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We prove the instability of some families of Riemannian manifolds
with non-trivial real Killing spinors. These include the invariant
Einstein metrics on the Aloff-Wallach spaces Nk,l = SU(3)/ik,l(S

1)
(which are all nearly parallel G2 except N1,0), and Sasaki Ein-
stein circle bundles over certain irreducible Hermitian symmetric
spaces. We also prove the instability of most of the simply con-
nected non-symmetric compact homogeneous Einstein spaces of
dimensions 5, 6, and 7, including the strict nearly Kähler ones (ex-
cept G2/SU(3)).
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1. Introduction

In this article we will derive the instability of some families of simply con-
nected closed Einstein manifolds most of which admit a non-trivial real
Killing spinor. One consequence of our work is the existence of examples
of unstable Einstein manifolds with non-trivial real Killing spinors whose
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Euclidean metric cones realize all the possible irreducible special holonomy
types.

Recall that for a spin manifold (Mn, g), a Killing spinor σ is a section
of the complex spinor bundle which satisfies the equation

∇Xσ = cX · σ

for all tangent vectors X, where ∇ is the spinor connection induced by the
Levi-Civita connection of g, · denotes Clifford multiplication, and c is a
priori a complex constant. By the fundamental work of T. Friedrich and his
colleagues it is now well-known that c, if nonzero, is either purely imaginary
or real. Furthermore, the metric g must be Einstein with Einstein constant
Λ = 4c2(n− 1).

In the c = 0 case, the metric g has restricted holonomy properly con-
tained in SO(n). Calabi-Yau, hyperkähler, torsion free G2 and Spin(7) man-
ifolds belong to this class. These Einstein manifolds all turn out to be stable
by the work of Dai-Wang-Wei [DWW05]. When c is purely imaginary and
(M, g) is complete, the classification was achieved by H. Baum [Bau89], and
proofs of the stability of the Einstein metrics were given, first by Kröncke
in [Kr17], and later by the first author in [Wan17].

In the real case, an important conceptual classification was given by
[Ba93], which can be summarized by the statement that (M, g) admits a
non-trivial real Killing spinor iff its Euclidean metric cone admits a non-
trivial parallel spinor. Of course the detailed classification of these manifolds
includes the study of Sasaki Einstein manifolds (see e.g. [BFGK91], [BG08])
in odd dimensions and nearly Kähler 6-manifolds (see e.g. [FH17]). Fur-
thermore, T. Friedrich [Fr80] gave a lower bound for the eigenvalues of the
Dirac operator on closed spin manifolds with positive scalar curvature that
depends on the dimension and minimum value of the scalar curvature. This
result was later generalized in [Hi86] where the positivity (resp. minimum
value) of the scalar curvature was replaced by the positivity (resp. value)
of the first eigenvalue of the conformal Laplacian. In both cases, the equal-
ity case is characterized by manifolds admitting a non-trivial real Killing
spinor. By comparison, the equality case of the Lichnerowicz estimate for
the first eigenvalue of the Laplace-Beltrami operator on a manifold with
positive Ricci curvature is characterized by the round spheres, which are
stable and happen also to have a maximal family of Killing spinors.

In addition to their intrinsic interest within Differential Geometry, man-
ifolds with real Killing spinors are of great interest in Mathematical Physics.
In the 1980s, such manifolds, especially ones of dimension six or seven,
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were independently investigated by theoretical physicists in their pursuit
of Kaluza-Klein compactifications in supergravity theories [DNP86]. More
recently, interest in these spaces from the physics community stems from
the AdS/CFT correspondence, see e.g., [GMSW05]. For all the above rea-
sons, there is good motivation to study the stability problem for manifolds
admitting real Killing spinors.

We shall actually use various different notions of stability for Einstein
metrics in this paper. These are different from notions of stability used by
physicists, see e.g., [DNP86], [GiHa02], [GiHaP03] . All Einstein manifolds
under consideration hereafter will have positive Einstein constant. Unless
otherwise stated, we will exclude the case of round spheres.

The first stability notion comes from the fact that for a closed manifold
Mn Einstein metrics are precisely the critical points of the normalized total
scalar curvature functional

(1.1) S̃(g) =
1

(Vol(M, g))
n−2

n

∫

M

sg dvolg

where in the above sg is the scalar curvature of the Riemannian metric g
on Mn. Since this functional is invariant under the action of the diffeomor-
phisms of M and is locally minimizing along conformal change directions, it
is customary to restrict S̃ to the space of Riemannian metrics with constant
scalar curvature and fixed volume. The tangent space to this ILH-manifold
consists of the TT-tensors, i.e., symmetric 2-tensors satisfying trg(h) = 0

and δgh = 0 ([Bes87], section 4.G). The second variation of S̃ is then given
by

(1.2) S̃′′
g(h, h) =

−1

2(Vol(M, g))
n−2

n

∫

M

⟨∇∗∇h− 2R̊h, h⟩ dvolg

where (R̊h)ij is defined to be
∑

k,l Rikjlh
kl and our convention for the cur-

vature tensor is RX,Y = ∇[X,Y ] − [∇X ,∇Y ].

Definition 1.1. A closed Einstein manifold (M, g) is

(a) S̃-stable if g is a local maximum of S̃ restricted to the space of Rie-
mannian metrics on M with constant scalar curvature and the same
volume as g;

(b) S̃-linearly stable if ⟨∇∗∇h− 2R̊h, h⟩L2(M,g) ≥ 0 for all TT-tensors h
on M .
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Note that S̃-stability is the first notion of stability mentioned by Koiso
([Koi80], p. 52), while the second notion is weaker than that given in Defini-
tion 2.7 there. Both notions of stability in the above include the possibility
of non-trivial (resp. infinitesimal) Einstein deformations (which may not be
integrable in general). In the first case, the value of the restricted functional
would be unchanged, while in the second case one would get an eigentensor
of the Lichnerowicz Laplacian with eigenvalue equal to twice the Einstein
constant Λ, owing to the identity ∇∗∇− 2R̊ = −(∆L + 2ΛI) for an Einstein
manifold. The S̃-coindex of g is the dimension (necessarily finite by elliptic
theory) of the maximal negative definite subspace for the quadratic form

(1.3) Q(h, h) := ⟨∇∗∇h− 2R̊h, h⟩L2(M,g).

The corresponding notions of instability are given by negation. Hence
S̃-linear instability implies S̃-instability. Moreover, S̃-linear instability im-
plies ν-linear instability and further also ν-instability (see Definition 1.2
below). Then by Theorem 1.3 in [Kr15], (since Λ > 0) it also implies that g
is dynamically unstable for the Ricci flow.

