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1. Introduction

Consider a smooth manifold M and a symmetric (0,2)-tensor field T on M .
The prescribed Ricci curvature problem consists in finding a Riemannian
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metric g such that

Ric g = T,(1.1)

where Ric g denotes the Ricci curvature of g. The investigation of this prob-
lem is an important segment of geometric analysis with strong ties to flows
and relativity. While many mathematicians have made significant contribu-
tions to the study of (1.1), a particularly large amount of work was done by
D. DeTurck and his collaborators. The reader will find surveys in [8, Chap-
ter 5] and [7, Section 6.5]. For more recent results, see [12, 13, 23, 24] and
references therein.

Suppose the manifold M is closed and the tensor field T is positive-
definite. It is possible for equation (1.1) to have no solutions. Moreover, in
a number of settings, a metric g such that

Ric g = cT(1.2)

only exists for one value of c ∈ R; see, e.g., [17, 24]. This observation suggests
a change of paradigm in the study of the prescribed Ricci curvature problem.
Namely, instead of trying to solve (1.1), one should search for a metric g and
a constant c > 0 satisfying (1.2). The idea of shifting focus from (1.1) to (1.2)
dates back to R. Hamilton’s work [17] and D. DeTurck’s work [14]. Note that
such a shift may be unreasonable on an open manifold or a manifold with
non-empty boundary.

In the paper [24], the second-named author initiated the investigation of
equation (1.2) on homogeneous spaces. More precisely, consider a compact
connected Lie group G and a closed connected subgroup H < G. Let M
be the homogeneous space G/H. We denote by M the set of G-invariant
Riemannian metrics on M and suppose the tensor field T lies in M. The
main theorem of [24] states that a metric g ∈ M and a constant c > 0 satis-
fying (1.2) can be found if H is a maximal connected Lie subgroup of G (the
dimension of M is assumed to be at least 3). Further results in [24] address
the prescribed Ricci curvature problem on M in the case where the isotropy
representation of M splits into two inequivalent irreducible summands. The
reader will find a classification of homogeneous spaces possessing this prop-
erty in [15, 18]. Several authors have studied their geometry in detail; see,
e.g., [5, 11, 25].

The main result of the present paper, Theorem 2.9, provides a sufficient
condition for the existence of g ∈ M and c > 0 satisfying (1.2) in the case
where the maximality assumption on H does not hold. This condition is,
in fact, necessary when the isotropy representation of M splits into two
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inequivalent irreducible summands. To describe the result further, assume
that g and h are the Lie algebras of G and H. As before, we demand that
T lie in M. Imposing natural requirements on the Lie subalgebras of g that
contain h, we show that the existence of g ∈ M and c > 0 satisfying (1.2) is
guaranteed by an array of simple inequalities for T .

Theorem 2.9 applies on a broad class of homogeneous spaces. For in-
stance, its assumptions hold if M is a generalised flag manifold. Previous
literature provides little information concerning the solvability of (1.2) on
such manifolds. However, several other aspects of their geometry have been
investigated thoroughly; see the survey [3].

It is interesting to place our analysis of (1.2) into the context of the
theory of homogeneous Einstein metrics. We refer to [8, Chapter 7] for
an introduction to this theory and some foundational results. The sur-
veys [3, 21, 26, 27] contain overviews of more recent work. According to [28,
Theorem (2.2)], a metric g ∈ M satisfying the Einstein equation

Ric g = λg(1.3)

for some λ ∈ R exists if H is a maximal connected Lie subgroup of G.
Whether such g ∈ M can be found when this assumption does not hold
is a long-standing open question. The papers [9, 10] offer several sufficient
conditions for the answer to be positive, while [28, §3] discusses a situation
in which the answer is negative.

One observes a number of similarities and differences between the an-
alytical properties of (1.2) and those of (1.3) on homogeneous spaces. As
shown in [24], a metric g ∈ M satisfies (1.2) for some c ∈ R if and only if it
is (up to scaling) a critical point of the scalar curvature functional S on the
set

MT = {g ∈ M| trg T = 1},(1.4)

where trg T denotes the trace of T with respect to g. Under the assumptions
of Theorem 2.9, S has a global maximum on MT . Correspondingly, it is
well-known that g ∈ M satisfies (1.3) if and only if it is (up to scaling) a
critical point of S on the set

M1 = {g ∈ M|M has volume 1 with respect to g}.(1.5)

This fact underlies the proofs of the main results of [9, 10, 28]. However,
according to [28, Theorem (2.4)] and [9, Theorem 1.2], it is only in very
special situations that S can have a global maximum on M1.
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The paper is organised as follows. In Section 2, we state and prove our
main result, Theorem 2.9. We also present a corollary. Section 3 explores
equation (1.2) on homogeneous spaces with two inequivalent irreducible
isotropy summands. We demonstrate, by appealing to [24, Proposition 3.1],
that Theorem 2.9 is optimal in this setting. Section 4 discusses the appli-
cation of our results on generalised flag manifolds. As a specific example,
we consider the space G2/U(2) with U(2) corresponding to the long root
of G2. This space has three pairwise inequivalent irreducible summands in
its isotropy representation.

Most of the results of the present paper, including Theorem 2.9, are
announced in [16].

2. The existence of metrics with prescribed Ricci curvature

As in Section 1, we consider a compact connected Lie group G and a closed
connected subgroup H < G. Assume the homogeneous spaceM = G/H has
dimension 3 or higher, i.e.,

dimM = n ≥ 3.(2.1)

Choose a scalar product Q on g induced by a bi-invariant Riemannian metric
on G. If u and v are subspaces of g such that u ⊂ v, we use the notation
v⊖ u for the Q-orthogonal complement of u in v. Define

m = g⊖ h.

It is clear that m is Ad(H)-invariant. The representation Ad(H)|m is equiv-
alent to the isotropy representation of G/H. We standardly identify m with
the tangent space THM .

2.1. Preliminaries

The space M of G-invariant Riemannian metrics on M carries a natural
smooth manifold structure; see, e.g., [21, pages 6318–6319]. The properties
of this space are discussed in [9, Subsection 4.1] in great detail. In what
follows, we implicitly identify g ∈ M with the bilinear form induced by g on
m via the identification of THM and m. The scalar curvature S(g) of a metric
g ∈ M is constant on M . Therefore, we may interpret S(g) as the result
of applying a functional S : M → R to g ∈ M. Standard formulas for the
scalar curvature (see, e.g., [8, Corollary 7.39]) imply that S is differentiable
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on M. Given T ∈ M, the space MT defined by (1.4) has a smooth manifold
structure inherited from M.

The following result is a special case of [24, Lemma 2.1]. It provides a
variational interpretation of the prescribed Ricci curvature equation (1.2)
on homogeneous spaces.

Lemma 2.1. Given T ∈ M and g ∈ MT , formula (1.2) holds for some
c ∈ R if and only if g is a critical point of the restriction of the functional
S to MT .

We will use this lemma in the proof of our main result, Theorem 2.9.

Remark 2.2. The restriction of S to MT is bounded above for every T ∈
M. This is a consequence of [28, Equation (1.3)] and the definition of MT ;
cf. Lemma 2.24 below. If the homogeneous space M is effective and T lies
in M, then the following statements are equivalent:

1) The restriction of S to MT is bounded below.

2) The universal cover of M is the product of several isotropy irreducible
homogeneous spaces and a Euclidean space.

One can prove this equivalence by repeating the argument from [28, Proof
of Theorem (2.1)] with minor modifications. If the two statements above
hold, then all the metrics in M have the same Ricci curvature; see [25,
Lemma 3.2]. In this case, the analysis of (1.2) is easy.

Given a bilinear form R on m and a nonzero subspace u ⊂ m, we write
R|u for the restriction of R to u. Let trQR|u be the trace of R|u with respect
to Q|u. If R

′ is a bilinear form on u, denote

λ−(R′) = inf{R′(X,X) |X ∈ u and Q(X,X) = 1},

λ+(R
′) = sup{R′(X,X) |X ∈ u and Q(X,X) = 1}.(2.2)

Thus, λ−(R′) and λ+(R′) are the smallest and the largest eigenvalue of the
matrix of R′ in a Q|u-orthonormal basis of u. We will use the notation

ω(u) = min{dim v | v is a nonzero Ad(H)-invariant subspace of u}.

It is clear that ω(u) always lies between 1 and dim u. In fact, ω(u) equals
dim u if Ad(H)|u is irreducible.
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Given Ad(H)-invariant subspaces u ⊂ m, v ⊂ m and w ⊂ m, define a
tensor ∆(u, v,w) ∈ u⊗ v∗ ⊗w∗ by the formula

∆(u, v,w)(X,Y ) = πu[X,Y ], X ∈ v, Y ∈ w.(2.3)

Here and in what follows, πu stands for the Q-orthogonal projection onto u.
Let ⟨uvw⟩ be the squared norm of ∆(u, v,w) with respect to the scalar
product on u⊗ v∗ ⊗w∗ induced by Q|u, Q|v and Q|w. The fact that Q
comes from a bi-invariant metric on G implies

⟨uvw⟩ = ⟨wuv⟩ = ⟨vwu⟩ = ⟨vuw⟩ = ⟨uwv⟩ = ⟨wvu⟩.

It is easy to compute ⟨uvw⟩ in terms of the structure constants of the ho-
mogeneous space M ; see formula (2.18) below.

2.2. The sufficient condition

Our main result, Theorem 2.9, requires the following hypothesis. The class
of homogeneous spaces for which this hypothesis holds is very broad. We
discuss examples in Sections 3 and 4.

Hypothesis 2.3. Every Lie subalgebra s ⊂ g such that h ⊂ s and h ̸= s

meets the following requirements:

1) The representations Ad(H)|u and Ad(H)|v are inequivalent for every
pair of nonzero Ad(H)-invariant spaces u ⊂ s⊖ h and v ⊂ g⊖ s.

2) The commutator [r, s] is nonzero for every Ad(H)-invariant 1-
dimensional subspace r of g⊖ s.

Remark 2.4. One can show that requirement 1 of Hypothesis 2.3 holds
for every s if the isotropy representation of M splits into pairwise inequiva-
lent irreducible summands; cf. the proof of Proposition 4.1 below. However,
this requirement may be satisfied (at least, for some s) even if M does not
possess this property. To give an example, suppose H = SO(k − 2) with
k ≥ 4 embedded naturally into G = SO(k). Then M is the Stiefel manifold
V2R

k. Let s be the direct sum of so2 and h = sok−2 embedded naturally into
g = sok. Then the representation Ad(H)|s⊖h is trivial, while the represen-
tation Ad(H)|g⊖s splits into two equivalent (k − 2)-dimensional irreducible
summands; see [19, Section 4].

