensor norm. This issue is
discussed again after Proposition 3.8 and after Lemma A.9.

Theorem 1.3 (The chiral Taub-NUTs). These are the metrics (1.9)
with k ∈ (−1, 0) ∪ (0, 1). The collapsing field at infinity is (1− k)X 1 − (1 +
k)X 2. These manifolds are scalar-flat and half-conformally flat, and have
total energy

(1.11)

∫
|Ric |2 = 32π2 k2

1− k2
,

∫
|W−|2 = 32π2 1 + k2

1− k2
,

∫
|Rm |2 = 32π2 1 + 3k2

1− k2
.

Volume growth of geodesic balls is precisely cubic: Vol B(R) = O(R3), and
curvature decay is quadratic: |Ric | = O(R−2), |W−| = O(R−2). Gromov-
Hausdorff blowdowns are non-flat and have a curvature singularity point.
The limit is either a 3-dimensional stratified Riemannian orbifold (when k
is rational) or is a closed quarter-plane with a singular Riemannian metric
(when k is irrational).

Remark. More exactly,

lim
R→∞

R−3V ol B(R) =
8

3
π2 1√

2M

(
1√
1− k

+
1√
1 + k

)
.
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Computing the L2 norms of |Rm | and |Ric | was done in [17]; we include it
because it follows easily from the computational structure of Section 2 and
the Appendix.

Theorem 1.4 (The exceptional Taub-NUT). These are the metrics
of (1.9) with maximum chirality k = 1 or −1. They are smooth, geodesi-
cally complete, toric, scalar flat, half-conformally flat, and Kähler. The
L2-norms of both |Ric | and |W−| are infinite. Growth of geodesic balls
is quartic: Vol B(R) = O(R4). The Riemann tensor decays quadratically
|Ric |, |W−| = O(R−2) along all geodesics from the origin, except for the
family of geodesic rays that make up a certain totally geodesic codimension
2 holomorphic submanifold containing the origin. Along these rays, curva-
ture does not decay: |Ric | = O(1) and |W−| = O(1).

The Gromov-Hausdorff blowdown of the exceptional Taub-NUT is a 3-
dimensional manifold with a curvature singularity that makes up an un-
bounded codimension-2 submanifold.

Theorem 1.5 (The exceptional half-plane instanton). In volumetric
normal coordinates this instanton has polytope metric

(1.12) gΣ = (1 + x2) (dx⊗ dx+ dy ⊗ dy) , 0 ≤ x < ∞,−∞ < y < ∞.

The corresponding instanton is smooth, geodesically complete, toric,
scalar flat, half-conformally flat, and Kähler. The metric has

∫
|Ric |2 =∫

|Rm |2 = ∞. Volume growth is quartic: Vol B(R) = O(R4). The Riemann
tensor decays quadratically |Ric |, |W−| = O(R−2) along all geodesics from
the origin, except for the family of geodesic rays that make up a certain to-
tally geodesic codimension 2 holomorphic submanifold containing the origin,
along which it has no curvature decay: |Ric | = O(1) and |W−| = O(1).

The Gromov-Hausdorff blowdown of the exceptional half-plane instanton
is a 3-dimensional manifold with a curvature singularity along an unbounded
codimension-2 submanifold.

Remark. On the polytope, the exceptional Taub-NUT metric (1.12) is

(1.13) g = (1 + x2)(dx⊗ dx+ dy ⊗ dy)

expressed in volumetric normal coordinates, whereas the exceptional half-
plane instanton (1.9) has metric

(1.14) g = (1 + u2)(du⊗ du+ dv ⊗ dv)



✐

✐

“5-Weber” — 2023/5/22 — 23:55 — page 1583 — #9
✐

✐

✐

✐

✐

✐

Generalized Kähler Taub-NUT metrics 1583

expressed in quadratic normal coordinates. They have suspiciously similar
properties in other ways, such as a complete, totally geodesic, codimension
2 submanifold with no curvature decay. One might wonder if they are the
same, or perhaps if one is a cover of the other. But they are different, as
we prove at the end of Section 6. The following remark indicates there is a
relationship between them of a different sort.

Remark. The exceptional Taub-NUT has rays along which curvature does
not decay. The injectivity radius does not collapse along these rays, so a
natural question is whether we can compute the pointed Gromov-Hausdorff
limit as some basepoint moves to infinity along such a ray. We do this in
Section 5.4.2, and find that this limit is the exceptional half-plane instanton.

Remark. All instantons we consider are simply-connected except the ex-
ceptional half-plane instanton, which can take a simply connected form as
C2 or a non-simply connected form as C× R× S1. Since the Killing field X 2

is translational and in particular is nowhere zero, the form C× R× S1 may
be obtained by taking a quotient along a discrete translational distance.

Remark. The Taub-NUT metric and its generalizations have long been
a source of examples in general relativity [14] [18] [13] and Riemannian
geometry. For instance there are the multi-Taub-NUT metrics of Gibbons-
Hawking [7]; these are hyperkähler and in particular Ricci-flat, and many of
them are toric and so have moment polytopes. The only one with a quarter-
plane moment polytope is the standard Taub-NUT.

Page [16] explores Euclidean Taub-NUT metrics with a magnetic
anomaly, which are Ricci-flat but not half-conformally flat—in particular
they are non-Kähler—and have curvature singularities. Noriaki-Toshihiro
[15] explore classes of “generalized Taub-NUT” and “extended Taub-NUT”
metrics with torus symmetry. Like the examples considered here, some of
their examples are half-conformally flat and non-Einstein. However none are
Kähler except the standard one.

Remark. We claim explicit solutions of the geodesic equation, but we
should say what is meant by “explicit.” Our separation method lets us write
down unparameterized geodesics with simple algebraic expressions (equa-
tion (3.10)). But the parametrization is given by a non-algebraic expression:
one must invert a function of the type f(x) = xa + xb + log(x); see equation
(3.16). Near infinity we are able to approximate even the parametrization
with a simple algebraic expression to arbitrary closeness; see Section 3.2.4
and especially Corollary 3.3.
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Remark. In this paper we study toric instantons on C× C, but toric
scalar-flat metrics on the O(−l) bundles over P1 are known as well, and were
written down in [3]. There it was shown exactly which of these are Einstein:
precisely the multi-Taub-NUT and multi-Eguchi-Hanson metrics. Of course
in the ALE case the Einstein metrics were already known to Kronheimer
[10]. It would be interesting to learn more about the Kähler non-Einstein
metrics on these spaces, and in particular what their asymptotics are. A rea-
sonable conjecture is that they are asymptotically identical to the metrics
studied in this paper.

Remark. Just as there is an “exceptional Taub-NUT” metric there should
be an “exceptional Eguchi-Hanson” metric and the like; one for each total
space O(−l).

Remark. We use the phrase “affine recombination” several times, but there
is a delicate point here, as affine recombination can be done in two similar
ways that have an important difference. First, given two potential functions
φ1, φ2, we may recombine them, without altering anything important about
the manifold, by any constant-coefficient affine transformation

(1.15)

(
φ̃1

φ̃2

)
=

(
c11 c12
c21 c22

)(
φ1

φ2

)
+

(
c1

c2

)
.

So long as the coefficients are constant and the 2× 2 matrix is in GL(2,R),
we still retain two independent symplectomorphic Killing fields X̃ i = J∇φ̃i.
The polytope itself has been altered by a translation and a planar GL(2,R)
transformation, but nothing about the manifold’s or the polytope’s metric
or curvature has changed, except in its coordinate expression. Volumetric
normal coordinates x, y are then created, and the theory proceeds as usual.

On the other had one might create the isothermal coordinates x, y first,
and then change the potentials φ1, φ2 without changing x, y. In this case
the metric does change: it is multiplied by the determinant of the coefficient
matrix, as can be seen by equation (2.6). The metric is unchanged only if
the coefficient matrix is in SL(2,R).
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2. Overview of Kähler reduction

We review the moment construction, which compresses all (N4, g4, J,
X 1,X 2) data into a 2-dimensional metric polytope (Σ2, gΣ). This section
is included in part for the reader’s convenience and in part to establish no-
tation; it presents techniques developed in [1] [8] [6] [3] [19] and elsewhere.
Only the discussion of Ricci curvature in Section 2.3 is new; in that section
we introduce the Ricci potentials and the Ricci pseudo-volume form on the
polytope. Most of this section deals with any Kähler reduction N4 → Σ2

where N4 is scalar-flat; we specialize to the Taub-NUTs in Section 2.4.

2.1. Polytope construction

By assumption the commuting fields X 1, X 2 are Killing fields, infinitesi-
mal symplectomorphisms and biholomorphisms. Because LX iω = 0 where ω
is the Kähler form of (N4, g4, J), we have functions φ1, φ2 defined up to
additive constant by dφi = −iX iω, which is the same as X i = J∇φi. This
provides gradient fields ∇φ1, ∇φ2 that commute, so define integrable leaves
which are Lagrangian submanifolds. Assigning to one leaf a value of (0, 0) for
(θ1, θ2), then we can then define (θ1, θ2) functions on the entire manifold as
push-forwards along the X 1, X 2 action. The construction gives the so-called
action-angle coordinates (φ1, φ2, θ1, θ2); by construction X i = ∂

∂θi
. The mo-

ment map is just forgetting the angle coordinates, and gives the moment
polytope

(2.1) Σ2 ≜ Image
[(
φ1, φ2

)
: N4 −→ R

2
]

in the (φ1, φ2) plane. This map is a submersion except where X 1, X 2 have
zeros or are collinear. If N4 is compact, and also in certain non-compact
cases such as the metric considered here, it is well known that the image is a
closed polygon, although in our setting this “polygon” is a quarter-plane or
a half-plane. Because X 1 and X 2 are also Killing, Σ2 inherits a Riemannian
metric which is obviously smooth in the interior, and is in fact smooth at the
boundary except at corners where it is Lipschitz. Because [∇φ1,∇φ2] = 0,
the distribution {∇φ1,∇φ2} in N4 is integrable, and indeed by Lemma A.3
it is totally geodesic. The polytope is locally isometrically isomorphic to
the completion of any of these leaves. These leaves are Lagrangian so the
N4 complex structure does not pass to Σ2, but Σ2 has its own complex
structure, the Hodge star.
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2.2. Metric quantities

In action-angle coordinates (φ1, φ2, θ1, θ2) the metrics, complex structures,
and symplectic structures on N4 and Σ2 are

g4 =

(
Gij 0

0 Gij

)
, J =

(
0 −Gij

Gij 0

)
, ω4 =

(
0 −Id

Id 0

)
,(2.2)

gΣ = G, JΣ =
1√
V

( 〈
X 1, X 2

〉
−|X 1|2

|X 2|2 −
〈
X 1, X 2

〉
)
,(2.3)

where we have set

(2.4)
(Gij) =

(〈
X i,X j

〉)
=
(〈
∇φi,∇φj

〉)
, (Gij) = (Gij)−1,

V = det(G−1) = |∇φ1|2|∇φ2|2 −
〈
∇φ1,∇φ2

〉2
.

We remark that G is a Hessian, Gij = ∂2U/∂φi∂φj , for a function U known
as the symplectic potential [8] of N4, although we shall not have occasion to
use this fact.

Expressing g4 in holomorphic coordinates allows easy computation of
scalar and Ricci curvatures. The φi are neither pluriharmonic nor even har-
monic on N4 or Σ2, but the angle coordinates θi are pluriharmonic on N4

and so can be used to determine holomorphic coordinates (z1, z2), where
Im(zi) = θi. While a closed-form expression for Re(zi) is difficult to find,
the fields are much easier:

(2.5)
∂

∂zi
=

1

2

(
∇φi −

√
−1X i

)
and dzi = Jdθi +

√
−1 dθi

so the Hermitian metric is h = hiȷ̄ = ⟨∂/∂zi, ∂/∂z̄j⟩ = 1
2G

ij and det hiȷ̄ =
1
4V.

Lastly it is important to express the polytope metric gΣ in volumetric

coordinates (x, y). Letting A =
(
∂φi

∂xj

)
be the coordinate transition matrix,

the metric and the polytope sectional curvature in (x, y) coordinates are

(2.6)

gΣ =
det(A)

x
(dx⊗ dx+ dy ⊗ dy) ,

KΣ = − x

det(A)

(
∂2

∂x2
+

∂2

∂y2

)
log

√
det(A)

x
.

The sectional curvature KΣ is the sectional curvature of the quotient space
and also of the {∇φ1,∇φ2} leaves in N4, as the leaves are totally geodesic
by Lemma A.3.
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2.3. Curvature quantities

Because det(hiȷ̄) = 1
4V, the Ricci form and scalar curvature of (N4, J, ω) are

(2.7)
ρ = −

√
−1∂∂̄ log V =

1

2
dJd log V,

s = −△ log V.