Another notion of stability comes from the ν-entropy of Perelman. For
detailed information about this functional and its second order properties we
refer the reader to [Pe02], [CHI04], [CM12], and [CH15]. For us the impor-
tant facts about the ν-entropy to recall are that its value is unchanged by the
action of diffeomorphisms and homotheties, it is monotonic increasing along
Ricci flows, and its critical points consist of shrinking gradient Ricci solitons
(which include Einstein metrics with positive Λ). At an Einstein metric g,
the second variation of the ν-entropy is given (up to a positive constant) by
−1

2Q(h, h) on the subspace ker trg ∩ ker δg of TT-tensors. However, unlike

the case of the S̃ functional, the second variation is no longer always pos-
itive on C (M)g–the positive directions are given by eigenfunctions of the
Laplacian of g corresponding to eigenvalues less than 2Λ. (Our convention
for eigenvalues is given by ∆ϕ = −λϕ with λ ≥ 0.)

Definition 1.2. A closed Einstein manifold (M, g) with Einstein constant
Λ is

(a) ν-stable if g is a local maximizer of the ν-entropy;

(b) ν-linearly stable if the second variation of the ν-entropy is negative
semi-definite on C (M)g ⊕ (ker trg ∩ ker δg).
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By [CH15], ν-linear stability is equivalent to Q(h, h) ≥ 0 for all TT-
tensors and λ1(M, g) ≥ 2Λ. Consequently, there are two sources contributing
to ν-linear instability, and S̃-linear instability implies ν-linear instability. We
will discuss the restriction of the second variation of the ν-entropy to C (M)g
in greater detail in section 4, where we deduce the ν-linear instability of
some homogeneous Einstein metrics which admit real Killing spinors. Here
we only note the interesting fact that destablizing directions coming from
conformal deformation by eigenfunctions necessarily deform a homogeneous
Einstein metric away from the space of homogeneous metrics.

Before stating our results on instability, we need to recall a few more
facts about simply connected manifolds admitting a non-trivial real Killing
spinor. Because of our assumption of simple connectivity and our exclusion of
round spheres, such a manifold is de Rham irreducible and cannot be a sym-
metric space (p. 35, [BFGK91], Theorem 13). By the results of Bär [Ba93],
if its Euclidean cone has SU(m+ 1) holonomy, m ≥ 2, then (M2m+1, g) is
Sasaki Einstein. (The implicit scaling involved is choosing Λ = 2m, whence
c = ±1

2 .) Conversely, a simply connected Sasaki Einstein manifold is spin
[Mo97] and admits non-trivial real Killing spinors ([FrK90], Theorem 1).
The dimension of the space of real Killing spinors is 2 and the chiral nature
(i.e., whether or not both signs of c occur) of these spinors depends on the
parity of m.

If the Euclidean cone of (M4m+3, g) has Sp(m+ 1) holonomy, m ≥ 1,
then (M4m+3, g) is 3-Sasakian. In this case the dimension of the space of
real Killing spinors ism+ 2 and only one sign of c occurs once the orientation
is fixed [W89].

Finally, if the Euclidean cone has Spin(7) (resp. G2 ) holonomy, then by
[BFGK91] and [Ba93] (M, g) has a nearly parallel G2 (resp. a strict nearly
Kähler) structure, and the space of real Killing spinors has dimension 1.
The converse statements are proved respectively in [BFGK91] and [Gr90].
We also refer to [FKSM97] for nearly parallel G2 structures and Killing
spinors.

An interesting family of simply connected closed Riemannian mani-
folds which are nearly parallel G2 are the Aloff-Wallach spaces Nk,l =
SU(3)/Uk,l, where k, l are relatively prime integers and Uk,l is the circle
diag(e2πikθ, e2πilθ, e−2πi(k+l)θ) in SU(3). It is well-known that these mani-
folds are spin and, up to isometry, they admit two SU(3)-invariant Einstein
metrics [W82], [CR84], [PP84], [KoV93], [Nik04]. Except for the spacesN1,−1

and N1,1, all the Euclidean cone metrics of these SU(3)-invariant Einstein
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metrics have holonomy Spin(7) (see, [CR84], [BFGK91], and [Ba93]). Topo-
logically speaking, the Nk,l exhibit infinitely many homotopy types, and
there exists pairs which are homeomorphic but not diffeomorphic [KS91].

Theorem 1.3. The invariant Einstein metrics on the Aloff-Wallach mani-
folds Nk,l described above are all S̃-linearly unstable, and therefore, ν-linearly
unstable.

The proof of this theorem will be given in subsections 2.2 and 2.3. Some
remarks about the two exceptional Aloff-Wallach spaces are also given in
section 5.

Let (M2m+1, g),m ≥ 2 be a closed simply connected Sasakian Einstein
manifold. The Sasaki structure is regular if the characteristic vector field
generates a free circle action on M . In this case, M is a principal circle
bundle over a Fano Kähler Einstein manifold B such that the projection
map is a Riemannian submersion with totally geodesic fibres, and the Euler
class of the bundle is a rational multiple of the first Chern class of B. It
follows from Corollary 1.7 in [WW18] that if the second Betti number of B
is greater than 1, then (M, g) is S̃-linearly unstable.

When b2(B) = 1, we have H2(B;Z) ≈ Z (since H2(B;Z) is torsion free),
so all principal circle bundles over it are, up to a change in orientation in
the fibers, quotients of the circle bundle corresponding to one of the two
indivisible classes in H2(B;Z). The total spaces of these two circle bundles
are diffeomorphic and simply connected. The simplest examples of Fano
Kähler Einstein manifolds with b2 = 1 are the irreducible hermitian sym-
metric spaces of compact type. For complex projective space CP

m, the cor-
responding simply connected regular Sasaki Einstein manifold over it is just
S2m+1 equipped with the constant curvature 1 metric, which is S̃-linearly
stable. By contrast we have

Theorem 1.4. The following simply connected regular Sasaki Einstein
manifold are ν-linearly unstable from conformal variations:

(a) SO(p+ 2)/SO(p), p ≥ 3, circle bundle over the complex quadric
SO(p+ 2)/(SO(p)× SO(2));

(b) E6/Spin(10), and E7/E6, which are respectively circle bundles over the
hermitian symmetric spaces E6/(Spin(10 ·U(1)) and E7/(E6 ·U(1));

(c) SU(p+ 2)/(SU(p)× SU(2)), p ≥ 2, a circle bundle over the complex
Grassmannian SU(p+ 2)/S(U(p)×U(2)).
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Moreover, the Stiefel manifolds in (a) above are also S̃-linearly unstable,
and for k ≥ 4, Sp(k)/SU(k), which are circle bundles over Sp(k)/U(k), are
S̃-linearly unstable, and so ν-linearly unstable.

The proof of this theorem, including the dimensions of the destablizing
eigenspaces, are given in sections 3 and 4.