Remark 2.5. In a sense, requirement 2 of Hypothesis 2.3 is necessary for
Theorem 2.9 to hold. We explain this after the proof of Lemma 2.15.
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Remark 2.6. Suppose r is an Ad(H)-invariant 1-dimensional subspace of
g⊖ s. If the commutator [r, s] equals {0}, then the direct sum of r and s is
a Lie subalgebra of g isomorphic to the direct sum of R and s. It is obvious
that requirement 2 of Hypothesis 2.3 holds for s if no such subalgebra exists.

Remark 2.7. In Section 4, we will encounter cases where g⊖ s does not
have any Ad(H)-invariant 1-dimensional subspaces. In these cases, require-
ment 2 of Hypothesis 2.3 is automatically satisfied for s.

Suppose k and k′ are Lie subalgebras of g such that

g ⊃ k ⊃ k′ ⊃ h.(2.4)

In order to state our main result, we need to introduce some terminology
and notation.

Definition 2.8. We call (2.4) a simple chain if k′ is a maximal Lie subal-
gebra of k and h ̸= k′.

Let us emphasise that Definition 2.8 allows the equality k = g but not
k′ = k. We denote

j = g⊖ k, j′ = g⊖ k′, l = k⊖ k′, n = k′ ⊖ h.(2.5)

It is obvious that

g = j⊕ l⊕ n⊕ h = j′ ⊕ n⊕ h, j′ = j⊕ l, k = l⊕ n⊕ h, k′ = n⊕ h.

Here and in what follows, the symbol ⊕ stands for the Q-orthogonal sum.
Suppose (2.4) is a simple chain. In order to state our main result, we

need to associate a number, denoted η(k, k′), to this simple chain. Let B be
the Killing form of the Lie algebra g. Define η(k, k′) by the formula

η(k, k′) =
2 trQB|n + 2⟨nj′j′⟩+ ⟨nnn⟩

ω(n)(2 trQB|l + ⟨lll⟩+ 2⟨ljj⟩)
.(2.6)

Lemma 2.15 below shows, when Hypothesis 2.3 is satisfied, that the denom-
inator in (2.6) can never equal 0 and that η(k, k′) ≥ 0. We are now ready
to formulate the main result of the present paper. We prove it in Subsec-
tions 2.3–2.7.
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Theorem 2.9. Suppose Hypothesis 2.3 is satisfied for the homogeneous
space M . Consider a tensor field T ∈ M. If the inequality

λ−(T |n)
trQ T |l

> η(k, k′)(2.7)

holds for every simple chain of the form (2.4), then there exists a Rieman-
nian metric g ∈ MT such that S(g) ≥ S(h) for all h ∈ MT . The Ricci cur-
vature of g coincides with cT for some c > 0.

Subsection 2.3 contains simple and “practical” formulas for the quan-
tities appearing in (2.7). Specifically, the eigenvalue λ−(T |n) and the trace
trQ T |l are given by (2.14), while the computation of η(k, k′) on concrete
homogeneous spaces is likely to involve (2.13), (2.16) and (2.18). One can
also find η(k, k′) with the aid of Lemma 2.15.

In Sections 3 and 4, we discuss several classes of examples that illustrate
the use of Theorem 2.9. As part of this discussion, we compute the numbers
η(k, k′) explicitly for all simple chains on certain generalised flag manifolds. In
Subsection 2.8, we state two corollaries of Theorem 2.9. One of them provides
an alternative to (2.7), and the other deals with the case where (2.7) holds
for all T ∈ M.

Remark 2.10. Theorem 2.9 assumes that the tensor field T is positive-
definite. Let us make a few comments related to this assumption. If T is
degenerate, then the restriction of S to MT may be unbounded above. This
is possible even if M satisfies Hypothesis 2.3; see [24, Remark 3.2] for a
class of examples. If T has mixed signature, the techniques used in our
proof of Theorem 2.9 appear to be ineffective. Particularly, the estimates in
Lemmas 2.22, 2.24 and 2.31 seem to break down. Finally, if T is negative-
definite, a Riemannian metric g ∈ MT with Ricci curvature cT does not
exist for any c > 0. This is a consequence of Bochner’s theorem; see [8,
Theorem 1.84].

Remark 2.11. Given T ∈ M, if h is not a maximal Lie subalgebra of g,
Hypothesis 2.3 is satisfied, and (2.7) holds for every simple chain of the
form (2.4), then the restriction of S to MT cannot be proper. This obser-
vation follows from Remark 2.34 and Lemma 2.36 below. In a sense, it is
an analogue of the “only if” part of [28, Theorem (2.2)], a result concerning
the restriction of S to the set M1 given by (1.5).
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2.3. Some background and preparatory lemmas

The background material in this subsection is mostly standard. It is pre-
sented in greater detail in, for example, [21, 28]. However, to the best of the
authors’ knowledge, Lemmas 2.12, 2.14 and 2.15, as well as Proposition 2.18,
are new.

Throughout Subections 2.3–2.7, we assume Hypothesis 2.3 holds. Some
of our lemmas can actually be proven under milder conditions than those
imposed. This is explained in Remark 2.37. As above, throughout Subsec-
tions 2.3–2.4, we suppose k and k′ are distinct Lie subalgebras of g satisfying
the inclusions h ⊂ k′ ⊂ k. However, unless stated otherwise, we do not re-
quire (2.4) to be a simple chain. The spaces j, j′, l and n are defined by (2.5).

Consider a Q-orthogonal Ad(H)-invariant decomposition

m = m1 ⊕ · · · ⊕ms(2.8)

such that Ad(H)|mi
is irreducible for each i = 1, . . . , s. Let di denote the

dimension of mi. Generally speaking, the space m admits more than one
decomposition of the form (2.8). However, the number s and the multiset
{d1, . . . , ds} must be the same for all such decompositions.

The summands m1, . . . ,ms are determined uniquely up to order if
Ad(H)|mi

is inequivalent to Ad(H)|mj
whenever i ̸= j. This fact can be

derived from Schur’s lemma; see, e.g., [25, Subsection 2.1].
Our analysis will rely heavily on the following consequence of Hypothe-

sis 2.3.

Lemma 2.12. There exists a set Jk ⊂ {1, . . . , s} satisfying the equality

k⊖ h =
⊕

j∈Jk
mj .(2.9)

Evidently, such a set is unique.

Throughout the paper, we assume

⊕

j∈∅
mj = {0}.

Proof of Lemma 2.12. Fix a Q-orthogonal Ad(H)-invariant decomposition

m = m′
1 ⊕ · · · ⊕m′

s
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such that Ad(H)|m′
j
is irreducible for each j = 1, . . . , s and

k⊖ h = m′
1 ⊕ · · · ⊕m′

p

for some p = 1, . . . , s. One can easily verify that such a decomposition ex-
ists. Consider the map πjk : mj → m′

k sending a vector in mj to its Q-
orthogonal projection onto m′

k. Clearly, this map is Ad(H)-invariant for
all j, k = 1, . . . , s. It is, therefore, an isomorphism or zero by Schur’s lemma.
Define

Jk = {j ∈ [1, s] ∩ N |πjk is an isomorphism for some k ∈ [1, p] ∩ N}.

We claim that (2.9) holds. To prove this, we first fix k ≤ p and show that

m′
k ⊂

⊕

j∈Jk
mj .(2.10)

Consider the map π′kl : m
′
k → ml sending a vector in m′

k to its Q-
orthogonal projection onto ml. Choose X ∈ m′

k. The equality

X = π′k1X + · · ·+ π′ksX

holds true. To prove formula (2.10), it suffices to show that l ∈ Jk whenever
π′klX ̸= 0. Clearly, m′

k is not orthogonal to ml if π
′
klX ̸= 0. Therefore, πlk ̸= 0

if this inequality holds. Schur’s lemma then implies that πlk must be an
isomorphism. Therefore, l lies in Jk, formula (2.10) holds, and k⊖ h is a
subset of

⊕

j∈Jk mj .
We now fix k > p and l ∈ Jk. Our next step is to prove that Q(m′

k,ml) =
{0}. This equality implies that the Q-orthogonal complement of

⊕

j∈Jk mj

contains the Q-orthogonal complement of k. This fact, in its turn, shows
that

⊕

j∈Jk mj is a subset of k⊖ h. Consequently, formula (2.9) holds.
Assume Q(m′

k,ml) ̸= {0}. By Schur’s lemma, the map π′kl is then an
isomorphism. Since l lies in Jk, there exists q ≤ p such that πlq is an iso-
morphism as well. Evidently, k ̸= q. Consider the map πlqπ

′
kl : m

′
k → mq. It

is an Ad(H)-invariant isomorphism. However, the existence of such an iso-
morphism contradicts requirement 1 of Hypothesis 2.3. □

Corollary 2.13. The Lie algebra g has at most 2s distinct Lie subalgebras
containing h.
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Define Jh = ∅. Observe that Jg = {1, . . . , s}. It will be convenient for us
to set

Jj = Jg \ Jk, Jj′ = Jg \ Jk′ , Jl = Jk \ Jk′ .(2.11)

Evidently,

j =
⊕

j∈Jj
mj , j′ =

⊕

j∈Jj′
mj , l =

⊕

j∈Jl
mj , n =

⊕

j∈Jk′
mj ,(2.12)

which implies

ω(n) = min
j∈Jk′

dj .(2.13)

Given T ∈ M, it is always possible to choose the decomposition (2.8) so that

T =

s
∑

i=1

ziπ
∗
mi
Q, zi > 0;

see [28, page 180]. If this formula holds, then

λ−(T |n) = min
i∈Jk′

zi, trQ T |l =
∑

i∈Jl
dizi.(2.14)

Recall that B denotes the Killing form of g. For every i = 1, . . . , s, be-
cause Ad(H)|mi

is irreducible, there exists bi ≥ 0 such that

B|mi
= −biQ|mi

.(2.15)

It is clear that

trQB|n = −
∑

j∈Jk′
djbj , trQB|l = −

∑

j∈Jl
djbj .(2.16)

Given i, j, k ∈ {1, . . . , s}, define

[ijk] = ⟨mimjmk⟩.

Note that [ijk] is symmetric in all three indices. The numbers ([ijk])si,j,k=1

are often called the structure constants of the homogeneous space M . If

u =
⊕

i∈Ju

mi, v =
⊕

i∈Jv

mi, w =
⊕

i∈Jw

mi,(2.17)
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where Ju, Jv and Jw are subsets of {1, . . . , s}, then

⟨uvw⟩ =
∑

i∈Ju

∑

j∈Jv

∑

k∈Jw

[ijk].(2.18)

(We interpret the sum over the empty set as 0.)

