
✐

✐

“1-Athanassenas” — 2023/7/3 — 16:55 — page 1683 — #1
✐

✐

✐

✐

✐

✐

Communications in

Analysis and Geometry

Volume 30, Number 8, 1683–1711, 2022

Singularities of axially symmetric volume

preserving mean curvature flow

Maria Athanassenas and Sevvandi Kandanaarachchi

We investigate the formation of singularities for surfaces evolving
by volume preserving mean curvature flow. For axially symmetric
flows - surfaces of revolution - in R

3 with Neumann boundary con-
ditions, we prove that the first developing singularity is of Type I.
The result is obtained without any additional curvature assump-
tions being imposed, while axial symmetry and boundary condi-
tions are justifiable given the volume constraint. Additional results
and ingredients towards the main proof include a non-cylindrical
parabolic maximum principle, and a series of estimates on geomet-
ric quantities involving gradient, curvature terms and derivatives
thereof. These hold in arbitrary dimensions.
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1. Introduction

A hypersurface evolves by mean curvature flow if at each point it moves in
the direction of its unit normal with speed given by its mean curvature. As-
sume Mn to be a n-dimensional manifold and consider a one-parameter fam-
ily of smooth immersions xt : M

n → R
n+1. The hypersurfacesMt = xt (M

n)
evolving by mean curvature flow is equivalent to xt = x(·, t) satisfying

(1.1)
d

dt
x(l, t) = −H(l, t)ν(l, t), l ∈ Mn, t > 0 .

By ν(l, t) we denote a smooth choice of unit normal of Mt at x(l, t) (outer
normal in case of compact surfaces without boundary), and by H(l, t)
the mean curvature with respect to this normal. Surface area is known
to decrease under (1.1) and, provided the flow converges, the limit is a
minimal surface.

Here we are interested in the evolution of compact surfaces Mt assumed to
enclose a prescribed volume V . The evolution equation changes by introduc-
ing a forcing term as follows:

(1.2)
d

dt
x(l, t) = − (H(l, t)− h(t)) ν(l, t), l ∈ Mn, t > 0,

where h(t) is the average of the mean curvature,

h(t) =

∫

Mt
Hdgt

∫

Mt
dgt

,

and gt denotes the metric on Mt. This flow is known to decrease the
surface area while the enclosed volume remains constant. A limit surface
in this case would have constant mean curvature and be a solution of the
isoperimetric problem.

In this paper, we are interested in the formation of singularities for surfaces
evolving by (1.2).

Extensive research has been undertaken in mean curvature flow,
including on long-term geometric behaviour of solutions and the formation
of singularities. The selection of references here is mainly guided by the
techniques they introduce that are of relevance to our paper. Huisken [17]
proves that uniformly convex, compact surfaces become asymptotically
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spherical under mean curvature flow. Grayson [12] proves that smooth
embedded curves in the plane shrink to a point when evolving by curvature
flow, becoming spherical in the limit. Ecker and Huisken [9] prove that
entire graphs of linear growth over Rn “flatten out” with time when evolving
by mean curvature. Formation of singularities for (1.1) in the non-convex
case is considered by Huisken [19], Grayson [13], Dziuk and Kawohl [6],
Altschuler, Angenent and Giga [1], Huisken and Sinestrari ([20],[22]).

The challenge in the volume preserving mean curvature is the global
aspect introduced to equation (1.2) by h, rendering the use of standard
local techniques either impossible or very complicated. In the case of a
compact, uniformly convex initial hypersurface M0 without boundary,
Huisken [18] proves long-time existence for (1.2) and convergence to a
sphere. The first author [2] proves that an axially symmetric 1 hypersurface
in D, which encloses a sufficiently large volume and has Neumann boundary
data, converges to a cylinder. While convexity is crucial for [18], the axial
symmetry assumption allows for geometric arguments to be used in [2] to
overcome difficulties related to the global aspect of h. In [3] she proves
that thin necks of axially symmetric volume preserving mean curvature
flow pinch-off in finite time, the singular set is discrete and finite along
the axis of rotation, and that Type I singularities are self-similar and
asymptotically cylindrical. Escher and Simonett [11] prove that if the
hypersurface is a graph over a sphere with bounds on its height function,
then it converges to the sphere under (1.2). Hartley combines geometric
diffusion techniques with harmonic analysis approaches to show that
hypersurfaces ’near’ spheres converge to spheres [14], and hypersurfaces
’near’ cylinders converge to either cylinders or, surprisingly, in higher
dimensions to half-period unduloids [15]. Cabezas-Rivas and Miquel [5]
study the volume flow in hyperbolic space.

Results

Assumptions: In this paper we study (1.2) and, except for the volume con-
straint, we have a free boundary. A convexity assumption would not be
natural. Instead, we assume axial symmetry and that the surface meets ∂D
orthogonally. This is motivated by the fact that stationary solutions to the

1By ’axially symmetric’ we mean a surface of revolution generated through rota-
tion of a curve. This is for consistency with our previous publication, while [2] uses
the expression ’rotationally symmetric’.
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associated Euler Lagrange equation of an energy minimising liquid bridge
contained in D are axially symmetric and satisfy a Neumann boundary con-
dition.

In particular, we are interested in the formation of singularities
for surfaces evolving by (1.2). We assume the initial compact n-
dimensional hypersurface M0 to be smoothly embedded in the domain
D =

{

x ∈ R
n+1, a ≤ x1 ≤ b

}

, a, b > 0, with boundary ∅ 6= ∂M0 ⊂ ∂D.

We study the first singularity that develops under this flow (see [3] for
conditions under which singularities can develop), and prove that it is of
Type I:

Theorem 1.1. Let T > 0 denote the time of the first singularity. Then,
for a 2-dimensional hypersurface M0, satisfying the above assumptions and
evolving under 1.2, the norm of the second fundamental form |A| satisfies

max
Mt

|A|2 ≤ C

T − t
,

for all t < T , and where C is a constant.