The S̃-linear instability of Sp(k)/SU(k), k ≥ 4, follows from Koiso’s work
in [Koi80] and Corollary 6.1 in [Wan17]. Indeed, by Koiso’s calculations
on page 68 and the table on page 70 in [Koi80], the Hermitian symmetric
space Sp(k)/U(k) of dimension k2 + k is S̃-linearly unstable. Moreover, after
rescaling the symmetric metric used in [Koi80] so that the new Einstein
constant is k2 + k + 2, one finds that ∇∗∇− 2R̊ has a negative eigenvalue
−4k2+k+2

2(k+1) = −2k − 4
k+1 < −8 if k ≥ 4.

In the last section of this paper we discuss the stability of compact simply
connected homogeneous Einstein manifolds of dimension ≤ 7 by putting
together the results in this paper and [WW18] with classification results
for these manifolds, and the work of [Koi80] and [CH15]. The results are
summarized as follows:

Theorem 1.5. Let (M = G/K, g) be a compact simply connected homo-
geneous Einstein manifold on which the semisimple connected Lie group G
acts almost effectively by isometries and with isotropy group K. Assume
that (G,K) is not a Riemannian symmetric pair and that 5 ≤ dimM ≤
7. Assume further that M ̸= S3 × S3 or the isotropy irreducible space
Sp(2)/SU(2). Then g is S̃-linearly unstable.

As mentioned at the beginning of the Introduction, it follows from all
the above theorems and Corollary 5.1 that there are S̃-linearly unstable (and
hence ν-linearly unstable and dynamically unstable) examples of manifolds
admitting non-trivial real Killing spinors exhibiting all possible Euclidean
metric cone special holonomy types and in all admissible dimensions. By
contrast, up to now, the only S̃-linearly stable examples with non-trivial
real Killing spinors are the constant curvature spheres.
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2. Instability of Einstein metrics on Aloff-Wallach spaces

In this section we will prove Theorem 1.3, i.e., deduce the S̃-
linear instability of all invariant Einstein metrics on the Aloff-Wallach
spaces Nk,l = SU(3)/Uk,l, where k, l are integers, and Uk,l is the circle
diag(e2πikθ, e2πilθ, e−2πi(k+l)θ) in SU(3). We will assume in addition that k, l
are coprime, so that Nk,l is simply connected, and remove diffeomorphic
spaces by assuming that k ≥ l ≥ 0. In the proof we will use the explicit so-
lutions in [CR84] for the invariant Einstein equations on all Aloff-Wallach
spaces except one invariant Einstein metric on N1,0. Thus in §2.1 and 2.2
we will follow the notation in [CR84], except that the parameters α, β, γ, δ
in (2.4) below are 1

α2 ,
1
β2 ,

1
γ2 ,

1
δ2

in [CR84].

In [CR84], the Aloff-Wallach spaces Nk,l are denoted instead by Npq0

with co-prime integers p, q. The Lie algebra of the embedded circle subgroup
is generated by N as defined in (2.2) below. By comparing N with the Lie
algebra of Uk,l, one obtains the following relationship between k, l and p, q:

(2.1)

{
p = (k − l)c,

q = 3(k + l)c,

for some proportionality constant c.
Our assumptions on k, l translate into the conditions that p, q ≥

0, (p, q) = 1, and 3p ≤ q. Then the integer pairs (k, l) and (p, q) uniquely
determine each other by (2.1). In [CR84], more general spaces Npqr with in-
tegers p, q, and r taken to be relatively prime were studied. These spaces have
Npq0 as their universal covers. We also note that the special spaces N1,1, N1,0

correspond respectively to N010 and N130. (These spaces are special because
their isotropy representations contain equivalent irreducible summands.)

2.1. Einstein metrics on N
pq0

In this subsection, we will recall the Einstein equations on the Aloff-Wallach
spaces and their solutions in [CR84]. They will play important roles in §2.2.
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We use the following basis and the decomposition of the Lie algebra
su(3) as in [CR84]. For each fixed pair of integers p, q with (p, q) = 1, let

(2.2)

N = − i√
3p2 + q2



−

√
3
6 (q − 3p) 0 0

0 −
√
3
6 (q + 3p) 0

0 0
√
3
3 q


 ,

Z = − i√
3p2 + q2




p+q
2 0 0

0 p−q
2 0

0 0 −p


 ,

X1 = −1

2
iλ1 =




0 −1
2 i 0

−1
2 i 0 0
0 0 0


 , X2 = −1

2
iλ2 =



0 −1

2 0
1
2 0 0
0 0 0


 ,

X4 = −1

2
iλ4 =




0 0 −1
2 i

0 0 0
−1

2 i 0 0


 , X5 = −1

2
iλ5 =



0 0 −1

2
0 0 0
1
2 0 0


 ,

X6 = −1

2
iλ6 =



0 0 0
0 0 −1

2 i
0 −1

2 i 0


 , X7 = −1

2
iλ7 =



0 0 0
0 0 −1

2
0 1

2 0


 ,

where λk are called the Gell-Mann matrices in the physics literature. Let
h = span(N), m1 = span(X1, X2), m2 = span(Z), m3 = span(X4, X5), and
m4 = span(X6, X7). Then we have the Lie algebra decomposition:

(2.3) su(3) = t⊕m1 ⊕m3 ⊕m4 = h⊕m2 ⊕m1 ⊕m3 ⊕m4 = h⊕m,

where t = h⊕m2, and m = m1 ⊕m2 ⊕m3 ⊕m4. Let Hp,q ≈ U(1) be the
isotropy group (generated by N) of the identity coset [I3], where I3 de-
notes the identity matrix of size 3. We identify the tangent space T[I3]N

pq0

with m as usual.
The background metric chosen in [CR84] is the negative of the Killing

form of su(3): Q(X,Y ) = −6tr(XY ) for any X,Y ∈ su(3). This can be seen
from (2.7) and the first equation in (2.5) of [CR84]. Then for any four positive
real numbers α, β, γ, δ, the following AdH -invariant inner product

(2.4) g(α, β, γ, δ) = αQ|m1
⊕ βQ|m2

⊕ γQ|m3
⊕ δQ|m4
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on m induces an SU(3)-invariant Riemannian metric on Npq0. We will also
use g(α, β, γ, δ) to denote this invariant Riemannian metric. In the generic
cases, namely when (p, q) ̸= (0, 1) or (1, 3), the components m1, m2, m3, and
m4 of the decomposition of the isotropy representation m are inequivalent to
each other. Thus the inner products in (2.4) induce all of the SU(3)-invariant
metrics on Npq0. On the other hand, it turns out that all Einstein metrics on
N010 and N130 obtained in [CR84] and [PP84] also have the block diagonal
form as in (2.4). Thus, as in [CR84], we first only consider invariant metrics
defined as in (2.4). We remind the reader that the α, β, γ, δ in (2.4) are
actually 1

α2 ,
1
β2 ,

1
γ2 ,

1
δ2

in [CR84].
The Ricci tensors of the metrics in (2.4) have the same block diagonal

form as the metrics. Their components are given in (2.13) in [CR84], and
we recall them below.