Lemma 2.14. If i ∈ Jl and j, k ∈ Jk′, then [ijk] = 0.

Proof. The inclusion j, k ∈ Jk′ implies that mj and mk are subspaces of the
Lie algebra k′. Therefore, the map

mj ×mk ∋ (X,Y ) 7→ [X,Y ]

takes values in k′. Since i ∈ Jl, the Q-orthogonal projection of k′ onto mi

equals {0}. This means the tensor ∆(mi,mj ,mk) given by (2.3) is the zero
tensor. Thus, the assertion of the lemma holds. □

Fix a Q-orthonormal basis (wj)
dimh
j=1 of the Lie algebra h. Given i =

1, . . . , s, consider the Casimir operator Cmi,Q|h : mi → mi defined by the for-
mula

Cmi,Q|h(X) = −

( dimh
∑

j=1

adwj ◦ adwj

)

(X), X ∈ mi.

The irreducibility of Ad(H)|mi
implies the existence of ζi ≥ 0 such that

Cmi,Q|h(X) = ζiX, X ∈ mi.(2.19)

Note that ζi = 0 if and only if Ad(H)|mi
is trivial. According to [28,

Lemma (1.5)], the arrays (bi)
s
i=1, ([ijk])

s
i,j,k=1 and (ζi)

s
i=1 are related to each

other by the equality

dibi = 2diζi +

s
∑

j,k=1

[ijk].(2.20)

The following result shows that the numbers η(k, k′) introduced in Subsec-
tion 2.2 are well-defined and non-negative.
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Lemma 2.15. One has

− 2 trQB|l − ⟨lll⟩ − 2⟨ljj⟩

=
∑

j∈Jl

(

4djζj +
∑

k,l∈Jl
[jkl] + 4

∑

k∈Jk′

∑

l∈Jl
[jkl]

)

> 0,

− 2 trQB|n − 2⟨nj′j′⟩ − ⟨nnn⟩

=
∑

j∈Jk′

(

4djζj +
∑

k,l∈Jk′
[jkl]

)

≥ 0.

Proof. Equalities (2.16), (2.18) and (2.20), together with Lemma 2.14, yield

−2 trQB|l − ⟨lll⟩ − 2⟨ljj⟩ = 2
∑

j∈Jl
djbj −

∑

j,k,l∈Jl
[jkl]− 2

∑

j∈Jl

∑

k,l∈Jj
[jkl]

=
∑

j∈Jl

(

4djζj +
∑

k,l∈Jl
[jkl] + 4

∑

k∈Jk′

∑

l∈Jl
[jkl]

)

.(2.21)

The expression in the last line must be non-negative because the numbers
dj , ζj and [jkl] are non-negative by definition. If it is 0, then ζj = 0 for every
j ∈ Jl. Consequently, the representation Ad(H)|mj

is trivial for every such j.
Since Ad(H)|mj

is also irreducible, this means dj = 1. Moreover, in view of
Lemma 2.14, if the expression in the last line of (2.21) is 0, then

[jkl] = 0, j ∈ Jl, k, l ∈ Jk.

This implies

[mj , k
′] = {0}, j ∈ Jl.

However, the commutation [mj , k
′] must be non-trivial by requirement 2 of

Hypothesis 2.3. Thus, the expression in the last line of (2.21) cannot be 0,
and the first formula in the statement of the lemma holds.

Next, we use (2.16), (2.18), (2.20) and Lemma 2.14 again to compute

− 2 trQB|n − 2⟨nj′j′⟩ − ⟨nnn⟩

= 2
∑

j∈Jk′
djbj − 2

∑

j∈Jk′

∑

k,l∈Jj′
[jkl]−

∑

j,k,l∈Jk′
[jkl]

=
∑

j∈Jk′

(

4djζj +
∑

k,l∈Jk′
[jkl]

)

≥ 0.

□
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Remark 2.16. If g had a Lie subalgebra s containing h as a proper subset
and satisfying the first requirement of Hypothesis 2.3 but not the second,
then the formulation of Theorem 2.9 would become meaningless. Indeed,
in this case, it would be possible to find an Ad(H)-invariant 1-dimensional
subspace r of g⊖ s such that [r, s] = {0}. By Remark 2.6,

g ⊃ r⊕ s ⊃ s ⊃ h

would be a simple chain. However, employing (2.21), we would be able to
demonstrate that η(r⊕ s, s) is not well-defined.

Example 2.17. Let us compute the quantities in Lemma 2.15 explicitly
assuming M = G2/U(2) (here, U(2) corresponds to the long root of G2),
k = g and k′ = su3. We discuss the space G2/U(2) in Section 4. In particu-
lar, we show that it satisfies Hypothesis 2.3 and observe that s = 3. If the
decomposition (2.8) is as in [1] and Q = −B, then

k′ = m3 ⊕ h, Jl = {1, 2}, Jk′ = {3}.

Moreover,

d1 = d3 = 4, d2 = 2, [112] = [121] = [211] = 2/3,

[123] = [231] = [312] = [321]

= [213] = [132] = 1/2,

and the rest of the structure constants are 0. Formula (2.20) implies

ζ1 = 5/24, ζ2 = 1/12, ζ3 = 3/8.

In this setting, the quantities appearing in Lemma 2.15 are

−2 trQB|l − ⟨lll⟩ − 2⟨ljj⟩ =

(

4d1ζ1 + 4d2ζ2 +

2
∑

j,k,l=1

[jkl] + 4

2
∑

j,l=1

[3jl]

)

= 10,

−2 trQB|n − 2⟨nj′j′⟩ − ⟨nnn⟩ = 4d3ζ3 = 6.(2.22)

The following result provides insight into the nature of the num-
bers η(k, k′). It will help us establish a corollary of Theorem 2.9 in Sub-
section 2.8.

Proposition 2.18. Assume (2.4) is a simple chain. The number η(k, k′)
is 0 if and only if the Lie algebra k′ is isomorphic to the direct sum of R
and h.
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Proof. Assume η(k, k′) = 0. This means the numerator in (2.6) must be 0.
Therefore, in view of Lemma 2.15,

∑

j∈Jk′

(

4djζj +
∑

k,l∈Jk′
[jkl]

)

= 0.

Since the numbers dj , ζj and [jkl] are all non-negative, ζj = 0 for all j ∈ Jk′ .
As a consequence, the representation Ad(H)|mj

is trivial for such j. We will
use this fact to prove that k′ is isomorphic to the direct sum of R and h.

Fix i ∈ Jk′ . The irreducibility of Ad(H)|mi
implies that the dimension di

equals 1. Consequently,

k′′ = mi ⊕ h

is a Lie subalgebra of k′. Our next step is to show that k′′ is, in fact, equal
to k′.

Choose k ∈ Jk′ . The dimension of mk is 1. Because the representations
Ad(H)|mi

and Ad(H)|mk
are both trivial, they are equivalent. Clearly, mi

coincides with k′′ ⊖ h. If k ̸= i, then mk must lie in g⊖ k′′. However, this
means k′′ does not meet requirement 1 of Hypothesis 2.3. Thus, i is the only
element in Jk′ . We conclude that k′′ equals k′. It is clear that k′′ is isomorphic
to the direct sum of R and h. This proves the “only if” portion of the lemma.
Next, we turn to the converse statement.

Assume k′ is isomorphic to the direct sum of R and h. Let us show that
η(k, k′) = 0. According to (2.6) and Lemma 2.15,

η(k, k′) =

∑

j∈Jk′
(

4djζj +
∑

k,l∈Jk′ [jkl]
)

ω(n)
∑

j∈Jl
(

4djζj +
∑

k,l∈Jl [jkl] + 4
∑

k∈Jk′
∑

l∈Jl [jkl]
) .(2.23)

The proof will be complete if we demonstrate that the numerator is 0.
Lemma 2.12 and the existence of an isomorphism between k′ and the

direct sum of R and h imply that

k′ = mi ⊕ h

for some i = 1, . . . , s. Moreover, the dimension of mi is 1. Consequently, Jk′

is the set {i}, and

∑

j,k,l∈Jk′
[jkl] = [iii] = 0.
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This formula implies that the numerator on the right-hand side of (2.23)
equals

4
∑

j∈Jk′
djζj = 4diζi.

The proof will be complete if we demonstrate that ζi = 0. It suffices to show
that the representation Ad(H)|mi

is trivial.
Choose a nonzero X ∈ mi and some Y ∈ h. Since mi is Ad(H)-invariant

and 1-dimensional, the commutator [X,Y ] equals τX for some τ ∈ R. The
fact that Q is induced by a bi-invariant metric on G implies

τ =
Q([X,Y ], X)

Q(X,X)
= −

Q([X,X], Y )

Q(X,X)
= 0.

Thus, [X,Y ] vanishes for X ∈ mi and Y ∈ h, which means Ad(H)|mi
is triv-

ial. □

Example 2.19. Let us compute the number η(k, k) in the setting of Ex-
ample 2.17. Now, M = G2/U(2), k = g and k′ = su3. Observing that ω(n) =
d2 = 2 and using (2.22), we find η(k, k′) = 3/10.

2.4. The scalar curvature and related functionals

The proof of Theorem 2.9 relies on the analysis of two functionals related
to the scalar curvature of metrics in M. Let us introduce the first of these
functionals. Suppose g is an Ad(H)-invariant scalar product on an Ad(H)-
invariant subspace u ⊂ m. Define

S(g) = −
1

2
trg B|u −

1

4
|∆(u, u, u)|2g.(2.24)

In this formula, ∆(u, u, u) is given by (2.3), and | · |g is the norm on
u⊗ u∗ ⊗ u∗ induced by g. If u = m, then we identify g with a Riemannian
metric in M. The quantity on the right-hand side of (2.24) is then equal to
the scalar curvature of this metric; see, e.g., [8, Corollary 7.39]. Thus, the
notation (2.24) is consistent with the notation introduced in the beginning
of Subsection 2.1. The following result provides a handy formula for S(g);
cf. [28, §1], [22, Section 1] and [25, Section 3].

Lemma 2.20. Let u satisfy the first equality in (2.17) for some Ju ⊂
{1, . . . , s}. Suppose the scalar product g and the decomposition (2.8) are
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such that

g =
∑

i∈Ju

xiπ
∗
mi
Q, xi > 0.