Our results complement [2], [3] and [4]. While all our height, gradient,
curvature and derivatives of the curvature estimates (including in Section 4)
are valid for flows in arbitrary dimensions, the final Section 5 makes use of
results in [19] which is restricted to 2-dimensional surfaces in R

3. We also
use the explicit parametrisation of a catenoid in three dimensions in the
rescaling argument in that final section.

The paper is organized as follows:
In Section 2 we introduce notations and definitions, we present the

evolution equations for various geometric quantities and we introduce the
different regions of the surface used throughout the paper. These different
regions are determined by bounds on curvature terms or combinations
thereof, and can be studied individually in regards to the formation of the
singularity.

In Section 3 we discuss parabolic maximum principles for non-cylindrical
domains. We extend Ecker’s ([8], Proposition 3.1) and Lumer’s [23] versions
of the maximum principle to our setting, where it is subsequently used to
specific regions of the evolving hypersurfaces determined by conditions on
the mean curvature. This means that the base domain varies with time and
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we need to consider boundary data for theses changing domains as well.
The application in our setting does not allow for the luxury of previous
work where the surface could be reflected across the boundary and be
considered as periodic. The proof is presented in an Appendix to facilitate
the flow of the arguments for the reader.

In Section 4 we prove height, gradient and curvature estimates. We
prove that the mean curvature is bounded from below on the entire hyper-
surface. We prove that that the second fundamental form |A| is bounded
for subregions of the surface where the radius is bounded from below, so
that singularities can only occur along the axis of rotation. Results in this
section hold in any dimension.

In Section 5 we prove Theorem 1.1 by studying the different cases in
which a singularity can develop. In addition to appropriate application of
our previously obtained estimates on geometric quantities, a main ingredient
here is a rescaling argument similar to that used in [21] adapted to our
setting, rescaling from points on the axis of rotation. Parts of this section
are based on results of [19] that only work in R

3, as well as the explicit
parametrisation of catenoids in R

3.

Acknowledgement. The authors thank Prof. Gerhard Huisken and Dr
Ben Andrews for helpful discussions; and for supporting visits to the Max
Planck Institute for Gravitational Physics, Germany, and the Australian
National University respectively. The authors also thank the anonymous
reviewers for their suggestions and comments.

2. Notation, evolution equations and definitions

2.1. Notations

We follow Huisken’s [19] and Athanassenas’ [2] notation in describing the n-
dimensional axially symmetric hypersurface. Let ρ0 : [a, b] → R be a smooth,
positive function on the bounded interval [a, b] with ρ′0(a) = ρ′0(b) = 0. Con-
sider the n-dimensional hypersurface M0 in R

n+1 generated by rotating the
graph of ρ0 about the x1-axis. We evolve M0 along its mean curvature vec-
tor while keeping its enclosed volume constant and subject to Neumann
boundary conditions at x1 = a and x1 = b. By definition the evolution pre-
serves axial symmetry. The position vector x of the hypersurface satisfies
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the evolution equation

d

dt
x = −(H − h)ν = H+ hν ,

= ∆x+ hν(2.1)

where H is the mean curvature vector, and since ∆x = H, where ∆ denotes
the Laplacian on the surface.

Let i1, . . . , in+1 be the standard basis of R
n+1, corresponding to

x1, . . . xn+1 axes, and τ1(t), . . . , τn(t) be a local orthonormal frame on Mt

such that

〈τl(t), i1〉 = 0, for l = 2, . . . , n , and 〈τ1(t), i1〉 > 0 .

Let ω = x̂

|x̂| ∈ R
n+1 denote the unit outward normal to the cylinder inter-

secting Mt at the point x(l, t) , where x̂ = x− 〈x, i1〉 i1. Let

y = 〈x, ω〉 and v = 〈ω, ν〉−1 .

We call y the height function and v the gradient function. We note that
ρ(x1, t) is the radius function such that ρ : [a, b]× [0, T ) → R, whereas y(l, t)
is the height function and y : Mn × [0, T ) → R. We note that v is a geometric
quantity, related to the inclination angle; in particular v corresponds to
√

1 + ρ′2 in the axially symmetric setting. The quantity v has facilitated
results such as gradient estimates in graphical situations (see for example
[7, 9] ).
We introduce the quantities (see also [19] )

(2.2) p = 〈τ1, i1〉 y−1, q = 〈ν, i1〉 y−1,

so that

(2.3) p2 + q2 = y−2 .

The second fundamental form has n− 1 eigenvalues equal to p = 1
ρ
√
1+ρ′2

and one eigenvalue equal to

k =
〈

∇1ν, τ1
〉

=
−ρ′′

(1 + ρ′2)3/2
.

There are cases where singularities develop in the axially symmetric setting
(see [3]). Here, we assume that a singularity develops for the first time at
t = T < ∞.
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2.2. Evolution equations

We have the following evolution equations:

Lemma 2.1. We have the following evolution equations:

(i) d
dt 〈x, i1〉 = ∆ 〈x, i1〉+ hqy ;

(ii) d
dty = −(H − h)py = ∆y − n−1

y + hpy ;

(iii) d
dtq = ∆q + |A|2q + q((n− 1)p2 + (n− 3)q2 − 2kp)− hpq ;

(iv) d
dtp = ∆p+ |A|2p+ 2q2(k − p)− hp2 ;

(v) d
dtk = ∆k + |A|2k − 2(n− 1)q2(k − p)− hk2 ;

(vi) d
dtH = ∆H + (H − h)|A|2 ;

(vii) d
dt |A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4 − 2hC ;

(viii) d
dtv = ∆v − |A|2v + (n− 1) v

y2 − 2
v |∇v|2 ;

(ix) d
dtρ = ρ′′

1+ρ′2 − n−1
ρ + h

√

1 + ρ′2 ;

where C = gijgklgmnhikhlmhnj .

Proof. The evolution equations are either proved in [18], [2], [3], and [4] or
similar to those in [19]. Equations (ii), (vi), (vii) and (viii) are derived in
([2], Lemma 3), where for (ii) we use 〈ν, ω〉 = 1

v = py. Equations (iv) and (v)
are derived in [4] and (ix) in [3]. Equation (i) follows from (1.2) using (2.1).
Equations (iii) is as in [19] (Lemma 5.1) adjusted to the volume constraint.