Ric|m1
=

[
3

4

1

α
+

1

8

(
α

γδ
− γ

αδ
− δ

αγ

)
− 1

4
q2

β

α2

]
g|m1

,

Ric|m2
=

[
1

4
q2

β

α2
+

1

16
(3p+ q)2

β

γ2
+

1

16
(3p− q)2

β

δ2

]
g|m2

,

Ric|m3
=

[
3

4

1

γ
+

1

8

(
γ

αδ
− α

γδ
− δ

αγ

)
− 1

16
(3p+ q)2

β

γ2

]
g|m3

,

Ric|m4
=

[
3

4

1

δ
+

1

8

(
δ

αγ
− α

γδ
− γ

αδ

)
− 1

16
(3p− q)2

β

δ2

]
g|m4

.

(2.5)

Recall also the following change of variables given in (3.3) in [CR84]:

(2.6)

a =
δ

α
, b =

γ

α
,

u =

√
βδ

αγ

(3p+ q)√
2

, v = −
√

βγ

αδ

(3p− q)√
2

, λ = 96
γδe2

α
,

where we have used our choice of α, β, γ, δ as in (2.4). Using this change
of variables, Castellani and Romans transformed the Einstein equations for
the metric g(α, β, γ, δ) with Einstein constant 12e2 to the equations

(2.7)

6ab+ 1− a2 − b2 − (av + bu)2 = λ,

6a+ b2 − a2 − 1− v2 = λ,

6b+ a2 − b2 − 1− v2 = λ,

(av + bu)2 + u2 + v2 = λ.
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This is (3.2) in [CR84]. They further obtain the following rather explicit
solutions to equations (2.7):

a = c+
1

2
d+

3

2
(−1 ≤ c ≤ 1),

b = c− 1

2
d+

3

2
,

u2 =
5

2
− 2(c+

1

2
d)2, uv = −2 +

5

2
c2,

v2 =
5

2
− 2(c− 1

2
d)2,

λ =
3

2
(c+ 2)2,

(2.8)

where d = ±
√
1− c2 and c is related to p and q by

(2.9)
3p

q
=

1− av
bu

1 + av
bu

.

These are the equations (3.4) and (3.5) in [CR84].
For each pair of co-prime non-negative integers p, q with 3p ≤ q, a so-

lution of (2.9) satisfying −1 ≤ c ≤ − 2√
5
with d =

√
1− c2 and the corre-

sponding Einstein metric was obtained [CR84]. Then in [PP84], Page and
Pope showed that for each pair of such integers p, q, another solution of
(2.9) satisfying 2√

5
≤ c ≤ 1 with d = −

√
1− c2 actually gives a geometri-

cally inequivalent Einstein metric, and furthermore there are exactly two
geometrically inequivalent Einstein metrics on each Npq0 among metrics of
the form (2.4). Their S̃-linear instability will be shown in §2.2. However,
in [Nik04], Nikonorov pointed out that the two Einstein metrics on N130

obtained in [CR84] and [PP84] are isometric to each other. Moreover, he
found a geometrically inequivalent invariant Einstein metric on N130 and
showed that there are exactly two geometrically inequivalent invariant Ein-
stein metrics on N130. The S̃-linear instability of the additional invariant
Einstein metric will be shown in §2.3.

2.2. Instability of invariant Einstein metrics in [CR84] and
[PP84]

By using the Ricci curvature formulas (2.5), one easily obtains the scalar
curvature of g(α, β, γ, δ) as
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sg(α,β,γ,δ) =
3

2

(
1

α
+

1

γ
+

1

δ

)
− 1

4

(
α

γδ
+

γ

αδ
+

δ

αγ

)

− 1

4
q2

β

α2
− 1

16
(3p+ q)2

β

γ2
− 1

16
(3p− q)2

β

δ2
.

The volume of (Npq0, g(α, β, γ, δ)), denoted by Vol(g(α, β, γ, δ)), is equal to
Vol(Q)αβ

1

2 γδ, where Vol(Q) denotes the volume of the space Npq0 with the
metric induced by Q. Then the normalized total scalar curvature of a metric
g(α, β, γ, δ) in (2.4) is given by

S̃(g(α, β, γ, δ)) = (Vol(g(α, β, γ, δ)))
2

7 sg(α,β,γ,δ)

= (Vol(Q))
2

7 (αβ
1

2 γδ)
2

7

[
3

2

(
1

α
+

1

γ
+

1

δ

)
− 1

4

(
α

γδ
+

γ

αδ
+

δ

αγ

)

− 1

4
q2

β

α2
− 1

16
(3p+ q)2

β

γ2
− 1

16
(3p− q)2

β

δ2

]

By straightforward calculations, one has the following partial derivatives

∂

∂γ
S̃(g(α, β, γ, δ)) = Vol(Q)

2

7

1

56
(αβ

1

2 γδ)
2

7

1

α3γ3δ3
F3(α, β, γ, δ),

∂

∂δ
S̃(g(α, β, γ, δ)) = Vol(Q)

2

7

1

56
(αβ

1

2 γδ)
2

7

1

α3γ3δ3
F4(α, β, γ, δ),

where

F3(α, β, γ, δ) =− 60α3γδ3 + 24(α2δ3 + α3δ2)γ2 + 10α4γδ2

− 18α2γ3δ2 + 10α2γδ4 − 4q2αβγ2δ3

+ 6(3p+ q)2α3βδ3 − (3p− q)2α3βγ2δ,

(2.10)

F4(α, β, γ, δ) =− 60α3γ3δ + 24(α2γ3 + α3γ2)δ2 + 10α4γ2δ

+ 10α2γ4δ − 18α2γ2δ3 − 4q2αβγ3δ2

− (3p+ q)2α3βγδ2 + 6(3p− q)2α3βγ3.

(2.11)

Let g(α0, β0, γ0, δ0) be a fixed but arbitrary invariant Einstein metric
as in [CR84] and [PP84]. Then we investigate the stability of this invariant
Einstein metric by varying the components of the metric in m3 ⊕m4. This
keeps the variations within the class of homogeneous metrics. Accordingly
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consider the function

(2.12) S̃(t) := S̃(g(α0, β0, γ0 +At, δ0 +Bt)), t ≥ 0,

where A and B are parameters.