The function s is X 1, X 2 invariant and so passes down to Σ2, where the
(M4, g4) equation s = −△ log V becomes the (Σ2, gΣ) equation

(2.8) △Σ

√
V +

1

2
s
√
V = 0.

We emphasize that s is not the scalar curvature of (Σ2, gΣ), but the scalar
curvature of (N4, g4) passed down to Σ2. Consequently when s = 0 on N4

the function x =
√
V is harmonic on Σ, and it has harmonic conjugate y,

meaning a solution of dy = −JΣdx. By Section 3 of [19], if the polytope
boundary has one component then the complex variable z = x+ iy has no
critical points, so it is a global complex coordinate that maps Σ2 to the right
half-plane.

Next we consider how the Ricci curvature of N4 is encoded in the poly-
tope. The Lie derivative1 is LX i = [d, iX i ] = diX i + iX id, and because J and
log V are invariant under the fields Xi, we see from (2.7) that

(2.9) iX iρ =
1

2
LX i (Jd log V)− 1

2
d (iX iJd log V) = d

〈
∇φi, ∇ log V 1

2

〉
.

The two functions Ri =
〈
∇φi, ∇ log x

〉
we call the Ricci potentials. These

are invariant functions so pass down to Σ2. On N4 clearly ρ = −dR1 ∧ dθ1 −
dR2 ∧ dθ2. In the scalar-flat case we have ρ ∈

∧−, meaning ∗ρ = −ρ, and so

(2.10) |Ric |2dV ol4 = −2ρ ∧ ρ = 4 dR1 ∧ dR2 ∧ dθ1 ∧ dθ2.

The factor of 2 on the ρ ∧ ρ term is owing to the fact that the tensor
norm is twice the usual norm on 2-forms: |Ric |2 = 2 ∗ (ρ ∧ ∗ρ). The 2-
form dR1 ∧ dR2 makes sense on Σ2 and is non-negative; we call it the Ricci
pseudo-volume form. The Ricci pseudo-volume form is invariant under affine
recombination of coordinates φ1, φ2.

1Recall the convention [D1,D2] = D1D2 − (−1)|D1||D2|D2D1 for derivations.
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The final curvature quantity to consider is the Weyl curvature. Of course
W+ = 0 on any scalar-flat Kähler manifold [5]. By Lemma A.9 we also know
that |W−|2 = 96KΣ

2.

2.4. The metrics

The generalized Taub-NUT instantons have underlying complex manifold
C× C with two rotational symmetry fields X 1, X 2, and after possible affine
recombination of φ1, φ2, the polytope is the first quadrant. The 2-parameter
family of moment functions that generate the quarter-plane polytope is

(2.11)

φ1 =
1√
2

(
−y +

√
x2 + y2

)
+

α

2
x2, α ≥ 0

φ2 =
1√
2

(
y +

√
x2 + y2

)
+

β

2
x2, β ≥ 0.

Using M = α+β

2
√
2
, k = α−β

α+β , we compute the polytope metric and Gaussian
curvature

(2.12)

gΣ =
1 + 2M

(
ky +

√
x2 + y2

)

√
x2 + y2

(dx⊗ dx + dy ⊗ dy)

KΣ = M
−1 + 2Mk

(
y + k

√
x2 + y2

)

(
1 + 2M

(
ky +

√
x2 + y2

))3

using equations (2.6) above. Changing M simply scales the metric (to see
this make the simultaneous change x 7→ x/M , y 7→ y/M), and choosing
M = 0 gives the flat metric. The parameter k ∈ [−1, 1], the chirality num-
ber, changes the metric structure while leaving, say, KΣ(0, 0) equal to −M .
Therefore k does no scaling.

The exceptional case is k = 1 (or equivalently k = −1), where we see
that the negative y-axis retains constant KΣ(0,−y) = −M , so there is no
curvature fall-off along {x = 0} (or, when k = −1, along {y = 0}).

Finally we consider the exceptional half-plane instanton. The underlying
complex manifold is C× C; the holomorphic symmetry field X1 is rotational
and X2 is translational. The momentum polytope is the half-plane, and after
possible affine recombination of φ1, φ2 we have

(2.13) φ1 =
1

2
x2, φ2 = y + Myx2
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for any constant M ≥ 0. We obtain polytope metric and sectional curvature

(2.14)

gΣ =
(
1 +Mx2

)
(dx⊗ dx + dy ⊗ dy) ,

KΣ = M
−1 +Mx2

(1 +Mx2)3
.

Replacing x, y by x̃ =
√

M
2 x, ỹ =

√
M
2 y we have

gΣ =
1

M

(
1 + x̃2

) (
dx̃2 + dỹ2

)

and again we see that M is a scale parameter.

3. Asymptotics of the generalized Taub-NUT metrics

Here the momentum polytope Σ2 is the closed quarter-plane, and the corre-
sponding instantons are the generalized Taub-NUTs. In §3.1 we create the
very useful quadratic normal coordinate system. In §3.2 we compute the
distance function to the origin, express the metric in geodesic normal coor-
dinates, and write down a usable approximation for the distance function.
In §3.3 we use this data to determine the asymptotics of our manifolds, and
in §3.4 we compute the L2 norms of the curvature quantities.

3.1. Quadratic normal coordinates

From x, y coordinates, we define u, v coordinates:

(3.1) u =
√
M

√√
x2 + y2 + y, v =

√
M

√√
x2 + y2 − y.

These are indeed isothermal coordinates, and in fact are a complex square

root of the (x, y) coordinates: x+
√
−1y = −

√
−1

2M (v +
√
−1u)2. We call them

quadratic normal coordinates. The inverse transformation is x = 1
M uv, y =

1
2M (u2 − v2).

The image of (u, v) from the quarter-plane Σ2 is again the quarter-plane,
not the right half-plane as it is in (x, y) coordinates. The moment functions
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and metric are

(3.2)

φ1 =
v2√
2M

(
1 + (1 + k)u2

)
, φ2 =

u2√
2M

(
1 + (1− k)v2

)
,

gΣ =
2

M

(
1 + (1 + k)u2 + (1− k)v2

) (
du2 + dv2

)

KΣ = M
−1 + k

(
(1 + k)u2 − (1− k)v2

)

(1 + (1 + k)u2 + (1− k)v2)3
.

Later we shall require use of the full metric in u, v, θ1, θ2 coordinates. It is

(3.3) g4 =

(
gΣ

Gij

)
,where

(Gij) =
1

M




v2(1+2(1+k)u2+(1+k)2u2(u2+v2))
1+(1+k)u2+(1−k)v2

u2v2(2+(1−k2)(u2+v2))
1+(1+k)u2+(1−k)v2

u2v2(2+(1−k2)(u2+v2))
1+(1+k)u2+(1−k)v2

u2(1+2(1−k)v2+(1−k)2v2(u2+v2))
1+(1+k)u2+(1−k)v2


 .

3.2. Distance functions and geodesic normal coordinates

3.2.1. The distance functions Sη. The form of gΣ in (u, v) coordinates
allows a separation of variables technique in finding certain solutions of
|∇S| = 1. Supposing S(u, v) = f(u) + h(v) and choosing any parameter η ∈
[0, π/2], we use (3.2) to write the equation |∇S|2 = 1 as

(3.4)
M

2

(fu)
2 + (hv)

2

(cos2 η + (1 + k)u2) +
(
sin2 η + (1− k)v2

) = 1

which separates into

(3.5)

df

du
=

√
2

M

√
cos2 η + (1 + k)u2,

dh

dv
=

√
2

M

√
sin2 η + (1− k)v2.
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Solving for f , h under initial conditions f(0) = h(0) = 0 gives the solu-
tion

(3.6)

Sη(u, v) =

√
2

M

cos2 η

2
√
1 + k

[
Uη

√
1 + U2

η + log
(
Uη +

√
1 + U2

η

)]

+

√
2

M

sin2 η

2
√
1− k

[
Vη

√
1 + V 2

η + log
(
Vη +

√
1 + V 2

η

)]

where we have used the abbreviations Uη =
√
1+k

cos η u, Vη =
√
1−k
sin η v and have

written Sη for S to emphasize the role of the parameter η. As depicted in
Figure 1, the distance function Sη is not the distance to any locus within
the polytope, but to a virtual locus Sη = 0 in the u, v plane that intersects
the polytope only at (0, 0). See Figure 1.

Figure 1: Contour plots of the distance function Sη for two values of η. Solid
curve is the virtual locus Sη = 0, which touches the polytope only at (0, 0).
Dashed curves are additional level-sets. Thin solid curves are characteristics
for Sη, which are geodesics. Exactly one characteristic intersects the origin
for each η. We have chosen chirality number k = 0.5.

3.2.2. The geodesics based at the origin. Because the virtual locus
Sη = 0 intersects the polytope only at the origin, it follows that each choice
of η allows us to find a single geodesic from the origin. To study these
geodesics from the origin, we attempt to solve for characteristics γ̇ = ∇Sη
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with initial condition γ(0, 0) = (0, 0). For the gradient of Sη we have

(3.7)

∇Sη =

√
2

M

( √
cos2 η + (1 + k)u2

1 + (1 + k)u2 + (1− k)v2
∂

∂u

+

√
sin2 η + (1− k)v2

1 + (1 + k)u2 + (1− k)v2
∂

∂v

)
.

With γ(t) = (u(t), v(t)), the characteristic equation is the coupled au-
tonomous system

(3.8)

du

dt
=

√
cos2 η + (1 + k)u2

1 + (1 + k)u2 + (1− k)v2
,

dv

dt
=

√
sin2 η + (1 + k)v2

1 + (1 + k)u2 + (1− k)v2
.

This is difficult to solve, but eliminating t gives

(3.9)
dv

du
=

√
sin2 η + (1− k)v2√
cos2 η + (1 + k)u2

,

which separates. At the point (u, v) = (0, 0) we see dv
du = tan η, which gives

η its geometric meaning: it is the initial angle the geodesic makes with the
u-axis. The solution for initial condition γ(0) = (0, 0) is given explicitly by

(3.10)

(
Vη +

√
1 + Vη

2

) 1
√

1−k

=

(
Uη +

√
1 + Uη

2

) 1
√

1+k

and again Uη =
√
1+k u
cos η , Vη =

√
1−k v
sin η . This is the unparameterized geodesic

equation.

3.2.3. Geodesic Normal Coordinates. Let R = dist(o, ·) be the dis-
tance function to the origin. If (u, v) is an arbitrary point in the first quad-
rant, we wish to find both the distance R(u, v) to the point and the initial
angle η(u, v) of the geodesic to that point. We find the initial angle of the
geodesic through a given (u, v) by solving the unparameterized geodesic
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equation (3.10) for η:

(3.11)


v

√
1− k

sin η
+

√

1 +

(
v
√
1− k

sin η

)2



1
√

1−k

=


u

√
1 + k

cos η
+

√

1 +

(
u
√
1 + k

cos η

)2



1
√

1+k

.

This is a non-constructive step, but given u, v there is a unique solution
η ∈ [0, π/2]. This is because when η varies in [0, π/2] with u and v fixed,
the left-hand side monotonically decreases from ∞ and the right-hand side
monotonically increases to ∞. Having found η = η(u, v) this way, the dis-
tance to (u, v) is now easy to determine:

(3.12) R(u, v) = Sη(u,v)(u, v).

Thus we have described the transition from the isothermal system (u, v) to
polar geodesic coordinates (R, η). This transformation is depicted in Fig-
ure 2.

We must also compute the reverse transformation: given initial angle
η and distance R, we must find (u, v). This is equivalent to finding the
parametrization for the geodesics described by (3.10). Given (R, η) we must
solve the non-algebraic system

(3.13)

(
Uη +

√
1 + Uη

2

) 1
√

1+k

=

(
Vη +

√
1 + Vη

2

) 1
√

1−k

, Sη(u, v) = R

for (u, v). To do so, we define an auxiliary function F by

(3.14) F ≜

(
Uη +

√
1 + U2

η

) 1
√

1+k

=
(
Vη +

√
1 + V 2

η

) 1
√

1−k

so that from F we may determine u and v:

(3.15)

u(F ) =
cos η

2
√
1 + k

(
F

√
1+k − F−

√
1+k
)
,

v(F ) =
sin η

2
√
1− k

(
F

√
1−k − F−

√
1−k
)
.
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Figure 2: Depictions of geodesic polar coordinates in quadratic normal coor-
dinates and in momentum coordinates. Shown are radial geodesics from the
origin, and evenly spaced level-sets of the distance function.