2.3. Bounds on h

We state [3] Proposition 1.4 here.

Proposition 2.2. (Athanassenas). Assume {Mt} to be a family of
smooth, rotationally symmetric surfaces, solving (1.2) for t ∈ [0, T ) . Then
the mean value h of the mean curvature satisfies

0 < c2 ≤ h ≤ c3 ,

with c2 and c3 constants depending on the initial hypersurface M0.

This is an important result that will be used repeatedly in our paper.
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2.4. Different regions of the volume flow surface

Depending on the situation, we are interested in different parts of the hy-
persurface; therefore we subdivide as follows :

2.4.1. The regions Ω̆t , Ω̂t and Ω̆′
t
. Let

Ω̆t =
{

x(l, t) ∈ Mt : H(l, t) ≤ c2
2

}

and Ω̆ =
⋃

t<T

Ω̆t ,

Ω̂t =
{

x(l, t) ∈ Mt : H(l, t) >
c2
2

}

and Ω̂ =
⋃

t<T

Ω̂t ,

such that Mt = Ω̆t ∪ Ω̂t. We also define

Ω̆′
t = {x(l, t) ∈ Mt : H(l, t) ≤ c2 − δ, δ > 0} and Ω̆′ =

⋃

t<T

Ω̆′
t ,

which will be used occasionally.

3. Maximum principles

We are interested in maximum principles for non-cylindrical domains in
order to be able to work on sub-regions of the hypersurface. This section
is an extension of Ecker’s ([8], Proposition 3.1) and Lumer’s [23] version
of maximum principles to our setting. In [23] the maximum principles are
proved in an operator theoretic setting, which has been adapted to the
manifold setting here.

Let Ω = Mn. Let V ⊂ Ω× (0, T ) be an open non-cylindrical domain.
Let Ωt = Ω× {t} , and for t 6= 0 let Vt = Ωt ∩ V , the cross sections of V for
constant t. Let V denote the closure of V and V0 = Ω0 ∩ V . The boundary
of V is ∂V = V \V . The parabolic boundary is ΓV = ∂V \ΩT . To describe
the horizontal parts of the boundary of V in the space-time diagram, we
define the following: let Zt be the largest subset of Ωt ∩ ∂V that is open in
∂V and can be reached from “below” (with t the vertical axis) in V . Let
ZV =

⋃

0<t<T Zt and δV = ΓV \ZV .
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t = 0

t1

t3

t = T

t2

V0

Zt1

Zt3

Zt2V

Figure 1: The non-cylindrical domain V , with δV indicated by a darker line
for t < T .

Proposition 3.1. (Non-Cylindrical Maximum Principle ) Let
(Mt)t∈(0,T ) be a solution of the volume preserving mean curvature flow (1.2)
consisting of hypersurfaces Mt = xt(Ω), where xt = x(·, t) : Ω× [0, T ) →
R
n+1 and Ω is compact. Suppose f ∈ C2,1(V ) ∩ C(V ) satisfies an inequality

of the form
(

d

dt
−∆

)

f ≤ 〈a,∇f〉 ,

where the Laplacian ∆ and the gradient ∇ are computed on the manifold
Mt. For the vector field a : V → R

n+1 we only require that it is continuous
in a neighbourhood of all maximum points of f . Then

sup
V

f ≤ sup
ΓV

f ,

for all t ∈ [0, T ).
Assuming f to have a positive supremum in V then

sup
V

f ≤ sup
δV

f ,

for all t ∈ [0, T ) .

For the convenience of the reader, the proof is included in the Appendix.
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4. Height, gradient and curvature estimates

In this section we prove radius estimates from below in Ω̆; various curvature
estimates, including for the ratio |k|

p of the principal curvatures; and, for the
norm |A| of the second fundamental form on any subregion of the evolving
hypersurface away from the axis of rotation.

4.1. Height estimates

The first author proves in ( [2], 2A Remark (iii)) that the height y satisfies

y ≤ R ,

for some R > 0 determined by the initial hypersurface M0.
We will show that the height function y has a lower bound in the region Ω̆.

Lemma 4.1. There exist constants c, c′ > 0 such that infΩ̆ y = infΓΩ̆
y ≥ c

and infΓΩ̂
y ≥ c′ , where ΓΩ̆ and ΓΩ̂ denote the parabolic boundary of Ω̆ and

Ω̂ (see figure 2) respectively.

t = 0

t

t = T

Ω0

x(l0, t0)
bc

N

x(l1, T )

N

bc

Ω̆′

Ω̆

Figure 2: Space time schematic diagram for Ω̆ and Ω̆′

Proof. For this proof we work with Ω̆ and a set containing it such that
H < c2. In particular, we can choose δ such that c2

2 < c2 − δ, and work with
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Ω̆ ⊂ Ω̆′ . As dy
dt = −(H − h)py > 0 in Ω̆ , the height increases in this region.

Therefore

inf
Ω̆

y = inf
ΓΩ̆

y .

We claim that infΓΩ̆
y 6= 0 . To prove this suppose infΓΩ̆

y = 0 , at a point

x(l0, t0) ∈ Ω̆ (see figure 2), where Ω̆ is the closure of Ω̆ and t0 may equal to T .

If the height is zero at the point x(l0, t0) ∈ Ω̆, then the height has to decrease
near the point just before t0. That means there exists a neighbourhood N of
x(l0, t0) , such that N is “past” in time, t < t0, and N ⊂ Ω̆′ , and dy

dt

∣

∣

N
< 0 .

But this is not possible, since dy
dt

∣

∣

Ω̆′
> 0 . Therefore there exists a constant c

such that, on the parabolic boundary of Ω̆ , inf y ≥ c > 0 .
When we consider Mt as a periodic hypersurface, we have ∂Ω̆t = ∂Ω̂t , that
is ΓΩ̆\Ω̆0 = ΓΩ̂\Ω̂0. As infM0

y 6= 0 we have the desired result. �

Remark 4.2. Similarly, as in Ω̆, a lower height bound can be obtained in
Ω̆′ for any δ > 0.