Proposition 2.1. There exist parameters A and B (depending on
α0, β0, γ0, and δ0) such that

(2.13)
d2

dt2
S̃(0) > 0.

Proof. Since

d

dt
S̃(t) = A

∂S̃

∂γ
(α0, β0, γ0 +At, δ0 +Bt)

+B
∂S̃

∂δ
(α0, β0, γ0 +At, δ0 +Bt)

=
(Vol(Q))

2

7 (α0β
1

2

0 (γ0 +At)(δ0 +Bt))
2

7

56α3
0(γ0 +At)3(δ0 +Bt)3

× [AF3(α0, β0, γ0 +At, δ0 +Bt)

+BF4(α0, β0, γ0 +At, δ0 +Bt)],

and F3(α0, β0, γ0, δ0) = F4(α0, β0, γ0, δ0) = 0, we have

d2

dt2
S̃(0) =

(Vol(Q))
2

7 (α0β
1

2

0 γ0δ0)
2

7

56α3
0γ

3
0δ

3
0

[
A2∂F3

∂γ
(α0, β0, γ0, δ0)

+AB(
∂F3

∂δ
+

∂F4

∂γ
)(α0, β0, γ0, δ0) +B2∂F4

∂δ
(α0, β0, γ0, δ0)

]
.

Thus we only need to show that there exist A and B such that

A2∂F3

∂γ
(α0, β0, γ0, δ0) +AB(

∂F3

∂δ
+

∂F4

∂γ
)(α0, β0, γ0, δ0)

+B2∂F4

∂δ
(α0, β0, γ0, δ0) > 0.

For this it suffices to show that

(2.14)

[(
∂F3

∂δ
+

∂F4

∂γ

)2

− 4

(
∂F3

∂γ

)(
∂F4

∂δ

)]
(α0, β0, γ0, δ0) > 0.
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For the solution (α0, β0, γ0, δ0), from the equations in (2.6), one can
easily deduce that
(2.15)

q2β0 =
(av + bu)2α3

0

2γ0δ0
, (3p+ q)2β0 =

2u2α0γ0
δ0

, (3p− q)2β0 =
2v2α0δ0

γ0
.

Then by substituting the first two equations in (2.6), the last equation in
(2.7), and equations in (2.15) into the partial derivatives of the functions F3

and F4 defined in (2.10) and (2.11), we obtain

[(
∂F3

∂δ
+

∂F4

∂γ

)2

− 4

(
∂F3

∂γ

)(
∂F4

∂δ

)]
(α0, β0, γ0, δ0)

= α8
0γ

2
0δ

2
0 [(−132b+ 144ba− 132a+ 40 + 4b2 + 4a2 − 12λ+ 46u2 + 46v2)2

− 4(−60a+ 48ab+ 48b+ 10− 54b2 + 10a2 − 4λ+ 4u2)·
(−60b+ 48ab+ 48a+ 10 + 10b2 − 54a2 − 4λ+ 4v2)]

= 32α8
0γ

2
0δ

2
0(−392c4 − 273c3 + 812c2 + 840c+ 168)

= 32α8
0γ

2
0δ

2
0f(c)

where

f(c) := −392c4 − 273c3 + 812c2 + 840c+ 168.

In the second last step above, we have used the equations in (2.8) and
d = ±

√
1− c2. Since for all invariant Einstein metrics in [CR84] and [PP84]

the parameter c ∈
[
− 1, 2√

5

]
∪
[

2√
5
, 1
]
, in order to complete the proof, we

only need to show that f(c) > 0 for such c.
By simple calculations, one can see that

f ′′(c) < 0, for− 1 ≤ c ≤ −0.85 or 0.85 ≤ c ≤ 1.

It follows that

f ′(c) ≤ f ′(−1) = −35 < 0 for − 1 ≤ c ≤ −0.85,

and

f ′(c) ≥ f ′(1) = 77 > 0 for 0.85 ≤ c ≤ 1.

Thus

f(c) ≥ f(−0.85) > 3 > 0 for − 1 ≤ c ≤ −0.85,

and

f(c) ≥ f(0.85) > 1096 > 0 for 0.85 ≤ c ≤ 1.
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In particular,

f(c) = −392c4 − 273c3 + 812c2 + 840c+ 168 > 0,

for− 1 ≤ c ≤ − 2√
5

or
2√
5
≤ c ≤ 1.

This completes the proof. □

Next we shall show that the invariant variations used in Proposition 2.1
above are actually divergence-free. Then the S̃-linear instability of the in-
variant Einstein metrics follows immediately from Proposition 2.1.

Lemma 2.2. Let (G/K, g) be a G-homogeneous Riemannian manifold of
dimension n with G compact and K ⊂ G closed. Let Q be a fixed bi-invariant
metric on G and use it to write g = k ⊥ m. Suppose that

(2.16) m = m1 ⊕ · · · ⊕mr

is a Q-orthogonal decomposition of m into Ad(K)-invariant summands. Fi-
nally suppose that g and G-invariant symmetric 2-tensor h are given by

g = a1Q|m1 ⊕ · · · ⊕ arQ|mr, ai > 0

h = c1Q|m1 ⊕ · · · ⊕ crQ|mr, ci ∈ R.

Then δgh = 0.

Proof. We identify m with the tangent space of G/H at [H] as usual. Let
{X1, · · · , Xn} ⊂ m be a orthonormal basis with respect to g, and extend
them to Killing vector fields in a neighborhood of the base point [H]. Then
we have at [H]

(δgh)(Xj) = −
n∑

i=1

(∇Xi
h)(Xi, Xj)

= −
n∑

i=1

(
Xi(h(Xi, Xj))− h(∇Xi

Xi, Xj)− h(Xi,∇Xi
Xj)

)

= −
n∑

i=1

(
h(Xi, [Xi, Xj ])− h(Xi,∇Xi

Xj)− h(∇Xi
Xi, Xj)

)
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=

n∑

i=1

(
h(Xi,∇Xj

Xi) + h(∇Xi
Xi, Xj)

)

=

n∑

i,k=1

g(∇Xj
Xi, Xk)h(Xi, Xk) +

n∑

i,k=1

g(∇Xi
Xi, Xk)h(Xk, Xj)

where in the third equality above we used the G-invariance of h.
We next use the fact that covariant derivatives involving Killing vector

fields on a homogeneous Riemannian manifold can be expressed entirely in
terms of Lie brackets (see e.g. Lemma 7.27 in [Bes87]). After some sim-
plification and replacing brackets for vector fields with the negative of the
corresponding Lie brackets in g, we obtain

(2.17) (δgh)(Xj) =
∑

i,k

h(Xj , Xk)g([Xk, Xi], Xi)−
∑

i

h([Xj , Xi]m, Xi)

where [·, ·]m denotes the Q-orthogonal projection of the bracket onto m.

