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1. Introduction

1.1. Background

The notion of Z/2 harmonic spinors was first introduced by Taubes [12, 14] to
describe the behaviour of certain non-convergent sequences of flat PSL2(C)
connections on a three manifold. It also appears in the compactifications
of the moduli spaces of solutions to Kapustin-Witten equations [13], Vafa-
Witten equations [16], and Seiberg-Witten equations with multiple spinors
[8, 15]. These equations may have important topological applications. For
example, Witten [17] has conjectured that the space of solutions to the
Kapustin-Witten equations can be used to compute the Jones polynomials
and the Khovanov homology for knots. Haydys [7] conjectured a relation
between the multiple spinor Seiberg-Witten monopoles, Fueter sections, and
G2 instantons. More recently, Doan and Walpuski [6] conjectured a relation
between generalized Seiberg-Witten equations and counting of associative
manifolds on G2 manifolds.

All of these applications require a better understanding of the compact-
ifications for the relevant moduli spaces. The zero locus of Z/2 harmonic
spinor plays a crucial role in the description of the boundaries of the com-
pactifications. It is the set of points where the sequence of solutions blow up
after normalizations. Takahashi [10, 11] studied the moduli spaces of Z/2
harmonic spinors with additional regularity assumptions on the zero locus,
where the zero locus was assumed to be a union of embedded circles in the
case of dimension 3, and an embedded surface in the case of dimension 4.
In general, the zero locus may not have this regularity. Taubes [14] proved
that the zero locus must have Hausdorff codimension at least 2. This article
improves the regularity result by proving that the zero locus is rectifiable
and has locally finite Minkowski content. The arguments are inspired by
[4], where a similar problem was studied for Dir-minimizing Q-valued func-
tions. The proof relies on a general method developed recently by Naber and
Valtorta [9].

1.2. Statement of results

Let X be a 4-dimensional Riemannian manifold. Let V be a Clifford bun-
dle over X. That is, V is a unitary vector bundle equipped with an ex-
tra structure ρ ∈ Hom(TX,Hom(V,V)), such that ρ(e)2 = −∥e∥2 · id and
∥ρ(e)(u)∥ = ∥e∥ · ∥u∥ for every e ∈ TpX and u ∈ V|p. Let ∇ be a connection
on V that is compatible with (X,V, ρ). Namely, for every pair of smooth
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vector fields e, e′, and every smooth section u of V, one has

∇e(ρ(e
′) · u) = ρ(∇ee

′) · u+ ρ(e′) · ∇e(u).

The Dirac operator on V is defined by

D(u) =

4∑

i=1

ρ(ei)∇eiu,

where {ei} is a local orthonormal frame for TX.
Let Q be a positive integer. For a vector space E, define AQ(E) to be

the set of unordered Q-tuples of points in E. If P1, P2, · · · , PQ are Q points

in E, use
∑Q

i=1[[Pi]] ∈ AQ(E) to denote the Q-tuple given by the collection
of Pi’s. If E is endowed with a Euclidean metric, one can define a metric on
AQ(E) by

dist
(∑

i

[[Pi]],
∑

i

[[Si]]
)
= min

σ∈PQ

√
∑

i

|Pi − Sσ(i)|2,

where PQ is the permutation group of {1, 2, · · · , Q}. If T ∈ AQ(E), define
|T | = dist(T,Q[[0]]).

A map from X is called a Q-valued section of V if it maps every x ∈ X
to an element of AQ(V|x). A Q-valued section is called continuous if it is
continuous under local trivializations of V.

Definition 1.1. Let U be a continuous 2-valued section of V. Then U is
called a Z/2 harmonic spinor if the following conditions hold.

1) U is not identically 2[[0]].

2) Let Z be the set of U where U = 2[[0]]. For every x ∈ X − Z, there
exists a neighborhood of x, such that on this neighborhood U can be
written as U = [[u]] + [[−u]], where u is a smooth section of V satisfying
D(u) = 0.

3) Near a point x ∈ X − Z, write U as [[u]] + [[−u]], then the function |∇u|
is a well defined smooth function on X − Z. The section U satisfies

∫

X−Z
|∇u|2 < ∞.

This definition is equivalent to the definition of Z/2 harmonic spinors
given in [14].
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For x ∈ X and r > 0, let Bx(r) be the set of points on X whose distance
to x is less than or equal to r. As in (1.5) of [14], we make the following
additional assumption on U .

Assumption 1.2. There exits a constant ϵ > 0 such that the following
holds. For every x ∈ X with U(x) = 2[[0]], there exist constants C, r0 > 0,
depending on x, such that

∫

Bx(r)
|U(y)|2 dy < C · r4+ϵ, for every r ∈ (0, r0).

Assumption 1.2 is necessary for the integration-by-parts arguments in
the proof of [14, Lemma 2.3], which is essential for most of the estimates
developed in this article. In all the known cases [8, 13, 15, 16], the Z/2
harmonic spinors that arised from the study of gauge-theoretic equations
satisfy this assumption.

Assume U is a Z/2 harmonic spinor, and let Z be the set of U where
U = 2[[0]]. Taubes [14] proved the following theorem.

Theorem 1.3 (Taubes [14]). If U satisfies Assumption 1.2, then the
Hausdorff dimension of Z is at most 2.

This article improves Theorem 1.3 to the following result.

Theorem 1.4. If U satisfies Assumption 1.2, then Z is a 2-rectifiable set.
Moreover, for every compact subset A ⊂ X, there exist constants C and r0
depending on A and Z, such that for every r < r0,

Vol ({x : dist(x,A ∩ Z) < r}) < C · r2.

In other words, Z is a 2-rectifiable set with locally finite 2 dimensional
Minkowski content. Since the Minkowski content controls the Hausdorff mea-
sure, Theorem 1.4 implies that Z has locally finite 2 dimensional Hausdorff
measure.

Taubes [14] also defined and studied the zero loci of Z/2 harmonic spinors
on three and two dimensional manifolds. Since every Z/2 harmonic spinor
on a 3-manifold Y with zero locus Z induces an R–invariant Z/2 harmonic
spinor on R× Y with zero locus R× Z, Theorem 1.4 implies that the zero
locus of a Z/2 harmonic spinor on a 3-manifold is 1-rectifiable and has locally
finite Minkowski content. Similarly, a further dimension reduction argument
implies that the zero locus of a Z/2 harmonic spinor on a 2-manifold is a
locally finite set of points, which is already proved in [14, Section 5(a)].
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2. Z/2 harmonic spinors as Sobolev sections

Almgren [2] developed a Sobolev theory for Q-valued functions on Rm. For
a quicker introduction, one can see for example [5]. For an open set Ω ⊂ Rm,
the space W 1,2(Ω,AQ) is defined to be the space of Q valued functions T on
Ω, such that |T | ∈ L2(Ω), and that T has distributional derivatives which
are also in L2(Ω). The Sobolev theory extends to Q-valued sections of vector
bundles without any difficulty. This section proves the following lemma.

Lemma 2.1. If U is a Z/2 harmonic spinor, then U is in W 1,2(X,A2).
Moreover, D(U) = 0 in the distributional sense.

This lemma allows us to study the compactness properties of Z/2 har-
monic spinors by the Sobolev theory for Q-valued functions.

We start with the following definition.

Definition 2.2. Let T be a Q-valued section of V. It is called a smooth
Q-valued section, if for every x ∈ X, there exists a neighborhood of x on
which T can be written as

T =

Q
∑

i=1

[[fi]],

where fi’s are smooth sections of V.

If T is a smooth Q-valued section and is locally written as
∑

i[[fi]], then
the function

∑

i |fi|2 +
∑

i |∇fi|2 is well defined on X. In this case, the W 1,2

norm of T is given by (
∫

X

∑

i |fi|2 +
∑

i |∇fi|2)1/2.
Proof of Lemma 2.1. The proof is essentially the same as Lemma 2.4 of [14].

Let χ be a smooth non-increasing function on R, such that χ(t) = 1
when t ≤ 1, and χ(t) = 0 when t ≥ 2. For s > 0, let τs = χ(ln |U |/ ln s). Then
τs(x) = 0 when |U(x)| ≤ s2, and τs(x) = 1 when |U(x)| ≥ s.
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The section τsU is a 2-valued smooth section of V. Recall that on X −
Z, the Z/2 harmonic spinor U can be locally written as U = [[u]] + [[−u]].
Although u is only defined up to a sign, the functions |u| and |τs∇u+∇τs · u|
are well defined on X − Z. Thus the W 1,2 norm of τsU is given by

∥τsU∥W 1,2 =
√
2

∫

X
(|τs|2|u|2 + |τs∇u+∇τs · u|2).

Notice that

|∇τs| · |u| ≤
1

| ln s|(sup |χ
′|) · |∇u|,

hence its L2 norm converges to zero as s → 0. Therefore,

(1) lim
s→0

∥τsU∥W 1,2 =
√
2

∫

X−Z
(|u|2 + |∇u|2).

In particular, τsU is bounded in W 1,2 as s → 0, thus a subsequence of it
weakly converges in W 1,2 to an element U ′ ∈ W 1,2. Since τsU also uniformly
converges to U , one must have U ′ = U . Therefore U ∈ W 1,2.

Since D is a smooth first-order differential operator, D(U) ∈ L2
loc(X).

By the definition of Z/2 harmonic spinors, D(U) = 0 on X − Z. By section
2.2.1 of [5], the derivatives of U are zero at the Lebesgue points of Z, hence
D(U) = 0 on those points. That proves D(U) = 0 in the distributional sense.

□

The argument of Lemma 2.1 also shows that U can be W 1,2 approxi-
mated by smooth sections. We write it as a separate lemma for later refer-
ence.

Lemma 2.3. Let U be a Z/2 harmonic spinor. Then there exits a sequence
of smooth sections Ui, such that Ui = −Ui, and

lim
i→∞

Ui = U in W 1,2.

Proof. Since |U | and |∇U | are zero on the Lebesgue points of Z, one has

∥U∥W 1,2 =

∫

X−Z
(|U |2 + |∇U |2) =

√
2

∫

X−Z
(|u|2 + |∇u|2).

Define τs as in the proof of Lemma 2.1. It was proved previously that
there is a sequence si → 0, such that τsiU converges weakly to U in W 1,2.
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As a consequence,

lim inf
i→∞

∥τsiU∥W 1,2 ≥ ∥U∥W 1,2

On the other hand, by (1),

lim
i→∞

∥τsiU∥W 1,2 =
√
2

∫

X−Z
(|u|2 + |∇u|2) = ∥U∥W 1,2 .

Therefore τsiU converges strongly to U in W 1,2. □

3. Frequency functions

The frequency functions were first introduced by Amgren [1] to study the
singular set of elliptic partial differential equations, and they were adapted
by Taubes [14] to study the zero loci of Z/2 harmonic spinors. This section
recalls some results about the frequency functions from [14].

Let U be a Z/2 harmonic spinor. On X − Z the section U can be locally
written as U = [[u]] + [[−u]]. As before, we will use notations like |u| and
|∇u| to denote the corresponding functions on X − Z if they can be globally
defined. The functions |u| and |∇u| extend to X by defining them to be zero
on Z.

The following C0 estimate was established in [14].

Lemma 3.1 ([14], Lemma 2.3). Let A ⊂ B be two open subsets of X,
and assume the closure of A is compact and contained in B. Then there
exists a constant K, depending on A, B and the norms of the curvatures of
X and V, such that

sup
x∈A

|u(x)|2 ≤ K

∫

B
|u(x)|2 dx.