Using (3.6) we find that R = Sη(u, v) is precisely

(3.16)

R =

√
2

M

cos2 η

2
√
1 + k

[
1

4

(
F 2

√
1+k − F−2

√
1+k
)
+ logF

√
1+k

]

+

√
2

M

sin2 η

2
√
1− k

[
1

4

(
F 2

√
1−k − F−2

√
1−k
)
+ logF

√
1−k

]
.
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One then inverts this to obtain F in terms of R and η, clearly a non-
constructive step. To see that a solution exists and is unique for any choice
of η and R, note that the right-hand side of (3.16), regarded as a function of
F , is monotone and has range (−∞,∞) as F varies in (0,∞). After finding
F = F (R, η) in this way, (3.15) gives u = u(R, η) and v = v(R, η).

In Section 3.2.4 we find simple, explicit expressions that approximate u,
v, and F as functions of R and η with good accuracy.

The coordinates (R, η) are, of course, geodesic normal coordinates cen-
tered at (0, 0). To compute the metric in this system, consider again the
unparameterized geodesic equation (3.11), which relates η, u, and v. Taking
an exterior derivative gives

(3.17)
du + u tan η dη√
cos2 η + (1 + k)u2

=
dv − v cot η dη√
sin2 η + (1− k)v2

.

Since we have

|du|2 = |dv|2 = M

2
(1 + (1 + k)u2 + (1− k)v2)−1 and ⟨du, dv⟩ = 0,

we can isolate dη and norm to obtain
(3.18)

|dη|2 2

M

(
u tan η

√
sin2 η + (1− k)v2 + v cot η

√
cos2 η + (1 + k)u2

)2

= 1.

Using (3.15) to write |dη|2 in terms of R and η, we obtain, finally, the
polytope metric in geodesic normal coordinates:

(3.19) gΣ = dR⊗ dR + A(R, η)2dη ⊗ dη, where

A(R, η)2 = |dη|−2

=

[
sin2 η

2M
√
1 + k

(
F

√
1+k − F−

√
1+k
)(

F
√
1−k + F−

√
1−k
)

+
cos2 η

2M
√
1− k

(
F

√
1+k + F−

√
1+k
)(

F
√
1−k − F−

√
1−k
)]2

.

3.2.4. Asymptotic approximations of F and R. The coordinates
(u, v) and the auxiliary function F are functions of the polar coordinates
(R, η). In this section we approximate u, v and F using closed-form ex-
pressions. We may approximate the value of F to within tolerable margins
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by

(3.20)

F̃ (R, η) =





(
8
√
1+k

cos2 η

√
M
2 R

) 1

2
√

1+k

, 0 ≤ η < η0
(

8
√
1−k

sin2 η

√
M
2 R

) 1

2
√

1−k

, η0 ≤ η ≤ π
2 ,

η0 = sin−1




(√
M
2 R

)√
1+k

1−k
−1

(√
M
2 R

)√
1+k

1−k
−1

+ 6
√
1+k

(8
√
1−k)

√
1+k
1−k




.

where “tolerable margins” means the following.

Lemma 3.1. Given any values F , η, define the function R = R(F, η) by

(3.21)

R =
cos2 η√

2M
√
1 + k

[
1

4

(
F 2

√
1+k − F−2

√
1+k
)
+ logF

√
1+k

]

+
sin2 η√

2M
√
1− k

[
1

4

(
F 2

√
1−k − F−2

√
1−k
)
+ logF

√
1−k

]
.

If F = F (R, η) is the auxiliary function of (3.16) then of course the distance
function is exactly R = R(F, η). Given any ϵ > 0, then for sufficiently large
R we have

(3.22)
R(F̃ (R, η), η)

R
=

R(F̃ (R, η), η)

R(F (R, η), η)
∈ [1, 2 + ϵ]

for all η ∈ [0, π/2].

Proof. Apply the first derivative test in the parameter η to learn that the
minimum of 1

RR(F̃ (R, η), η) occurs at the endpoints η = 0, π/2, and that
the maximum occurs at the discontinuity point, where the left and right
limits are different. Then test these points to learn that the minimum is 1
and the maximum is a bit bigger than 2. □

In short, our approximation F̃ for F gives the correct value of R to
within about a factor of 2. With electronic help, this estimate can be im-
proved with very little use of processing power. Just a single application
of Newton’s method—or Householder’s method, which is better adapted for
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this problem—will bring this estimate to within an arbitrarily close multiple
of R for large R.

This estimate for F is valuable in approximating the metric as given in
(3.19), but for determining the key asymptotic ratios a direct approximation
of R is preferable. We create approximations for (R, η) with new coordinates
(R̃, η̃) that we call almost polar coordinates, given by

(3.23) R̃ =

√
1 + k

2M
u2 +

√
1− k

2M
v2, η̃ = tan−1

(
4

√
1− k

1 + k

v

u

)

with inverse transitions

(3.24) u = 4

√
2M

1 + k

√
R̃ cos η̃, v = 4

√
2M

1− k

√
R̃ sin η̃.

We shall see that the distance function R and the “almost distance function”
R̃ are asymptotically very close together. Unfortunately the angle η and the
“almost angle” η̃ are not uniformly close together. The following estimate is
the best we are able to manage for η̃.

Lemma 3.2. Assuming R̃ is sufficiently large compared to M and k ∈
(0, 1), then

(3.25)

cos η̃

cos η
≥ min





1√
2
,




(
4
√

2M(1− k)
)√

1+k
√

1−k

√
1 + k



√

R̃

√

1+k
√

1−k
−1





sin η̃

sin η
≥ min





1√
2
,




(
4
√

2M(1 + k)
)√

1−k
√

1+k

√
1− k



√

R̃

√

1−k
√

1+k
−1





.

Indeed it suffices that
√

M(1− k) R̃ be larger than either of

(3.26)
1

2

(
1

2

√
1+k

1−k − 1

)√
1−k

1+k

,
1

2

(
1

2

√
1−k

1+k − 1

)√
1+k

1−k

.

Proof. We start with the first inequality. If already cos η̃
cos η ≥ 1√

2
then the

inequality holds immediately, so assume cos η̃
cos η < 1√

2
. Using sin2 η̃ = 1−
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cos2 η̃ > 1− 1
2 cos

2 η = 1
2 + 1

2 sin
2 η we obtain sin2 η̃

sin2 η
> 1

2
1+sin2 η
sin2 η

≥ 1. Refer-

ring to the abbreviations Uη =
√
1+k

cos η u and Vη =
√
1−k
sin η v, by using sin2 η̃

sin2 η
> 1

and (3.24) we see

(3.27) Vη =
v
√
1− k

sin η
≥ 4
√

2M(1− k)
√

R̃.

By (3.14) we express F =
(
Vη +

√
1 + V 2

η

) 1
√

1−k

, and since Vη +
√

1 + V 2
η >

2Vη we now have

(3.28) F =
(
Vη +

√
1 + V 2

η

) 1
√

1−k

>
(
2 4
√

2M(1− k)
√

R̃
) 1

√

1−k

.

As long as we assume 4
√

2M(1− k)
√

R̃ is larger than either of the expres-
sions in (3.26), then we can use this estimate for F to obtain an estimate
for u. Using (3.15) to express u in terms of F , we obtain

(3.29)
u
√
1 + k

cos η
= F

√
1+k − F−

√
1+k >

(
4
√

2M(1− k)
√

R̃
)√

1+k
√

1−k

Finally using the fact that u = R̃ cos η̃ gives the stated conclusion.
The second inequality proceeds identically, exchanging v for u and so

on. □

Corollary 3.3 (Estimate for the almost distance function). Assum-
ing R̃ is sufficiently large (as given by (3.26)), we have

(3.30) R̃ < R <
(
1 + ϵ(R̃)

)
R̃

where ϵ(R̃) → 0 as R̃ → ∞.

Proof. Substituting the transitions u = 4

√
2M
1+k

√
R̃ cos η̃, v = 4

√
2M
1−k

√
R̃ sin η̃

in the expression R = Sη(u,v)(u, v) from (3.6), we obtain
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R = R̃ cos2(η̃)

√
1 +

cos2 η

(1 + k)R̃ cos2 η̃
+ R̃ sin2(η̃)

√
1 +

sin2 η

(1− k)R̃ sin2 η̃

+
cos2 η√

2M(1 + k)
log

[
4
√

2M(1 + k)

√
R̃ cos η̃

cos η

(
1 +

√
cos2 η√

1 + kR̃ cos2 η̃
+ 1

)]

+
sin2 η√

2M(1− k)
log

[
4
√

2M(1− k)

√
R̃ sin η̃

sin η

(
1 +

√
sin2 η√

1− kR̃ sin2 η̃
+ 1

)]
.

By Lemma 3.2 the values

√
R̃ cos2 η̃
cos2 η and

√
R̃ sin2 η̃
sin2 η

both grow like a positive

power of R̃, namely like
√

R̃
√

1+k
√

1−k or
√

R̃
√

1−k
√

1+k , respectively. Consequently
both logarithms are positive, and so we obtain R̃ < R.

For the upper bound on R, using Lemma 3.2 again, we see cos2 η√
R̃ cos2 η̃

and

sin2 η√
R̃ sin2 η̃

decay like a power of R̃; this means the coefficients on R̃ cos2(η̃)

and R̃ cos2(η̃) both approach 1. An easy estimate shows the logarithm terms
are bounded from above by a definite multiple of log R̃. Thus we conclude

(3.31) 1 <
R

R̃
≤ 1 + ϵ(R̃).

□

3.3. Computation of the asymptotic quantities

We make use of the “almost polar coordinates” (R̃, η̃) to compute the key
asymptotic ratios of the generalized Taub-NUT instantons. We note that this
section works only for the generalized Taub-NUT metrics because the almost
polar coordinates in the two exceptional cases are not given by (3.23). The
computations for the two exceptional instantons are deferred to Sections 5
and 6, respectively.

Before computing volumes, we must say a word about the ranges of the
coordinates. Certainly R̃ ∈ [0,∞), η̃ ∈ [0, π/2]. But the ranges of θ1, θ2 are
somewhat peculiar:

(3.32) θ1, θ2 ∈ [0,
√
8π).

The ranges for θ1, θ2 must be determined through understanding the Delzant
gluing construction, where the requirement is that, near the polytope edges,
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the tori close up to create smooth manifolds without conical singularities. We
examine the situation near a boundary point (u, 0) on the v-axis. Consider
the 2-manifold determined by fixing u and θ2, and varying the coordinates
v and θ1. On this submanifold, the 4-manifold metric (3.3) restricts to

(3.33)

g =

[
2

M

(
1 + (1 + k)u2 + (1− k)v2

)
(dv)2

+
1

M

v2
((

1 + (1 + k)u2
)2

+ (1 + k)2u2v2
)

1 + (1 + k)u2 + (1− k)v2
(dθ1)

2




for fixed u. Using “big-O” notation, we write this as
(3.34)

g =
2(1 + (1 + k)u2)

M

[(
1 +O(v2)

)
(dv)2 +

1

2
v2(1 +O(v2)) (dθ1)

2

]

=
2(1 + (1 + k)u2)

M

[
(
1 +O(v2)

)
(dv)2 + v2(1 +O(v2))

(
d
θ1√
2

)2
]
.

Thus, for the central point (v, θ1) = (0, 0) to be a smooth point rather than
a cone point, the variable θ1/

√
2 must have range along the circle [0, 2π),

meaning θ1 ranges along [0,
√
8π). A similar argument works for the param-

eterization of θ2.
The ball B(S) of radius S about the origin is the set of points with

radius R < S. Likewise let the almost ball AB(S) of radius S be

(3.35) AB(S) =
{
(R̃, η̃, θ1, θ2) ∈ N4

∣∣∣R̃ < S
}
.

By Lemma (3.3), we have AB(S) ⊂ B(S) ⊂ AB(S(1 + ϵ)), where
limS→∞ ϵ = 0, and therefore V ol B(S) < V ol AB(S) < V ol B(S(1 + ϵ)).

Proposition 3.4. If k ∈ (−1, 1), then asymptotic volume growth of balls is
cubic:

(3.36) lim
R→∞

R−3 Vol B(R) =
8

3
π2 1√

2M

(
1√
1− k

+
1√
1 + k

)
.

Proof. In u, v, θ1, θ2 coordinates, we can use (3.3) to compute the volume
form:

(3.37) dV ol =
2

M2
uv
(
1 + (1 + k)u2 + (1− k)v2

)
du ∧ dv ∧ dθ1 ∧ dθ2.
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Transitioning to almost polar coordinates we obtain

(3.38)

dV ol =
2

M

(
1 +

√
2M(1 + k)R̃ cos2 η̃ +

√
2M(1− k)R̃ sin2 η̃

)

· R̃ cos η̃ sin η̃√
1− k2

dR̃ ∧ dη̃ ∧ dθ1 ∧ dθ2.