4.2. A Gradient estimate

The following Lemma gives us scaling control over the gradient compared
to the radius when approaching a singularity on the axis of rotation.

Lemma 4.3. There exists a constant c4 depending only on the initial hy-
persurface, such that vy < c4, independent of time.

Proof. We calculate from Lemma 2.1

d

dt
(yv − c3t) = ∆(yv)− 2

v
〈∇v ,∇(yv)〉 − yv|A|2 + h− c3 .

As h ≤ c3 we get by the parabolic maximum principle

yv − c3t ≤ max
M0

yv ,

yv ≤ max
M0

yv + c3T =: c4 .

�

4.3. Curvature estimates

The next two propositions allow us to control the ratio of the principal
curvatures on all of Mt independent of time.
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Proposition 4.4. There is a constant c1 depending only on the initial hy-
persurface, such that k

p < c1, independent of time.

Proof. Similar to equation (19) of [19] we calculate from Lemma 2.1

d

dt

(

k

p

)

= ∆
k

p
+

2

p

〈

∇p ,∇
(

k

p

)〉

+ 2
q2

p2
(p− k) ((n− 1)p+ k) +

hk

p
(p− k) .

If k
p ≥ 1 then (p− k) < 0. By the parabolic maximum principle we obtain

(4.1)
k

p
≤ max

(

1,max
M0

k

p

)

=: c1 .
�

Proposition 4.5. At points x(l, t) of Mt where H ≥ 0 we have |k|
p ≤

max(c1, n− 1).

Proof. In a region or at any given point where H is positive, if k is positive
as well we have by Proposition 4.4 |k|

p = k
p ≤ c1. If k is negative, then

k + (n− 1)p ≥ 0 ,

−|k|+ (n− 1)p ≥ 0 ,

|k|
p

≤ (n− 1) .(4.2)

�

Now we proceed to show that singularities cannot develop away from
the axis of rotation, and that |A| is bounded in regions where y ≥ ǫ > 0.

Proposition 4.6. For given ǫ > 0, let St ⊂ Mt and S =
⋃

t<T St be a re-
gion such that y|S ≥ ǫ > 0 and H|∂St

≥ 0 for all t < T . Then the norm of
the second fundamental form |A| is bounded in S.

Proof. We proceed as in ([10], proof of Theorem 3.1), ([2], Proposition 5)
and ([4], Proposition 6.2) and calculate the evolution equation for the prod-
uct g = |A|2ϕ(v2), where ϕ(r) = r

λ−µr , with some constants λ, µ > 0 to be

chosen later and v = 〈ν, ω〉−1. From the evolution equation of g we find the
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inequality

(

d

dt
−∆

)

g ≤ −2µg2 − 2λϕv−3 〈∇v ,∇g〉

− 2λµ

(λ− µv2)2
|∇v|2g − 2hCϕ(v2) +

2(n− 1)

y2
v2ϕ′|A|2 .

Similar to ([4], Proposition 6.2) we obtain

g ≤ max

(

max
ΓS

g, C

)

,

where ΓS denotes the parabolic boundary of S, which may be non-
cylindrical. Therefore from the non-cylindrical maximum principle (Propo-
sition 3.1)

(4.3) |A|2ϕ(v2) ≤ max



max
S0

|A|2ϕ(v2), max
∂St

t<T

|A|2ϕ(v2), C



 .

As H|∂St
≥ 0 for all t < T , we have |k|

p

∣

∣

∂St
< max(c1, n− 1) =: c1 for all

t < T , by Proposition 4.5. Therefore

|A|2|∂St
= (k2 + (n− 1)p2)|∂St

≤ (n− 1 + c1)p2|∂St
,

≤ (n− 1 + c1)y−2|∂St
≤ (n− 1 + c1)ǫ−2 ,

for all t < T . Note that ϕ(v2) > 0 and is bounded from above as long as v is
bounded, which holds for any points that are at a distance larger than ǫ from
the axis of rotation (Lemma 4.3). Therefore max∂St

t<T
|A|2ϕ(v2) is bounded.

Thus |A|2ϕ(v2) is bounded in S. As we chose λ to be greater than µmax v2

and as v ≥ 1, we have
(

ϕ(v2)
)−1

bounded as well and this completes the
proof. �

Proposition 4.6 gives in particular a bound on |A| in Ω̆, which includes
all regions of negative H; we summarize this result here:

Corollary 4.7. For x satisfying (1.2), the norm of the second fundamental
form |A| is bounded in the region Ω̆.

Proof. From Lemma 4.1 we know that in Ω̆ , inf y ≥ c > 0 . On the boundary
of Ω̆t , H = c2

2 > 0 for all t < T . Therefore by Proposition 4.6 there exists a
constant C ′ such that |A|2|Ω̆ ≤ C ′ < ∞ . �
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Proposition 4.8. There exists a constant C independent of time such that
H(l, t) ≥ −C2 for all x(l, t) ∈ Mt.

Proof. By definition Ω̆ =
⋃

t<T

{

x(l, t) ∈ Mt : H(l, t) ≤ c2
2

}

. H can only be

negative for x(l, t) ∈ Ω̆. But by the above result |A|2|Ω̆ ≤ C ′ < ∞ . As 1
nH

2 ≤
|A|2 we deduce

H|Mt
≥ −

√
nC ′ =: −C2. �

We can now refine Proposition 4.6 to show that no singularities develop
away from the axis of rotation.

Proposition 4.9. For given ǫ > 0, let St ⊂ Mt and S =
⋃

t<T St , such that
y|S ≥ ǫ > 0 , for all t < T . Then the norm of the second fundamental form
|A| is bounded in the region S.

Proof. The proof is exactly the same as in Proposition 4.6 up to (4.3).
Let

∂S+
t = {x(l, t) ∈ ∂St : H(l, t) ≥ 0} , and

∂S−
t = {x(l, t) ∈ ∂St : H(l, t) < 0} ,

so that ∂St = ∂S+
t ∪ ∂S−

t . Continuing from (4.3)

|A|2ϕ(v2) ≤ max



max
S0

|A|2ϕ(v2), max
∂S+

t

t<T

|A|2ϕ(v2), max
∂S−

t

t<T

|A|2ϕ(v2), C



 .