Now introduce some notations. Fix a point x0 ∈ X. Take R > 0 such
that the exponential map of X at x0 is well-defined on the closed ball with
radius 1500R, and that the injectivity radius of X is greater than 1000R for
every point in Bx0

(500R).
Later on we will need to work on both the Euclidean space and the

manifold X, so we need to differentiate the notations. We will use Bx(r)
to denote the geodesic ball on X with center x ∈ X and radius r > 0. Use
B̄x(r) to denote the Euclidean ball with center x in the Euclidean space and
radius r > 0. When the center is the origin, B̄0(r) is also denoted by B̄(r).
Use d(x, y) to denote the distance function on X, and use |x− y| to denote
the distance function on R4.
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For every x ∈ Bx0
(500R), use the normal coordinate centered at x

to identify Bx(500R) with the ball B̄(500R) ⊂ R4. Let gx be the func-
tion of metric matrices on B̄(500R) corresponding to Bx(500R). For each
z ∈ B̄(500R), let Kx(z), κx(z) be the largest and smallest eigenvalue of
gx(z). Assume that R is sufficiently small so that for every x ∈ Bx0

(500R),
z ∈ B̄(500R),

(2)
(11

12

)2 ≤ κx(z) ≤ Kx(z) ≤
(12

11

)2

In order to prove Theorem 1.4, one only needs to study the rectifiability
and the Minkowski content of Z ∩Bx0

(R/2).
For x ∈ Bx0

(500R), r ∈ (0, 500R], define the height function

H(x, r) =

∫

∂Bx(r)
|u|2,

then H(x, r) is always positive [14, Lemma 3.1]. Define

D(x, r) =

∫

Bx(r)
|∇u|2,

and define the frequency function

N(x, r) =
rD(x, r)

H(x, r)
.

Section 3(a) of [14] proved the following monotonicity properties for N and
H:

Lemma 3.2 ([14], (3.6) and Lemma 3.2). The functions N and H
are absolutely continuous with respect to r, and there exist constants κ >
0 and r0 > 0, depending only on the norms of curvatures of X and V on
Bx0

(1000R), such that when r ≤ r0,

∂

∂r
H ≥ 3

r
H − κrH,(3)

∂

∂r
N ≥ −κr(1 +N).(4)

(
N

r
+ κr)

H

r3
≥ ∂

∂r
(
H

r3
) ≥ (

N

r
− κr)

H

r3
(5)

By shrinking the size of R, we assume without loss of generality that
r0 = 500R, hence inequalities (3), (4), and (5) hold for all x ∈ Bx0

(500R)
and r ≤ 500R.
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Inequality (3) gives the following lemma

Lemma 3.3 ([14], Lemma 3.1). There exists a constant κ > 0, such that
when s < r < 500R,

H(x, r) ≥
(r

s

)3 · e−κ(r2−s2) ·H(x, s).

Inequality (4) gives

Lemma 3.4. There exists a constant κ > 0, such that when s < r < 500R,

N(x, r) ≥ e−κ(r2−s2)N(x, s)− κ(r2 − s2).

Since N(x, 500R) is continuous with respect to x, Lemma 3.4 implies
that N(x, r) is bounded for all x ∈ Bx0

(500R), r ≤ 500R. Let Λ be an upper
bound for N . From now on Λ will be treated as a constant. For the rest
of this article, unless otherwise stated, C, C1, C2, · · · will denote positive
constants that depend on Λ, R, and the norms of the curvatures of X and
V, but independent of U . The values of C, C1, C2, · · · may be different in
different appearances.

If |g| ≤ C · f for some constant C, we write g = O(f).
Inequality (5) then implies that there exists a constant C such that

(6)
∣
∣
∣
∂

∂r

(
ln(

H

r3
)
)
∣
∣
∣ = O(

1

r
).

Inequality (4) implies that there exists C > 0, such that whenever r ≥ s,

N(x, r) ≥ N(x, s)− C(r2 − s2).

4. Smoothed frequency functions

We need to use a modified version of frequency functions. Let ϕ be a non-
increasing smooth function on R such that ϕ(t) = 1 when t ≤ 3/4, and ϕ(t) =
0 when t ≥ 1. From now on ϕ will be fixed, hence the values of ϕ and its
derivatives are considered as universal constants. Following [4], we define
the smoothed frequency functions as follows.

Definition 4.1. For x ∈ X, let νx be the gradient vector field of the dis-
tance function d(x, ·). For x ∈ Bx0

(500R), r ≤ 500R, introduce the following
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functions

Dϕ(x, r) =

∫

|∇u(y)|2ϕ
(d(x, y)

r

)

dy,

Hϕ(x, r) = −
∫

|u(y)|2d(x, y)−1ϕ′
(d(x, y)

r

)

dy,

Nϕ(x, r) =
rDϕ(x, r)

Hϕ(x, r)
,

Eϕ(x, r) = −
∫

|∇νx
u(y)|2d(x, y)ϕ′

(d(x, y)

r

)

dy.

Inequality (6) has the following useful corollary.

Lemma 4.2. There exists a constant C with the following property. Let
r ∈ (0, 32R]. Assume s1 ≤ 10r, s2 ≥ r/10. Then for any two points x, y
with d(x, y) ≤ r, one has

Hϕ(x, s1) ≤ C(Hϕ(y, s2)).

Proof. Since the constant K in Lemma 3.1 only depends on the norms of
the curvatures and the sets A, B, a rescaling argument gives

|u(z)|2 ≤ C1

r4

∫

Bz(r)
|u|2, ∀Bz(r) ⊂ Bx0

(500R).

Therefore for every z ∈ ∂Bx(s1),

|u(z)|2 ≤ C2

r4

∫

By(12r)
|u|2.

On the other hand, inequality (6) and Lemma 3.3 gives

1

r4

∫

By(12r)
|u|2 ≤ C3

r3
H(y, s2).

Therefore

H(x, s1) = O(H(y, s2)).

Apply (6) again, one obtains

H(y, s2) = O(Hϕ(y, s2)),

Hϕ(x, s1) = O(H(x, s1)),

hence the lemma is proved. □
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Lemma 4.3. For x ∈ Bx0
(32R), r ≤ 32R, one has

∫

Bx(r)
|u(y)|2dy = O(rHϕ(x, r)),

∫

Bx(r)
|u(y)||∇u(y)|dy = O(Hϕ(x, r)),

∫

Bx(r)
|∇u(y)|2dy = O(

1

r
Hϕ(x, r)).

Proof. The first equation follows from inequality (6) and Lemma 3.3. For
the third,

∫

Bx(r)
|∇u(y)|2dy ≤ Dϕ(x, 2r)

=
1

2r
Nϕ(x, 2r)Hϕ(x, 2r)

= O(
1

r
Hϕ(x, r)).

The second equation then follows from Cauchy’s inequality. □

The main result of this section is the following proposition.

Proposition 4.4. The functions Dϕ, Hϕ, Nϕ, and Eϕ are smooth in both
variables. Assume x ∈ Bx0

(32R), r ≤ 32R, and v ∈ Tx(X). Consider the
normal coordinate centered at x with radius r, extend the vector v to a vector
field on Bx(r) by requiring that the coordinate functions of v are constants.
Then the following equations hold

Dϕ(x, r) = −1

r

∫

ϕ′
(d(x, y)

r

)

∇νx
u(y) · u(y) dy +O(rHϕ(x, r)),(7)

∂rDϕ(x, r) =
2

r
Dϕ(x, r) +

2

r2
Eϕ(x, r) +O(Hϕ(x, r)),(8)

∂vDϕ(x, r) = −2

r

∫

ϕ′
(d(x, y)

r

)

∇νx
u(y) · ∇vu(y) dy +O(Hϕ(x, r)),(9)

∂rHϕ(x, r) =
3

r
Hϕ(x, r) + 2Dϕ(x, r) +O(rHϕ(x, r)),(10)

∂vHϕ(x, r) = −2

∫

u(y) · ∇vu(y) d(x, y)
−1ϕ′

(d(x, y)

r

)

dy(11)

+O(rHϕ(x, r)).
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The smoothness of the functions follows from the fact that ϕ is smooth
and |u|, |∇u| are both in L2.

Proof of (7). It was proved in [14, Section 2(c)] that

∫

∂Bx(s)
∇νx

u(y) · u(y) dy =

∫

Bx(s)
|∇u(y)|2 dy(12)

+

∫

Bx(s)
⟨u(y),Ru(y)⟩ dy,

where R is a bounded curvature term from the Weitzenböck formula.
Therefore, by Lemma 4.3,

Dϕ(x, r) = −1

r

∫ r

0
ϕ′
(s

r

)∫

Bx(s)
|∇u(y)|2 dy ds

= −1

r

∫

ϕ′
(d(x, y)

r

)

∇νx
u(y) · u(y) dy

+
1

r

∫ r

0
ϕ′
(s

r

)∫

Bx(s)
⟨u,Ru⟩ dy ds

= −1

r

∫

ϕ′
(d(x, y)

r

)

∇νx
u(y) · u(y) dy +O(rHϕ(x, r)).

□

Proof of (8).

∂rDϕ(x, r) = − 1

r2

∫

|∇u(y)|2ϕ′
(d(x, y)

r

)

· d(x, y) dy

= − 1

r2

∫ r

0
ϕ′
(s

r

)

· s
∫

∂Bx(s)
|∇u(y)|2 dy ds(13)

It was proved in [14, Section 2(d)] that

∫

∂Bx(s)
|∇u(y)|2 dy = 2

∫

∂Bx(s)
|∇νx

u(y)|2 dy + 2

s

∫

Bx(s)
|∇u(y)|2 dy

+
2

s

∫

Bx(s)
⟨u(y),Ru(y)⟩ dy −

∫

∂Bx(s)
⟨R1u(y),∇u(y)⟩ dy

+

∫

∂Bx(s)
⟨u(y),R2u(y)⟩ dy,

where R, R1, R2 are smooth tensors, R and R2 are bounded, the norm of
R1 is bounded by C1 · r.
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Notice that

−
∫ r

0
ϕ′
(s

r

)

· s
∫

∂Bx(s)
|∇νx

u(y)|2 dy ds = Eϕ(x, r),

−1

r

∫ r

0
ϕ′
(s

r

)∫

Bx(s)
|∇u(y)|2 dy ds = Dϕ(x, r).

Plug into equation (13), we have

∂rDϕ(x, r) =
2

r
Dϕ(x, r) +

2

r2
Eϕ(x, r)

− 1

r2

∫ r

0
ϕ′
(s

r

)

· s ·
[2

s

∫

Bx(s)
⟨u(y),Ru(y)⟩ dy

−
∫

∂Bx(s)
⟨R1u(y),∇u(y)⟩ dy +

∫

∂Bx(s)
⟨u(y),R2u(y)⟩ dy

]

ds.

Lemma 4.3 implies

− 1

r2

∫ r

0
ϕ′
(s

r

)

· s ·
[2

s

∫

Bx(s)
⟨u(y),Ru(y)⟩ dy

+

∫

∂Bx(s)
⟨u(y),R2u(y)⟩ dy

]

ds

= O(Hϕ(x, r)).

On the other hand,

∣
∣
∣− 1

r2

∫ r

0
ϕ′
(s

r

)

· s ·
[

−
∫

∂Bx(s)
⟨R1u(y),∇u(y)⟩ dy

]

ds
∣
∣
∣

≤ C2 ·
∫ r

0

∣
∣
∣ϕ′

(s

r

)∣
∣
∣

∫

∂Bx(s)
|u(y)||∇u(y)| dy ds

≤ C3

∫

Bx(r)
|u(y)||∇u(y)|dy = O(Hϕ(x, r)).

Hence the result is proved. □

Proof of (9). For a function G(x, y) defined on X ×X and a vector field
w, use ∂x

∂wG to denote the directional derivative of G with respect to x, use
∂y
∂wG to denote the directional derivative with respect to y.
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The first variation formula of geodesic lengths gives

∂x

∂v
d(x, y) +

∂y

∂v
d(x, y) = O(d(x, y)2).

We have

∂x

∂v
Dϕ(x, r) =

1

r

∫

|∇u(y)|2ϕ′
(d(x, y)

r

)

· ∂x
∂v

d(x, y) dy

= −1

r

∫

|∇u(y)|2ϕ′
(d(x, y)

r

)

· ∂y
∂v

d(x, y) dy

+O(r)

∫

Bx(r)
|∇u(y)|2

= −
∫

|∇u(y)|2 · ∂y
∂v

ϕ
(d(x, y)

r

)

dy +O(Hϕ(x, r)).(14)

One needs to establish the following lemma.