The ranges for the coordinates are η̃ ∈ [0, π/2) and θ1, θ2 ∈ [0,
√
8π). Inte-

grating along these ranges and integrating R̃ from 0 to S gives
(3.39)

Vol AB(S) =
8
3π

2S3

2M
√
1− k2

[
3S−1 +

(√
2M(1 + k) +

√
2M(1− k)

)]
.

Using Lemma 3.3 to approximate balls with almost-balls, we have
(3.40)

Vol B(S) ≤
8
3π

2S3

2M
√
1− k2

[
3S−1 +

(√
2M(1 + k) +

√
2M(1− k)

)]

≤ Vol B(S(1 + ϵ(S))).

so we see that volume growth is indeed cubic when k ∈ (−1, 1). Taking the
limit,

(3.41) lim
S→∞

S−3Vol B(S) =
8

3
π2

√
2M(1 + k) +

√
2M(1− k)

2M
√
1− k2

.

□

Lemma 3.5. If KΣ is the polytope sectional curvature and k ̸= 0,±1, then
KΣ = O(R−2), except along a single path where KΣ = O(R−3). In almost
polar coordinates,

(3.42) lim
R̃→∞

R̃2KΣ =
k

2

√
1 + k cos2 η̃ −

√
1− k sin2 η̃

(√
1 + k cos2 η̃ +

√
1− k sin2 η̃

)3 .

If k = 0 then KΣ = O(R−3) along all paths to infinity.
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Proof. Using the expression (3.2) and the transitions to R̃, η̃ we obtain

(3.43)

KΣ = M
−1 + k

√
2M R̃

(√
1 + k cos2 η̃ −

√
1− k sin2 η̃

)
(
1 +

√
2M(1 + k) R̃ cos2 η̃ +

√
2M(1− k) R̃ sin2 η̃

)3

=
k

2

1

R̃2

− 1
k
√
2MR̃

+
√
1 + k cos2 η̃ −

√
1− k sin2 η̃

(
1√

2MR̃
+
√
1 + k cos2 η̃ +

√
1− k sin2 η̃

)3 .

Taking a limit, then, we obtain

(3.44) lim
R̃→∞

R̃2KΣ =
k

2

√
1 + k cos2 η̃ −

√
1− k sin2 η̃

(√
1 + k cos2 η̃ +

√
1− k sin2 η̃

)3

Therefore KΣ = O(R̃−2) = O(R−2) except along a single path which is the
path of constant η̃ where sin η̃

cos η̃ = 4
√
1 + k/ 4

√
1− k.

When k = 0 then (3.43) gives KΣ = O(R−3) everywhere. □

Lemma 3.6. Let (Σ2, gΣ) be a Taub-NUT polytope with k ∈ [−1, 1]. The
Ricci potentials are

(3.45)

R1 =
1√
2

1 + (1 + k)(u2 + v2)

1 + (1 + k)u2 + (1− k)v2
,

R2 =
1√
2

1 + (1− k)(u2 + v2)

1 + (1 + k)u2 + (1− k)v2
,

the norm of Ricci curvature is

(3.46) |Ric | = 4|k|M
(1 + (1 + k)u2 + (1− k)v2)2

,

and we have

(3.47) |Ric |2dV ol4 =
32k2uv

(1 + (1 + k)u2 + (1− k)v2)3
du ∧ dv ∧ dθ1 ∧ dθ2.

Proof. From Section 2.3 the Ricci potentials are defined by Ri =〈
∇φi, ∇ log x

〉
; an elementary computation gives (3.45). Using (2.10), we
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compute |Ric |2dV ol4:

(3.48)

|Ric |2dV ol4 = 4 dR1 ∧ dR2 ∧ dθ1 ∧ dθ2

=
32k2uv

(1 + (1 + k)u2 + (1− k)v2)3
du ∧ dv ∧ dθ1 ∧ dθ2.

Using (3.3) we compute dV ol4 in (u, v, θ1, θ2) coordinates:

(3.49) dV ol4 =
2uv

M2

(
1 + (1 + k)u2 + (1− k)v2

)
du ∧ dv ∧ dθ1 ∧ dθ2

so therefore

(3.50) |Ric |2 = 16k2M2

(1 + (1 + k)u2 + (1− k)v2)4
.

□

Proposition 3.7 (Curvature Decay Rates). In the generic case k ̸=
0,±1, we have |Ric |, |W−| = O(R−2). In the case k = 0 we have |W−| =
O(R−3).

Proof. If W = W+ +W− is the Weyl tensor, the computation of W− from
(A.39) and the fact that W+ = 0 gives

(3.51) |W |2 = 96|KΣ|2

so from Lemma 3.5 we obtain the claimed R−2 decay rate for |W−|. From
Lemma 3.6

(3.52) |Ric | = 4|k|M
(1 + (1 + k)u2 + (1− k)v2)2

.

Using Corollary 3.3 and changing to the almost polar coordinates of (3.23),
we obtain

(3.53) |Ric | = 4|k|M
(
1 +

√
2M(1 + k) R̃ cos2 η̃ +

√
2M(1− k) R̃ sin2 η̃

)2 .

When k is not 0, 1,−1 we see that |Ric | = O(R̃−2) = O(R−2). We now have
that both |Ric | and |W−| are O(R−2).

When k = 0 we have Ric = 0, so KΣ = O(R−3) gives |Rm | = |W−| =
O(R−3). □
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3.4. L
2 norms

Using the “Ricci potentials” from section 2.3 and the computation of W−

from the appendix, we can compute the L2 norms of |Ric | and |Rm |.
To evaluate these integral norms on the 4-manifold parameterized by

(u, v, θ1, θ2), we use the parameterization

(3.54) u, v ∈ [0,∞) and θ1, θ2 ∈ [0,
√
8π)

discussed in Section 3.3.

Proposition 3.8. The L2 norms of the Ricci and Riemann tensors are

(3.55)
L2(Ric) = 32π2 k2

1− k2
, L2(W ) = 32π2 1 + k2

1− k2
,

L2(Rm) = 32π2 1 + 3k2

1− k2
.

Proof. In (3.48) we computed

(3.56) |Ric |2dV ol4 =
32k2uv

(1 + (1 + k)u2 + (1− k)v2)3
du ∧ dv ∧ dθ1 ∧ dθ2.

Integrating along θ1, θ2 ∈ [0,
√
8π), we have

(3.57)

∫

N4

|Ric |2dV ol4 = 8π2

∫

Σ2

32k2uv

(1 + (1 + k)u2 + (1− k)v2)3
du ∧ dv.

Integrating u, v from 0 to ∞ gives

(3.58)

∫

N4

|Ric |2dV ol4 =
32π2k2

1− k2
.

Using the computation |W−|2 = 96KΣ
2 of (A.39) and also using (3.2) and

(3.3) to compute the volume form, we have

(3.59)
|W−|2 = 96M2

(
−1 + k

(
(1 + k)u2 − (1− k)v2

)

(1 + (1 + k)u2 + (1− k)v2)3

)2

and

dV ol4 =
2uv

M2

(
1 + (1 + k)u2 + (1− k)v2

)
du ∧ dv ∧ dθ1 ∧ dθ2

Integrating θ1, θ2 along [0,
√
8π) and u, v along [0,∞) gives L2(|W−|) =

32π2 1+k2

1−k2 .
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The value of
∫
|Rm |2dV ol4 follows from the identity |Rm |2 = s2

6 +
2|Rı◦c |2 + |W |2 and the fact that our manifolds are scalar-flat and half-
conformally flat. □

The Chern-Gauss-Bonnet formula for the Euler class is χ(N4) =
1

8π2

∫
R2

24 − 1
2 |Rı

◦c |2 + 1
4 |W |2. In some presentations the factor of 1

4 on the

|W |2 term is not present, which is due to normingW as an operator
∧2 →

∧2

instead of as a tensor; see the discussion after Lemma A.9 in the Appendix.
Using the L2 norms of Proposition 3.8 we see immediately that χ(N4) = 1,
as expected.

We remark that the signature of these manifolds is zero, but
∫
|W+|2 −

|W−|2 ̸= 0. As a result, Lemma 3.8 can be used to compute η-invariants of
various squashed 3-spheres. We do not pursue this further however.

4. Three kinds of Blowdown

The asymptotic geometry of open manifolds, including tangent cones at
infinity and blowdown limits, are important in the study of open manifolds.
Our investigation of the generalized Taub-NUTs ends with an examination
of their blowdown objects, where we find some surprises.

Given a metric g on a complete 4-manifold N4, a Gromov-Hausdorff
blowdown limit (colloquially known as a tangent cone at infinity) is a
Gromov-Hausdorff limit of the manifold N4 with metric ϵ2i g as ϵi ↘ 0. In
general such limits need not exist, and when they exist they need not be
unique, and need not even be manifolds.

In this paper the objects have, for the most part, cubic volume growth
and quadratic curvature decay |Rm | = O(r−2). Therefore we expect limits
to exist, and by computation we find they are unique. The tangent cones at
infinity are collapsed as expected, but they are not necessarily 3-dimensional
as one might expect.

By (4.3) we see the polytope metric itself converges uniquely under blow-
down, but the situation on the full instanton is more complex, as there is a
complicating geometric issue. Level-sets of the distance function are spheres.
The collapsing field foliates the Hopf tori on these spheres, and this field
might be rational or irrational. Since X 1 and X 2 are the principle rotations
on the level-sets and since the collapsing field is X = (1− k)X 1 − (1 + k)X 2,
this Hopf foliation is rational if and only if k is rational.

In the rational case, the spherical level-sets converge down to S2 with
up to two orbifold points, and in the irrational case the spherical level-sets
converge down to a line segment (see Example 1.4 (continued) and Example
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2.1 on pg 326 of [4]). Therefore when k is rational the instanton blows down
to a complete 3-dimensional stratified orbifold, and when k is irrational it
blows down to a 2-manifold with boundary.

Because this behavior is rather pathological, we choose to modify the
usual blowdown process in order to obtain better behavior in the limits.
The three kinds of blowdown are as follows. The first is the usual Gromov-
Hausdorff blowdown of (N4, g) itself, which we have just described. The sec-
ond and third kinds of blowdown, which we call “generalized blowdowns,”
eliminate the pathologies arising from possibly irrational collapsing fields.
The second kind of blowdown is performed by “unwrapping” the torus
fibers—this is just taking the interior of the polytope crossed with R2 in-
stead of with the torus, and simply declining to apply the Delzant gluing
process on the boundary. So a new 4-manifold (not geodesically complete)
exists with R2 fibers instead of torus fibers over each point of the polytope.
Then we take the blowdown limit of this object. The metric has a zero
eigen-direction on the R2 fibers. We throw this direction away so now we
have an R1-bundle over the polytope. Finally we compactify the line fibers
into circle fibers and so obtain a stratified limiting 3-conifold. This conifold
is an orbifold precisely when k is rational.

For the third kind of “blowdown” limit, we take the blowdown on the
polytope Σ2 itself without regarding it as part of a larger 4-manifold. This
blowdown converges uniquely to a 2-manifold with boundary, and has a
Riemannian metric with a curvature singularity at the origin. Still, it has
two well-defined momentum functions, so we can artificially perform the
Delzant construction and still produce an honest 4-dimensional manifold
with a Riemannian metric that has a point-like curvature singularity.

4.1. Metric and coordinate convergence under blowdown

From (3.2) the polytope metric for the generalized Taub-NUTs is

(4.1) gΣ =
2

M

(
1 + (1 + k)u2 + (1− k)v2

) (
du2 + dv2

)
.

The 4-metric is g4 = gΣ +Gijdθi ⊗ dθj where Gij is the matrix from (3.3).
Scaling the coordinates by setting u = 4

√
M/2 ũ, v = 4

√
M/2 ṽ, the polytope

metric becomes

(4.2) gΣ =

(√
2

M
+ (1 + k)ũ2 + (1− k)ṽ2

)
(
dũ2 + dṽ2

)
,
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and we can send M → ∞. Both metrics gΣ and g4 converge. We get

(4.3)

gΣ =
(
(1 + k)ũ2 + (1− k)ṽ2

) (
dũ2 + dṽ2

)
,

Gij =
1
2 ũ

2ṽ2(ũ2 + ṽ2)

(1 + k)ũ2 + (1− k)ṽ2

(
(1 + k)2 1− k2

1− k2 (1− k)2

)
.

Note that det(Gij) = 0. Its zero eigenvector is v⃗ = (1− k) ∂
∂θ1

− (1 + k) ∂
∂θ2

and its eigenvector of eigenvalue ũṽ(ũ2+ṽ2)((1+k)2+(1−k)2)
4((1+k)ũ2+(1−k)ṽ2) is v⃗ = (1 + k) ∂

∂θ1
+

(1− k) ∂
∂θ2

. Setting θ̃ = 1
2(1+k2) ((1 + k)θ1 + (1− k)θ2) gives a 3-dimensional

metric of

(4.4)

g =
(
(1 + k)ũ2 + (1− k)ṽ2

) (
dũ2 + dṽ2

)

+
1
2 ũ

2ṽ2(ũ2 + ṽ2)

(1 + k)ũ2 + (1− k)ṽ2
(dθ̃)2.