Let {e(ℓ)q , 1 ≤ ℓ ≤ r, 1 ≤ q ≤ dℓ := dimmℓ} be a Q-orthonormal basis of
m adapted to the decomposition (2.16). The corresponding adapted g-

orthonormal basis is then given by X
(ℓ)
q := 1√

aℓ
e
(ℓ)
q . We examine separately

the two sums in (2.17). Let Xj = X
(ℓ)
q ∈ mℓ.

The first sum is then equal to

cℓ
aℓ

r∑

i=1

di∑

α=1

aiQ

([
e
(ℓ)
q√
aℓ

,
e
(i)
α√
ai

]
,
e
(i)
α√
ai

)

=
cℓ

a
3

2

ℓ

r∑

i=1

di∑

α=1

Q
([

e(ℓ)q , e(i)α

]
, e(i)α

)
= 0

since Q is bi-invariant.
Similarly, the second sum is equal to

1√
aℓ

r∑

i=1

di∑

α=1

ciQ

([
e(ℓ)q ,

e
(i)
α√
ai

]
,
e
(i)
α√
ai

)

=
1√
aℓ

r∑

i=1

ci
ai

di∑

α=1

Q
([

e(ℓ)q , e(i)α

]
, e(i)α

)
= 0

again by the bi-invariance of Q. □
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Remark 2.3. Note that in the above Lemma, the Ad(K)-invariant sum-
mands mi are not assumed to be irreducible or pairwise inequivalent. This
will be important in the next subsection.

Proposition 2.4. The invariant Einstein metrics on Npq0 where (p, q) ̸=
(1, 3) are S̃-linearly unstable.

Proof. Let g(α0, β0, γ0, δ0) be a fixed but arbitrary invariant Einstein metric
on Npq0 ̸= N130. Up to isometry any such metric is diagonal with respect to
the decomposition (2.16). Moreover, with the parameters A and B obtained
in Proposition 2.1, A · (Q|m3

)⊕B · (Q|m4
) is an AdH -invariant symmetric

bilinear form on m, and so it induces an SU(3)-invariant symmetric 2-tensor
h on Npq0.

By Proposition 2.1, the second variation of S̃ at g(α0, β0, γ0, δ0) is strictly
positive along h, i.e., S̃′′

g(α0,β0,γ0,δ0)
(h, h) > 0. If we replace h by its trace-free

part given by h0 = h− 2
7

(
A
γ0

+ B
δ0

)
g(α0, β0, γ0, δ0), since the normalized total

scalar curvature functional is homothety invariant, we have

S̃′′
g(α0,β0,γ0,δ0)

(h0, h0) = S̃′′
g(α0,β0,γ0,δ0)

(h, h) > 0.

But Lemma 2.2 implies that h is divergence-free, and so h0 is a TT-tensor.
Thus h0 is an S̃-linearly unstable direction. □

2.3. Instability of the invariant Einstein metric on N
130 in

[Nik04]

In order to complete the proof of Theorem 1.3, we only need to check
the S̃-linear instability of the invariant Einstein metric on N130 found by
Nikonorov in [Nik04].

For N130 the irreducible sub-representations m1 and m4 in (2.3) are iso-
morphic to each other. Thus there are SU(3)-invariant metrics on N130 that
are not block diagonal with respect to the decomposition of the isotropy
representation in (2.3). In [Nik04], Nikonorov showed that the two block di-
agonal (with respect to the decomposition in (2.3)) SU(3)-invariant Einstein
metrics on N130 obtained in [CR84] and [PP84] are isometric to each other.
He also found a geometrically distinct SU(3)-invariant Einstein metric on
N130 that is not block diagonal with respect to the decomposition in (2.3).

Since m1 and m4 are equivalent as H1,3-representations, there is a whole
circle’s worth of different ways of decomposing m1 ⊥ m4 as W1 ⊥ W2, where
Wi are subspaces of m1 ⊥ m4 which are isomorphic as H1,3-representations
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to m1 ≈ m4. Thus Nikoronov considered the 1-parameter family of Ad(H1,3)-
invariant irreducible decompositions of the isotropy representation on N130

given by

(2.18) m = p1 ⊕ p2 ⊕ p3 ⊕ p4

where p1 = span(Y1, Y2), p2 = span(Y3, Y4), p3 = m3 = span(X4, X5), p4 =
m2 = span(Z),

Y1 = − cos(α)(2X2)− sin(α)(2X7), Y2 = − cos(α)(2X1)− sin(α)(2X6),

Y3 = sin(α)(2X2)− cos(α)(2X7), Y4 = sin(α)(2X1)− cos(α)(2X6),

α ∈ R, and X1, X2, X4, X5, X6, X7, and Z are as given in (2.2). He showed
that for a suitably chosen value α ∈ R, this additional invariant Einstein
metric is diagonal with respect to the corresponding decomposition in (2.18).
Therefore, we will consider in the following the invariant metrics on N130 of
the form

(2.19) g(x1, x2, x3, x4) = x1Q
′|p1

⊕ x2Q
′|p2

⊕ x3Q
′|p3

⊕ x4Q
′|p4

,

where Q′ is the multiple of the Killing form of su(3) given by Q′(X,Y ) =
−1

2tr(XY ) for X,Y ∈ su(3). For this family of metrics the scalar curvature
formula is given in [Nik04] as

(2.20) sg(x1,x2,x3,x4) =
12

x1
+

12

x2
+

12

x3
+

6a

x4
− 3− 3a

2

(
x4
x21

+
x4
x22

)

− 2

(
x1

x2x3
+

x2
x1x3

+
x3

x1x2

)
− 3a

(
x1

x2x4
+

x1
x2x4

+
x4

x1x2

)
,

where a = sin2(2α).
The Einstein equations were then considered in three different cases:

a = 0, a = 1, and 0 < a < 1. When a = 0, the Einstein metrics obtained in
[CR84] and [PP84] were recovered. When a = 1, two solutions of the Einstein
equations were found. Approximate values of these solutions are

(2.21) (x1, x2, x3, x4) ≈ (5.67352, 1.09220, 5.50695, 5.72906),

and

(2.22) (x1, x2, x3, x4) ≈ (1.09220, 5.67352, 5.50695, 5.72906).
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However, these two solutions give rise to isometric invariant Einstein metrics.
When 0 < a < 1, no new Einstein metrics were obtained.

We will now show that the new Einstein metric obtained in the a = 1
case is unstable. The normalized total scalar curvature of g(x1, x2, x3, x4) is

S̃(g(x1, x2, x3, x4)) = Vol(Q′)
2

7 (x21x
2
2x

2
3x4)

1

7

[
12

x1
+

12

x2
+

12

x3
+

6

x4

− 2

(
x1

x2x3
+

x2
x1x3

+
x3

x1x2

)
− 3

(
x1

x2x4
+

x1
x2x4

+
x4

x1x2

)]
,

where Vol(Q′) is the volume of N130 with respect to the metric induced by
Q′|m.