Lemma 4.5. Let F be the curvature of V, and {ei} be an orthonormal basis
of TX. Let φ be a smooth function with suppφ ⊂ Bx(r). Then

∫

|∇u|2∂vφ = 2

∫

⟨dφ⊗∇vu,∇u⟩ − 2

∫
∑

i

φ⟨F (v, ei)u,∇eiu⟩

− 2

∫
∑

i

φ⟨∇[v,ei]u,∇eiu⟩ −
∫

|∇u|2φ div(v)

+ 2

∫
∑

i

φ⟨∇vu,∇∇ei
eiu⟩+ 2

∫
∑

i

φ⟨∇vu,∇eiu⟩ div(ei)

+ 2

∫

φ⟨∇vu,R0u⟩,

where R0 is the curvature term in the Weitzenböck formula.

Proof of Lemma 4.5. By Lemma 2.3, there exists a sequence of smooth 2-
valued section Ui, such that Ui = −Ui and Ui → U in W 1,2. By partitions
of unity, integration by parts works for Ui. For any Ui, locally write it as
[[w]] + [[−w]] where w is a smooth section of V, then
∫

|∇w|2∂vφ = −
∫

∑

i

φ∇v⟨∇eiw,∇eiw⟩ −
∫

|∇w|2φ div(v)

= −2

∫
∑

i

φ⟨∇ei∇vw,∇eiw⟩ − 2

∫
∑

i

φ⟨F (v, ei)w,∇eiw⟩
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− 2

∫
∑

i

φ⟨∇[v,ei]w,∇eiw⟩ −
∫

|∇w|2φ div(v)

Here F denotes the curvature of V. For the first term in the formula above,

∫
∑

i

φ⟨∇ei∇vw,∇eiw⟩

= −
∫

∑

i

(∇eiφ)⟨∇vw,∇eiw⟩ −
∫

∑

i

φ⟨∇vw,∇ei∇eiw⟩

−
∫

∑

i

φ⟨∇vw,∇eiw⟩ div(ei)

= −
∫

∑

i

(∇eiφ)⟨∇vw,∇eiw⟩+
∫

∑

i

φ⟨∇vw,∇†∇w⟩

−
∫

∑

i

φ⟨∇vw,∇∇ei
eiw⟩ −

∫
∑

i

φ⟨∇vw,∇eiw⟩ div(ei)

For the second term in the formula above, let R0 be the curvature term in
the Weitzenböck formula, then

∫
∑

i

φ⟨∇vw,∇†∇w⟩ =
∫

⟨φ∇vw,D
2w −R0w⟩

= −
∫

φ⟨∇vw,R0w⟩+
∫

⟨ρ(∇φ)∇vw,Dw⟩

−
∫

⟨φ⟨[∇v, D]w,Dw⟩+
∫

φ⟨∇v(Dw), Dw⟩

= −
∫

φ⟨∇vw,R0w⟩+
∫

⟨ρ(∇φ)∇vw,Dw⟩

−
∫

⟨φ⟨[∇v, D]w,Dw⟩ − 1

2

∫

∂vφ|Dw|2

− 1

2

∫

φ|Dw|2 div(v)

Therefore

∫

|∇w|2∂vφ = −2

∫
∑

i

φ⟨F (v, ei)w,∇eiw⟩ − 2

∫
∑

i

φ⟨∇[v,ei]w,∇eiw⟩

−
∫

|∇w|2φ div(v) + 2

∫
∑

i

(∇eiφ)⟨∇vw,∇eiw⟩
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+ 2

∫
∑

i

φ⟨∇vw,∇∇ei
eiw⟩+ 2

∫
∑

i

φ⟨∇vw,∇eiw⟩ div(ei)

+ 2

∫

φ⟨∇vw,R0w⟩ − 2

∫

⟨ρ(∇φ)∇vw,Dw⟩

+ 2

∫

⟨φ⟨[∇v, D]w,Dw⟩+
∫

∂vφ|Dw|2 −
∫

φ|Dw|2 div(v)

Take limit Ui → U , one has

∫

|∇u|2∂vφ = −2

∫
∑

i

φ⟨F (v, ei)u,∇eiu⟩ − 2

∫
∑

i

φ⟨∇[v,ei]u,∇eiu⟩

−
∫

|∇u|2φ div(v) + 2

∫
∑

i

(∇eiφ)⟨∇vu,∇eiu⟩

+ 2

∫
∑

i

φ⟨∇vu,∇∇ei
eiu⟩+ 2

∫
∑

i

φ⟨∇vu,∇eiu⟩ div(ei)

+ 2

∫

φ⟨∇vu,R0u⟩ − 2

∫

⟨ρ(∇φ)∇vu,Du⟩

+ 2

∫

⟨φ⟨[∇v, D]u,Du⟩+
∫

∂vφ|Du|2 −
∫

φ|Du|2 div(v)

= −2

∫
∑

i

φ⟨F (v, ei)u,∇eiu⟩ − 2

∫
∑

i

φ⟨∇[v,ei]u,∇eiu⟩

−
∫

|∇u|2φ div(v) + 2

∫
∑

i

(∇eiφ)⟨∇vu,∇eiu⟩

+ 2

∫
∑

i

φ⟨∇vu,∇∇ei
eiu⟩+ 2

∫
∑

i

φ⟨∇vu,∇eiu⟩ div(ei)

+ 2

∫

φ⟨∇vu,R0u⟩

Notice that
∑

i

(∇eiφ)⟨∇vu,∇eiu⟩ = ⟨dφ⊗∇vu,∇u⟩,

therefore the lemma is proved. □

Back to the proof of equation (9). Take φ(y) = ϕ(d(x, y)/r). By
Lemma 4.3,

−2

∫
∑

i

φ⟨F (v, ei)u,∇eiu⟩+ 2

∫

φ⟨∇vu,R0u⟩ = O(Hϕ(x, r)).
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On the other hand, |div(v)| = O(r), and one can choose {ei} such that
|[v, ei]| = O(r), |div(ei)| = O(r), and |∇eiei| = O(r). Thus by Lemma 4.3,

− 2

∫
∑

i

φ⟨∇[v,ei]u,∇eiu⟩ −
∫

|∇u|2φ div(v) + 2

∫
∑

i

φ⟨∇vu,∇∇ei
eiu⟩

+ 2

∫
∑

i

φ⟨∇vu,∇eiu⟩ div(ei) = O(Hϕ(x, r)).

Equation (9) then follows immediately from equation (14) and
Lemma 4.5. □

Proof of (10). By [14, Equation (2.11)],

(15) ∂sH(x, s) =
3

s
H(x, s) + 2D(x, s) +

∫

Bx(s)
⟨u,Ru⟩+

∫

∂Bx(s)
t|u|2,

whereR is a curvature term from the Weitzenböck formula, and t comes from
the mean curvature of ∂Bx(s). The function t satisfies |t(y)| = O(d(x, y)).
Notice that

Hϕ(x, r) =

∫ r

0
−ϕ′(s/r) · 1

s
·H(s) ds =

∫ 1

0
−ϕ′(λ)

1

λ
·H(λr) dλ.

Therefore

∂rHϕ(x, r) =

∫ 1

0
−ϕ′(λ) · (∂rH)(λr) dλ

=

∫ 1

0
−ϕ′(λ)

[ 3

λr
H(x, λr) + 2D(x, λr) +

∫

Bx(λr)
⟨u,Ru⟩+

∫

∂Bx(λr)
t|u|2

]

dλ

= −1

r

∫ r

0
ϕ′(s/r)

[3

s
H(x, s) + 2D(x, s) +

∫

Bx(s)
⟨u,Ru⟩+

∫

∂Bx(s)
t|u|2

]

ds

=
3

r
Hϕ(x, r) + 2Dϕ(x, r)−

1

r

∫ r

0
ϕ′(s/r)

[ ∫

Bx(s)
⟨u,Ru⟩+

∫

∂Bx(s)
t|u|2

]

ds

=
3

r
Hϕ(x, r) + 2Dϕ(x, r) +O(rHϕ(x, r)).

□

Proof of (11). As in the proof of (9), for a function G(x, y), use ∂x
∂vG to

denote the directional derivative of G with respect to x, and use ∂y
∂vG to
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denote the directional derivative with respect to y. Recall that we have

∂x

∂v
d(x, y) +

∂y

∂v
d(x, y) = O(d(x, y)2),

therefore

(
∂x

∂v
+

∂y

∂v
)
[

d(x, y)−1ϕ′
(d(x, y)

r

)]

= O(1).

We have

∂vH(x, r) = −
∫

|u(y)|2∂x
∂v

[

d(x, y)−1ϕ′
(d(x, y)

r

)]

dy

=

∫

|u(y)|2∂y
∂v

[

d(x, y)−1ϕ′
(d(x, y)

r

)]

dy +O(

∫

Bx(r)
|u|2)

= −
∫

∂

∂v
|u(y)|2d(x, y)−1ϕ′

(d(x, y)

r

)

dy

−
∫

|u(y)|2d(x, y)−1ϕ′
(d(x, y)

r

)

div(v)dy +O(rHϕ(x, r))

= −2

∫

u(y) · ∇vu(y) d(x, y)
−1ϕ′

(d(x, y)

r

)

dy +O(rHϕ(x, r))

The last equality follows from |div(v)| = O(r) and
∫

Bx(r)
|u|2 =

O(rHϕ(x, r)). □

Remark 4.6. When both X and V are flat, all the curvature terms in the
computations above are zero. Therefore, Proposition 4.4 becomes

Dϕ(x, r) = −1

r

∫

ϕ′
(d(x, y)

r

)

∇νx
u(y) · u(y) dy,

∂rDϕ(x, r) =
2

r
Dϕ(x, r) +

2

r2
Eϕ(x, r)

∂vDϕ(x, r) = −2

r

∫

ϕ′
(d(x, y)

r

)

∇νx
u(y) · ∇vu(y) dy

∂rHϕ(x, r) =
3

r
Hϕ(x, r) + 2Dϕ(x, r)

∂vHϕ(x, r) = −2

∫

u(y) · ∇vu(y) d(x, y)
−1ϕ′

(d(x, y)

r

)

dy

Corollary 4.7. Let ηx(y) = d(x, y) · νx(y). Under the assumptions of
Proposition 4.4, one has
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(16) ∂vNϕ(x, r) =
2

Hϕ(x, r)

∫

− 1

d(x, y)
ϕ′
(d(x, y)

r

)

·

(∇ηx
u(y)−Nϕ(x, r)u(y)) · ∇vu(y) dy +O(r).

(17) ∂rNϕ(x, r) =
2

rHϕ(x, r)

∫

−ϕ′
(d(x, y)

r

)

·

d(x, y)−1|∇ηx
u(y)−Nϕ(x, r)u(y)|2 dy +O(r),

As a consequence, there exists a constant C, such that
(

Nϕ(x, r) + Cr2
)

is

increasing in r.

Proof. The first equation follows immediately from Proposition 4.4 by com-
bining equations (9) and (11). For the first one, Lemma 4.4 gives

∂rNϕ(x, r) =
2

rHϕ(x, r)

(

Eϕ(x, r)−
r2Dϕ(x, r)

2

Hϕ(x, r)

)

+O(r),

and we have

Eϕ(x, r)−
r2Dϕ(x, r)

2

Hϕ(x, r)

= Eϕ(x, r)− 2rDϕ(x, r)Nϕ(x, r) +Nϕ(x, r)
2Hϕ(x, r)

=

∫

−ϕ′
(d(x, y)

r

)

d(x, y)−1|∇ηx
u(y)−Nϕ(x, r)u(y)|2 dy +O(r2Hϕ(x, r))

Hence the second equation is verified.
□

5. Compactness

This section proves a compactness result for Z/2 harmonic spinors.
Consider the ball B̄(5) ⊂ R4 centered at the origin. Let V be a fixed

trivial vector bundle on Ω. Assume gn is a sequence of Riemannian metrics
on B̄(5), An is a sequence of connenction forms on V, and ρn is a sequence
of Clifford bundle structures of V. Assume that (gn, An, ρn) are compatible,
and assume that (gn, An, ρn) converge to (gencl, A, ρ) in C∞, where geucl is
the Euclidean metric on B̄(5). Then for sufficiently large n, the injectivity
radius at each point in B̄(2) is at least 2.5. Without loss of generality, assume
that this property holds for every n.