The question of parameterization of θ̃ can be determined as follows. The
field ∂/∂θ̃ produces a subgroup of the torus of slope (1 + k)/(1− k). If k =
m/n is rational then this subgroup has slope m+ n/m− n, and so, for θ̃
to obtain consistent values in the limit, it must have parameterization θ̃ ∈
[0, 2

√
2(1 + k2)π/LCM(m+ n,m− n)). Certainly if k becomes irrational

then the parametrization vanishes and hence the Gromov-Hausdorff limit
collapses to a 2-dimensional object with no θ̃ variable.

In the limit the metric (4.4) no longer produces smooth points at the
coordinate axes unless k = 0. Imitating the analysis at the beginning of
Section 3.3 at the coordinate axes, we can fix a positive value of ũ and
examine the 2-dimensional submanifold given by varying ṽ, θ̃, to obtain the
metric

(4.5) g = (1 + k)ũ2
((

1 +O(ṽ2)
)
dṽ2 +

1

2(1 + k)2
ṽ2(1 +O(ṽ2)(dθ̃)2

)
.

and we can fix the value of ũ and examine the 2-dimensional submanifold
given by varying ũ, θ̃, to obtain the metric

(4.6) g = (1− k)ṽ2
((

1 +O(ũ2)
)
dũ2 +

1

2(1− k)2
ũ2(1 +O(ũ2)(dθ̃)2

)
.

When k is rational we therefore observe a cone angle of 2π(1 + k2)/(1 +
k)LCM(m+ n,m− n) along the ṽ-axis and a cone angle of2π(1 + k2)/2(1−
k)LCM(m+ n,m− n) along the ũ-axis, These expressions are rational, so
we observe a stratified orbifold in the limit.
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When the collapsing field is irrational, the Gromov-Hausdorff limit does
not produce such an object. Following the discussion in Example 1.4 (con-
tinued) and Example 2.1 on pg 326 of [4], when the collapsing direction is
irrational it collapses the spheres to line segments.

The central observation of the first “generalized blowdown” is that the
metric (4.4) makes sense on a 3-dimensional conifold, whether or not it is
the result of a Gromov-Hausdorff blowdown. We simply declare (4.4) to be
a metric on (ũ, ṽ, θ̃) where ũ, ṽ ∈ [0,∞) and we give θ̃ the range [0,

√
8π)

whether or not this is the range inherited from the Gromov-Hausdorff blow-
down process. Of course one may give θ̃ any other range—this will affect
the cone angles but can never make both cone angles equal to 2π unless
k = 0, so can never produce a smooth manifold for k ̸= 0. In the irrational
case, both cone angles (along the two axes) cannot be simultaneously made
rational, so for irrational k we can produce a variety of stratified conifolds
depending on the parameterization chosen for θ̃, but we can never produce
an orbifold.

We clearly still have a Killing field X̃ = ∂/∂θ̃, and we may take a Rie-
mannian quotient along its fibers to obtain the quarter-plane polytope again.
Its sectional curvature is

(4.7) KΣ = k
(1 + k)ũ2 − (1− k)ṽ2

((1 + k)ũ2 + (1− k)ṽ2)3
.

We see an irremovable curvature singularity at the origin (ũ, ṽ) = (0, 0). It
is also not difficult to compute the Ricci curvature of the conifold. It is
diagonal in (ũ, ṽ, θ̃) coordinates, and is given by

(4.8) Ric 3 =




−4k
(1+k)ũ2+(1−k)ṽ2 0 0

0 4k
(1+k)ũ2+(1−k)ṽ2 0

0 0 2k(1+k)2ũ2ṽ2(ũ2−ṽ2)

((1+k)ũ2+(1−k)ṽ2)3




One notices immediately that scalar curvature is not zero.

4.2. The second generalized blowdown

The final type of “blowdown” comes out of the recognition that, in either
of the two other blowdown processes, we always obtain a metric polytope,
and that any such polytope does indeed encode all metric, complex struc-
ture, and curvature information for some scalar-flat 4-dimensional instanton,
whether or not this 4-dimensional object has anything to do with any form
of convergence of other metrics.
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Using the expression (3.2) for the moment functions and plugging in ũ,
ṽ, then sending M → ∞, we have φ̃1 = 1+k

2 ũ2ṽ2, φ̃2 = 1−k
2 ũ2ṽ2, and we see

the two rescaled moment functions are multiples of each other. This gives a
single moment function, which we set to φ̃1 = 1

2 ũ
2ṽ2.

To obtain a second moment function, we perform a very natu-
ral renormalization. Consider the function φ̃2 = −(1− k)φ1 + (1 + k)φ2 =
−1−k

M v2 + 1+k
M u2, which clearly coincides with the 0-eigenvector of the scaled

metric. To counteract the fact that the eigenvalue is approaching 0, we arti-
ficially scale φ̃2 by M , and in the limit obtain φ̃2 = −(1− k)ṽ2 + (1 + k)ũ2.
This gives us a second moment function. We note that this renormalization
process is directly analogous to the coordinate renormalization of Cheeger-
Gromov in the proof of Theorem 2.1 of [4].

Proposition 4.1 (Third type of blowdown). Blowing down the poly-
tope, the limit is the quarter-plane in (ũ, ṽ)-coordinates. It has natural com-
muting momentum functions φ̃1 = 1

2 ũ
2ṽ2, φ̃2 = −1

2(1 + k)ũ2 + 1
2(1− k)ṽ2.

These are moment functions on the singular, toric, scalar-flat 4-conifold
with a quarter-plane polytope that has metric

(4.9)

g4 = gΣ +Gijdθi ⊗ dθj , where

gΣ =
(
(1 + k)ũ2 + (1− k)ṽ2

)
(dũ⊗ dũ+ dṽ ⊗ dṽ)

(Gij) =

(
ũ2ṽ2(ũ2+ṽ2)

(1+k)ũ2+(1−k)ṽ2

−2kũ2ṽ2

(1+k)ũ2+(1−k)ṽ2

−2kũ2ṽ2

(1+k)ũ2+(1−k)ṽ2

(1+k)2ũ2+(1−k)2ṽ2

(1+k)ũ2+(1−k)ṽ2

)

Proof. The transitions from quadratic normal to volumetric normal coordi-
nates are

(4.10) ũ =
4
√
M

√√
x2 + y2 + y, ṽ =

4
√
M

√√
x2 + y2 − y.

We also scale the volumetric coordinates, setting x = 1√
M
x̃, y = 1√

M
ỹ, and

obtain

(4.11)
ũ =

√√
x̃2 + ỹ2 + ỹ, ṽ =

√√
x̃2 + ỹ2 − ỹ

1

2

(
ũ2 + ṽ2

)
=
√

x̃2 + ỹ2,
1

2

(
ũ2 − ṽ2

)
= ỹ, ũṽ = x̃.
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Now we sendM → ∞. The two limiting moment functions, in terms of (x̃, ỹ),
are

(4.12)
φ̃1 =

1

2
ũ2ṽ2 =

1

2
x̃2,

φ̃2 = −1

2
(1− k)ṽ2 +

1

2
(1 + k)ũ2 = ỹ + k

√
x̃2 + ỹ2.

This is obviously a map from the right half-plane in the (x̃, ỹ) system to the
half-plane in φ̃1-φ̃2 coordinates. We have transitions

(4.13) A =

(
x̃ 0
kx̃√
x̃2+ỹ2

1 + kỹ√
x̃2+ỹ2

)

Using (2.6) the polytope metric in (x̃, ỹ) and in (ũ, ṽ) coordinates is

(4.14)
gΣ =

kỹ +
√

x̃2 + ỹ2√
x̃2 + ỹ2

(dx̃⊗ dx̃+ dỹ ⊗ dỹ)

gΣ =
(
(1 + k)ũ2 + (1− k)ṽ2

)
(dũ⊗ dũ+ dṽ ⊗ dṽ) .

The corresponding 4-manifold metric is g4 = gΣ +Gijdθi ⊗ dθj . □

5. The exceptional Taub-NUT

Unfortunately the “almost distance function” R̃ of section 3, so crucial for
determining manifold asymptotics, cannot be used when k = ±1. Here we
imitate the analysis of Section 3 and find an almost distance function that
is adapted to the exceptional case.

5.1. Coordinates

The exceptional Taub-NUT has moment functions, in terms of the volumet-
ric normal coordinates, given by

(5.1) φ1 =
1√
2

(
−y +

√
x2 + y2

)
+

α

2
x2, φ2 =

1√
2

(
y +

√
x2 + y2

)
.

Simultaneous scaling in the (x, y) and (φ1, φ2) coordinates allows us to ad-
just α, and we take α = 2

√
2, which gives M = 1. Then (2.6) gives the
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polytope metric

(5.2) gΣ =
1 + 2y + 2

√
x2 + y2√

x2 + y2
(dx⊗ dx+ dy ⊗ dy) .

The transitions to (u, v) coordinates are

(5.3) u =

√√
x2 + y2 + y, v =

√√
x2 + y2 − y.

In these coordinates we may express the moment variables and polytope
metric:

(5.4)
φ1 =

1√
2
v2(1 + u2), φ2 =

1√
2
u2,

gΣ =
(
1 + u2

)
(du⊗ du+ dv ⊗ dv) .

The matrix Gij =
〈
X i,X j

〉
is

(5.5) (Gij) =
1

1 + u2




v2
(
(1 + u2)2 + u2v2

)
u2v2

u2v2 u2




so we have reconstructed the instanton metric: g4 = gΣ +Gijdθi ⊗ dθj . It
is easy to compute the polytope sectional curvature in (u, v) coordinates
using (2.6):

(5.6) KΣ = − 1− u2

(1 + u2)3
.

Notice that KΣ = −1 along the positive v axis. Thus the instanton (N4, g4)
has |Rm | = O(1) along all geodesic rays that map to this ray in the poly-
tope; these rays in N4 constitute a rotationally symmetric 2-dimensional
submanifold that is totally geodesic, as it is the zero-set of one of the Killing
fields. Using (5.12) below, where we compute geodesics and the distance
function R, this also implies that KΣ = O(R−2) along all other geodesics
based at the origin.
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5.2. Distance functions and geodesic normal coordinates

To find distance functions, we imitate the separation trick of Section 3.
Setting S(u, v) = f(u) + h(v) and finding

(5.7) 1 = |∇S|2 = (fu)
2 + (hv)

2

1 + u2
.

Choosing a parameter η ∈ [0, π/2] we have

(5.8) (fu)
2 + (hv)

2 =
(
cos2(η) + u2

)
+ sin2(η)

so separating into fu =
√

cos2(η) + u2, hv = sin(η) and integrating gives
(5.9)

Sη(u, v) =
cos2 η

2

(
u

cos η

√

1 +
u2

cos2 η
+ log

(
u

cos η
+

√

1 +
u2

cos2 η

))

+ v sin(η)

For each η, the characteristics of Sη provides one geodesic from the origin,

found by solving dγ
dt = ∇Sη with γ(0) = (0, 0). This gives the system

(5.10)
du

dt
=

√
cos2 η + u2

1 + u2
,

dv

dt
=

sin η

1 + u2

which is already partially separated, and can be evaluated in closed form.
But first, following the process of Section 3, we find the unparameterized
geodesic equation. Eliminating the t parameter from equations (5.10), we
have

(5.11)

dv

du
=

sin η√
cos2 η + u2

, or

v = sin(η) log

(
u

cos η
+

√

1 +
u2

cos2 η

)
.

Integrating the first equation in (5.10) gives

(5.12)

R =
1

2
u
√

cos2 η + u2 +
2− cos2 η

2
log

(
u

cos η
+

√

1 +
u2

cos2 η

)

=
1

2
u
√

cos2 η + u2 + v
1 + sin2 η

2 sin η
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and so we have recovered the distance function R = R(u, v), which is eval-
uated explicitly by solving for η = η(u, v) from (5.11), then plugging into
(5.12).

We define “almost polar coordinates” (R̃, η̃) for the exceptional Taub-
NUT metric by

(5.13)
R̃ =

1

2
u2 + v, η̃ = tan−1(

√
2v/u), with inverses

u =
√
2 cos(η̃)

√
R̃, v = sin2(η̃)R̃

This “almost distance function” on the exceptional Taub-NUT is not as
precise as the almost distance function we found on the generalized Taub-
NUTs. It approximates the distance function R only to within a factor of

√
2.