Here we look at the term max∂S−

t

t<T

|A|2ϕ(v2) , as the other terms are taken

care of in Proposition 4.6. AsH < 0 < c2
2 on ∂S−

t , ∂S
−
t ⊂ Ω̆t. From Corollary

4.7, |A|2 is bounded in Ω̆. As ∂S−
t ⊂ Ω̆t, |A|2 is bounded on ∂S−

t for all t < T .
As ϕ(v2) > 0 and is bounded from above at points away from the axis,
max∂S−

t

t<T

|A|2ϕ(v2) is bounded and as in [4] we get the desired result. �

We proceed now to show that the projection of Ω̂ onto the x1-axis is not
’collapsing’ to a point. This result is important for the rescaling argument
in Section 5.

Lemma 4.10. For the mean curvature H of the evolving hypersurface Mt

we have, if |∇H| ≤ c in a closed region S ⊂ Ω× [0, T ], then
∣

∣

dH
dx1

∣

∣ ≤ c in S
as well.
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Proof. For the magnitude of ∇H we obtain

|∇H|2 = |∇τ1H|2 + · · ·+ |∇τnH|2 .

As Mt is an axially symmetric surface, the mean curvature H is constant on
the n− 1 dimensional sphere for a fixed x1 coordinate. Here we let x(l, t) =
x(x1, θ1, · · · , θn−1, t), and for 2 ≤ i ≤ n

∇τiH =
∂

∂θi−1
H = 0 ,

so that

|∇H|2 = |∇τ1H|2 =
∣

∣

∣

∣

∂

∂x1
H

∣

∣

∣

∣

2

.

As |∇H| is bounded in S, we have the same bound for
∣

∣

∂H
∂x1

∣

∣ as well. �

t = 0

t

t = T

H = C1

H = C2

Ω̆′

Ω̆′
Ω̆′

Figure 3: The paths of H = C1 and H = C2 in Ω̆′.

We recall that Ω̆′ =
⋃

t<T Ω̆′
t =

⋃

t<T {x(l, t) : H(l, t) ≤ c2 − δ : δ > 0} .
Let us define the following:

Definition 4.11. In a connected component of Ω̆′ , consider any two paths
where H = C1 and H = C2 such that 0 ≤ C1 < C2 ≤ c2 − δ , δ > 0. (Recall
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that 0 < c2 ≤ h(t) ≤ c3.) Let

l1(t) = {l ∈ Mn : H(l, t) = C1}, and x1(l1(t), t) = 〈x(l1(t), t), i1〉,

l2(t) = {l ∈ Mn : H(l, t) = C2}, and x1(l2(t), t) = 〈x(l2(t), t), i1〉,

α(t) = min{x1(l1(t), t), x1(l2(t), t)}, and β(t) = max{x1(l1(t), t), x1(l2(t), t)}.

Here li(t), i = 1, 2 is the curve in Mn × [0, T ) that parametrizes H = Ci and
x1(li(t), t) the corresponding x1 coordinate.

Lemma 4.12. With the above notation, there exists a constant c such that
|x1(l1(t), t)− x1(l2(t), t)| ≥ c > 0 for all t ≤ T .

Proof. From Remark 4.2 we know that y |Ω̆′
≥ y |ΓΩ̆′

≥ ǫ > 0. As the height

is always positive in Ω̆′ we have ρ(x1, t) ∈ C∞(R× [0, T ]) in that region by
([3], Lemma 2.5). We note that this holds in Ω̆′ even at t = T , as the height
is strictly positive. Thus, there exists a constant C such that |∇A| |Ω̆′

< C for
all t ∈ [0, T ] . As |∇H|2 ≤ n|∇A|2 we have bounds for |∇H|. From Lemma
4.10 we know that there exists a constant c′ such that

∣

∣

∂H
∂x1

∣

∣ ≤ c′ in Ω̆′, for
t ∈ [0, T ]. Therefore

∣

∣

∣

∣

∫ β(t)

α(t)

∂H

∂x1
dx1

∣

∣

∣

∣

≤
∫ β(t)

α(t)

∣

∣

∣

∣

∂H

∂x1

∣

∣

∣

∣

dx1 ≤ c′
∫ β(t)

α(t)
dx1 ,

|H(β(t), t)−H(α(t), t)| ≤ c′(β(t)− α(t)) ,

(C2 − C1)

c′
≤
∣

∣x1(l1(t), t)− x1(l2(t), t)
∣

∣ , for all t ∈ [0, T ]. �

For the next Lemma we recall that

Ω̂t =
{

x(l, t) : H(l, t) >
c2
2

}

, and Ω̂ =
⋃

t<T

Ω̂t .

The following Lemma is important, as the singularity can only develop in
Ω̂, a region on the surface that does not ’collapse’ to a point.

Lemma 4.13. There exists a constant c > 0 , such that the one-dimensional
Hausdorff measure of the projection of Ω̂ onto the x1 axis satisfies
H 1(I(Ω̂)) > c for all t ≤ T .
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Proof. To invoke Lemma 4.12, we choose δ = c2
20 , C1 =

6c2
10 and C2 =

9c2
10 ,

in accordance with definition 4.11. Hence Ω̆′
t =

{

x(l, t) : H(l, t) ≤ 19
20c2

}

.
From Lemma 4.12 we have |x1(l1(t), t)− x1(l2(t), t)| ≥ c > 0 , for all t ≤ T .
By the definition of Ω̂t and choosing li(t), i = 1, 2, such that H(li(t), t) =
Ci we know that x(li(t), t) ∈ Ω̂t , i = 1, 2. As H 1(I(Ω̂)) ≥ |x1(l1(t), t)−
x1(l2(t), t)| for any t, we have the desired result. �

5. The singularity

We break up the investigation of the singularity into two cases, depending
on the value of |A|2/H2. From now on all our calculations are done in R

3

for two dimensional surfaces as we will use results from [19] and the explicit
parametrisation of a 2-dimensional catenoid.