Then

trg B|u = −
∑

i∈Ju

dibi
xi

, |∆(u, u, u)|2g =
∑

i,j,k∈Ju

[ijk]
xk
xixj

,

S(g) =
1

2

∑

i∈Ju

dibi
xi

−
1

4

∑

i,j,k∈Ju

[ijk]
xk
xixj

.(2.25)

Proof. Let (ei)
n
i=1 be a Q-orthonormal basis of m adapted to the decomposi-

tion (2.8). For every i = 1, . . . , n, define ẽi =
1√
xι(i)

ei, where ι(i) is the num-

ber between 1 and s such that ei lies in mι(i). Then (ẽi)
n
i=1 is a g-orthonormal

basis of m. We compute

trg B|u =
∑

i∈Γ(u)
B(ẽi, ẽi) =

∑

i∈Γ(u)

1

xι(i)
B(ei, ei) = −

∑

i∈Ju

dibi
xi

,

|∆(u, u, u)|2g =
∑

i,j∈Γ(u)
g(∆(u, u, u)(ẽi, ẽj),∆(u, u, u)(ẽi, ẽj))

=
∑

i,j∈Γ(u)

∑

k∈Ju

xk
xι(i)xι(j)

Q(∆(mk, u, u)(ei, ej),∆(mk, u, u)(ei, ej))

=
∑

i,j,k∈Ju

[ijk]
xk
xixj

.

In the first three lines,

Γ(u) = {i ∈ [1, n] ∩ N | ei ∈ u} = {i ∈ [1, n] ∩ N | ι(i) ∈ Ju}.

The last formula in (2.25) follows from the definition of S. □

Let us introduce one more functional related to the scalar curvature of
metrics in M. As in Subsection 2.3, we consider distinct Lie subalgebras k

and k′ of g such that h ⊂ k′ ⊂ k. The spaces j, j′, l and n are given by (2.5).
The sets Jk, Jk′ , Jj, Jj′ and Jl appearing below are introduced in Lemma 2.12
and after Corollary 2.13.

Denote by M(k) the space of Ad(H)-invariant scalar products on k⊖ h.
There is a natural identification between M(g) and M. In what follows,
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we assume M(k) is equipped with the topology inherited from the second
tensor power of (k⊖ h)∗. If g lies in M(k), set

Ŝ(g) = S(g)−
1

2
|∆(j, k⊖ h, j)|2QgQ.

The notation | · |QgQ stands for the norm on j⊗ (k⊖ h)∗ ⊗ j∗ induced by Q|j
and g|k⊖h. One can easily verify that Ŝ is a continuous map from M(k) to R.
If g lies in M(g), then Ŝ(g) equals S(g).

Lemma 2.21. Suppose the scalar product g ∈ M(k) and the decomposi-
tion (2.8) are such that

g =
∑

i∈Jk
xiπ

∗
mi
Q, xi > 0.(2.26)

Then

Ŝ(g) =
1

2

∑

i∈Jk

dibi
xi

−
1

2

∑

i∈Jk

∑

j,k∈Jj

[ijk]

xi
−

1

4

∑

i,j,k∈Jk
[ijk]

xk
xixj

.(2.27)

Proof. As in the proof of Lemma 2.20, we choose a Q-orthonormal basis
(ei)

n
i=1 of m adapted to the decomposition (2.8). For every i = 1, . . . , n, the

vector ẽi is defined as 1√
xι(i)

ei, where ι(i) is such that ei ∈ mι(i). To estab-

lish (2.27), it suffices to take note of (2.25) and observe that

|∆(j, k⊖ h, j)|2QgQ =
∑

i∈Γ(k)

∑

j∈Γ(j)
Q(∆(j, k⊖ h, j)(ẽi, ej),∆(j, k⊖ h, j)(ẽi, ej))

=
∑

i∈Γ(k)

∑

j∈Γ(j)

1

xι(i)
Q(∆(j, k⊖ h, j)(ei, ej),∆(j, k⊖ h, j)(ei, ej))

=
∑

i∈Jk

∑

j,k∈Jj

[ijk]

xi
.

In the first two lines,

Γ(k) = {i ∈ [1, n] ∩ N | ei ∈ k⊖ h} = {i ∈ [1, n] ∩ N | ι(i) ∈ Jk}.

Γ(j) = {i ∈ [1, n] ∩ N | ei ∈ j} = {i ∈ [1, n] ∩ N | ι(i) ∈ Jj}.

□

The following estimate for S was essentially proven in [24]. Recall that
the notation λ−(R′) and λ+(R

′), where R′ is a bilinear form on a nonzero
subspace of m, was introduced by (2.2).
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Lemma 2.22. Suppose h is a maximal Lie subalgebra of k. Given g ∈ M(k)
and τ1, τ2 > 0, assume that

λ−(g) ≤ τ1, λ+(g) ≥ τ2.

Then

S(g) ≤ A−Dλ+(g)
b,

where A > 0, D > 0 and b > 0 are constants depending only on G, H, k, Q,
τ1 and τ2.

Proof. Without loss of generality, let the decomposition (2.8) satisfy for-
mula (2.26); cf. [28, page 180]. The quantity S(g) is then given by
Lemma 2.20. It is easy to see that

λ−(g) = min
j∈Jk

xj , λ+(g) = max
j∈Jk

xj .(2.28)

The estimate

S(g) ≤
Ã

minj∈Jk xj
−

D

(minj∈Jk xj)a
−D

(

max
j∈Jk

xj
)b

(2.29)

holds with the constants Ã > 0, D > 0, a > 1 and b > 0 depending only on
G, H, k, Q, τ1 and τ2. Indeed, to obtain (2.29), it suffices to repeat the proof
of [24, Lemma 2.4] with only elementary modifications to the argument. The
function

y 7→
Ã

y
−
D

ya

is bounded above on (0,∞). In light of (2.28) and (2.29), this fact implies

S(g) ≤ A−D
(

max
j∈Jk

xj
)b

= A−Dλ+(g)
b

for some A > 0 depending only on G, H, k, Q, τ1 and τ2. □

We will require the following identity and estimate for S and Ŝ.
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Lemma 2.23. Suppose the scalar product g ∈ M(k) and the decomposi-
tion (2.8) are such that (2.26) holds. Then

Ŝ(g) = S(g|n) + S(g|l)−
1

2

∑

i∈Jk

∑

j,k∈Jj

[ijk]

xi
(2.30)

−
1

4

∑

i,j∈Jl

∑

k∈Jk′
[ijk]

( xk
xixj

+ 2
xi
xjxk

)

,

Ŝ(g) ≤ Ŝ(g|n) + S(g|l).(2.31)

Proof. By direct computation, Lemmas 2.20 and 2.21 imply

Ŝ(g) = S(g|n) + S(g|l)−
1

2

∑

i∈Jk

∑

j,k∈Jj

[ijk]

xi

−
1

4

∑

i,j∈Jl

∑

k∈Jk′
[ijk]

( xk
xixj

+ 2
xi
xjxk

)

−
1

4

∑

i∈Jl

∑

j,k∈Jk′
[ijk]

(

2
xk
xixj

+
xi
xjxk

)

.

The last of the five terms on the right-hand side vanishes. Indeed,
Lemma 2.14 shows that the coefficients [ijk] in this term are all 0. Thus, the
identity in the first line of (2.30) must hold. To prove the estimate, observe
that

∑

i,j∈Jl
[ijk]

xi
xjxk

=
1

2

∑

i,j∈Jl

[ijk]

xk

(xi
xj

+
xj
xi

)

≥
∑

i,j∈Jl

[ijk]

xk
, k ∈ Jk′ .

Consequently,

Ŝ(g) = S(g|n) + S(g|l)−
1

2

∑

i∈Jk

∑

j,k∈Jj

[ijk]

xi
−

1

4

∑

i,j∈Jl

∑

k∈Jk′
[ijk]

xk
xixj

−
1

2

∑

i,j∈Jl

∑

k∈Jk′
[ijk]

xi
xjxk

≤ S(g|n) + S(g|l)−
1

2

∑

i∈Jk

∑

j,k∈Jj

[ijk]

xi
−

1

2

∑

i,j∈Jl

∑

k∈Jk′

[ijk]

xk

= S(g|n) + S(g|l)−
1

2

∑

i∈Jk′

∑

j,k∈Jj′

[ijk]

xi
−

1

2

∑

i∈Jl

∑

j,k∈Jj

[ijk]

xi

= Ŝ(g|n) + S(g|l)−
1

2

∑

i∈Jl

∑

j,k∈Jj

[ijk]

xi
≤ Ŝ(g|n) + S(g|l).

□
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Fix T ∈ M. Given a scalar product g ∈ M(k) and a subspace u of k⊖ h,
the notation g|u stands for the restriction of g to u. If R is a bilinear form
on m, let trg R|u be the trace of R|u with respect to g|u. Define

MT (k) = {g ∈ M(k) | trg T |k⊖h = 1}.

In what follows, we assume MT (k) carries the topology inherited fromM(k).
There is a natural identification between MT (g) and MT . We will need the
following bounds on λ−(g), S(g) and Ŝ(g).

Lemma 2.24. If g lies in MT (k) and u is a nonzero subspace of k⊖ h, then

λ−(g) ≥ ω(k⊖ h)λ−(T |k⊖h), Ŝ(g|u) ≤ S(g|u) ≤ −
1

2
trg B|u ≤ −

λ−(B)

2λ−(T )
.

Proof. We may assume without loss of generality that the decomposi-
tion (2.8) satisfies (2.26); cf. [28, page 180]. Let q be a number in Jk such
that

λ−(g) = min{xi | i ∈ Jk} = xq.

Fix a Q-orthonormal basis (ej)
dq
j=1 of mq. The inclusions g ∈ MT (k) and

T ∈ M imply

1 = trg T |k⊖h ≥ trg T |mq

=

dq
∑

j=1

T (ej , ej)

g(ej , ej)
≥
dqλ−(T |mq

)

λ−(g)
≥
ω(k⊖ h)λ−(T |k⊖h)

λ−(g)
.

Thus, the first estimate must hold.
It is obvious that Ŝ(g|u) ≤ S(g|u). By formula (2.24),

S(g|u) ≤ −
1

2
trg B|u ≤ −

1

2
λ−(B|u) trg Q|u.

The inclusion T ∈ M implies

1 ≥ trg T |u ≥ λ−(T |u) trg Q|u.

Therefore,

−
1

2
λ−(B|u) trg Q|u ≤ −

λ−(B|u)

2λ−(T |u)
≤ −

λ−(B)

2λ−(T )
.

□
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We will also need the following simple consequence of (2.20).