Proposition 5.1 (Almost distance function). Let R = R(u, v) be the
distance function and let R̃ = 1

2u
2 + v be the almost distance function. Then

for sufficiently large R̃

(5.14) 1 ≤ R

R̃
≤

√
2.

Proof. Put u =
√
2 cos(η̃)R̃1/2, v = sin2(η̃)R̃. Using (5.11) and (5.12) and

using (5.13) to transition to almost polar coordinates gives

(5.15)

R = R̃


cos η̃

√
cos2 η

2R̃
+ cos2 η̃ + sin2 η̃

1 + sin2 η

2 sin η


 ,

sin2 η̃

sin η
=

1

R̃

[
log
√

R̃+ log

(√
2 cos η̃

cos η
+

√
1

R̃
+

2 cos2 η̃

cos2 η

)]
.

From 1
sin η ≥ 1, we have 1+sin2 η̃

2 ≥ 1 and cos2 η

2R̃
+ cos2 η̃ ≥ cos2 η̃. Then

(5.16)

R

R̃
= cos η̃

√
cos2 η

2R̃
+ cos2 η̃ + sin2 η̃

1 + sin2 η

2 sin η

≥ cos2 η̃ + sin2 η̃ = 1.
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The upper bound R/R̃ ≤
√
2 is slightly more involved. We perform the es-

timate in two parts: first if cos η ≤ 1√
2
then sin η ≥ 1√

2
and we have simply

(5.17)

R

R̃
= cos η̃

√
cos2 η

2R̃
+ cos2 η̃ + sin2 η̃

(
1 + sin2 η

2 sin η

)

≤ (1 + ϵ(R̃)) cos2 η̃ + sin2 η̃

(
1 + sin2 η√

2

)
≤

√
2

Then if cos η ≥ 1√
2
we have sin η < 1√

2
so estimating sin2 η̃

sin η is tougher. But

using the second equation in (5.15) we can estimate

(5.18)

sin2 η̃

sin η
= R̃−1

[
log
√

R̃+ log

(√
2 cos η̃

cos η
+

√
1

R̃
+

2 cos2 η̃

cos2 η

)]

≤ R̃−1

[
log
√

R̃+ log

(
2 cos η̃ +

√
1

R̃
+ 4 cos2 η̃

)]

≤ ϵ(R̃) + (1 + ϵ(R̃)) log (4 cos η̃) ≤ R̃−1 log 5

so that

(5.19)

R

R̃
= cos η̃

√
cos2 η

2R̃
+ cos2 η̃ +

sin2 η̃

sin η

1 + sin2 η

2

≤ cos2 η̃

√
1 +

cos2 η

2R̃ cos2 η̃
+

1

R̃

1 + sin2 η

2

= (1 + ϵ(R̃)) cos2 η̃ + ϵ(R̃).

the right-hand side of (5.19) is certainly smaller than
√
2 for large R̃. This,

with (5.17), gives the result. □

An important question is whether the exceptional Taub-NUT metric is
complete, which is unaddressed elsewhere in the literature. Having computed
the distance function to the origin, we can show that indeed the metric is
complete.

Proposition 5.2. The exceptional Taub-NUT metric is complete.

Proof. We first show that there are no critical points of the distance function
R, where R : N4 → R is the distance to point (u, v, θ1, θ2) = (0, 0, 0, 0) ∈ N4.
Recall how R = R(u, v) is evaluated: one uses (5.11) to determine η = η(u, v)
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and then one plugs u, v, η in to (5.12). The distance to the origin is X 1, X 2

invariant, so R(u, v, θ1, θ2) = R(u, v).
We use a bit of textbook first order PDE theory to establish smoothness

of the distance function R. If the PDE coefficients are smooth (which they
are) and characteristics do not cross, then solutions are smooth. But the
unparameterized equation (5.11) gives the characteristics, and there is one
characteristic for each η ∈ [0, π/2]. To see that characteristics do not cross,
we take a partial derivative of (5.11) with respect to the parameter η and
see that there are no stable points. Setting

(5.20) F(u, v, η) =
v

sin(η)
− log

(
u

cos η
+

√

1 +
u2

cos2 η

)

so that for fixed η, then {F = 0} defines a characteristic, a computation
gives

(5.21)
∂F
∂η

= −cos η

sin η

v

sin η
− sin η

cos η

(
u

cos η

)
+
(
1 + u2

cos2 η

)− 1

2 u2

cos2 η

u
cos η +

√
1 + u2

cos2 η

which is strictly negative in the range η ∈ (0, π/2). Therefore characteristics
do not cross in this range. To see that characteristics do not cross on the
axes η = 0, η = π/2, one looks at (5.11) directly

(5.22) v = sin(η) log

(
u

cos η
+

√

1 +
u2

cos2 η

)

and sees that if η ̸= 0, π/2, one never has u or v equal to zero unless (u, v) =
(0, 0).

Because R is smooth, there are not critical points of the distance func-
tion. This means that each metric ball BR0

= {R < R0} is diffeomorphic to
the Euclidean ball in the tangent space, via the exponential map. But N4 is
exhausted by the increasing union of such balls: N4 =

⋃
R0>0BR. Therefore

N4 is complete. □

5.3. Volume and curvature computations

The “almost ball” of radius S, denoted AB(S), is the set of points in N4

with R̃ = v + 1
2u

2 ≤ S. Using detG−1 = 1
4u

2v2, we obtain the 4-manifold
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volume form dV ol = 1
2uv(1 + u2)du ∧ dv ∧ dθ1 ∧ dθ2. The almost-ball’s vol-

ume is therefore

(5.23)
V ol AB(R̃) = 8π2

∫ √
2R̃

0

∫ R̃− 1

2
u2

0

1

2
uv(1 + u2) dv du

=
π2

3

(
R̃4 + 2R̃3

)
.

Proposition 5.3. The exceptional Taub-NUT instanton has quartic
asymptotic volume growth: Vol B(R) = O(R4).

Proof. Combine (5.23) with Proposition 5.1. □

Next we compute the Ricci potentials and the Ricci pseudo-volume form.
Using that

√
V =

√
Det g−1 = uv and using the formalism from Section 2.3

we have

(5.24)
R1 =

〈
∇ logV, ∇φ1

〉
=

√
2
1 + u2 + v2

1 + u2

R2 =
〈
∇ logV, ∇φ2

〉
=

√
2

1

1 + u2
.

Taking exterior derivatives and using (2.10), we have

(5.25)

|Ric |2dV ol =
16uv

(1 + u2)3
du ∧ dv ∧ dθ1 ∧ dθ2,

|Ric |2 = 16

(1 + u2)4
.

Integrating over the (u, v) quarter-plane clearly gives an infinite value.
Notice that (5.25) gives that |Ric |2 = 16 along u = 0. Also notice, us-

ing (5.12), that along all other geodesics we have |Ric | = O(R−2).

5.4. A scaled and an unscaled pointed limit

5.4.1. The blowdown. Scaling the metric (5.4) by 1
M4 and scaling u and

v by M , we then send M → ∞ to obtain the blowdown polytope metric

(5.26) gΣ = u2
(
du2 + dv2

)
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and the matrix Gij converges to

(5.27) (Gij) =
1

2




v2(u2 + v2) 0

0 0


 .

After one throws away the θ2-direction, this gives a metric on a 3-manifold
that is singular along u = 0.

Finally we execute the “third” blowdown process. During the blowdown
process we scale the θ2 up by M2. In the limit we have a 4-manifold metric.
The matrix Gij =

〈
X i,X j

〉
becomes

(5.28) (Gij) =
1

2




v2(u2 + v2) v2

v2 1


 .

The resulting instanton metric g4 = gΣ +Gijdθi ⊗ dθj is singular along the
axis u = 0. This “generalized” blowdown has a 2-dimensional submanifold
along which we have both topological and curvature singularities. The poly-
tope sectional curvature is KΣ = −u−4, so the v-axis clearly holds singular
curvature values.

5.4.2. An unscaled pointed limit. The exceptional Taub-NUT instan-
ton (N4, g4) has rays along which a sectional curvature equals −1. A natural
question is what happens when we take an unscaled pointed limit along such
a ray. We shall see that the resulting limit is the exceptional half-plane in-
stanton.

The sectional curvature is constant along the v-axis, so we rechoose
coordinates to center ourselves farther and farther along this axis. For any
A > 0 set

(5.29) ũ = u, ṽ = v −A.

The range of these coordinates is ũ ∈ [0,∞) and ṽ ∈ [−A,∞) so in the limit
the range is the entire half-plane. In the Gromov-Hausdorff limit, the torus
fibers actually become cylinders: the X 1 direction becomes infinite, and since
the field X 1 itself becomes infinitely long, we must renormalize it. For each
A, choose new Killing fields

(5.30) X̃ 1 =
1

2A

(
X 1 − 2

√
2A2X 2

)
, X̃ 2 =

√
2X 2.
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The polytope metric converges to

(5.31) gΣ =
(
1 + ũ2

) (
dũ2 + dṽ2

)

and one can check directly that the matrix Gij converges to

(5.32) (Gij) =
1

1 + ũ2




(1 + ũ2)2 + 4ũ2ṽ2 2ũ2ṽ

2ũ2ṽ ũ2




(we omit the tedious but straightforward computation). Finally, notice that
for the new Killing fields in (5.30) we have new moment functions φ̃1, φ̃2

defined up to a constant. Choosing the constant appropriately, the transi-
tions from old to new moment functions are φ̃1 = 1

2A

(
φ1 −A2(1 + 2

√
2φ2)

)
,

φ̃2 =
√
2φ2. These functions also converge, and in the limit as A → ∞ we

obtain

(5.33) φ̃1 = ṽ + ṽũ2, φ̃2 =
1

2
ũ2.

Comparing this data to the data laid out in Section 6 we see that this
limiting Riemannian manifold is indeed the exceptional half-plane instanton
(with the momentum variables switched).

6. The exceptional half-plane instanton

The exceptional half-plane instanton is given by

(6.1) φ1 =
1

2
x2, φ2 = y + yx2.

Using (2.6) we obtain the polytope metric

(6.2) gΣ =
(
1 + x2

)
(dx⊗ dx+ dy ⊗ dy)

and the matrix Gij =
〈
X i,X j

〉
is

(6.3) Gij =
1

1 + x2




x2 2x2y

2x2y (1 + x2)2 + 4x2y2


 .

One notices the formal similarity with the exceptional Taub-NUT instanton.
There are two differences: the domains of the variables, and the size of the
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torus fibers. Notice that Gij for the half-plane and the exceptional Taub-
NUT are substantively different: for instance G22 is never zero, reflecting
the fact that the field X 2 has no zeros

The formal similarity between this metric and the exceptional Taub-
NUT metric allows us to use all of the polytope formalism, except that the
domain is now the half-plane instead of the quarter-plane.

We have Ricci potentials R1 = 1
1+x2 and R2 = 2y

1+x2 . Then from (2.10)
the norm-square of Ricci curvature is

(6.4)

|Ric |2dV ol =
16x

(1 + x2)3
dy ∧ dx ∧ dθ1 ∧ dθ2

|Ric |2 = 16

(1 + x2)4
.

As with the exceptional Taub-NUT we have |Ric | = 16 along geodesics
within the 2-dimensional submanifold given by x = 0 (which is a to-
tally geodesic submanifold), and we have |Ric | = O(R−2) along all other
geodesics.

Proposition 6.1. The exceptional half-plane instanton is geodesically com-
plete.

Proof. The half-plane polytope metric g = (1 + x2)(dx2 + dy2), x ≥ 0, in
volumetric normal coordinates is formally identical to the exceptional Taub-
NUT metric g = (1 + u2)(du2 + dv2), u, v ≥ 0, in quadratic normal coordi-
nates.

Therefore the distance function R(x, y) for the exceptional half-plane
will be formally identical to the distance function for the exception Taub-
NUT, except that η may take the range η ∈ [0, π]. After accounting for this,
the proof is identical. □

A final question of interest is whether or not the exceptional half-plane
instanton is the exceptional Taub-NUT. They have different polytopes, but
conceivably these bear a relationship to each other like the half-plane and
quarter-plane polytopes for flat C× C. That is, perhaps they are the same
Riemannian manifold, but one has two rotational fields whereas the other
has one rotational and one translational field.

Proposition 6.2. The exceptional Taub-NUT instanton is not the excep-
tional half-plane instanton.
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Proof. We prove that the if X is any Killing field on the exceptional Taub-
NUT, then necessarily X is a constant-coefficient combination of X1 and X2.
Any such vector field has a zero, whereas the exceptional half-plane has a
vector field without a zero—its X 2 field. Thus, after proving that any Killing
field on the exceptional Taub-NUT is a linear combination of X 1, X 2 and
therefore has a zero, we have proven that the exceptional Taub-NUT cannot
be the exceptional half-plane instanton.