5.1. The region S

Let St ⊂ Ω̂t and S =
⋃

t<T St. For this region S we assume that there exist
constants c12 , c13 > 0 such that

|A|2
H2

∣

∣

∣

∣

S

≤ c12 and y|ΓS
≥ c13 .

The following Lemma, where we prove a gradient bound in regions of
bounded |A|2

H2 , corresponds to Lemma 5.2 in [19].

Lemma 5.1. Under the above assumptions, there exists a constant c15 such
that |q|

p ≤ c15 in St for all t < T .

Proof. From Lemma 2.1 we compute the evolution equation for q
H

d

dt

( q

H

)

= ∆
( q

H

)

+
2

H

〈

∇H ,∇
( q

H

)〉

+
q

H

(

(p2 − q2 − 2kp) +
h

H
(k2 − kp)

)

.

We know in St

|A|2 ≤ c12H
2 , −2kp ≤ k2 + p2 = |A|2 ≤ c12H

2 ,

0 < c2 ≤ h ≤ c3 , H >
c2
2
, such that

h

H
≤ 2c3

c2
.
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When q
H > 2

√

2c3c12
c2

we obtain

p2 − q2 − 2kp+
h

H
(k2 − kp) ≤ c12H

2 − 8
c3
c2
c12H

2 + c12H
2

+
2c3
c2

(

c12H
2 +

1

2
c12H

2

)

= c12H
2

(

2− 5c3
c2

)

≤ 0 ,

as c3
c2

≥ 1 . Therefore, when q
H > 2

√

2c3c12
c2

, from the non-cylindrical maxi-

mum principle (Proposition 3.1 )

q

H
≤ max



max
S0

q

H
, max

∂St

t<T

q

H
, 2

√

2c3c12
c2



 .

We recall that q = 〈ν, i1〉y−1. As max∂St

t<T

q
H ≤ max∂St

t<T

2y−1

c2
and as

y−1|∂St

t<T
≤ 1

c13
, the right hand side in the above estimate is bounded.

Similarly when q
H < −2

√

2c3c12
c2

we have

d

dt

( q

H

)

≥ ∆
( q

H

)

+
2

H

〈

∇H ,∇
( q

H

)〉

.

Therefore we have |q|
H ≤ c14 . As

k
p ≤ c1 we obtain

|q| ≤ c14H = c14(p+ k) ≤ c15p ,

as desired. �

Remark 5.2. (i) Note that |q|
p is a geometric quantity that corresponds to

the slope |ρ′| of the generating curve ρ. Therefore, Lemma 5.1 gives us a
gradient bound in the region S.

(ii) Assuming that the singularity develops in S, there is a point on
the generating curve that approaches the axis of rotation as t → T . By
definition, as y|ΓS

≥ c13, we have y|∂St
≥ c13 for all t < T . As the boundary

of the domain has a lower height bound, and as the above gradient bound
holds in that domain, St cannot collapse to a point as t goes to T .
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The following Proposition corresponds to ([19], Proposition 5.3) adjusted to
the volume constrained case.

Proposition 5.3. If the singularity develops in the region S, then there
exists a constant C > 0 such that the second fundamental form satisfies

max
St

|A|2 ≤ C
1

T − t
,

for all t < T .

Proof. Using Lemma 2.1 (ii) we have

d

dt
y−1 = (H − h)py−1 ≥ (H − c3)py

−1 .

As p2 ≤ |A|2 ≤ c12H
2, and using Lemma 5.1

y−2 = p2 + q2 ≤ (1 + c215)p
2 ,

d

dt
y−1 ≥

(

1√
c12

p− c3

)

1
√

(1 + c215)
y−2 .

As S contains the singularity, for t near T , we have p → ∞. For p ≥ 2
√
c12c3

1√
c12

p− c3 ≥
1

2
√
c12

p .

Therefore

d

dt
y−1 ≥ 1

2
√
c12

p
1

√

(1 + c215)
y−2 ≥ 1

2
√
c12(1 + c215)

y−3 .

Let U(t) = maxSt
y−1 . By renaming the constant 1

2
√
c12(1+c215)

= ǫ we obtain

d

dt
U(t) ≥ ǫU3(t) ⇔ d

dt
U−2(t) ≤ −2ǫ .

Since U−2(t) tends to zero as t → T , we integrate from t to T and obtain

U(t) = max
St

y−1 ≤ 1
√

2ǫ(T − t)
.

As |A|2 ≤ c12H
2 and H = k + p ≤ c1p+ p ≤ (c1 + 1)y−1 we get the result.

�
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These results will be useful when we consider the different cases outlined
below.

5.2. Different cases

Due to the lower height bound in Ω̆ ( Lemma 4.1), and Proposition 4.6, we
know that |A|2 is bounded in Ω̆. Therefore the singularity can only develop
in Ω̂. Also, from Lemma 4.1 we know that infΓΩ̂

y ≥ c′ > 0. Furthermore,

from Lemma 4.13 the projection of Ω̂ onto the x1 axis H 1(I(Ω̂)) > c > 0.
Keeping these results in mind we consider two scenarios, depending on the
value of |A|2/H2 in Ω̂: Case I |A|2

H2 ≤ c for t < T for some c; Case II |A|2
H2 is

unbounded in Ω̂.

b

Ω̂′

|A|2
H2 ≤ c

for t < T

|A|2
H2 is unbounded

5.3. Case I: |A|2

H2
≤ c for t < T in Ω̂

From Lemma 4.1 we know that infΓΩ̂
y ≥ c′ > 0 . By letting St := Ω̂t ,

from Lemma 5.1 and Proposition 5.3 we conclude that the singularity is of
type I.

5.4. Case II: |A|2

H2
is unbounded in Ω̂

For this case we prove that a singularity that develops in Ω̂ is of type I by
way of contradiction by using a rescaling procedure similar to that used in
[21]. A similar rescaling argument is used in [16] to prove that no singu-
larities can develop if the mean curvature of the surface is bounded in [0, T ).
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Proposition 5.4. If |A|2
H2 is unbounded in Ω̂, then a singularity that develops

in Ω̂ is of type I.