✐

✐

“6-Zhang” — 2023/5/24 — 0:26 — page 1652 — #20
✐

✐

✐

✐

✐

✐

1652 Boyu Zhang

Fix ϵ,Λ > 0. For every n, assume Un is a 2-valued section of V defined
on B̄(5), with the following properties:

1) The section Un is a Z/2 harmonic spinor on B̄(5) with respect to
(gn, An, ρn).

2) Un satisfies Assumption 1.2 with respect to ϵ.

3) Let N
(n)
ϕ be the smoothed frequency function for the extended Un.

Then whenever Nϕ(x, r) is defined,

N
(n)
ϕ (x, r) ≤ Λ.

4) Let H
(n)
ϕ be the smoothed height function of Un, then H

(n)
ϕ (0, 1) = 1.

The main result of this section is the following proposition.

Proposition 5.1. Let Un be given as above. Then there exits a subsequence
of {Un}, such that the sequence converges strongly in W 1,2(B̄(2)) to a sec-
tion U . The section U is a Z/2 harmonic spinor on B̄(2) with respect to
(geucl, A, ρ), and U satisfies Assumption 1.2 for a possibly smaller value of
ϵ. Moreover, Un converges to U uniformly on B̄(2).

Proof. Fix a trivialization of V, and fix s ∈ (0, 0.5). The bound on N
(n)
ϕ and

the assumption thatH
(n)
ϕ (0, 1) = 1 implies that ∥U∥L2(B̄(2+s)) ≤ C1 for some

constant C1. The upper bound on Nϕ then implies ∥∇An
U∥L2(B̄(2+s/2)) ≤

C2. Since An → A in C∞, this implies that Un is bounded in W 1,2(B̄(2 +
s/2)). Therefore, there is a subsequence of {Un} which converges weakly
in W 1,2(B̄(2 + s/2)) and converges strongly in L2(B̄(2 + s/2)). To avoid
complicated notations, the subsequence is still denoted by {Un}. Denote the

limit of {Un} on B̄(2 + s/2) by U . Let H
(n)
ϕ , D

(n)
ϕ , N

(n)
ϕ be the smoothed

frequency functions for Un, let Hϕ, Dϕ, Nϕ be the corresponding functions
for U . Since Un → U strongly in L2, one has Hϕ(0, 1) = 1, thus U is not
identically 2[[0]].

By [14, Section 3(e)], there exists constants K > 0 and α ∈ (0, 1), de-
pending on ϵ, Λ, R and the C1 norms of the curvatures of {gn} and An,
such that

∥Un∥Cα(B̄(2+s/2)) ≤ K.

By the Arzela-Ascoli theorem, there exists a further subsequence of {Un}
which converges uniformly to U on B̄(2 + s/2). Still denote this subsequence
by {Un}. Since solutions to the Dirac equation are closed under C0 limits,
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U is a Z/2 harmonic spinor. U is also Hölder continuous, so it satisfies
Assumption 1.2.

Locally write Un as [[un]] + [[−un]], and write U as [[u]] + [[−u]]. The weak
convergence of Un to U implies

lim inf
n→∞

∫

B̄(2)
|∇An

un|2 ≥
∫

B̄(2)
|∇Au|2.

We want to prove that

lim
n→∞

∫

B̄(2)
|∇An

un|2 =
∫

B̄(2)
|∇Au|2.

Assume the contrary, then there exists a subsequence of n such that

∫

B̄(2)
|∇An

un|2 ≥
∫

B̄(2)
|∇Au|2 + δ

for some δ > 0. Since
∫

B̄(r) |∇Au|2 is continuous in r, and
∫

B̄(r) |∇An
un|2 is

non-decreasing in r for every n, there exists r ∈ (2, 2 + s/2) and σ ∈ (1, (2 +
s/2)/r), such that for every t ∈ [2, r],

(18)

∫

B̄(t)
|∇An

un|2 ≥
∫

B̄(σt)
|∇Au|2 + δ/2

Use Bn(t) to denote the geodesic ball of center 0 and radius t with metric
gn. Since gn → geucl, we have B̄(t) ⊂ Bn(σt) for sufficiently large n. Equa-
tion (18) then gives

(19)

∫

Bn(σt)
|∇An

un|2 ≥
∫

B̄(σt)
|∇Au|2 + δ/2, for t ∈ [2, r]

when n is sufficiently large.
By equation (15), for every t,

∂tH
(n)(0, t) =

3

t
H(n)(0, t) + 2D(n)(0, t) +

∫

Bn(t)
⟨u,R(n)u⟩+

∫

∂Bn(t)
t
(n)|u|2,

∂tH(0, t) =
3

t
H(0, t) + 2D(0, t) +

∫

B̄(t)
⟨u,Ru⟩+

∫

∂B̄(t)
t|u|2,

where R(n) and t
(n) are bounded terms that are uniformly convergent to R

and t as n goes to infinity. The uniform convergence of |un| and gn then
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imply

lim
s→∞

∫ σr

2σ
D(n)(0, t) dt =

∫ σr

2σ
D(0, t) dt,

which contradicts (19). In conclusion,

lim
n→∞

∫

B̄(2)
|∇An

un|2 =
∫

B̄(2)
|∇Au|2.

Since (An, gn) → (A, geucl) in C∞, this implies

lim
n→∞

∥Ui∥W 1,2(B̄(2)) = ∥U∥W 1,2(B̄(2)),

therefore Ui convergence strongly to U in W 1,2(B̄(2)). □

Corollary 5.2. Let σ > 1. Let g∗ be a metric on R4 given by a constant
metric matrix, such that all eigenvalues of the matrix are in the interval
[σ−2, σ2].

Assume {(gn, An, ρn)}n≥1 is a sequence of geometric data on B̄(5σ2),
and assume (gn, An, ρn) converge to (g∗, A, ρ) in C∞. Let Un be a Z/2 har-
monic spinor on B̄(5σ2) with respect to (gn, An, ρn), such that the sequence
Un satisfies conditions (2) to (4) listed before Proposition 5.1. Then a sub-
sequence of Un converges to a Z/2 harmonic spinor in W 1,2(B̄(2)) with
respect to (g∗, A, ρ). The limit U satisfies Assumption 1.2, and the sequence
Un converges to U uniformly.

Proof. Take a linear map T : R4 → R4 such that T ∗(g∗) is the Euclidean
metric. Then (T ∗gn, T

∗An, T
∗ρn, T

∗Un) gives a sequence of Z/2 harmonic
spinor on B̄(5σ). Since T ∗gn converges to the Euclidean metric, one can
apply Lemma 5.1 and find a convergent subsequence on B̄(2σ). Now pull
back by T−1, one obtains a convergent subseqence of Un on B̄(2). □

6. Frequency pinching estimates

For x ∈ Bx0
(32R) and 0 < s < r ≤ 32R, define

W r
s (x) = Nϕ(x, r)−Nϕ(x, s).

This section proves the following estimate

Proposition 6.1. There exists a constant C with the following property.
Let r ∈ (0, 8R]. Assume x1, x2 ∈ Bx0

(32R), such that d(x1, x2) ≤ r/4. Let x
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be a point on the short geodesic γ bounded by x1 and x2. Let v be a unit
tangent vector of γ at x. Then

d(x1, x2) · |∂vNϕ(x, r)| ≤ C
[√

|W 4r
r/4(x1)|+

√

|W 4r
r/4(x2)|+ r

]

.

The proof is adapted from the arguments of [4, Section 4]. First, one
needs to prove the following lemma.

Lemma 6.2. There exists a constant C, such that for every x ∈ Bx0
(32R)

and r ≤ 8R, one has

∫

Bx(3r)−Bx(r/3)
|∇ηx

u(y)−Nϕ(x, d(x, y))u(y)|2dy

≤ CrHϕ(x, r)(W
4r
r/4(x) + Cr2).

Proof. By equation (17),

∫ 4r

r/4
∂sNϕ(x, s)ds+O(r2)

=

∫ 4r

r/4

2

sHϕ(x, s)

∫

−ϕ′
(d(x, y)

s

)

d(x, y)−1|∇ηx
u(y)−Nϕ(x, s)u(y)|2 dyds

≥ 1

C1rHϕ(x, r)

∫ 4r

r/4

∫

−ϕ′
(d(x, y)

s

)

d(x, y)−1|∇ηx
u(y)−Nϕ(x, s)u(y)|2 dyds

≥ 1

C1rHϕ(x, r)

∫ 4r

r/3

∫

−ϕ′
(d(x, y)

s

)

d(x, y)−1|∇ηx
u(y)−Nϕ(x, s)u(y)|2 dyds

=: (A)

For every pair (y, s) in the support of the integration in (A), one has d(x, y) ∈
[r/4, 4r], hence

|Nϕ(x, s)−Nϕ(x, d(x, y))| ≤ W 4r
r/4(x) + C2r

2.

Therefore,

(A) ≥ 1

C1rHϕ(x, r)

×
∫ 4r

r/3

∫

−ϕ′
(d(x, y)

s

)

d(x, y)−1|∇ηx
u(y)−Nϕ(x, d(x, y))u(y)|2 dyds

︸ ︷︷ ︸

=:I
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−
C3(W

4r
r/4(x) + C2r

2)

rHϕ(x, r)

×
∫ 4r

r/3

∫

−ϕ′
(d(x, y)

s

)

d(x, y)−1
[

|∇u(y)||u(y)|d(x, y) + |u(y)|2
]

dyds

︸ ︷︷ ︸

=:II

.

By Lemma 4.3, II = O(rHϕ(x, 4r)) = O((rHϕ(x, r)). By Fubini’s theorem,

I =

∫

Bx(4r)
|∇ηx

u(y)−Nϕ(x, d(x, y))u(y)|2
∫ 4r

r/3
−ϕ′

(d(x, y)

s

)

d(x, y)−1 dsdy

Notice that

inf
{y|d(x,y)∈[r/3,3r]}

∫ 4r

r/3
−ϕ′

(d(x, y)

s

)

d(x, y)−1 ds > 0,

Therefore

I ≥ 1

C4

∫

Bx(3r)−Bx(r/3)
|∇ηx

u(y)−Nϕ(x, d(x, y))u(y)|2 dy,

In conclusion,

(A) ≥ 1

C5rHϕ(x, r)

∫

Bx(3r)−Bx(r/3)
|∇ηx

u(y)−Nϕ(x, d(x, y))u(y)|2 dy

− C6(W
4r
r/4(x) + C2r

2),

hence

C7rHϕ(x, r)(W
4r
r/4(x) + C8r

2)

≥
∫

Bx(3r)−Bx(r/3)
|∇ηx

u(y)−Nϕ(x, d(x, y))u(y)|2dy.

□

One also needs the following technical lemma.

Lemma 6.3. Assume M is a compact manifold, possibly with boundary.
Let φζ : Ω ⊂ Bx0

(64R) → R4 be a smooth family of smooth embeddings,
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parametrized by ζ ∈ M . For every ζ ∈ M and x ∈ Bx0
(64R), one can de-

fine a vector field ηζx on Bx0
(64R) as follows. For every y ∈ Bx0

(64R), let

ηζx(y) = [(φζ)∗(y)]
−1(φζ(y)− φζ(x)).

Then there exists a constant Θ > 0, depending on φ, such that

|ηζx(y)− ηx(y)| ≤ Θ · d(x, y)2.

Proof. Fix x, compute the covariant derivates of ηζx and ηx at x. Since both
vector fields are zero at x, their covariant derivatives at x are independent of
the connections. Let e ∈ TxX. Taking derivate in the Euclidean coordinates
φζ , one obtains ∇e(η

ζ
x)(x) = e. Taking derivative in the normal coordinates

centered at x, one obtains ∇e(ηx)(x) = e. Therefore, ηζx and ηx have the
same derivatives at x. Since we are working on compact manifolds, |ηζx(y)−
ηx(y)| ≤ Θ · d(x, y)2 for some constant Θ independent of x. □

Proof of Proposition 6.1. Assume that v points from x1 towards x2. Extend
v to a vector field on Bx(r), such that the coordinates of v are constant
under the normal coordinate centered at x. Now apply Lemma 6.3. Let M =
Bx0

(32R). For every ζ ∈ Bx0
(32R), let φζ be the exponential map centered

at ζ. Then for every z ∈ Bx(r),

(20) v(z) =
ηxx1

(z)− ηxx2
(z)

|φx(x1)− φx(x2)|
.