Let X = AiX i +Bi∇φi be any vector field; we shall compute the Lie
derivative LX g where g = GΣ +Gijdθ ⊗ dθj is the exceptional Taub-NUT
metric; here gΣ = (1 + u2)(du2 + dv2) and Gij is given by (5.5). By (i) of
Lemma A.3 we have θi = GisJdφ

s, and it is sometimes more convenient to
express g4 = gΣ +GijJdφ

i ⊗ Jdφj .
We first consider the Bi∇φi part of the vector field. Using LX = ixd+

dix we have

(6.5) LBi∇φidφj = d
(
BiG

ij
)
=

∂(BiG
ij)

∂φs
dφs

and using (v) of Lemma A.3, we have

(6.6)
LBi∇φiJdφj = iBi∇φidJdφj = −iBi∇φi

(
∇φj(Gst)dφ

s ∧ Jdφt
)

= −Bi∇φj(Gst)Jdφ
tGis = BiGst∇φj(Gis)Jdφt

using the pseudo-Kähler condition, (ii) of Lemma A.3, we have

LBi∇φiJdφj = BiGst∇φj(Gis)Jdφt = BiGst∇φs(Gij)Jdφt = Bi
∂Gij

∂φt
Jdφt.

These two facts mean that the Lie derivative LBi∇φi preserves the vec-
tor space span{dφi ⊗ dφj} and also the vector space span{Jdφi ⊗ Jdφj}.
Therefore, in block form, we see

(6.7) LBi∇φig4 =

(
Cij

Dij

)

where the off-diagonals are 2× 2 zero matrices.
Next we consider the Lie derivatives LAiJ∇φidφj and LAiJ∇φidφj . Using

LAiJ∇φi = iAiJ∇φid+ diAiJ∇φi and the fact that (dφj)(J∇φi) = 0, we have

(6.8) LAiJ∇φidφj = 0.
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Using the pseudo-Kähler condition we see

(6.9)

LAiJ∇φiJdφj = iAiJ∇φidJdφj − d
(
AiG

ij
)

= −iAiJ∇φi

(
∇φj(Gst)dφ

s ∧ Jdφt
)
− d

(
AiG

ij
)

= Aid(G
ij)− d

(
AiG

ij
)
= −GijdAi

Using the fact that the coefficient matrix Gij is invariant under BiJ∇φi, we
see that

(6.10)

LAiJ∇φi(g4) = GijLAiJ∇φi

(
Jdφi ⊗ Jdφj

)

= −Gij

(
GisdAs ⊗ Jdφj + Jdφi ⊗

(
GjsdAs

))

= −dAj ⊗ Jdφj − Jdφi ⊗ dAi.

Therefore, in block form, we see

(6.11) LAiJ∇φi(g4) =

(
Eij

Eji

)

where the diagonals are blocks of 2× 2 zero matrices.
For X = AiJ∇φi +Bi∇φi to be Killing, we must have

(6.12) 0 = LAiJ∇φi+Bi∇φi(g4) = LAiJ∇φi(g4) + LBi∇φi(g4)

From the block forms (6.7) and (6.12), both terms must individually be zero.
Considering the second term, we show that LBi∇φig4 = 0 means Bi = 0.

Note that the gΣ part of the metric (1 + u2)(du2 + dv2) has a single
symmetry direction, ∂/∂v, so the only candidate for Bi∇φi is Bi∇φi =
∂/∂v. To check that ∂/∂v does not fix Gijdθi ⊗ dθj , note that L∂/∂vdθ

i =

dL∂/∂vθ
i = 0, therefore L∂/∂v

(
Gijdθi ⊗ dθj

)
= ∂Gij

∂v dθi ⊗ dθj . But the ma-

trix ∂Gij

∂v is not the zero matrix, as a glance at (5.5) can verify. Therefore
L∂/∂v

(
Gijdθi ⊗ dθj

)
̸= 0. We conclude that LBi∇φig4 = 0 forces Bi∇φi ̸=

∂/∂v and so Bi∇φi = 0.
Considering the second term, by (6.10) if LAiJ∇φi(g4) = 0 then we have

(6.13) 0 = dAj ⊗ Jdφj + Jdφi ⊗ dAi

which forces dAj = 0 meaning that Ai = const. We conclude that if X =
AiJ∇φi +Bi∇φi is a Killing field, then it is a constant-coefficient combina-
tion of the Killing fields J∇φ1, J∇φ2, as claimed. □
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Appendix A. Appendix

We study the Weyl tensor on the generalized Taub-NUT metrics, and to a
lesser extent, on toric Kähler 4-manifolds in general. Our analysis centers
on a pair of two-forms: the form we call ω− given by

(A.1) ω− =
1√

det(Gij)

(
dφ1 ∧ dφ2 + Jdφ1 ∧ Jdφ2

)

and the Ricci form ρ = Ric(J ·, ·). We always have ω− ∈
∧− and |ω−| =

√
2.

It is well-known that ρ = 1
4sω + ρ0 where ρ0 ∈

∧−, so in the scalar-flat case
ρ ∈

∧−. In this Appendix we prove a general result: ω− is an eigenform
for W− in the toric scalar flat case, and a specific result: on generalized
Taub-NUTs the Ricci form ρ ∈

∧− is an eigenform of W−. The following
two propositions are proved in this appendix.

Proposition A.1. Assume (N4, g4, J,X 1,X 2) is a scalar-flat toric Kähler
4-manifold with moment functions φ1 and φ2. Then the length-

√
2 form ω−

of (A.1) is an eigenform of the Weyl tensor:

(A.2) W−(ω−) = 2KΣ ω−

where KΣ is the Gaussian curvature of the metric polygon (Σ2, gΣ) associated
to N4.

Below we show ρ is orthogonal to ω−, meaning ω− ∧ ρ = 0. Unless the
toric manifold is Einstein, there is a 2-form ρ⊥ of length

√
2 (unique up to

sign) with ρ⊥ ∈
∧− and

∧− = spanR{ω−, ρ0, ρ
⊥}.

Proposition A.2. Assume (M4, g4, J,X 1,X 2) is a generalized Taub-NUT.
Then both ρ, ρ⊥ ∈

∧− are eigenforms of W−:

(A.3)
W−(ρ) = −4KΣ ρ

W−(ρ⊥) = 2KΣ ρ⊥.

The Weyl tensor has 2 distinct eigenvalues: 2KΣ (double) and −4KΣ. We
have

(A.4) W− = KΣ

(
ω− ⊗ ω− − 4

ρ

|ρ| ⊗
ρ

|ρ| + ρ⊥ ⊗ ρ⊥
)

and |W−|2 = 24K2
Σ.
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The Weyl tensor on most scalar-flat toric 4-manifolds has 3 distinct
eigenvalues, as one would expect, but on the Taub-NUTs this reduces to 2
eigenvalues.

Before moving on we establish a bit of notation, following [5]. Any 2-
tensor γ ∈

⊗
2T ∗N4 can be regarded as a map γ :

∧1 →
∧1, and we may

compose two such maps γ, ϵ using the convention

(A.5) (γϵ)ij = γis ϵ
s
j .

Any tensor of the form F ∈
∧2⊗

∧2 is a map F :
∧2 →

∧2; we use the
convention

(A.6) F (ζ)ij =
1

2
F ijklζ

lk

(notice the reversal of indices on ζ). We sometimes use r for the symmetric
2-tensor Ric, so we can switch seamlessly between our formulas and those
of [5].

A.1. General toric Kähler 4-manifolds

Our first lemma establishes the computational features on toric Kähler 4-
manifolds we shall require, and give a short proof of each assertion.

Lemma A.3 (Toric Kähler relations.). Let N4 be a toric Kähler man-
ifold (not necessarily scalar-flat) with action potentials φ1 and φ2 and angle
variables θ1, θ2 so that {dφ1, dθ1, dφ2, dθ2} is an oriented (but not orthonor-
mal) frame.

i. We have dφi = −GijJdθj.
ii. We have the “pseudo-Kähler” relations

(A.7) ∇φi(Gjk) = ∇φj(Gik), and
∂

∂φi
Gjk =

∂

∂φj
Gik.

iii. The integral leaves of the distribution {∇φ1,∇φ2} are totally geodesic,
and therefore have identical intrinsic and extrinsic sectional curvatures,
which is KΣ.
iv. We have

∇ ∂

∂φk
= Γk

ijdφ
j ⊗ ∂

∂φk
+ Γk

ijJdφ
j ⊗ J

∂

∂φk
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where Γk
ij =

1
2G

skGij,s.

v. The Hessians ∇2φk are J-invariant. We have

(A.8)
∇∇φk = −Γk

ij dφ
i ⊗∇φj − Γk

ij Jdφ
i ⊗ J∇φj ,

∇
(
J∇φk

)
= −Γk

ij dφ
i ⊗ J∇φj + Γk

ij Jdφ
i ⊗∇φj .

vi. The exterior derivatives dJdφk are dJdφk = −2Γk
ij dφ

i ∧ Jdφj.
vii. The Kähler form is

(A.9) ω = −dφi ∧ dθi = −Gij dφ
i ∧ Jdφj .

viii. The covariant derivative of ω− has the form

(A.10) ∇ω− ∈ span{Jdφ1, Jdφ2} ⊗
∧

−

Proof. We move down the list of items, providing a short proof for each.
Proof of i. Using ∇φi = J ∂

∂θi
we compute

(A.11) GijJdφ
j

(
∂

∂θk

)
= Gijdφ

i
(
∇φk

)
= GijG

jk = δki

so we conclude that dθi = GijJdφ
j , as claimed.

Proof of ii. The pseudo-Kähler relations are equivalent to the toric relations
[∇φi,∇φj ] = 0. For the first relation we have

(A.12)
∇φi(Gjk) =

〈
∇∇φi∇φj , ∇φk

〉
+
〈
∇φj , ∇∇φi∇φk

〉

=
〈
∇∇φj∇φi, ∇φi

〉
+
〈
∇φi, ∇∇φj∇φk

〉
= ∇φj(Gik).

For the second relations we use ∂
∂φi = Giu∇φu and dGjk = −GjsGktdG

st.
Then

∂

∂φi
Gjk = −GiuGjsGkt∇φu

(
Gst
)
= −GiuGjsGkt∇φs

(
Gut
)
=

∂

∂φj
Gik.

Proof of iii. To see total geodesy of the integral leaves, we compute in two
ways

(A.13)

〈
∇∇φi∇φj , J∇φk

〉
=
〈
∇J∇φk∇φj , ∇φi

〉
, and

〈
∇∇φi∇φj , J∇φk

〉
=
〈
∇∇φj∇φi, J∇φk

〉
=
〈
∇J∇φk∇φi, ∇φj

〉



✐

✐

“5-Weber” — 2023/5/22 — 23:55 — page 1625 — #51
✐

✐

✐

✐

✐

✐

Generalized Kähler Taub-NUT metrics 1625

Summing the two equations gives 2
〈
∇∇φi∇φj , J∇φk

〉
= J∇φk(Gij) which

is zero because J∇φk is Killing. We conclude that the second fundamental
form is zero.
Proof of iv. This follows easily from the textbook formula for Γk

ij , using
Gij,s = Gis,j .
Proof of v To see J-invariance of the Hessians, with any fields X, Y we
compute

(A.14)

〈
∇JX∇φk, JY

〉
= −

〈
∇JXJ∇φk, Y

〉
Constancy of J

=
〈
∇Y J∇φk, JX

〉
J∇φk is Killing

=
〈
∇Y ∇φk, X

〉
Constancy of J

=
〈
∇X∇φk, Y

〉
Symmetry of Hess(φk)

The formula for ∇2φi follows directly from
〈

∂
∂φi ,∇φk

〉
= δki and the fact

that ∇ ∂
∂φi .

Proof vi. Using the computation for ∇J∇φk, we have

(A.15)

dJdφk = Alt(∇J∇φk)

= −
(
Γk
[ij]dφ

i ⊗ Jdφj
)
+
(
Γk
[ij]Jdφ

i ⊗ dφj
)

= −2Γk
ij dφ

i ∧ Jdφj .