Lemma 2.25. The quantity

sup
{

Ŝ(h)
∣

∣h ∈ MT (k)
}

is non-negative.

Proof. Denote ψ = trQ T |k⊖h. Because

trψQ T |k⊖h =
1

ψ
trQ T |k⊖h = 1,

the tensor ψQ|k⊖h lies in MT (k). Using Lemma 2.21 and formula (2.20), we
obtain

sup
{

Ŝ(h)
∣

∣h ∈ MT (k)
}

≥ Ŝ(ψQ|k⊖h)

=
1

2ψ

∑

i∈Jk

(

dibi −
∑

j,k∈Jj
[ijk]−

1

2

∑

j,k∈Jk
[ijk]

)

=
1

2ψ

∑

i∈Jk

(

2diζi +
1

2

∑

j,k∈Jk
[ijk]

)

≥ 0.

□

Let us conclude this subsection with one more auxiliary result about
scalar products from MT (k).

Lemma 2.26. Given τ > 0, the set

C(k, τ) = {g ∈ MT (k) |λ+(g) ≤ τ}

is compact in MT (k).

Proof. Lemma 2.24 yields the inclusion

C(k, τ) ⊂ D(k, τ) = {g ∈ M(k) |ω(k⊖ h)λ−(T |k⊖h) ≤ λ−(g) ≤ λ+(g) ≤ τ}.

Exploiting the fact that the set of k × k matrices with eigenvalues in some
bounded closed interval is compact in R

k2

for k ≥ 1, one can easily verify
that D(k, τ) is compact in M(k). It is clear that C(k, τ) is closed in M(k).
Therefore, C(k, τ) must be compact inM(k). The assertion of the lemma now
follows from the fact that the topology of MT (k) is inherited from M(k). □



✐

✐

“8-Pulemotov” — 2023/7/6 — 18:25 — page 1871 — #23
✐

✐

✐

✐

✐

✐

Homogeneous metrics with prescribed Ricci curvature 1871

2.5. The key estimate

Throughout Subsections 2.5–2.6, we suppose k is a Lie subalgebra of g con-
taining h as a proper subset. Recall that, by assumption, k must meet the
requirements of Hypothesis 2.3. Let k1, . . . , kr be all the maximal Lie subal-
gebras of k containing h as a proper subset. In Subsection 2.5, we suppose
that at least one such subalgebra exists. The fact that there are only finitely
many follows from Corollary 2.13. It is clear that

g ⊃ k ⊃ ki ⊃ h(2.32)

is a simple chain for every i = 1, . . . , r.
Our first main objective in this subsection is to estimate the values of the

functional Ŝ on MT (k) in terms of its values on MT (k1), . . . ,MT (kr). We
achieve this objective in Lemma 2.31. Afterwards, we use the obtained result
to show that Ŝ has a global maximum on MT (k) if it has global maxima on
MT (k1), . . . ,MT (kr) and the conditions of Theorem 2.9 are satisfied. This
is the content of Lemma 2.33. It will be convenient for us to denote

li = k⊖ ki.

Let Θ(k) be the class of Ad(H)-invariant proper subspaces u ⊂ k⊖ h such
that

u ∩ li ̸= {0}

for each i = 1, . . . , r. Observe that u⊕ h cannot be a Lie subalgebra of k if
u ∈ Θ(k).

The following result will help us estimate Ŝ. Roughly speaking, it is
a consequence of the compactness of the set of decompositions of the
form (2.8).

Lemma 2.27. The number

θ =

{

inf{⟨uuq⟩ | u ∈ Θ(k) and q = k⊖ (u⊕ h)} if Θ(k) ̸= ∅

1 if Θ(k) = ∅

is greater than 0.
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Proof. Assume the contrary. Then there exists a sequence (uj)
∞
j=1 ⊂ Θ(k)

such that

lim
j→∞

⟨ujujqj⟩ = 0, qj = k⊖ (uj ⊕ h).(2.33)

The inclusion (uj)
∞
j=1 ⊂ Θ(k) implies

uj ∩ li ̸= {0}, j ∈ N, i = 1, . . . , r.(2.34)

Replacing (uj)
∞
j=1 with a subsequence if necessary, we may assume that the

dimension of uj is independent of j. We denote this dimension by m.

For every j ∈ N, choose a Q-orthonormal basis Ej = (ejk)
m
k=1 of the space

uj . The sequence (Ej)
∞
j=1 has a subsequence converging in (k⊖ h)m to some

E∞ = (e∞k )mk=1 ∈ (k⊖ h)m.

Let u∞ be the linear span of E∞. One can verify that u∞ is Ad(H)-invariant.
Formula (2.33) implies

⟨u∞u∞q∞⟩ = 0, q∞ = k⊖ (u∞ ⊕ h).

Consequently, u∞ ⊕ hmust be a Lie subalgebra of k. Because (uj)
∞
j=1 ⊂ Θ(k),

dim k⊖ h > dim uj = m = dim u∞, j ∈ N.

Therefore, u∞ ⊕ h is a proper Lie subalgebra of k. We conclude that u∞ ⊕ h

is contained in ki for some i = 1, . . . , r. Our next step is to show that this is
impossible. The contradiction will complete the proof.

For every j ∈ N, formula (2.34) yields the existence of a vector

Xj ∈ uj ∩ l1

with Q(Xj , Xj) = 1. The sequence (Xj)
∞
j=1 has a subsequence converging to

some X∞ in k. It is clear that

X∞ ∈ u∞ ∩ l1

and Q(X∞, X∞) = 1. Thus, u∞ is not contained in k1. Similar arguments
show that u∞ is not in ki for i = 2, . . . , r. □
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Example 2.28. Suppose M = G2/U(2) is as in Examples 2.17 and 2.19.
Let k = g and Q = −B. Choose the decomposition (2.8) as in [1]. We may as-
sume l1 = m1 ⊕m3 and l2 = m1 ⊕m2; see Section 4. It is easy to understand
that Θ(k) = {m1,m1 ⊕m2,m1 ⊕m3,m1 ⊕m2 ⊕m3}. Consequently,

θ = min{[112] + [113], [113] + 2[123] + [223], [112] + 2[123] + [233]}

= min{[112], 2[123]} = 2/3.

Our next result involves the sets Jk and C(k, τ) given by Lemmas 2.12
and 2.26. We also need the function α : (0,∞) → (0,∞) defined by the for-
mula

α(ϵ) =

(

max

{

1,−
2sλ−(B)

θλ−(T )
ϵ

})2s−1

ϵ, ϵ > 0,(2.35)

where s is the number of summands in (2.8).

Lemma 2.29. Let the scalar product g ∈ MT (k) and the decomposi-
tion (2.8) satisfy (2.26). Suppose J is a subset of Jk such that the space

mJ =
⊕

u∈J
mu

lies in Θ(k). Given ϵ > 0, assume λ+(g|mJ
) < ϵ and Ŝ(g) > 0. Then g lies

in C(k, α(ϵ)).

Proof. The inclusion mJ ∈ Θ(k), Lemma 2.27 and formula (2.18) imply

∑

u,v∈J

∑

w∈Jk\J
[uvw] ≥ θ > 0.

Consequently, there exists i ∈ Jk \ J such that

∑

u,v∈J
[uvi] ≥

θ

|Jk \ J |
>
θ

s
.

According to Lemmas 2.20 and 2.24,

Ŝ(g) ≤ S(g) ≤ −
1

2
trg B|k −

1

4

∑

u,v,q∈Jk
[uvq]

xq
xuxv

≤ −
λ−(B)

2λ−(T )
−

1

4

∑

u,v∈J
[uvi]

xi
xuxv

.
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Since

max
u∈J

xu = λ+(g|mJ
) < ϵ(2.36)

and Ŝ(g) > 0, the formula

xi ≤ −4
(maxu∈J xu)2
∑

u,v∈J [uvi]

(

Ŝ(g) +
λ−(B)

2λ−(T )

)

(2.37)

< −
2

∑

u,v∈J [uvi]
λ−(B)

λ−(T )
ϵ2 < −

2sλ−(B)

θλ−(T )
ϵ2

≤ max

{

1,−
2sλ−(B)

θλ−(T )
ϵ

}

ϵ

holds. Suppose mi ⊕mJ ⊕ h coincides with k. In this case,

λ+(g) = max
{

xi,max
u∈J

xu

}

< max

{

max

{

1,−
2sλ−(B)

θλ−(T )
ϵ

}

ϵ, ϵ

}

= max

{

1,−
2sλ−(B)

θλ−(T )
ϵ

}

ϵ ≤

(

max

{

1,−
2sλ−(B)

θλ−(T )
ϵ

})2s−1

ϵ = α(ϵ).

Thus, g is in C(k, α(ϵ)), and the assertion of the lemma holds.
Suppose mi ⊕mJ ⊕ h and k are distinct. The inclusion mJ ∈ Θ(k) im-

plies mi ⊕mJ ∈ Θ(k). Employing Lemma 2.27 and formula (2.18), we con-
clude that

∑

u,v∈J∪{i}

∑

w∈Jk\(J∪{i})
[uvw] ≥ θ > 0.

This means there exists j ∈ Jk \ (J ∪ {i}) such that

∑

u,v∈J∪{i}
[uvj] ≥

θ

|Jk \ (J ∪ {i})|
>
θ

s
.

Lemmas 2.20 and 2.24 imply

Ŝ(g) ≤ −
λ−(B)

2λ−(T )
−

1

4

∑

u,v∈J∪{i}
[uvj]

xj
xuxv

.
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In light of (2.36), (2.37) and the assumption Ŝ(g) > 0, we conclude that

xj < −
2sλ−(B)

θλ−(T )

(

max

{

1,−
2sλ−(B)

θλ−(T )
ϵ

}

ϵ

)2

≤

(

max

{

1,−
2sλ−(B)

θλ−(T )
ϵ

})3

ϵ.

Let mi ⊕mj ⊕mJ ⊕ h equal k. Then s is no less than |J |+ 2 > 2, and

λ+(g) = max
{

xi, xj ,max
u∈J

xu

}

< max

{

max

{

1,−
2sλ−(B)

θλ−(T )
ϵ

}

ϵ,

(

max

{

1,−
2sλ−(B)

θλ−(T )
ϵ

})3

ϵ, ϵ

}

=

(

max

{

1,−
2sλ−(B)

θλ−(T )
ϵ

})3

ϵ

≤

(

max

{

1,−
2sλ−(B)

θλ−(T )
ϵ

})2s−1

ϵ = α(ϵ).