By Lemma 6.3,

(21) |ηxx1
(z)− ηx1

(z)| = O(r2), |ηxx2
(z)− ηx2

(z)| = O(r2)

Notice that since φx is the exponential map centered at x,

(22) |φx(x1)− φx(x2)| = d(x1, x2).

Combine (20), (21) and (22) together, one obtains

∣
∣
∣v(z)− ηx1

(z)− ηx2
(z)

d(x1, x2)

∣
∣
∣ = O(r2/d(x1, x2)).

Define

El(z) = ∇ηxl
u(z)−Nϕ(xl, d(z, xl))u(z) for l = 1, 2.
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Then

d(x1, x2)∇vu(z) =∇ηx1
u(z)−∇ηx2

u(z) +O(r2|∇u|)
=
(
Nϕ(x1, d(z, x1))−Nϕ(x2, d(z, x2))

)

︸ ︷︷ ︸

=:E3(z)

u(z)

+ E1(z)− E2(z) +O(r2|∇u|).

To simplify notations, define the measure

dµx = −d(x, y)−1ϕ′
(d(x, y)

r

)

dy.

Using (16), one can write

d(x1, x2) · ∂vNϕ(x, r)

= O(r2) +
2

Hϕ(x, r)

∫

∇ηx
u(y) · (E1 − E2 + E3u+O(r2|∇u|))dµx

− 2

Hϕ(x, r)

∫

uNϕ(x, r) · (E1 − E2 + E3u+O(r2|∇u|))dµx

=
2

Hϕ(x, r)

∫

∇ηx
u(y) · (E1 − E2)dµx

︸ ︷︷ ︸

=:(A)

− 2Nϕ(x, r)

Hϕ(x, r)

∫

u · (E1 − E2)dµx

︸ ︷︷ ︸

=:(B)

+
2

Hϕ(x, r)

∫

E3u(∇ηx
u−Nϕ(x, r)u) dµx

︸ ︷︷ ︸

=:(C)

+O(r)

To bound (C), notice that

E3(z) = Nϕ(x1, r)−Nϕ(x2, r)
︸ ︷︷ ︸

=:E

+ [Nϕ(x1, d(z, x1))−Nϕ(x1, r)]
︸ ︷︷ ︸

=:E4(z)

− [Nϕ(x2, d(z, x2))−Nϕ(x2, r)]
︸ ︷︷ ︸

=:E5(z)

.

By (7),
∫

u · ∇ηx
u dµx = rDϕ(x, r) +O(r2Hϕ(x, r))

= Nϕ(x, r)Hϕ(x, r) +O(r2Hϕ(x, r))

= Nϕ(x, r)

∫

|u|2 dµx +O(r2Hϕ(x, r)).
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Hence
∫

u · (∇ηx
u−Nϕ(x, r)u)dµx = O(r2Hϕ(x, r)),

therefore
∫

Eu · (∇ηx
u−Nϕ(x, r)u)dµx = O(r2Hϕ(x, r)).

By Lemma 4.3,

2

∫

|u|(|∇ηx
u|+ |Nϕ(x, r)||u|) dµx = O(Hϕ(x, r)).

In addition, notice that

sup
z∈ supp µx

|E4(z)|+ |E5(z)| ≤ W 4r
r/4(x1) +W 4r

r/4(x2) + C1r
2.

Therefore,

∫

(|E4|+ |E5|) ·
∣
∣u(∇ηx

u−Nϕ(x, r)u)
∣
∣ dµx

≤ C2Hϕ(x, r)(W
4r
r/4(x1) +W 4r

r/4(x2) + C1r
2).

As a result,

(C) ≤ C3(W
4r
r/4(x1) +W 4r

r/4(x2) + C4r
2).

To bound (A), use Cauchy’s inequality to obtain

(A) ≤ C5

Hϕ(x, r)

(∫

Bx(r)
|∇u|2dµx

)1/2(
∫

Bx(r)−Bx(3r/4)

(
E2
1 + E2

2

)
dµx

)1/2

≤ C6

r1/2Hϕ(x, r)1/2

(∫

Bx(r)−Bx(3r/4)

(
E2
1 + E2

2

)
dµx

)1/2
.

Now apply Lemma 6.2,

∫

Bx(r)−Bx(3r/4)
E2
1 µx ≤

∫

Bx1 (5r/4)−Bx1 (r/2)
E2
1 µx

≤ C7rHϕ(x1, r)(W
4r
r/4(x1) + C7r

2)
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A similar estimate works for the integral of E2. Therefore

(A) ≤ C8

[√

|W 4r
r/4(x1)|+

√

|W 4r
r/4(x2)|+ r

]

.

Similarly, applying Cauchy’s inequality on (B) leads to

(B) ≤ C9

rHϕ(x, r)

(∫

Bx(r)
|u|2dµx

)1/2(
∫

Bx(r)−Bx(3r/4)

(
E2
1 + E2

2

)
dµx

)1/2

≤ C10

r1/2

(∫

Bx(r)−Bx(3r/4)

(
E2
1 + E2

2

)
dµx

)1/2

Lemma 6.2 then gives

(B) ≤ C11

[√

|W 4r
r/4(x1)|+

√

|W 4r
r/4(x2)|+ r

]

,

and the proposition is proved. □

Corollary 6.4. Assume x1, x2 ∈ Bx0
(32R), assume r ∈ (0, 8R]. If

d(x1, x2) ≤ r/4, then

|Nϕ(x1, r)−Nϕ(x2, r)| ≤ C
[√

|W 4r
r/4(x1)|+

√

|W 4r
r/4(x2)|+ r

]

.

□

7. L2 approximation by planes

This section establishes a distortion bound in the spirit of [9]. Assume U
satisfies Assumption 1.2 with respect to ϵ > 0. In this section, the constants
C, C1, C2, · · · will denote constants that depend on Λ, R, the C1 norms of
the curvatures, as well as ϵ. The techniques in this section were developed
by [9], and the presentation here is adapted from Section 5 of [4].

Definition 7.1. Suppose µ is a Radon measure on R4. For x ∈ R4, r > 0,
define

D2
µ(x, r) = inf

L
r−4

∫

B̄x(r)
dist(y, L)2 dµ(y),

where L is taken among the set of 2-dimensional affine subspaces.

Remark. In the literature D2
µ(x, r) usually called the Jone’s β-number,

and is denoted by β2
µ,2(x, r). The notation D2

µ(x, r) follows from [4].
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For a measure µ supported in Z, we wish to bound the value of D2
µ(x, r)

in terms of the frequency functions. However, we have to be careful, since X
is a Riemannian manifold, but D2

µ(x, r) is only defined for Euclidean spaces.
We identify Bx0

(32R) with B̄(32R) using the exponential map centered at
x0. From now on, we will only work with the Euclidean metric induced by
this identification.

The main result of this section is the following

Proposition 7.2. There exists a positive constant R0 ≤ R and a constant
C with the following property. Let µ be a Radon measure supported in Z.
For x ∈ B̄(R) and r ≤ R0, one has

D2
µ(x, r/8) ≤

C

r2

∫

B̄x(r/8)
(W 4r

r/4(z) + Cr2)dµ(z).

First, observe that the function D2
µ(x, r) has the following geometric

interpretation. Assume µ(B̄x(r)) > 0, let

z̄ =
1

µ(B̄x(r))

∫

B̄r(x)
z dµ(z),

Define a non-negative bilinear form b on R4 as

b(v, w) =

∫

B̄x(r)

(
(z − z̄) · v

)(
(z − z̄) · w

)
dµ(z).

Let 0 ≤ λ1 ≤ · · · ≤ λ4 be the eigenvalues of b, then

D2
µ(x, r) = r−4(λ1 + λ2).

Let vi be an eigenvector with eigenvalue λi, a straightforward argument of
linear algebra shows that

(23)

∫

Bx(r)

(
(z − z̄) · vi

)
z dµ(z) = λi vi.

The following lemma can be understood as a version of Poincaré inequal-
ity for Z/2 harmonic spinors.

Lemma 7.3. There exist constants C,R0 > 0 with the following property.
Let v1, v2, v3 be orthonormal vectors in R4. Let x ∈ B̄(R), r ≤ R0. Assume
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Z ∩ B̄x(r/8) ̸= ∅, then
∫

B̄x(5r/4)−B̄x(3r/4)

3∑

j=1

|∇vj
u(z)|2 dz ≥ Hϕ(x, r)

Cr
.

Proof. Assume such constants do not exist. Then there exists a sequence

{(xn, rn, Un, v
(n)
1 , v

(n)
2 , v

(n)
3 )}n≥1,

such that rn ≤ 1
n , the vectors v

(n)
1 , v

(n)
2 , v

(n)
3 are orthonormal in R4,

(24)

∫

B̄xn (5rn/4)−B̄xn (3rn/4)

3∑

j=1

|∇v
(n)
j

u(z)|2 dz ≤ Hϕ(xn, rn)

nrn
,

and Z ∩ B̄xn
(rn/8) ̸= ∅.

Let σ = (12/11)2. Rescale the ball B̄xn
(5σ2rn) to B̄(5σ2), and normalize

the restriction of U . By Assumption (2), the pull back metrics gn are given by
matrix-valued functions on B̄(5σ2) with eigenvalues bounded by 1/σ2 and

σ2. There is a subsequence of the pull backs of (gn, An, ρn, v
(n)
1 , v

(n)
2 , v

(n)
3 )

that converges to some data set (g,A, ρ, v1, v2, v3) in C∞, and since rn → 0,
the limit data set (g,A, ρ) is invariant under translations. By corollary 5.2,
after taking a subsequence, the rescaled Un converges to a Z/2 harmonic
spinor U∗ on B̄(2) with respect to (g,A, ρ), which satisfies Assumption 1.2.

The assumption that Z ∩ B̄xn
(rn/8) ̸= ∅ implies that U∗ has at least one

zero point in B̄(1/8). Inequality (24) gives

∫

B̄(5/4)−B̄(3/4)

3∑

j=1

|∇vj
u∗(z)|2 dz = 0

Theorem 1.3 implies that U∗ is not identically zero on B̄(5/4)− B̄(3/4). It
also follows from Theorem 1.3 that the complement of the zero locus of a
Z/2 harmonic spinor is always open and connected, hence the unique con-
tinuation property still holds for Z/2 harmonic spionors. Since U∗ solves the
Dirac equation on the complement of its zero locus, the unique continuation
property implies that |U | is constant in 3 linearly independent directions in
B̄(5/4)− B̄(3/4), hence Theorem 1.3 implies that U is everywhere non-zero
in B̄(5/4), and that is a contradiction. □

Now one can give the proof of Proposition 7.2. The proof is adapted
from the proof of Proposition 5.3 in [4].
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Proof of Proposition 7.2. Let R0 be given by Lemma 7.3, and assume r ≤
R0. Without loss of generality, assume that D2

µ(x, r/8) > 0. In particular,
µ(B̄x(r/8)) > 0, thus Z ∩ B̄x(r/8) ̸= ∅. Let

z̄ =
1

µ(B̄x(r/8))

∫

B̄x(r/8)
zdµ(z).

Let 0 ≤ λ1 ≤ · · · ≤ λ4 be the corresponding eigenvalues, then D2
µ(x, r/8) >

0 implies λ2 > 0. Let vi be the unit eigenvector with eigenvalue λi. Let
gradu(z) be the vector in TzR

4 ⊗ V , such that for every v ∈ TzR
4,

⟨v, gradu(z)⟩R4 = ∇vu(z).