Proposition 2.5. At the solution given by (2.21), we have

(2.23)
∂2

∂x22
S̃(g(x1, x2, x3, x4)) > 0.

Proof. One easily computes that

(2.24)

∂

∂x2
S̃(g(x1, x2, x3, x4))

= Vol(Q′)
2

7 (x21x
2
2x

2
3x4)

1

7

2

7x2

[
12

x1
− 30

x2
+

12

x3
+

6

x4
+ 5

x1
x2x3

− 9
x2

x1x3
+ 5

x3
x1x2

+
15

2

x1
x2x4

− 27

2

x2
x1x4

+
15

2

x4
x1x2

]
.

At the solution given by (2.21), the second order partial derivative with
respect to x2 is

(2.25)

∂2

∂x22
S̃(g(x1, x2, x3, x4))

= Vol(Q′)
2

7 (x21x
2
2x

2
3x4)

1

7

2

7x2

[
30

x22
− 5

x1
x22x3

− 9
1

x1x3

− 5
x3

x1x22
− 15

2

x1
x22x4

− 27

2

1

x1x4
− 15

2

x4
x1x22

]
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Because the first order partial derivative in (2.24) vanishes at this solu-
tion, we have

(2.26)

−
(
5
x1
x3

+ 5
x3
x1

+
15

2

x1
x4

+
15

2

x4
x1

)

= 12
x2
x1

− 30 + 12
x2
x3

+ 6
x2
x4

− 9
x22

x1x3
− 27

2

x22
x1x4

.

Substituting this into (2.25) and factoring 1
x2

2

out, we obtain

∂2

∂x22
S̃(g(x1, x2, x3, x4)) = Vol(Q′)

2

7 (x21x
2
2x

2
3x4)

1

7

× 2

7x32

[
12

x2
x1

+

(
12− 18

x2
x1

)
x2
x3

+

(
6− 27

x2
x1

)
x2
x4

]
.

This is strictly positive for

(x1, x2, x3, x4) ≈ (5.67352, 1.09220, 5.50695, 5.72906),

since x1 > 5.5, x2 < 1.1, and therefore x2

x1

< 1
5 . □

For the solution (x1, x2, x3, x4) ≈ (1.09220, 5.67352, 5.50695, 5.72906),
similarly one can show that ∂2

∂x2

1

S̃(g(x1, x2, x3, x4)) is strictly positive.
As in Proposition 2.4, this implies that the invariant Einstein metric

obtained in [Nik04] is S̃-linearly unstable. Together with Proposition 2.4
this completes the proof of Theorem 1.3.

3. Instability of Einstein metrics on the Stiefel manifolds

The Stiefel manifold V2(R
n+1) = SO(n+1)

SO(n−1) (n ≥ 3) may be viewed as a prin-

cipal circle bundle over the real oriented Grassmannian SO(n+1)
SO(n−1)SO(2) , which

is an irreducible Hermitian symmetric space (with second Betti number
b2 = 1). Sagle [Sa70] constructed an invariant Einstein metric on V2(R

n+1)
which is now known to be unique (up to isometry and homothety) among all
SO(n+ 1)-invariant metrics [Ker98], except when n = 3. Its relevance for us
is that it can be viewed as the regular Sasaki Einstein metric determined by
the base considered as a Fano Einstein manifold with the symmetric metric
scaled so that its scalar curvature equals 2n+ 2. In this section, we will show
that this Einstein metric is S̃-linearly unstable, and therefore ν-linearly un-
stable. Additionally, in Example 4.7 in §4, we will show that this Einstein
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metric is also ν-linearly unstable along conformal variation directions. When
n = 3, SO(4)/SO(2) is diffeomorphic to S2 × S3, so the product metric is a
second Einstein metric which is not isometric to the Sasaki Einstein metric.
The product metric is of course also S̃-linearly unstable.

We will follow the notation in [Ker98]. Embedding SO(n− 1) into

SO(n+ 1) as SO(n− 1) ∼=
[
Id2 0
0 SO(n− 1)

]
⊂ SO(n+ 1) gives rise to the

Stiefel manifold V2(R
n+1) as a quotient space SO(n+1)

SO(n−1) . On the Lie algebra

level, the embedding is so(n− 1) ∼=
[
0 0
0 so(n− 1)

]
⊂ so(n+ 1). We then

choose the AdSO(n−1)-invariant complement p = so(n− 1)⊥ (with respect
to the Killing form). The isotropy representation of SO(n− 1) on p can be
decomposed into irreducible sub-representations as p = p0 ⊕ p1 ⊕ p2, where
p0 =span{E12}, pj =span{Ej,2+i|1 ≤ i ≤ n− 1} for j = 1, 2, and Eij denotes
the matrix with 1 in the (i, j)-entry, −1 in the (j, i)-entry, and zeros every-
where else.

Let Q′ be the multiple of the Killing form of so(n+ 1) given by
Q′(X,Y ) = −1

2tr(XY ) for X,Y ∈ so(n+ 1), and choose Q′|p as the back-

ground metric. Then we consider SO(n+ 1)-invariant metrics on SO(n+1)
SO(n−1)

induced by

g(x0, x1, x2) = x0Q
′|p0

⊕ x1Q
′|p1

⊕ x2Q
′|p2

for x0, x1, x2 > 0. Recall the scalar curvature formula in section 4 of [Ker98]
as

sg(x0,x1,x2) = (n− 1)

(
n− 1

x1
+

n− 1

x2
+

1

x0

)

− n− 1

2

(
x1

x2x0
+

x2
x1x0

+
x0

x1x2

)
.

By considering variations of this scalar curvature function, Kerr showed
that x1 = x2 and x0 =

2(n−1)
n

x1 give the unique SO(n+ 1)-invariant Ein-
stein metric up to diffeomorphisms and homotheties. In particular, we will
consider the Einstein metric with x0 = 2(n− 1), x1 = x2 = n.

Now the normalized total scalar curvature of g(x0, x1, x2) is

S̃(g(x0, x1, x2))

= Vol(Q′)
2

2n−1 (x0x
n−1
1 xn−1

2 )
1

2n−1

[
(n− 1)

(
n− 1

x1
+

n− 1

x2
+

1

x0

)

− n− 1

2

(
x1

x2x0
+

x2
x1x0

+
x0

x1x2

)]
,
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where Vol(Q′) is the volume of the Stiefel manifold with the metric induced
by Q′. Its first partial derivative with respect to x1 is

∂

∂x1
S̃(g(x0, x1, x2))

= Vol(Q′)
2

2n−1 (x0x
n−1
1 xn−1

2 )
1

2n−1

(n− 1)

(2n− 1)x1

[
− n(n− 1)

x1

+ (n− 1)

(
n− 1

x2
+

1

x0

)
− (3n− 2)x1

2x2x0
+

n

2

(
x2

x1x0
+

x0
x1x2

)]
.