Thus, the assertion of the lemma holds.
Suppose mi ⊕mj ⊕mJ ⊕ h and k are distinct. The inclusion mJ ∈ Θ(k)

shows that mi ⊕mj ⊕mJ ∈ Θ(k). Continuing to argue as above, we demon-
strate that

λ+(g) <

(

max

{

1,−
2sλ−(B)

θλ−(T )
ϵ

})2|Jk\J|−1

ϵ

≤

(

max

{

1,−
2sλ−(B)

θλ−(T )
ϵ

})2s−1

ϵ = α(ϵ).

This completes the proof. □

Denote

ni = ki ⊖ h, i = 1, . . . , r.

Lemma 2.12 implies the existence of sets Jk1 , . . . , Jkr such that

ni =
⊕

j∈Jki

mj , i = 1, . . . , r.

It will be convenient for us to define

Jli = Jk \ Jki , i = 1, . . . , r.

Our next result shows that, roughly speaking, a scalar product g ∈ MT (k) \
C(k, α(ϵ)) satisfying Ŝ(g) > 0 must be “large” outside of ki for some i =
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1, . . . , r. This result is an important ingredient in the proof of our key esti-
mate for Ŝ.

Lemma 2.30. Given ϵ > 0, consider g ∈ MT (k) \ C(k, α(ϵ)) such that
Ŝ(g) > 0. Assume the decomposition (2.8) satisfies (2.26). Then the set

I(g, ϵ) = {j ∈ Jk |xj < ϵ}

is contained in Jki for some i = 1, . . . , r.

Proof. Denote

mI(g,ϵ) =
⊕

j∈I(g,ϵ)
mj .

It is clear that

λ+(g|mI(g,ϵ)
) = max

j∈I(g,ϵ)
xj < ϵ.

By assumption, Ŝ(g) is positive. The inclusion g ∈ MT (k) \ C(k, α(ϵ)) and
Lemma 2.29 imply that mI(g,ϵ) does not lie in Θ(k). Therefore, either mI(g,ϵ)
coincides with k⊖ h or there exists i = 1, . . . , r such that

mI(g,ϵ) ∩ li = {0}.(2.38)

In the former case, I(g, ϵ) must equal Jk, and

λ+(g) = max
j∈Jk

xj = max
j∈I(g,ϵ)

xj < ϵ.

On the other hand, the inclusion g ∈ MT (k) \ C(k, α(ϵ)) yields

λ+(g) > α(ϵ) ≥ ϵ.

Thus, mI(g,ϵ) cannot coincide with k⊖ h. We conclude that there exists
i = 1, . . . , r satisfying (2.38). For any such i, the intersection I(g, ϵ) ∩ Jli
is empty, which means I(g, ϵ) ⊂ Jki . □

Define functions β : (0,∞) → (0,∞) and κ : (0,∞) → (0,∞) by setting

β(ϵ) = −
nλ−(B)− 1

2ϵ
, κ(ϵ) = α(β(ϵ)), ϵ > 0,

where n is the dimension ofM and α(·) is given by (2.35). We are now ready
to state our key estimate on Ŝ.
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Lemma 2.31. Given ϵ > 0, the formula

Ŝ(g) ≤ ϵ+ max
i=1,...,r

sup
{

Ŝ(h)
∣

∣h ∈ MT (ki)
}

(2.39)

holds for every g ∈ MT (k) \ C(k, κ(ϵ)).

Remark 2.32. Lemma 2.24 implies that the set

{

Ŝ(h)
∣

∣h ∈ MT (ki)
}

is bounded above for every i = 1, . . . , r. Therefore, the quantity on the right-
hand of (2.39) is always finite.

Proof of Lemma 2.31. Choose g ∈ MT (k) \ C(k, κ(ϵ)). We will show
that (2.39) holds for g. Without loss of generality, suppose the decom-
position (2.8) satisfies (2.26); cf. [28, page 180]. If Ŝ(g) ≤ 0, then (2.39)
follows from Lemma 2.25. Thus, we may assume Ŝ(g) > 0. Throughout the
remainder of the proof, we fix i with I(g, β(ϵ)) ⊂ Jki . Such an i exists by
Lemma 2.30. It is clear that Jli is contained in Jk \ I(g, β(ϵ)).

According to Lemmas 2.23 and 2.20,

Ŝ(g) ≤ Ŝ(g|ni
) + S(g|li)

≤ Ŝ(g|ni
) +

1

2

∑

j∈Jli

djbj
xj

≤ Ŝ(g|ni
)−

λ−(B)

2

∑

j∈Jli

dj
xj

≤ Ŝ(g|ni
)−

nλ−(B)

2minj∈Jli xj
.

Recalling the definition of I(g, β(ϵ)), we find

min
j∈Jli

xj ≥ min
j∈Jk\I(g,β(ϵ))

xj ≥ β(ϵ).

Therefore,

Ŝ(g) ≤ Ŝ(g|ni
)−

nλ−(B)

2β(ϵ)
< Ŝ(g|ni

) + ϵ.

Let us show that

Ŝ(g|ni
) ≤ sup

{

Ŝ(h)
∣

∣h ∈ MT (ki)
}

.
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Inequality (2.39) will follow immediately. If ψi = trg T |ni
, then

trψig T |ni
=

1

ψi
trg T |ni

= 1,

which means the scalar product ψig|ni
lies in MT (ki). Keeping in mind that

g ∈ MT (k), we estimate

ψi = trg T |ni
< trg T |k⊖h = 1.

As a consequence,

Ŝ(g|ni
) = ψiŜ(ψig|ni

) ≤ ψi sup
{

Ŝ(h)
∣

∣h ∈ MT (ki)
}

< sup
{

Ŝ(h)
∣

∣h ∈ MT (ki)
}

.
□

Our goal in Subsection 2.6 will be to show that Ŝ has a global maxi-
mum on MT (k) under the assumptions of Theorem 2.9. We will do so using
induction in the dimension of k. The following lemma will help us prove the
inductive step. As above, we define j and Jj by the first formulas in (2.5)
and (2.11). It will be convenient for us to set

ji = g⊖ ki, Jji = Jg \ Jki , i = 1, . . . , r.

Lemma 2.33. Assume that the following statements are satisfied for each
i = 1, . . . , r:

1) The restriction of Ŝ to MT (ki) has a global maximum.

2) The inequality

λ−(T |ni
)

trQ T |li
> η(k, ki)

holds.

Then the restriction of Ŝ to MT (k) has a global maximum.

Proof. Fix an index i such that

sup
{

Ŝ(h)
∣

∣h ∈ MT (ki)
}

= max
j=1,...,r

sup
{

Ŝ(h)
∣

∣h ∈ MT (kj)
}

.

By hypothesis, there exists g0 ∈ MT (ki) satisfying

Ŝ(g0) = sup
{

Ŝ(h)
∣

∣h ∈ MT (ki)
}

.
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Without loss of generality, suppose the decomposition (2.8) is such that

g0 =
∑

j∈Jki

yjπ
∗
mj
Q, yj > 0.

Given t > trQ T |li , define g(t) ∈ MT (k) by the formulas

g(t) =
∑

j∈Jki

ϕ(t)yjπ
∗
mj
Q+

∑

j∈Jli

tπ∗mj
Q, ϕ(t) =

t

t− trQ T |li
.

We will show that Ŝ(g(t)) > Ŝ(g0) for some t. Together with Lemma 2.31,
this will imply the existence of a global maximum of Ŝ on MT (k).

Using (2.25), (2.27) and the first line in (2.30), we compute

lim
t→∞

Ŝ(g(t)) = lim
t→∞

(

S(g(t)|ni
) + S(g(t)|li)

)

−
1

2
lim
t→∞

(

∑

j∈Jki

∑

k,l∈Jj

[jkl]

ϕ(t)yj
+

∑

j∈Jli

∑

k,l∈Jj

[jkl]

t

)

−
1

4
lim
t→∞

∑

j,k∈Jli

∑

l∈Jki

[jkl]

(

ϕ(t)yl
t2

+
2

ϕ(t)yl

)

= lim
t→∞

(

S(g0)

ϕ(t)
+

1

2

∑

j∈Jli

djbj
t

−
1

4

∑

j,k,l∈Jli

[jkl]

t

)

−
1

2

∑

j∈Jki

∑

k,l∈Jj

[jkl]

yj
−

1

2

∑

j,k∈Jli

∑

l∈Jki

[jkl]

yl

= S(g0)−
1

2

∑

j∈Jki

∑

k,l∈Jji

[jkl]

yj
= Ŝ(g0).

To prove that Ŝ(g(t)) > Ŝ(g0) for some t, it suffices to demonstrate that
d
dt
Ŝ(g(t)) < 0 when t is large. Observe that

d

dt
ϕ(t) = −

trQ T |li
(t− trQ T |li)

2
,

d

dt

1

ϕ(t)
=

trQ T |li
t2

,

d

dt

ϕ(t)

t2
= −

2t− trQ T |li
(t2 − t trQ T |li)

2
.
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Computing as above and utilising (2.16), (2.18) and Lemma 2.14, we obtain

d

dt
Ŝ(g(t)) =

d

dt

(

S(g0)

ϕ(t)
+

1

2

∑

j∈Jli

djbj
t

−
1

4

∑

j,k,l∈Jli

[jkl]

t

)

−
1

2

d

dt

(

∑

j∈Jki

∑

k,l∈Jj

[jkl]

ϕ(t)yj
+

∑

j∈Jli

∑

k,l∈Jj

[jkl]

t

)

−
1

4

d

dt

∑

j,k∈Jli

∑

l∈Jki

[jkl]

(

ϕ(t)yl
t2

+
2

ϕ(t)yl

)

=
S(g0) trQ T |li

t2
+

trQB|li
2t2

+
⟨lilili⟩

4t2
−

trQ T |li
2t2

(

∑

j∈Jki

∑

k,l∈Jj

[jkl]

yj

)

+
1

2t2
⟨lijj⟩ −

1

4

∑

j,k∈Jli

∑

l∈Jki

[jkl]

(

−
2t− trQ T |li

(t2 − t trQ T |li)
2
yl +

2 trQ T |li
t2yl

)

=
Ŝ(g0) trQ T |li

t2
+

trQB|li
2t2

+
⟨lilili⟩

4t2
+

1

2t2
⟨lijj⟩

+
2t− trQ T |li

4(t2 − t trQ T |li)
2

∑

j,k∈Jli

∑

l∈Jki

[jkl]yl.