By Theorem 1.3, gradu is well-defined almost everwhere. By (2),
∥gradu(z)∥R4 ≤ (1211)∥∇u∥X . Equation (23) gives

−λivi · gradu(y) =
∫

B̄x(r/8)

(
(z − z̄) · vi

)(
(y − z) · gradu(y)− αu(y)

)
dµ(z)

for any constant α. By Cauchy’s inequality

λ2
i |vi · gradu(y)|2

≤
∫

B̄x(r/8)

∣
∣(z − z̄) · vi

∣
∣2dµ(z)

∫

B̄x(r/8)

∣
∣(y − z) · gradu(y)− αu(y)

∣
∣2dµ(z)

= λi

∫

B̄x(r/8)

∣
∣(y − z) · gradu(y)− αu(y)

∣
∣2dµ(y)

Therefore, when λi ̸= 0,

λi|vi · gradu(y)|2 ≤
∫

B̄x(r/8)

∣
∣(y − z) · gradu(y)− αu(y)

∣
∣2dµ(z).

Integrate with respect to y on B̄x(5r/4)− B̄x(3r/4), and sum up i = 2, 3, 4,

(25)

∫

B̄x(5r/4)−B̄x(3r/4)

4∑

i=2

λi|vi · gradu(y)|2 dy

≤ 3

∫

y∈B̄x(5r/4)−B̄x(3r/4)

∫

z∈B̄x(r/8)

∣
∣(y − z) · gradu(y)− αu(y)

∣
∣2dµ(z)dy

≤ 3

∫

z∈B̄x(r/8)

∫

y∈B̄z(11r/8)−B̄z(5r/8)

∣
∣(y − z) · gradu(y)− αu(y)

∣
∣2 dydµ(z).
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On the other hand,

r2D2
µ(x, r)

4∑

i=2

|vi · gradu(y)|2 = r−2(λ1 + λ2)

4∑

i=2

|vi · gradu(y)|2

≤ 2

r2

4∑

i=2

λi|vi · gradu(y)|2

Therefore

r2D2
µ(x, r)

∫

B̄x(5r/4)−B̄x(3r/4)

4∑

i=2

|vi · gradu(y)|2 dy

≤ 2

r2

∫

B̄x(5r/4)−B̄x(3r/4)

4∑

i=2

λi|vi · gradu(y)|2 dy

By Lemma 7.3, this implies

r2Hϕ(x, r)D
2
µ(x, r) ≤

C1

r

∫

B̄x(5r/4)−B̄x(3r/4)

4∑

i=2

λi|vi · gradu(y)|2 dy

Therefore inequality (25) gives

(26) r2Hϕ(x, r)D
2
µ(x, r)

≤ 3C1

r

∫

B̄x(r/8)

∫

B̄z(11r/8)−B̄z(5r/8)

∣
∣(y − z) · gradu(y)− αu(y)

∣
∣2 dy

︸ ︷︷ ︸

=:A(z,r)

dµ(z).

where the constant C1 is independent of α.
Notice that

A(z, r) ≤ 3
(∫

B̄z(11r/8)−B̄z(5r/8)

∣
∣ηz(y) · gradu(y)−Nϕ(z, d(z, y))u(y)

∣
∣2 dy

︸ ︷︷ ︸

=:A1(z,r)

+

∫

B̄z(11r/8)−B̄z(5r/8)
|(y − z)− ηz(y)|2|gradu(y)|2dy

︸ ︷︷ ︸

=:A2(z,r)

+

∫

B̄z(11r/8)−B̄z(5r/8)

(
Nϕ(z, d(z, y))− α

)2|u(y)|2dy
︸ ︷︷ ︸

=:A3(z,r)

)
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Notice that by (2), we have B̄z(11r/8)− B̄z(5r/8) ⊂ Bz(3r/2)−Bz(r/2).
Therefore, by Lemma 6.2,

A1(z, r) ≤ C2rHϕ(z, r)(W
4r
r/4(z) + C2r

2).

By Lemma 6.3 and Lemma 4.3,

A2(z, r) = O(r4
∫

Bz(3r/2)
|∇u|2) = O(r3Hϕ(x, r)).

To bound A3(z, r), first break it into two parts

A3(z, r) ≤ C3

∫

Bz(3r/2)−Bz(r/2)

(
Nϕ(z, d(z, y))−Nϕ(z, r)

)2|u(y)|2dy
︸ ︷︷ ︸

=:A4(z,r)

+ C4

∫

Bz(3r/8)−Bz(r/2)

(
Nϕ(z, r)− α

)2|u(y)|2dy
︸ ︷︷ ︸

=:A5(z,r)

Here the balls Bz(3r/2) and Bz(r/2) are the geodesic balls on X, and the
measure dy is the volume form of X. The monotonicity of Nϕ implies that

A4(z, r) ≤ (W 4r
r/4(z) + C5r

2)

∫

Bz(3r/2)
|u(y)|2dy

≤ C6rHϕ(x, r)(W
4r
r/4(z) + C5r

2).

Now take p ∈ Bx(r/8), such that

|W 4r
r/4(p)| = inf

q∈Bx(r/8)
|W 4r

r/4(q)|,

and take α = Nϕ(p, r). Then by Corollary 6.4, for z ∈ Bx(r/8),

A5(z, r) ≤
∫

Bz(3r/2)−Bz(r/2)

(
C7(

√

|W 4r
r/4(z)|+

√

|W 4r
r/4(p)|+ r)

)2|u(y)|2dy

≤ C8

(
W 4r

r/4(z) + C8r
2
)
∫

Bz(3r/2)−Bz(r/2)
|u(y)|2dy

≤ C9rHϕ(x, r)
(
W 4r

r/4(z) + C8r
2
)
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In conclusion,

A(z, r) ≤ C10rHϕ(x, r)
(
W 4r

r/4(z) + C11r
2
)
.

Therefore Proposition 7.2 follows from inequality (26). □

8. Approximate spines

Definition 8.1. Given a set of points {pi}ki=0 ⊂ R4 and a number β > 0,
one says that {pi}ki=0 is β-linearly independent, if for every j ∈ {0, 1, · · · , k},
the distance between pj and the affine subspace spanned by {pi}ki=0\{pj} is
at least β.

Given a set F ⊂ R4, one says that F β-spans a k-dimsensional affine
subspace, if there exit (k + 1) points in F that are β-linearly independent.

Remark. β-linear independence is only defined for subsets of the Euclidean
space with respect to the Euclidean metric.

Lemma 8.2. If F is a bounded set that does not β-span a k-dimensional
affine space, then there exists a (k − 1)-dimensional affine space V , such
that F is contained in the 2β-neighborhood of V .

Proof. For k points {q1, · · · , qk} in R4, let V (q1, · · · , qk) be the volume of the
(k − 1) dimensional simplex spanned by these points. Let {p1, · · · , pk} ⊂ F
be k points in F such that

(27) V (p1, · · · , pk) ≥
1

2
sup

q1,··· ,qk∈F
V (q1, · · · , qk).

If the volume V (p1, · · · , pk) is zero, then F is contained in a (k − 1)-
dimensional affine subspace, and the statement is trivial. If the volume is
positive, then the set {p1, · · · , pk} spans a k − 1 dimensional affine space V .
If F is contained in the 2β neighborhood of V , then the statement is veri-
fied. Otherwise, there exists a point pk+1 ∈ F , such that the distance of pk+1

and V is greater than 2β. Let dj be the distance between pj and the affine
subspace spanned by {pi}k+1

i=0 \{pj}, then dk+1 ≥ 2β. By (27), 2dj ≥ dk+1

for every j. Therefore {p1, · · · , pk+1} is β-linearly independent, and that
contradicts the assumption on F . □
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As in Section 7, use the normal coordinate centered at x0 to identify
Bx0

(32R) with the ball B̄(32R) in R4. Recall that by the assumption (2),

(11

12

)2 ≤ κx0
(z) ≤ Kx0

(z) ≤
(12

11

)2
,

where κx0
(z) and Kx0

(z) are the upper and lower bound of the eigenvalues
of the metric matrix at z ∈ B̄x(32R).

The compactness property of Z/2 harmonic spinors leads to the following
lemma.

Lemma 8.3. Let β, β̄, β̃ ∈ (0, 1) be given. Then there exits δ > 0, depending
on β, β̄, β̃, the upper bound Λ of the frequency function, the value of R, the
curvatures of X and V, and the constant ϵ in Assumption 1.2, such that the
following holds. If x ∈ B̄(R), r ≤ δ, and {p1, p2, p3} is a set of β̄r-linearly
independent points in B̄x(r), such that

Nϕ(pi, 2r)−Nϕ(pi, β̃r) < δ i = 1, 2, 3.

Let V be the affine space spanned by p1, p2, p3. Then the set Z ∩ B̄x(r) is
contained in the βr neighborhood of V ∩ B̄x(r).

Proof. Assume such δ does not exist. Then there exist sequences {p(n)i }3i=1,

xn, and rn, such that rn → 0, the points {p(n)i }3i=1 are contained in B̄xn
(rn)

and are β̄rn-linearly independent, and

Nϕ(p
(n)
i , 2rn)−Nϕ(p

(n)
i , β̃rn) <

1

n
i = 1, 2, 3,

and there exists yn ∈ Z such that the distance from yn to the affine space

spanned by {p(n)i }3i=1 is greater than βrn.
Let σ = 12/11. Rescale the balls B̄xn

(10σ2rn) to radius 10σ2, and nor-
malize the section U . Corollary 5.2 then gives a limit section U∗ which
satisfies the following properties:

1) U∗ is a Z/2 harmonic spinor on B̄(4), with respect to a translation-
invariant metric, the trivial connection on V, and a translation invari-
ant Clifford multiplication. U∗ satisfies Assumption 1.2.

2) There exist points p∗1, p
∗
2, p

∗
3 ∈ B̄(1), such that they are β̄-linearly in-

dependent, and

(28) Nϕ(p
∗
i , 2)−Nϕ(p

∗
i , β̃) = 0 i = 1, 2, 3,
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3) Let V ∗ be the affine space spanned by {p∗i }3i=1. There exits a point q ∈
B̄(1) in the zero set of U∗, such that the distance from q to V ∗ ∩ B̄(1)
is at least β.

Since U∗ is defined on a flat manifold with flat bundle, remark 4.6 indi-
cates that for U∗,

∂rNϕ(x, r) =
2

rHϕ(x, r)

×
∫

−ϕ′
(d(x, y)

r

)

d(x, y)−1|∇ηx
u(y)−Nϕ(x, r)u(y)|2 dy.

Therefore equation (28) implies that for i ∈ {1, 2, 3}, the section U∗ is ho-
mogeneous on B̄p∗

i
(2)− B̄p∗

i
(β̃) with respect to the center p∗i . The unique

continuation property for solutions to the Dirac equation implies that U∗

is homogeneous on B̄(2) with respect to p∗i . An elementary argument (see
for example [4, Lemma 6.8]) then shows that the section U∗ is zero on the
affine space V ∗, and that U∗ is invariant in the directions parallel to V ∗.
Therefore, property (3) of U∗ implies that U∗ is zero on a 3-dimensional
affine subspace, which contradicts Theorem 1.3. □

Similarly, one has

Lemma 8.4. Let β, β̄, β̃ ∈ (0, 1) and τ > 0 be given. Then there exits δ > 0,
depending on β, β̄, β̃, τ , the upper bound Λ of the frequency function, the
value of R, the curvatures of X and V, and the constant ϵ in Assumption 1.2,
such that the following holds. Assume x ∈ B̄(R), and r ≤ δ, and {p1, p2, p3}
is a set of points in B̄x(r) that is β̄r-linearly independent, such that

Nϕ(pi, 2r)−Nϕ(pi, β̃r) < δ i = 1, 2, 3.

Let V be the affine space spanned by {pi}. Then for all y, y′ ∈ B̄x(r) ∩ Z,
one has

|Nϕ(y, βr)−Nϕ(y
′, βr)| < τ.

Proof. Assume such δ does not exist, then arguing as before, one obtains a
2-valued section U∗ on B̄(4) with the following properties:

1) U∗ is a Z/2 harmonic spinor on B̄(4), with respect to a translation-
invariant metric, the trivial connection on V, and a translation invari-
ant Clifford multiplication. U∗ satisfies Assumption 1.2.
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2) There exist points p∗1, p
∗
2, p

∗
3 ∈ B̄(1), such that they are β̄-linearly in-

dependent, and

(29) Nϕ(p
∗
i , 2)−Nϕ(p

∗
i , β̃) = 0 i = 1, 2, 3,

3) Let Z∗ be the zero set of U∗. There exist y, y′ ∈ B̄(1) ∩ Z∗, such that

|Nϕ(y, β)−Nϕ(y
′, β)| ≥ τ.