Proof. Let us assume a singularity that develops in Ω̂ is of type II. In order
to understand the singularity better, we use a rescaling procedure similar to
that in [21]. We choose a sequence (li, ti) as follows. For any integer i ≥ 1,
let ti ∈ [0, T − 1/i], li ∈ M2, such that

|A|2(li, ti)
(

T − 1

i
− ti

)

= max
l∈M2

t≤T− 1

i

|A|2(l, t)
(

T − 1

i
− t

)

.

Let

(5.1) αi = |A|(li, ti) , ci = α2
i

(

T − 1

i
− ti

)

, and χi = −α2
i ti .

Similar to Lemma 4.3 in [21], if the singularity is of type II, as i → ∞ we
have ti → T , αi → ∞, ci → ∞ and χi → −∞.
From (5.1) we obtain

(5.2) αi = |A|(li, ti) ≥
√

ci
T − ti

.

We consider the family of rescaled surfaces Mi,τ defined by the following
immersions:

(5.3) x̃i(·, τ) = αi

(

x(·, α−2
i τ + ti)− 〈x(li, ti), i1〉i1

)

,

where τ ∈ [χi, 0] . This rescaling is different from the type II rescaling used
in [21] due to the following reasons: it is rescaled from a point on the axis
of rotation; and the rescaled time interval is different, i.e. for every i, we
rescale the original surface for t ∈ [0, ti].
For this rescaling we have

H̃i(·, τ) = α−1
i H(·, α−2

i τ + ti) and |Ãi|(·, τ) = α−1
i |A|(·, α−2

i τ + ti) .

This rescaling guarantees that |Ãi| ≤ 1 for t ≤ ti. From Proposition 4.5

we know that |k|
p ≤ max(c1, 1) in Ω̂. Therefore

|A| =
√

k2 + p2 ≤ c5p ≤ c5y
−1 ,
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where c5 =
√

1 + (max(c1, 1))2. Hence we obtain

(5.4) |Ãi| = α−1
i |A| ≤ α−1

i c5y
−1 = c5(αiy)

−1 = c5ỹ
−1 .

Thus the rescaled surfaces do not float away to infinity.
We note that the rescaled surfaces Mi,τ defined by (5.3) also evolve by
volume-preserving mean curvature flow. This can be shown by observing
that dµ̃τ = α2

i dµt and h̃i(τ) = α−1
i h(t), so that

(5.5)
d

dτ
x̃i = −

(

H̃i − h̃i

)

ν .

The uniform curvature bound |Ãi| ≤ 1 gives rise to uniform bounds on
all covariant derivatives of the second fundamental form, see for example
[18]. By a standard method, based on the Arzela-Ascoli theorem, we can
therefore find a subsequence which converges uniformly in C∞ on compact
subsets of R

3 × R to a non-empty smooth limit flow which exists on the
interval τ ∈ (−∞, 0).

In order to analyse the obtained limit flow, which we label by M̃∞,τ ,
we will next show that the sequence {H̃i} converges to zero along different

paths in Ω̂ approaching the singularity. As H > c2
2 in Ω̂, |A|2

H2 can only be
unbounded near the singularity. That is, there exists a neighbourhood Nǫ

around the singularity (x∗, T ) ∈ Ω̂ such that |A|2
H2 > 1

ǫ for any small ǫ > 0.
In the neighbourhood Nǫ, we have H

|A| < ǫ. As

H̃ = α−1
i H ≤ H

|A| < ǫ ,

we have H̃ → 0 near the singularity. Outside Nǫ, but in Ω̂, H is bounded
making H̃ = α−1

i H → 0 as αi → ∞ . We conclude that on all paths in
Ω̂ , H̃i converges to zero as i goes to infinity.

The limiting solution M∞,τ is a catenoid, which we rename by M̂ ,
as it is the only axially symmetric minimal surface with zero mean curvature.

We are now in a position to show that we have a contradiction: In order
to get a better understanding of the original surface we rescale back Mi,τ

for large i, and show that the estimate vy ≤ c4 would not hold on that (the
original) surface.
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We denote the quantities associated to the catenoid M̂ by a hat .̂ We obtain
the catenoid M̂ by rotating ŷ = c5 cosh(c

−1
5 x̂1) around the x1 axis, where

x̂1 is the x1 coordinate of the limiting surface M̂ . For any ǫ1 > 0 and for
any l0 ∈ Mn we have (since Mi,τ converge to M̂ )

|v̂(l0)ŷ(l0)− ṽi(l0, τ)ỹi(l0, τ)| ≤ ǫ1 for large i .

For the catenoid v̂ =
√

1 + ŷ′2 =
√

1 + sinh2(c−1
5 x̂1) = cosh(c−1

5 x̂1). As ỹi =

αiy and ṽi = v we have

c5 cosh
2(c−1

5 x̂1(l0))− ǫ1 ≤ αiv(l0 , α
−2
i τ + ti)y(l0 , α

−2
i τ + ti) ,

(5.6)
c5
2αi

(

cosh(2c−1
5 x̂1) + 1

)

− ǫ1
αi

≤ vy for i > I0 .

For a given i, we can find values of cosh(2c−1
5 x̂) as large as we want. There-

fore, for a given i we can find many points x̂1 such that

(5.7)
c5
2αi

(

cosh(2c−1
5 x̂1) + 1

)

− ǫ1
αi

>> c4

From Lemma 4.3 we know that vy ≤ c4. Therefore (5.7) and (5.6) contradict
Lemma 4.3: by examining the rescaled surfaces we find that the estimate
vy ≤ c4 does not hold on the corresponding, non-rescaled, hypersurfaces near
the singular time T .
Therefore we have a contradiction to the original assumption that the sin-
gularity is of type II. �

Hence there exists a constant c > 0 such that for all t ∈ [0, T ) ,

max
l∈M2

|A|2(l, t) ≤ c

T − t
.