It is obvious that d
dt
Ŝ(g(t)) < 0 if and only if t2 d

dt
Ŝ(g(t)) < 0. Thus, to prove

that d
dt
Ŝ(g(t)) < 0 for large t, it suffices to show that

lim
t→∞

t2
d

dt
Ŝ(g(t)) < 0.(2.40)

Using the above expression for d
dt
Ŝ(g(t)), we calculate

4 lim
t→∞

t2
d

dt
Ŝ(g(t)) = 4Ŝ(g0) trQ T |li + 2 trQB|li + ⟨lilili⟩+ 2⟨lijj⟩.

Lemmas 2.21 and 2.24, along with (2.16), (2.18) and Lemma 2.14, imply

4Ŝ(g0) = 2
∑

j∈Jki

djbj
yj

− 2
∑

j∈Jki

∑

k,l∈Jji

[jkl]

yj
−

∑

j,k,l∈Jki

[jkl]
yl
yjyk

= 2
∑

j∈Jki

djbj
yj

− 2
∑

j∈Jki

∑

k,l∈Jji

[jkl]

yj
−

1

2

∑

j,k,l∈Jki

[jkl]

yj

( yl
yk

+
yk
yl

)
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≤
∑

j∈Jki

1

yj

(

2djbj − 2
∑

k,l∈Jji

[jkl]−
∑

k,l∈Jki

[jkl]

)

≤
1

λ−(g0)

(

2
∑

j∈Jki

djbj − 2
∑

j∈Jki

∑

k,l∈Jji

[jkl]−
∑

j,k,l∈Jki

[jkl]

)

≤
−2 trQB|ni

− 2⟨nijiji⟩ − ⟨ninini⟩

ω(ni)λ−(T |ni
)

.

(The penultimate estimate exploits the formula

2djbj − 2
∑

k,l∈Jji

[jkl]−
∑

k,l∈Jki

[jkl] = 4djζj +
∑

k,l∈Jki

[jkl] ≥ 0, j ∈ Jki ,

a consequence of (2.20).) Therefore, to prove (2.40), it suffices to show that

−2 trQB|ni
− 2⟨nijiji⟩ − ⟨ninini⟩

ω(ni)λ−(T |ni
)

trQ T |li + 2 trQB|li + ⟨lilili⟩+ 2⟨lijj⟩ < 0.

After some elementary transformations, this becomes

λ−(T |ni
)

trQ T |li
>

2 trQB|ni
+ 2⟨nijiji⟩+ ⟨ninini⟩

ω(ni)(2 trQB|li + ⟨lilili⟩+ 2⟨lijj⟩)
= η(k, ki),

which is satisfied by hypothesis. Thus, (2.40) holds, and d
dt
Ŝ(g(t)) < 0 for

large t. It is easy to establish the existence of t0 > trQ T |li such that

Ŝ(g(t0)) > lim
t→∞

Ŝ(g(t)) = Ŝ(g0).

Applying Lemma 2.31 with

ϵ =
Ŝ(g(t0))− Ŝ(g0)

2
> 0,

we conclude that Ŝ(g) < Ŝ(g(t0)) for all g ∈ MT (k) \ C(k, κ(ϵ)). To com-
plete the proof, we need to demonstrate that Ŝ has a global maximum on
C(k, κ(ϵ)). However, this is an immediate consequence of the compactness
of C(k, κ(ϵ)). □
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Remark 2.34. The proof of the lemma shows that Ŝ(g(t)) converges to
Ŝ(g0) as t goes to infinity. Therefore, the inclusion

Ŝ({g(t) | t ≥ 2 trQ T |li}) ⊂
[

Ŝ(g0)− σ, Ŝ(g0) + σ
]

holds for some σ > 0. We conclude that the preimage of the interval
[

Ŝ(g0)−

σ, Ŝ(g0) + σ
]

under Ŝ has a non-compact intersection with MT (k). This

means the restriction of Ŝ to MT (k) cannot be proper.

2.6. The existence of global maxima

As in Subsection 2.5, suppose k is a Lie subalgebra of g containing h as a
proper subset. Recall that k must meet the requirements of Hypothesis 2.3.
Our next goal is to prove by induction that Ŝ has a global maximum on
MT (k) under the assumptions of Theorem 2.9. The following result will
enable us to take the basis step and help with the inductive step.

Lemma 2.35. If h is a maximal Lie subalgebra of k, then there exists g ∈
MT (k) such that Ŝ(g) ≥ Ŝ(h) for all h ∈ MT (k).

Proof. The formulas

1

λ+(h)
trQ T |k⊖h ≤ trh T |k⊖h ≤

1

λ−(h)
trQ T |k⊖h

and trh T |k⊖h = 1 hold whenever h lies in MT (k). As a consequence,

λ−(h) ≤ trQ T |k⊖h ≤ λ+(h), h ∈ MT (k).

Applying Lemma 2.22 with τ1 = τ2 = trQ T |k⊖h, we find

Ŝ(h) ≤ S(h) ≤ A−Dλ+(h)
b, h ∈ MT (k),(2.41)

where the constants A > 0, D > 0 and b > 0 depend only on G, H, k, Q and
T . Fix h0 ∈ MT (k) and suppose

τ =

∣

∣

∣

∣

A− Ŝ(h0)

D

∣

∣

∣

∣

1

b

+ 1 > 0.

According to Lemma 2.26, the set C(k, τ) is compact in MT (k). Conse-
quently, there exists g ∈ C(k, τ) such that Ŝ(g) ≥ Ŝ(h) for all h ∈ C(k, τ).
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Formula (2.41) implies that Ŝ(h0) > Ŝ(h) if h lies in MT (k) \ C(k, τ). This
means h0 is in C(k, τ) and

Ŝ(g) ≥ Ŝ(h0) > Ŝ(h)

for all h ∈ MT (k) \ C(k, τ). Thus, the global maximum of Ŝ on MT (k) exists
and is attained at g. □

The following result concludes our analysis of Ŝ.

Lemma 2.36. Assume that

λ−(T |k′′⊖h)

trQ T |k′⊖k′′
> η(k′, k′′)

for every simple chain

g ⊃ k′ ⊃ k′′ ⊃ h

such that k′ ⊂ k. Then the restriction of Ŝ to MT (k) has a global maximum.

Proof. We proceed by induction. If dim k⊖ h equals 1, then h must be a
maximal Lie subalgebra of k. In this case, the existence of g ∈ MT (k) such
that

Ŝ(g) ≥ Ŝ(h), h ∈ MT (k),(2.42)

follows from Lemma 2.35. This is the basis of induction.
Fix m = 1, . . . , n− 1, where n is the dimension of M . Suppose Ŝ has

a global maximum on MT (s) for every Lie subalgebra s ⊂ g satisfying the
formulas

h ⊂ s, 1 ≤ dim s⊖ h ≤ m.

This is the induction hypothesis.
Let dim k⊖ h equal m+ 1. If h is a maximal Lie subalgebra of k, then the

existence of g ∈ MT (k) satisfying (2.42) follows from Lemma 2.35. Suppose h
is not. As in Subsection 2.5, denote by k1, . . . , kr the maximal Lie subalgebras
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of k containing h as a proper subset. It is clear that

1 ≤ dim ki ⊖ h ≤ m, i = 1, . . . , r.

By the induction hypothesis, the restriction of Ŝ to ki has a global maximum
for each i. The existence of g ∈ MT (k) satisfying (2.42) follows from this fact
and Lemma 2.33. □

Remark 2.37. Some of the results in Subsections 2.3–2.6 hold under milder
assumptions than those imposed above. In particular, Lemmas 2.12, 2.14,
2.20–2.31 and 2.35 do not use requirement 2 of Hypothesis 2.3.

2.7. The completion of the proof of Theorem 2.9

Setting k = g in Lemma 2.36, we conclude that the restriction of Ŝ to MT

has a global maximum. By definition, the maps Ŝ and S coincide on MT .
Ergo, there exists g ∈ MT such that S(g) ≥ S(h) for all h ∈ MT . Lemma 2.1
tells us that the Ricci curvature of g equals cT for some c ∈ R. To complete
the proof of Theorem 2.9, we need to show that c > 0.

By Bochner’s theorem (see [8, Theorem 1.84]), the space M cannot sup-
port a G-invariant Riemannian metric with negative-definite Ricci curva-
ture. It follows that c ≥ 0. Let us show that M cannot support a Ricci-flat
G-invariant metric. This will immediately imply that c > 0.

We argue by contradiction. Assume there exists a Ricci-flat G-invariant
metric on M . Employing Bochner’s theorem again, we conclude that the
isometry group of M with respect to this metric must be abelian. It follows
that

γγ′µ = γ′γµ, γ, γ′ ∈ G, µ ∈M.

Replacing γ′ with χ ∈ H and choosing µ = γ−1H, we obtain

γχγ−1H = H, γ ∈ G, χ ∈ H.

This formula implies

[m, h] ⊂ [g, h] ⊂ h.

At the same time, [m, h] is contained in m because m is Ad(H)-invariant.
Thus, [m, h] is equal to {0}.
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Let us turn our attention to the decomposition (2.8). Given i = 1, . . . , s,
the representation Ad(H)|mi

is trivial. Its irreducibility implies that di = 1.
In light of (2.1), this means s ≥ 3. The space m1 ⊕ h is a Lie subalgebra of
g containing h as a proper subset. Clearly,

m1 ⊂ m1 ⊕ h, m2 ⊂ g⊖ (m1 ⊕ h).

Because the representations Ad(H)|m1
and Ad(H)|m2

are both trivial, they
must be equivalent. However, this contradicts requirement 1 of Hypothe-
sis 2.3.

2.8. A corollary

The following observation provides an alternative to condition (2.7).

Corollary 2.38. Suppose Hypothesis 2.3 is satisfied for M . Given T ∈ M,
if

λ−(T |n)
λ+(T |l)

> η(k, k′) dim l

for every simple chain of the form (2.4), then there exist g ∈ MT such that
S(g) ≥ S(h) for all h ∈ MT . The Ricci curvature of g equals cT with c > 0.

Proof. The corollary follows from Theorem 2.9 and the obvious estimate
trQ T |l ≤ λ+(T |l) dim l. □

3. The case of two inequivalent irreducible summands

Theorem 2.9 provides a sufficient condition for the existence of a metric
g ∈ M whose Ricci curvature equals cT with c > 0. We will show that this
condition is necessary when the isotropy representation of M splits into two
inequivalent irreducible summands. Our argument will rely on [24, Proposi-
tion 3.1].

Suppose s = 2 in every decomposition of the form (2.8), i.e.,

m = m1 ⊕m2.

Let Ad(H)|m1
and Ad(H)|m2

be inequivalent. According to Theorem 2.9,
finding a metric whose Ricci curvature equals cT for some c > 0 is always
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possible if h is maximal in g. Thus, we may assume that there exists a Lie
subalgebra s ⊂ g such that

g ⊃ s ⊃ h, h ̸= s, s ̸= g.