However, as in the proof of the previous lemma, the first two properties
imply that U∗ is invariant in the directions parallel to the plane V ∗ spanned
by p∗1, p

∗
2, p

∗
3, and Z∗ ⊂ V ∗, which contradicts property (3). □

9. Rectifiability and the Minkowski bound

This section only will work in the Euclidean metric. To simplify the nota-
tion, for the rest of this section, we will use Bx(r) and B(r) to denote the
Euclidean balls.

Definition 9.1. Let Z be a Borel subset of B(R) ⊂ R4. A function I(x, r)
defined for x ∈ Z and r ≤ 128R is called a taming function for Z, if the
following conditions hold.

1) I(x, r) is non-negative, bounded, continuous, and non-decreasing in r.

2) Given β, β̄ ∈ (0, 1) and τ > 0, there exists ϵ(β, β̄, τ) > 0, depending on
β, β̄, τ , such that the following holds. Assume x ∈ B(R), r ≤ R, and
{p1, p2, p3} is a set of points in Bx(r) that is β̄r-linearly independent,
such that

I(pi, 2r)− I(pi, βr/2) < ϵ(β, β̄, τ) i = 1, 2, 3.

Then for all y, y′ ∈ Bx(r) ∩ Z, one has

|I(y, βr/2)− I(y′, βr/2)| < τ.

3) There exists a constant C, such that for every Radon measure µ sup-
ported in Z, the following inequality holds for every x ∈ B(2R) and
r ≤ 2R:

D2
µ(x, r) ≤

C

r2

∫

B̄x(r)
[I(z, 32r)− I(z, 2r)] dµ(z).
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The following result follows almost verbatim from [4], and a large part of
the argument is originated from [9]. We will give a sketch of the proof for the
reader’s convenience. For more details, the reader may refer to Sections 7
and 8 of [4].

Theorem 9.2 ([9], [4]). Assume Z is a Borel subset of B(R) and there ex-
ists a taming function I(x, r) for Z. Then the set Z ∩B(R/2) is 2-rectifiable
and has finite 2-dimensional Minkowski content.

The proof of Theorem 9.2 makes use of the following Reifenberg-type
theorem. We state the theorem for the cases of dimension 4 and codimen-
sion 2.

Theorem 9.3 ([9], Theorem 3.4). There exist universal constants K0 >
0 and δ0 > 0 such that the following holds. Assume {Bxi

(ri)} is a collection
of balls in B(2R), such that {Bxi

(ri/4)} are disjoint. Define a measure µ =
∑

i r
2
i δxi

. Suppose

∫

Bx(r)

∫ r

0

D2
µ(z, s)

s
dsdµ(z) < δ0r

2

for every Bx(r) ⊂ B(2R), then µ(B(R)) ≤ K0R
2.

Proof of Theorem 9.2. Assume Bx(r) ⊂ B(R). If one rescales Bx(r) to
B(R), then the function I ′(y, s) = I(x+ (ry)/R, sr/R) is a taming function
for [(Z − x) · (R/r)] ∩B(R) with the same function ϵ(β, β̄, τ) and constant
C. Therefore Definition 9.1 is invariant under rescaling, thus one only needs
to consider the case for R = 2.

Let β = 1/10, let β̄ ≤ 1/100 be a positive universal constant, let τ > 0
be a constant that depends on β̄ and C, and let δ > 0 be a constant that
depends on β̄, τ , and ϵ and C from Definition 9.1. The exact values of β̄, τ
and δ will be determined later in the proof.

Let Λ be an upper bound of I, namly Λ ≥ sup
x∈Z,r≤128R

I(x, r) =
sup
x∈Z

I(x, 256).
Define

(30) Dδ(r) = B(R/2) ∩ {x ∈ Z | I(x, βr/2) ≥ Λ− δ}.

Define

W r2
r1 (x) = I(x, r1)− I(x, r2).
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If {Bxi
(ri)} is a family of balls, we call the sum

∑

i r
2
i its 2-dimensional

volume.

Step 1. First, require that δ < ϵ(β, β̄, τ). For Bx(r) ⊂ B(2), and a set
A ⊂ Z, define an operator FA, which turns Bx(r) into a finite set of balls. It
has the property that either FA(Bx(r)) = {Bx(r)}, or FA(Bx(r)) is a family
of balls with radius βr. In either case, the balls in F(Bx(r)) will cover the set
A ∩ Z. The operator FA is defined as follows. If A ∩Dδ(r) does not β̄r-span
a 2-dimensional affine space, then it is called “bad”. Otherwise, it is called
“good”. In the bad case, define FA(Bx(r)) = {Bx(r)}. In the good case,
cover A ∩ Z by a family of balls {Bxi

(βr)} with the following properties

1) The distance between xi and xj is at least βr/2 for ∀i ̸= j,

2) Each xi is an element of A ∩ Z.

Define FA(Bx(r)) to be the family {Bxi
(βr)}.

Obviouly the descriptions above do not uniquely specify the operator
FA. When there are more than one possibilities, choose one arbitrarily.

If Bx(r) is a good ball, let p1, p2, p3 ∈ Dδ(r) ∩Bx(r) be three points
that β̄r span a plane, let FA(Bx(r)) = {Bxi

(βr)}. By Condition (2) of Def-
inition 9.1,

|I(xi, βr/2)− I(pi, βr/2)| ≤ τ.

Therefore by (30),

(31) I(xi, βr/2) ≥ Λ− δ − τ.

The operator FA can be extended to act on a collection of balls. Assume
{Bxi

(r)}ni=1 is a collection of balls with the same radius. Let A ⊂ ⋃
Bxi

(r) ∩
Z. Assume {Bxi

(r)}ki=1 are the good balls, and {Bxi
(r)}ni=k+1 are the bad

balls. Then there exists a collection of balls {Byj
(βr)}, such that

1) {Byj
(βr)} covers

⋃k
i=1(A ∩Bxi

(r)).

2) |yj − yl| ≥ βr/2, for ∀j ̸= l.

3) yj ∈
⋃k

i=1A ∩Bxi
(r), for ∀j.

Inequality (31) still holds when xi is replaced by yj . Define FA{Bxi
(r)} to

be the union of {Byj
(βr)} and {Bxi

(r)}ni=k+1.

Step 2. Let N > 0 be a positive integer. Let A0(x, r) = Z ∩Bx(r). Ap-
ply the operator FA0

to Bx(r) to obain a set of balls, which we denote by
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S1(x, r). Assume S1(x, r) splits to two sets S1(x, r) = S1,g(x, r)
⋃S1,b(x, r),

where S1,g(x, r) is the collection of good balls and S1,b(x, r) is the collection
of bad balls. Let

A1(x, r) = A0(x, r)−
⋃

Bxi
(ri)∈S1,b(x,r)

Bxi
(ri).

Apply FA1(x,r) to S1,g(x, r), we obtain a new set of balls

S2(x, r) = FA1(x,r)(S1,g(x, r))
⋃

S1,b(x, r).

Similarly, write S2(x, r) = S2,g(x, r)
⋃S2,b(x, r), where S2,g(x, r) is the col-

lection of good balls and S2,b(x, r) is the collection of bad balls, and define

A2(x, r) = A1(x, r)−
⋃

Bxi
(ri)∈S2,b(x,r)

Bxi
(ri),

and S3 = FA2
(S2,g)

⋃S2,b. Repeat the procedure N times to obtain a set of
balls SN (x, r).

The family SN (x, r) has the following property. If Bx1
(r1) and Bx2

(r2)
are two distinct elements of SN (x, r), then

(32) |x1 − x2| ≥ (r1 + r2)/4.

Inequality (32) can be proved by induction. For N = 1, it fol-
lows from the definition of FA. Assume (32) holds for N − 1, and
write SN = FAN−1

(SN−1,g)
⋃SN−1,b. Let Bx1

(r1), Bx2
(r2) ∈ SN . If both

Bx1
(r1), Bx2

(r2) ∈ FAN−1
(SN−1,g), then (32) follows from the definition of F .

If both Bx1
(r1), Bx2

(r2) ∈ SN−1,b, then (32) follows from the induction hy-
pothesis. If Bx1

(r1) ∈ FAN−1
(SN−1,g), Bx2

(r2) ∈ SN−1,b, then x1 ̸∈ Bx2
(r2).

By the construction of F , one has r1 ≤ βr2. Since β = 1/10, one has
|x1 − x2| ≥ r2 ≥ (r1 + r2)/2.

By (31), either SN = {Bx(r)}, or

(33) I(xi, ri/2) ≥ Λ− δ − τ, ∀Bxi
(ri) ∈ SN .

Step 3. We claim that there exists a universal constant K1 > 1, such
that for τ and δ sufficiently small, we have

(34)
∑

Bxi
(ri)∈SN (x,r)

r2i < K1 r
2.
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Without loss of generality, assume SN (x, r) ̸= {Bx(r)}. Let rj = βN−j r. De-
fine Radon measures

µ =
∑

By(s)∈SN (x,r)

s2δy,

µj =
∑

By(s)∈SN (x,r),s≤rj

s2δy.

Notice that by (32), there exists a universal constant K2 such that

(35) µ0(Bx(r0)) ≤ K2 r
2
0, ∀x.

Let K0 be the constant given by Theorem 9.3, let K3 = max{K0,K2}.
We prove that if τ, δ are sufficiently small, then for every j = 0, 1, · · · , N − 3,
and every By(rj) ⊂ Bx(2r), one has

(36) µj(By(rj)) ≤ K3 r
2
j .

The claim is proved by induction on j. The case for j = 0 follows from (35).
Assume that the claim is proved for 0, 1, · · · , j, and j < N − 3. Then there
exists a universal constant M > 1, such that for every y ∈ Bx(2r), k ≤ j + 1,
and s ∈ [rk/2, 2rk],

(37) µk+3(By(s)) ≤ M (K3 + 1) s2

We want to use Theorem 9.3 and (37) to prove

µj+1(By(rj+1)) ≤ K3 r
2
j+1, for ∀By(rj+1) ⊂ Bx(2r).

If µj+1(By(rj+1)) = 0, the inequality is trivial. From now on assume
µ(By(rj+1)) > 0. Since rj+1 ≤ rN−3 = r/8, and suppµ ⊂ Bx(r), we have
By(4rj+1) ⊂ Bx(2r).

Notice that for Bxi
(si) ∈ SN , if t < min

k
|xi − xk|, then

D2
µ(xi, t) = 0.

Define

W
32t
2t (xi) =

{

0 if t < si/4,

W 32t
2t (xi) if t ≥ si/4.
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Inequality (32) and Condition (3) of Definition 9.1 gives

(38) D2
µ(q, t) ≤ C

∫

Bq(t)

W
32t
2t (p)

t3
dµ(p)

for every (q, t).
For Bz(s) ⊂ By(2rj+1), assume s ∈ [rk/2, 2rk] for k ≤ j + 1. Inequal-

ity (38) gives

∫

Bz(s)

∫ s

0

D2
µj+1

(q, t)

t
dt dµj+1(q)

≤ C

∫

Bz(s)

∫ s

0

∫

Bq(t)

W
32t
2t (p)

t3
dµj+1(p) dt dµj+1(q)

≤ C

∫

Bz(s)

∫ s

0

∫

Bq(t)

W
32t
2t (p)

t3
dµk+3(p) dt dµk+3(q)(39)

≤ C

∫

Bz(2s)

∫ s

0

∫

Bp(t)

W
32t
2t (p)

t3
dµk+3(q) ds dµk+3(p)

≤ CM(K3 + 1)

∫

Bz(2s)

∫ s

0

W
32t
2t (p)

t
dt dµk+3(p),(40)

where inequality (39) follows from (32). For p ∈ suppµj+1, let sp be the
radius of the ball in SN with center p. If s ≥ sp/4, then

∫ s

0

W
32t
2t (p)

t
dti =

∫ s

sp/4

W 32t
2t (p)

t
dt =

∫ 32s

2s
I(p, t) dt−

∫ 16sp

sp/a
I(p, t) dt

≤ W 32s
sp/2

(p)

∫ 32

2

1

t
dt ≤ ln(16) (δ + τ).(41)

The last inequality above follows from (33). Therefore, the right hand side
of (40) is bounded by

CM(K3 + 1)

∫

Bz(2s)

∫ s

0

W
32t
2t (p)

t
dt dµk+3(p)

≤ CM(K3 + 1)µk+3(Bz(2s)) ln(16) (τ + δ)

≤ 4CM2(K3 + 1)2 ln(16)(τ + δ) s2
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Let δ0 be the constant given by Theorem 9.3. Take

τ <
δ0

8CM2(K3 + 1)2 ln(16)
,

and

δ <
δ0

8CM2(K3 + 1)2 ln(16)
,

then the conditions of Theorem 9.3 are satisfied, therefore µj+1(By(rj+1)) ≤
K0 r

2
j+1. By induction, (36) is proved. Inequality (34) then follows from (36)

by the the case of j = N − 3.