Proof vii. Surely ω = −Gijdφ
i ∧ Jdφj ∈

∧+. Using Jdφi = Gisdθs we com-
pute

(A.16)
ω(·, J ·) = Gijdφ

i ⊗ dφj +GijJdφ
i ⊗ Jdφj

= Gijdφ
i ⊗ dφj +Gijdθi ⊗ dθj

which is precisely the metric g4.
Proof of viii . We first show that ∗dφ1 ∧ dφ2 = −Jdφ1 ∧ Jdφ2. Be-
cause the integral leaves are Lagrangian, we have span{dφ1, dφ2} ⊥
span{Jdφ1, Jdφ2}. Because |dφ1 ∧ dφ2|2 = |Jdφ1 ∧ Jdφ2|2 we conclude
that ∗(dφ1 ∧ dφ2) = ±Jdφ1 ∧ Jdφ2. To establish the sign, note that
an oriented frame is (dφ1, dθ1, dφ

1, dθ2). Because dθi = −GijJdφ
j and

det(−Gij) > 0, the frame (dφ1, Jdφ1, dφ2, Jdφ2) is oriented. There-
fore ∗(dφ1 ∧ dφ2) = −Jdφ1 ∧ Jdφ2, and we conlcude dφ1 ∧ dφ2 ∓ Jdφ1 ∧
Jdφ2 ∈

∧±.
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Thus ω− ∈
∧−. To see |ω−| =

√
2, we compute ω− ∧ ω− =

−2det(Gst)−1dφ1 ∧ Jdφ1 ∧ dφ2 ∧ Jdφ2 = −2dV ol.
Proof of viii. Rather than a tedious computation of ∇ω−, we take a
shortcut. We have

(A.17)

∧
2 = span

{
dφ1 ∧ dφ2, dφ1 ∧ Jdφ1, dφ1 ∧ Jdφ2,

dφ2 ∧ Jdφ1, dφ2 ∧ Jdφ2, Jdφ1 ∧ Jdφ2
}

Then we note that, by total geodesy of the dφ1-dφ2 leaves,

(A.18) ∇∇φi(dφ1 ∧ dφ2) ∈ span{dφ1 ∧ dφ2}.

Using this and the covariant-constanct of J we have

(A.19) ∇∇φi(Jdφ1 ∧ Jdφ2) ∈ span{Jdφ1 ∧ Jdφ2}.

It now follows that ∇∇φiω− ∈ span{φ1 ∧ φ2, Jφ1 ∧ Jφ2}. But the bundle∧− is covariant-constant, and therefore

(A.20)
∇∇φiω− ∈ span{proj∧−Jdφ1 ∧ Jdφ2}

= span{dφ1 ∧ dφ2 + Jdφ1 ∧ Jdφ2} = span{ω−}.

But since ω− has constant length, we have that
〈
∇∇φiω−, ω−〉 =

1
2∇φi|ω−|2 = 0. We conclude, as claimed, that ∇∇φiω− = 0 and so

(A.21) ∇ω− ∈ span{J∇φ1, J∇φ2} ⊗
∧

−.

□

Lemma A.4 (Quaterionic Relations). Assume (N4, g4, J,X 1,X 2) is a
scalar-flat toric Kähler 4-manifold; in particular ρ ∈

∧−. Then ω− ∧ ρ = 0.
Assuming ρ ̸= 0, then, referencing the product given in (A.5), the 2-form

(A.22) ρ⊥ =
1

|ρ|ω
−ρ

has ρ⊥ ∈
∧− and |ρ⊥| =

√
2, and we have the quaterionic relations

(A.23) ω− ρ

|ρ| = ρ⊥,
ρ

|ρ|ρ
⊥ = ω−, ρ⊥ω− =

ρ

|ρ| .

and ω−ω− = −2Id, ρρ = −|ρ|2Id, ρ⊥ρ⊥ = −2Id.
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Proof. With ω− a multiple of dφ1 ∧ dφ2 + Jdφ1 ∧ Jdφ2 and using ρ = dRi ∧
dθi from §2.3, immediately ω− ∧ ρ = 0. The quaterionic relations follow from
the well-known fact that spanR{Id} ⊕

∧− is algebraically isomorphic to the
quaternions. □

Lemma A.5. In the scalar-flat case, the (symmetric) Ricci tensor is anti-
invariant under ω−. Specifically

(A.24) rω− + ω−r = 0,

which is the same as Ric i
sωsj + ωisRic

s
j = 0.

Proof. We have Ric = ρω where ω is the Kähler 2-form. Because ω ∈
∧+

and ω− ∈
∧− we certainly have that ω and ω− commute: ωω− = ω−ω. The

quaterionic relations of the previous lemma give ρω− = −ω−ρ. Using these
facts, we compute

(A.25) rω− = ρωω− = ρω−ω = −ω−ρω = −ω−r.

□

Lemma A.6. Referencing the product of (A.6), in the scalar-flat case we
have (Ric∧⃝ g) (ω−) = 0. As a consequence,

(A.26) Rm(ω−) = W−(ω−).

Proof. We show that (Ric∧⃝ g)(ω−) = rω− + ω−r. To see this, we use
(Ric∧⃝ g)ijkl = rilgjk + rjkgil − rikgjl − rjlgik and compute

(A.27)

(Ric∧⃝ g)(ω−)ij =
1

2
(rilgjk + rjkgil − rikgjl − rjlgik) (ω

−)lk

=
1

2

(
ril(ω

−)lj + rjk(ω
−)i

k − rik(ω
−)j

k − rjl(ω
−)li

)

= ril(ω
−)lj + (ω−)i

lrlj = rω− + ω−r = 0.

The rest follows from the Riemann tensor decomposition in the scalar-flat
Kähler case: Rm = 1

2 (Ric∧⃝ g) +W−. □

Lemma A.7. Assume (N4, g4, J,X 1,X 2) is a scalar-flat, toric Kähler 4-
manifold. Then the form ω− of (A.1) is an eigenform of both Rm and W−.
We have

(A.28) Rm(ω−) = W−(ω−) = 2KΣω
−.
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Proof. The J-invariance of Rm means

Rm(∇φ1,∇φ2, ·, ·) = Rm(J∇φ1, J∇φ2, ·, ·),

and so

Rm(ω−) = 2det(Gst)−1/2Rm(∇φ1,∇φ2, ·, ·).
By the total geodesy of the distribution span{∇φ1,∇φ2} we have
Rm(∇φ1,∇φ2)∇φi ∈ span{∇φ1,∇φ2}. Because J is covariant-constant, we
have Rm(∇φ1,∇φ2)Xi ∈ span{X1,X2}. Thus Rm(∇φ1,∇φ2,∇φi,Xj) = 0
for any i, j.

Therefore the only non-zero terms in Rm(ω−) are multiples of
Rm(∇φ1,∇φ2,∇φ2,∇φ1) and Rm(∇φ1,∇φ2,X2,X1). By J-invariance
again, we see Rm(∇φ1,∇φ2,∇φ2,∇φ1) = Rm(∇φ1,∇φ2,X2,X1) = KΣ ·
det(Gst). Combining terms in the tensor 1

2 Rmij
klω−

lk we therefore obtain

(A.29) Rm(ω−) = 2KΣ ω−.

In the scalar-flat toric case the Riemann tensor decomposes as Rm =
1
2(Ric∧⃝ g) +W−. We have shown above that (Ric∧⃝ g)(ω−) = 0, so
W−(ω−) = 2KΣω

− as claimed. □

A.2. Specialization to the Taub-NUT metrics

To explore the Weyl tensor further, we the Derdzinski’s framework of [5]. In

the Kähler case Derdzhinski has told us W+ = s
24

(
3ω ⊗ ω − 2Id∧+

)
where

ω is the Kähler form. Using (29) of [5] for W− we have

(A.30) W− =
1

2

(
λ− ω− ⊗ ω− + µ− η− ⊗ η− + ν− θ− ⊗ θ−

)

where ω−, η−, θ− ∈
∧− are the eigenforms of W− of length

√
2 and

λ−, µ−, ν− ∈ R are the corresponding eigenvalues. The forms ω−, η−, θ−

are the length-
√
2 eigenforms of W− with eigenvales λ, µ, ν. We have the

quaternionic relations ω−η− = θ− and cyclic permutations. From Proposi-
tion A.7 we certainly have λ− = 2KΣ. The governing equations are (32) of
[5]

(A.31)
∇ω− = b⊗ η− −c⊗ θ−

∇η− = −b⊗ ω− +a⊗ θ−

∇θ− = c⊗ ω− −a⊗ η−
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and (33) of [5]

(A.32)

da + b ∧ c =
(
λ− − s/6

)
ω− +

(
ω−r + rω−) /2

db + c ∧ a =
(
µ− − s/6

)
η− +

(
η−r + rη−

)
/2

dc + a ∧ b =
(
ν− − s/6

)
θ− +

(
θ−r + rθ−

)
/2

where s is scalar curvature. From (viii) of Proposition A.3 we certainly have

(A.33) b, c ∈ spanR
{
Jdφ1, Jdφ2

}
.

At this point we are forced to recess from general considerations and
conduct computations. Because of our specialization from toric metrics gen-
erally to the Taub-NUTs, there is no other way to proceed. In the generalized
Taub-NUT case the 1-forms a, b, and c are

(A.34)

a = F−1
[
2My · dx− 2M

(
x+ k

√
x2 + y2

)
· dy
]

b = F−1
[
(−2kMy · Jdx+ 2M(kx+

√
x2 + y2) · Jdy

]

c = F−1

[
Jdx− 1

y

(
x+ 2M

√
x2 + y2

(
x+ k

√
x2 + y2

))
· Jdy

]

where F =
√

x2 + y2
(
1 + 2M

(
kx+

√
x2 + y2

))
. The length-

√
2 eigen-

forms are

(A.35) ω−, η− =
√
2
ρ

|ρ| , θ− = ρ⊥.

Lemma A.8 (The Ricci form). Assume (N4, g4, J,X 1,X 2) is a gener-
alized Taub-NUT. Letting ρ be the Ricci form, we have covariant derivative

(A.36) ∇
(√

2
ρ

|ρ|

)
= −b⊗ ω− + a⊗ ρ⊥

where a and b are given by (A.34). The Laplacian of ρ is △ρ = 8KΣρ.

Proof. Equation (A.36) follows from the formula (3.45) for the Ricci poten-
tials, from which ρ = Ric(J ·, ·) can be found, along with the formula for Γi

jk.
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To compute △ρ,

(△ρ)ij = gklρij,kl = gkl
∂

∂xk
∂

∂xl
ρij − gkl

∂

∂xk
(Γs

ilρsj)− gkl
∂

∂xk
(
Γs
jlρis

)

− gklΓs
il

∂

∂xk
ρsj − gklΓs

jl

∂

∂xk
ρis − gklΓs

kl

∂

∂xk
ρij

+ gklΓt
ikΓ

s
tlρsj + gklΓt

jkΓ
s
tlρis + 2gklΓt

ikΓ
s
jlρst

+ gklΓt
klΓ

s
itρsj + gklΓt

klΓ
s
jtρis.

Fully worked out, this expression has no fewer than 14976 terms with 384
derivative operations, so computer assistance is essential. Using (3.45), (3.2),
and (3.3), a short Mathematica code provides the result. □

Lemma A.9. For the generalized Taub-NUT metrics, we have W−(ρ) =
−4KΣρ. As a consequence we have

(A.37) W− = KΣ

(
ω− ⊗ ω− − 4

ρ

|ρ| ⊗
ρ

|ρ| + ρ⊥ ⊗ ρ⊥
)

and |W−|2 = 24K2
Σ.

Proof. The fact that W−(ρ) = −4KΣρ follows directly from the Bochner
formula of [11], which is △ρ = −2W−(ρ−) + 1

3sρ. Because scalar curvature
is zero, this gives 8KΣρ = −2W−(ρ). The expression for W− now follows
from the fact that ω− and ρ are eigenforms so ρ⊥ must be the final eigenform.
The fact that W− is trace free forces W−(ρ⊥) = 2KΣρ

⊥.
The expression for |W−|2 follows from the fact that the three terms in

parentheses are mutually orthogonal, combined with |ω− ⊗ ω−| = 4, |4ρ⊗
ρ|2 = 16|ρ|2, and |ρ⊥ ⊗ ρ⊥|2 = 4. □

Because ω−,
√
2ρ/|ρ|, ρ⊥ are orthogonal anti self-dual 2-forms of length√

2, we have Id∧− = 1
2

(
ω− ⊗ ω− + 2|ρ|−2ρ⊗ ρ+ ρ⊥ ⊗ ρ⊥

)
and so we have

expression (1.1):

(A.38)
W− = KΣ

(
−4|ρ|−2ρ⊗ ρ+ ω ⊗ ω + ρ⊥ ⊗ ρ⊥

)

= KΣ

(
−6|ρ|−2ρ⊗ ρ+ 2Id∧−

)
.

Remark. In Theorem (A.9), following Derdzinski, we used the operator
norm for |W−|2, where the operator W− :

∧− →
∧− is described by (A.6).

This is not the standard tensor norm, but 1
4 times the standard tensor norm.
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Using the tensor norm

(A.39) |W−|2tensor = W−
ijklW

−
stuvg

isgjtgkuglv,

we have that |W−|2tensor = 96K2
Σ. This is an important point in Section 3.4.
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