It is clear that s⊖ h is a proper Ad(H)-invariant subspace of m. The only
such subspaces are m1 and m2. Therefore, s must equal m1 ⊕ h or m2 ⊕ h.
Suppose

s = m1 ⊕ h.(3.1)

If m2 ⊕ h is a Lie subalgebra of g, then [112] = [221] = 0. In this case, all
the metrics in M have the same Ricci curvature, and the problem of solving
equation (1.2) becomes trivial; see, e.g., [25, Subsection 4.2]. Thus, we may
assume m2 ⊕ h is not closed under the Lie bracket. This implies [221] > 0.

Let us verify Hypothesis 2.3. It is clear that s given by (3.1) is the unique
proper Lie subalgebra of g such that h ⊂ s and h ̸= s. The only nonzero
Ad(H)-invariant subspace of s⊖ h is m1, and the only such subspace of g⊖ s

is m2. Since Ad(H)|m1
and Ad(H)|m2

are inequivalent, smeets requirement 1
of Hypothesis 2.3. If

[m2, s] = {0},

then [112] = [221] = 0, which contradicts the formula [221] > 0. Thus, s

meets requirement 2 of Hypothesis 2.3.
It is easy to see that

g ⊃ g ⊃ s ⊃ h

is the only simple chain associated withM . Setting k = g and k′ = s in (2.4),
we obtain

j = {0}, j′ = l = m2, n = m1.

Given T ∈ M, the equality

T = z1π
∗
m1
Q+ z2π

∗
m2
Q

holds for some z1, z2 > 0. It is obvious that

λ−(T |n) = z1, trQ T |l = d2z2.
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A straightforward computation involving (2.16) and (2.20) yields

η(g, s) =
2 trQB|m1

+ 2⟨m1m2m2⟩+ ⟨m1m1m1⟩

ω(m1)(2 trQB|m2
+ ⟨m2m2m2⟩)

=
2d1b1 − 2[122]− [111]

d1(2d2b2 − [222])
=

4d1ζ1 + [111]

d1(4d2ζ2 + [222] + 4[122])
.

Theorem 2.9 asserts that it is possible to find a metric g ∈ M whose Ricci
curvature equals cT for some c > 0 if

z1/z2 > d2η(g, s) =
d2(4d1ζ1 + [111])

d1(4d2ζ2 + [222] + 4[122])
.(3.2)

According to [24, Proposition 3.1], this condition is, in fact, sufficient and
necessary for the existence of g.

Example 3.1. Suppose that M = SU(4)/SU(2) as in [28, Example 5] and
that Q = −B. The assumptions of Section 3 hold, and

d1 = 7, d2 = 5, b1 = b2 = 1,

[111] = 21/20, [122] = 7/4, [222] = 0;

see [28]. By the above reasoning, a Riemannian metric with Ricci curvature
equal to cT for some c > 0 exists if and only if z1/z2 > 27/40.

4. Generalised flag manifolds

In this section, we discuss the case where M is a generalised flag manifold.
Our first objective is to verify Hypothesis 2.3. After that, we will consider a
class of examples to illustrate the use of Theorem 2.9. For the definition and
some properties of a generalised flag manifold, see, e.g., [2, Chapter 7]. We
will also rely on the classification results obtained in [1, 20] and collected
in [1].

Proposition 4.1. Suppose M is a generalised flag manifold. Then M sat-
isfies Hypothesis 2.3.

Proof. Choose a decomposition of the form (2.8). Since M is a generalised
flag manifold, the representations Ad(H)|mi

and Ad(H)|mj
are inequivalent

whenever i ̸= j; see, e.g., [2, Chapter 7, Section 5]. The summandsm1, . . . ,ms
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are determined uniquely up to order. Consequently, every nonzero Ad(H)-
invariant subspace of m is the direct sum of mi with the index i running
through some non-empty subset of {1, . . . , s}.

Let us verify Hypothesis 2.3. Consider a Lie subalgebra s ⊂ g containing
h as a proper subset. It is obvious that s⊖ h is Ad(H)-invariant. Therefore,
for some Js ⊂ {1, . . . , s},

s⊖ h =
⊕

i∈Js
mi, g⊖ s =

⊕

i∈{1,...,s}\Js
mi.

As we noted above, Ad(H)|mi
and Ad(H)|mj

are inequivalent for i ̸= j. It
follows that s meets requirement 1 of Hypothesis 2.3.

As explained in [2, Chapter 7, Section 5], for every i = 1, . . . , s, the
complexification of mi is the sum of two complex vector spaces of the same
dimension. Consequently, di is even. We conclude that m does not have any
Ad(H)-invariant 1-dimensional subspaces. This means smeets requirement 2
of Hypothesis 2.3. □

Let M be a generalised flag manifold. Suppose s = 2 in every decom-
position of the form (2.8). It is easy to understand that the assumptions of
Section 3 are satisfied; see [1]. The structure constants [111], [112] and [222]
vanish. Thus, condition (3.2) becomes

z1/z2 >
d2ζ1

d2ζ2 + [122]
.

Assume that s = 3 in every decomposition of the form (2.8) and that
M is of type I in the terminology of [1]. Our next goal is to write down
explicit formulas for the numbers η(k, k′) associated with simple chains of the
form (2.4). This will lead up to the application of Theorem 2.9. Analogous
reasoning works if M is of type II in the terminology of [1] or if the isotropy
representation ofM splits into four or five irreducible summands. We provide
further details in Remark 4.2 below.

Consider a decomposition

m = m1 ⊕m2 ⊕m3

of the form (2.8). It will be convenient for us to assume that this decompo-
sition is the same as in [1, Subsection 2.4]. The definition of a generalised
flag manifold requires the group G to be semisimple. This enables us to set
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Q = −B. According to [1, Formulas (11), (13) and (15)],

[112] = [121] = [211] =
d1d2 + 2d1d3 − d2d3
d1 + 4d2 + 9d3

,

[123] = [231] = [312] = [321] = [213] = [132] =
(d1 + d2)d3

d1 + 4d2 + 9d3
,(4.1)

and the rest of the structure constants are 0. The dimensions d1, d2, d3 for
concrete spaces are listed in [1, Table 4].

Remark 4.2. The reader will find the structure constants of generalised
flag manifolds with two irreducible isotropy summands in [3, 5], three sum-
mands in [1, 20], four summands in [4] and five summands in [6].

As we mentioned in the proof of Proposition 4.1, the representations
Ad(H)|mi

and Ad(H)|mj
are inequivalent for i ̸= j. Consequently, every

nonzero Ad(H)-invariant subspace of g⊖ h is the direct sum of some of the
spaces m1, m2 and m3. This fact and formulas (4.1) imply that the proper
Lie subalgebras of g containing h as a proper subset are

s1 = m2 ⊕ h, s2 = m3 ⊕ h.

It follows that the simple chains associated with M are

g ⊃ g ⊃ s1 ⊃ h, g ⊃ g ⊃ s2 ⊃ h.

Given T ∈ M, the equality

T = −z1π
∗
m1
B − z2π

∗
m2
B − z3π

∗
m3
B

holds for some z1, z2, z3 > 0. Setting k = g and k′ = si in (2.4), we obtain

j = {0}, j′ = l = m1 ⊕m4−i, n = m1+i,

λ−(T |n) = z1+i, tr−B T |l = d1z1 + d4−iz4−i, i = 1, 2.
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A computation involving (2.16), (2.18) and (4.1) yields

η(g, s1) =
2 tr−B B|m2+2(⟨m2m1m1⟩+⟨m2m3m3⟩+2⟨m2m1m3⟩)+⟨m2m2m2⟩

ω(m2)(2 tr−B B|m1⊕m3
+⟨m1m1m1⟩+⟨m3m3m3⟩+3⟨m1m1m3⟩+3⟨m1m3m3⟩)

=
−d2 + [112] + 2[123]

d2(−d1 − d3)
=

−4d22 − 8d2d3 + 4d1d3
−d2(d1 + d3)(d1 + 4d2 + 9d3)

,

η(g, s2) =
2 tr−B B|m3+2(⟨m3m1m1⟩+⟨m3m2m2⟩+2⟨m3m1m2⟩)+⟨m3m3m3⟩

ω(m3)(2 tr−B B|m1⊕m2
+⟨m1m1m1⟩+⟨m2m2m2⟩+3⟨m1m1m2⟩+3⟨m1m2m2⟩)

=
−2d3 + 4[123]

d3(−2d1 − 2d2 + 3[112])
=

−2d1 + 4d2 + 18d3
2d21 + 8d22 + 7d1d2 + 12d1d3 + 21d2d3

.

Theorem 2.9 tells us that a Riemannian metric with Ricci curvature equal
to cT for some c > 0 exists if

z2
d1z1 + d3z3

>
−4d22 − 8d2d3 + 4d1d3

−d2(d1 + d3)(d1 + 4d2 + 9d3)
,

z3
d1z1 + d2z2

>
−2d1 + 4d2 + 18d3

2d21 + 8d22 + 7d1d2 + 12d1d3 + 21d2d3
.

Example 4.3. Suppose M is the generalised flag manifold G2/U(2) in
which U(2) corresponds to the long root of G2. According to [1, Table 4], in
this case, d1 = d3 = 4 and d2 = 2. Theorem 2.9 implies that a Riemannian
metric with Ricci curvature equal to cT for some c > 0 exists if

z2
z1 + z3

>
1

12
,

z3
2z1 + z2

>
3

10
.

5. Prospects

There are many compact homogeneous spaces that do not satisfy Hypothe-
sis 2.3. The isotropy representations of such spaces necessarily have equiva-
lent non-trivial irreducible subrepresentations. If Hypothesis 2.3 is not sat-
isfied, the assertion of Lemma 2.12 may fail to hold for some subalgebras k
and decompositions of the form (2.8). As a consequence, crucial equalities
and inequalities for the structure constants break down, and one runs into
trouble trying to prove the key estimate in Section 2.5. Thus, in order to
relax or remove Hypothesis 2.3, one would have to find a new way to arrive
at Lemma 2.31. The authors intend to study this in a forthcoming paper.
Several other questions remain open concerning the prescribed Ricci curva-
ture problem on compact homogeneous spaces. These include, for instance,
investigating the uniqueness of solutions up to scaling, finding necessary
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conditions for the existence of solutions in the case of three or more irre-
ducible isotropy summands, and discovering critical points of S|MT

that are
not global maxima.
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