Step 4. By Lemma 8.2, the result obtained from the previous steps
can be summarized as follows. For any integer N > 0, and any ball Bx(r),
there is a covering of Z ∩Bx(r) by a family of balls SN (x, r) = {Bxi

(ri)}i,
a splitting of Z into Z =

⋃

i Ei, such that the following properties hold:

1) Ei ⊂ Bxi
(ri).

2) The radius of each ball is at least βN r.

3) For a all Bxi
(ri) ∈ SN , either ri = βN r, or ri = βj r for some integer

j < N , and Ei ∩Dδ(ri) is contained in the 2β̄ri neighborhood of a line.

4)
∑

i r
2
i ≤ K1 r

2.

As a consequence,

Lemma 9.4. There exists a universal constant K1 > 1, and a constant δ,
such that the following property holds. For any Bx(r) ⊂ B(2), and s ∈ (0, r),
there exists a covering of Z ∩Bx(r) by balls S = {Bxi

(ri)}i, such that

1) The radius of each ball is at least βs.

2) For each ball Bxi
(ri) ∈ S, either ri ≤ s, or Bxi

(ri) ∩Dδ(ri) is con-
tained in the 2β̄ri neighborhood of a line.

3)
∑

i r
2
i ≤ K1 r

2.

Step 5. We prove the following lemma

Lemma 9.5. There exists a universal constant K4, and a constant δ, such
that the following property holds. For any Bx(r) ⊂ B(2), and s ∈ (0, r), there
exists a splitting of Z into Z =

⋃

i Ei, and a family of balls S = {Bxi
(ri)}i,

such that
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1) Ei ⊂ Bxi
(ri).

2) The radius of each ball is at least 4β̄s.

3) For every ball Bxi
(ri) ∈ S, either ri ∈ [4β̄s, s], or Ei ∩Dδ(ri) = ∅

4)
∑

i r
2
i ≤ K4 r

2.

Proof of Lemma 9.5. Notice that by the assumptions on β and β̄, we have
4β̄ < β.

If {Bxi
(ri)}i is a covering of Z ∩Bx(r), such that there exists a splitting

Z = ∪Ei, which satisfies the four properties given by Lemma 9.4 with respect
to s, we say that {Bxi

(ri)}i is an s-admissible covering of Bx(r) ∩ Z. Fix
s > 0, by Lemma 9.4, s-admissible coverings of Bx(r) ∩ Z exist.

Let {Bxi
(ri)} be an s-admissible covering of Bx(r) ∩ Z with respect

to {Ei}. Then the family {
(
Ei, Bxi

(ri)
)
} satisfies Conditions (1), (2) of

Lemma 9.5, and
∑

i r
2
i ≤ K1 r

2. However, it may not satisfy Condition (3).
In the following, we will give a procedure to adjust the family, such that
at each step the covering still satisfies property (2) of s-admissibility, and
after finitely many steps of adjustments, the family will satisfy property (3)
of Lemma 9.5. At the same time,

∑

i r
2
i is being contorlled throughout the

adjustments.
Assume {Bxi

(ri)} is an s-admissible covering of Bx(r) ∩ Z, and Ei ⊂
Bxi

(ri), Bx(r) ∩ Z =
⋃ Ei. Assume

(
E0, Bx0

(r0)
)
does not satisfy property

(3) of Lemma 9.5. Then r0 > s.
By property (2) of s-admissibility, Bx0

(r0) ∩Dδ(r0) is contained in the
2β̄r0 neighborhood of a line. Thus one can cover Bx0

(r0) ∩Dδ(r0) by a
family of no more than [10/β̄] balls with radius 4β̄r0. Let {Byj

(tj)} be this
family. If 4β̄r0 > s, apply Lemma 9.4 again to each ball Byj

(tj) and replace
it with an s-admissible covering of Byj

(tj) ∩Dδ(r0). Otherwise keep the
family {Byj

(tj)} as it is. Let {Bzj (lj)} be the result of this procedure. Then
{Bzj (lj)} covers Bx0

(r0) ∩Dδ(r0), and it has the following properties

1) 4β̄s ≤ lj ≤ 4β̄r0 for each j,

2)
∑

j l
2
j ≤ [10/β̄] ·K1 (4β̄r0)

2.

Take β̄ ≤ 1/(320K1), then
∑

j l
2
j ≤ 1

2r
2
0.

The adjustment of the family {
(
Ei, Bxi

(ri)
)
} is defined as follows. First,

remove (E0, Bx0
(r0)) from the family, and add (E0\Dδ(r0), Bx0

(r0)) into the
family. Next, add the family {

(
E0 ∩Bzj (lj), Bzj (lj)

)
} constructed from the

previous paragraph into this family.
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This adjustment replaces an element (E0, Bx0
(r0)) which does not satisfy

property (3) of Lemma 9.5 by a family of balls, such that the biggest ball
in this family has the same radius r0 and satisfies property (3). The rest
of the balls have radius in the interval [4β̄s, 4β̄r0] and their 2-dimensional
volume is bounded by 1

2r
2
0. Moreover, the new family still satisfies property

(2) of Lemma 9.4. Therefore, after finitely many times of adjustments, we
will obtain a family that satisfies conditions (1), (2), (3), with 2-dimensional
volume

∑

i

r2i ≤ 2K1 r
2,

hence the lemma is proved. □

Step 6. Given s ∈ (0, 1), we use Lemma 9.5 to construct a covering of
Z ∩B(1) by a family of balls {Bxi

(ri)} with radius ri ∈ [4β̄s, s], such that
the 2-dimensional volume of the covering is bounded.

We call a family {(Ei, Bxi
(ri))} a split-covering of a set A, if Ei ⊂ Bxi

(ri),
and A =

⋃ Ei.
If a split-covering of Z ∩Bx(r) satisfies the properties given by

Lemma 9.5, we say that it is strongly s-admissible.
Let S be a strongly s-admissible split-covering of Z ∩B(1). For every

Bxi
(ri) ∈ S, if ri ≤ s, we say it is of type I. Otherwise, we say it is of type

II. Assume Bxi
(ri) is a ball of type II, then the function I(x, r) is at most

Λ− δ for x ∈ Ei, ri ≤ βri/2. There exists a universal constant L such that
Ei can be covered by L balls Byj

(βri/512) with radius (βri/512). Therefore,
for each ball, the set Ei ∩Byj

(βri/512) has a strongly s-admissible split-
covering, with Λ replaced by Λ− δ.

Change (Bxi
(ri), Ei) to the union of the L strongly s-admissible split-

coverings of Ei ∩Byj
(βri/512), we obtain a split-covering of Ei with 2-

dimensional volume at most LK4(βri/512)
2. Define an operation G on S,

such that G(S) is constructed from S by replacing every type II element in
S with the union of the L split-coverings described above.

Notice that for the balls Byj
(βri/512), the upper bound Λ is replaced by

Λ− δ. Therefore, this procedure can only be carried for at most N = ⌈Λδ ⌉
times. After that, every ball in G(N)(S) is of type I. Namely, every ball in
G(N)(S) has radius in the interval [4β̄s, s].

Let Vn be the 2 dimensional volume of G(n)(S), then we have

Vn+1 ≤ (1 + LK4(β/512)
2)Vn.
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Therefore the total 2-dimensional volume of G(n)(S) is bounded by

Vn ≤ (1 + LK4(β/512)
2)NK4.

Since s can be taken to be arbitrarily small, the Minkowski content of
Z ∩B(1) is bounded by a contant K depending on Λ, ϵ and C.

By rescaling, we conclude that the Minkowski content of Z ∩Bx(r) is
bounded by K r2. Since the Minkowski content bounds the Hausdorff mea-
sure, there exists a constant K ′ depending on Λ, ϵ and C, such that

(42) H2(Z ∩Bx(r)) ≤ K ′ r2.

Step 7. So far we have been using Theorem 9.3 to prove an upper bound
for the Minkowski content of Z. It turns out that a more careful look at the
proof of Theorem 9.3 also gives a rectifiable map for Z, hence it concludes
the proof of Theorem 9.2.

Another way to show the rectifiability of Z is to cite the following theo-
rem of Azzam and Tolsa. This method takes an unnecessary detour, but it
allows us to finish the proof without citing implicit statements from [9].

Theorem 9.6 ([3], Corollary 1.3). Assume S ⊂ B(2) is a H2-measurable
set and has finite Hausdorff measure, let λ be the restriction of H2 to S.
Assume that for λ-a.e. z,

∫ 1

0

D2
λ(z, s)

s
ds < +∞,

then S is 2-rectifiable.

Now invoke Theorem 9.6 and let S be the set Z. By (42),

∫

B(1)

∫ 1

0

D2
λ(z, s)

s
ds dλ(z) ≤ C

∫

B(1)

∫ 1

0

∫

Bz(s)

W 32s
2s (p)

s3
dλ(p) ds dλ(z)

≤ C

∫

B(2)

∫ 1

0

∫

Bp(s)

W 32s
2s (p)

s3
dλ(z) ds dλ(p)

≤ CK ′

∫

B(2)

∫ 1

0

W 32s
2s (p)

s
ds dλ(p)
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The same estimate as (41) gives

∫ 1

0

W 32s
2s (p)

s
ds ≤ ln(16)Λ.

Thus

CK ′

∫

B(2)

∫ 1

0

W 32s
2s (p)

s
ds dλ(p) ≤ 4C(K ′)2 ln(16)Λ < ∞.

Therefore, the conditions of Theorem 9.6 are satisfied for Z ∩B(1), hence
Z ∩B(1) is a rectifiable set, and the result is proved. □

Proof of Theorem 1.4. Let R0 be the constant given by Proposition 7.2.
Cover Bx0

(R) by finitely many Euclidean balls of radius R0/32. Let
Bxi

(R0/32) be such a ball, we claim that there exists a constant C such
that

I(x, r) = Nϕ(x, r) + Cr2

is a taming function for Z ∩Bxi
(R0/16) on the ball Bxi

(R0/16).
In fact, it follows from the definition that Nϕ(x, r) is non-negative

and continuous. By equation (17), there exists C1 > 0 such that I1(x, r) =
Nϕ(x, r) + C1r

2 is increasing in r. By Proposition 7.2, there exists C2, such
that for I2(x, r) = I1(x, r) + C2r

2, one has

D2
µ(x, r) ≤

C1

r2

∫

Bx(r)
[I2(32r)− I2(2r)]dµ(x)

for every Radon measure supported in Z ∩Bxi
(R0) and r ≤ 8R0, thus I2

satisfies Condition (3) of Definition 9.1.
Notice that since I1(x, r) is increasing in r, for β̃ > 0, the inequality

I2(x, 2r)− I2(x, β̃r) < δ

implies that r <
√

δ/(4C2). Therefore, Lemma 8.4 implies I2 satisfies Con-
dition (2) of Definition 9.1.

In conclusion, I2(x, r) is a taming function for Z on Bxi
(R0/16), there-

fore Theorem 1.4 follows from Theorem 9.2. □
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