�

The combination of cases I and II, gives the proof of Theorem 1.1.
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Appendix : Proof of the non-cylindrical maximum principle

Proof of Proposition 3.1
Part A. We show that

(5.8) sup
V

f ≤ sup
ΓV

f .

Let f̃ = f − ǫ1t , where ǫ1 > 0 . It holds f̃(l, 0) = f(l, 0) and on ΓV , f̃(l, t) ≤
f(l, t). We note that

df̃

dt
=

df

dt
− ǫ1 , ∆f̃ = ∆f , ∇f̃ = ∇f .

Therefore
(

d

dt
−∆− a · ∇

)

f̃ < 0 .

At any interior maximum of f̃ , the standard derivative criteria for a the
local maximum say

df̃

dt
≥ 0 ,

∂f̃

∂xi
= 0 ,

∂2f̃

∂xi∂xj
≤ 0 .

As

(5.9) ∆f̃ = gij

(

∂2f̃

∂xi∂xj
− Γk

ij

∂f̃

∂xk

)

and ∇f̃ = gij
∂f̃

∂xj

∂x

∂xi
,

by choosing normal coordinates, such that gij = δij at the point that corre-
sponds to the interior maximum, we have

(

d

dt
−∆− a · ∇

)

f̃ ≥ 0 .

This is a contradiction. Hence f̃(l, t) is bounded by the values of supΓV
f̃ at

all times. Therefore

sup
V

f̃ ≤ sup
ΓV

f̃ ≤ sup
ΓV

f ,

sup
V

f(l, t)− ǫ1T ≤ sup
V

(f(l, t)− ǫ1t) ≤ sup
ΓV

f(l, t) ,

sup
V

f(l, t) ≤ sup
ΓV

f(l, t) + ǫ1T for all ǫ1 > 0 ,
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giving us

sup
V

f(l, t) ≤ sup
ΓV

f(l, t) ,

which completes Part A .
Part B. For this part we suppose that f has a positive maximum in V . We
will prove by contradiction that

(5.10) sup
V

f ≤ sup
δV

f .

Suppose that (5.10) does not hold. As supV f(l, t) ≤ supΓV
f , the maximum

of f can only be achieved at an interior point of ZV for (5.10) to be con-
tradicted. We denote by Zmax the union of Zt’s on which the maximum is
achieved. Let t∗ denote the first time that the maximum is achieved on ZV .
Let

K = {(l, t) ∈ V : f(l, t) = sup
V

f} .

t = 0

t = T

t∗

V0

Zt∗

V
t3

t2

t∗

K ′
β

Kβ

Figure 4: If the maximum is achieved on ZV .

(We note that K ∩ ∂V is non-empty as the maximum is achieved in Zmax

and also that K ∩ ∂V ⊂ ZV .) Therefore there exists a β > 0 such that

sup
V

f > β > sup
ΓV \Zmax

f .

As δV ⊂ (ΓV \Zmax) we have

sup
ΓV \Zmax

f ≥ sup
δV

f .
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Define

Kβ = {(l, t) ∈ V : f(l, t) ≥ β} .

We note that Kβ is not empty and it may not be a connected set. It holds
that Zt∗ ⊂ Kβ . We work with the connected component of Kβ , which has
Zt∗ as a part of its boundary. Let 0 < ǫ2 < supV f − β. As V is open there
exists (l2, t2) ∈ V (depending on ǫ2) such that f(l2, t2) ≥ supV f − ǫ2. We
take t2 to be the earliest time such that f(l, t) ≥ supV f − ǫ2 is satisfied.
Take t3 ∈ (t2, t∗) and choose a smooth function φ : [0, T ] → R , such that
0 ≤ φ ≤ 1 , φ′ < 0 on (t2, t3) , and φ = 1 on [0, t2], and φ = 0 on [t3, T ]. The
set

K ′
β = {(l, t) ∈ Kβ : t ≤ t3} 6= ∅ ,

is a compact subset in V . The set K ′
β is in the interior of V , thus K ′

β ∩ ZV =
∅ . As (φf)(l2, t2) = f(l2, t2) , and as the maximum of f is achieved in Zt∗ ,
and φ ≥ 0 , the supremum of φf in Kβ must be at least as big as f(l2, t2).
Also

max
Kβ

φf = max
K′

β

φf ,

as φ = 0 on [t3, T ]. Hence

max
K′

β

φf ≥ f(l2, t2) ≥ sup
V

f − ǫ2 > β > 0 .

On the other hand, V \K ′
β = (V \Kβ) ∪

(

Kβ\K ′
β

)

. On (V \Kβ) ∩
{(l, t) ∈ V : f ≥ 0} we have φf ≤ f < β, and on (V \Kβ) ∩ {(l, t) ∈ V : f <
0} we have φf < β . On Kβ\K ′

β , φ = 0. As a result

(5.11) sup
V \K′

β

φf < β < max
K′

β

φf .

Therefore, if we denote by (lφ, tφ) the point at which (φf)(lφ, tφ) =
supV (φf) , we can see that (lφ, tφ) ∈ K ′

β . As

d

dt
(φf) = φ

df

dt
+ φ′f , ∆(φf) = φ∆f , ∇ (φf) = φ∇f ,

we have

(

d

dt
−∆− a · ∇

)

(φf) = φ

(

d

dt
−∆− a · ∇

)

f + φ′f .
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As φ′(lφ, tφ) ≤ 0 and f(lφ, tφ) > 0 we obtain

(

d

dt
−∆− a · ∇

)

(φf) ≤ 0 .

By using Part A with φf replacing f we have

sup
V

(φf) ≤ sup
ΓV

(φf) .

But this is a contradiction as supV (φf) = (φf)(lφ, tφ) with (lφ, tφ) /∈ ΓV , and
because ΓV ⊂ V \K ′

β and (5.11) holds. Therefore our original assumption is
wrong. Hence a maximum of f does not occur in ZV , that means K ∩ ∂V 6⊂
ZV . Therefore we conclude that (5.10) is true.
This concludes the proof of Proposition 3.1.
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