Then at the Einstein metric with x0 = 2(n− 1), x1 = x2 = n, we have the
second derivative with respect to x1 as

∂2

∂x21
S̃(g(x0, x1, x2))|(2(n−1),n,n)

= Vol(Q′)
2

2n−1 (x0x
n−1
1 xn−1

2 )
1

2n−1

(n− 1)

(2n− 1)x1

[
n(n− 1)

x21
− 3n− 2

2x2x0

+
n

2

(
− x2
x21x0

− x0
x21x2

)]∣∣∣∣
(x0,x1,x2)=(2(n−1),n,n)

= Vol(Q′)
2

2n−1 (2(n− 1)n2n−2
1 )

1

2n−1

(n− 1)[(n− 3)(2n2 − 2n+ 1) + 1]

2(2n− 1)(n− 1)n3

≥ Vol(Q′)
2

2n−1 (2(n− 1)n2n−2
1 )

1

2n−1

(n− 1)

2(2n− 1)(n− 1)n3
> 0,

for n ≥ 3.
As in Proposition 2.4, together with Lemma 2.2, this implies the S̃-linear

instability of the invariant Sasaki Einstein metric on V2(R
n+1) with n ≥ 3.

4. Instability from conformal deformations

A second source of instability for the ν-functional comes from conformal
deformations of the Einstein metric in question. A sufficient condition for
instability is that the smallest nonzero eigenvalue of the Laplace-Beltrami
operator is less than 2Λ, where Λ denotes the Einstein constant [CH15].
In fact, by [CHI04], provided that the Einstein manifold (M, g) is not the
constant curvature sphere, the operator S given by

(4.1) S u := −Hessgu+ (∆u)g + Λug
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is injective and maps eigenfunctions of the Laplace-Beltrami operator with
eigenvalue λ to divergence-free symmetric 2-tensors which are eigentensors
of the Lichnerowicz Laplacian with the same eigenvalue.

When the Einstein manifold is a homogeneous space (G/K, g) where G
is a semisimple compact Lie group, K is a closed subgroup, and g is in-
duced by the negative of the Killing form QG of G, then L2(G/K, g) is a
Hilbert space direct sum of the irreducible finite-dimensional unitary rep-
resentations of G which are of class 1 with respect to K, with multiplicity
equal to the dimension of the subspace of K-fixed vectors [MU80]. Further-
more, the eigenvalues are given by the Casimir constants QG(λ, λ+ 2δ) of
the irreducible class 1 representations, where λ is the dominant weight of
the representation, and 2δ is the sum of the positive roots of G. By abuse of
notation we have used QG to denote also the inner product induced by the
Killing form on the dual of the chosen real Cartan subalgebra in g. Obvi-
ously, in the above we can replace g by any negative multiple of the Killing
form. (Note that QG is negative definite on g but positive definite on the
Cartan subalgebra.)

If, on the other hand, the Einstein metric lies in the canonical variation
(see [Bes87] pp. 252-255) of the Killing form metric along a closed inter-
mediate subgroup K ⊂ H ⊂ G, then the spectrum of the Laplacian can be
determined using the results in [BB90], which improves upon the work in
[BeBo82].

Example 4.1. Let G = S3 × S3 × S3 andK be the image of the diagonally
embedded S3 in G. The Killing form metric is well-known to be nearly
Kähler, and the dimension of the associated space of real Killing spinors is
1. We will show that this Einstein metric is ν-unstable.

For convenience we will take the metric g on G to be the product of the
normalized Killing form Q′ of SU(2), which is that multiple of the Killing
form such that the maximal root of SU(2) has length −

√
2. Since Q = −4Q′,

using Corollary 1.7 and Table IV in [WZ85], one deduces that the Einstein
constant of g is Λ = 5

3 . (Note that g induces three times Q′ on the diagonal
subalgebra and the isotropy representation of G/K consists of two copies of
the adjoint representation of SU(2).)

Next we determine the irreducible class 1 unitary representations of
S3 × S3 × S3 relative to the diagonal subgroup. The irreducible unitary rep-
resentations of S3 × S3 × S3 consist of external tensor products ρ1⊗̂ρ2⊗̂ρ3
of irreducible unitary representations of the individual factors. If only one ρi
is non-trivial, then the representation remains irreducible upon restriction to
the diagonal subgroup and so cannot be of class 1. If exactly two of the ρi are
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non-trivial and equal to the 2-dimensional vector representation of S3, then
the Clebsch-Gordon formula shows that a 1-dimensional trivial summand
appears upon restriction to the diagonal subgroup. Hence by permuting the
S3 factors we obtain three inequivalent class 1 irreducible representations of
S3 × S3 × S3 all having the same Casimir constant of 2 · 3

2 = 3. Since this
is less than 2Λ = 10

3 , ν-instability has been established.

It seems appropriate to recall here the following lemma which we will
use repeatedly later in this section.

Lemma 4.2. Let g be a complex semisimple Lie algebra with Killing
form Q. Let λ1, λ2 denote the dominant weights of two irreducible (finite-
dimensional) complex representations of g. Assume that for each simple root
α of g we have

2Q(λ1, α)

Q(α, α)
≥ 2Q(λ2, α)

Q(α, α)
.

Then the corresponding Casimir constants satisfy

Q(λ1, λ1 + 2δ) ≥ Q(λ2, λ2 + 2δ)

with equality iff λ1 = λ2.

Remark 4.3. Applying the above lemma to Example 4.1 we see that the
first eigenspace of the Laplacian has dimension 12.

Using the classification theorem of Butruille [Bu05] for strict nearly
Kähler simply connected homogeneous 6-manifolds, one obtains

Proposition 4.4. The only ν-stable strict nearly Kähler simply connected
homogeneous 6-manifold is S6 = G2/SU(3) with the round metric.

Proof. Recall that a strict nearly Kähler structure is one that is not
Kähler. The classification theorem of Butruille states that, up to ho-
mothety, the only simply connected homogeneous strict nearly Kähler
6-manifolds are S6 = G2/SU(3), (SU(2)× SU(2)× SU(2))/∆SU(2),CP3 =
Sp(2)/(Sp(1)×U(1)), and SU(3)/T 2, each equipped with a unique invariant
nearly Kähler structure.

In the first case, the nearly Kähler metric is the constant curvature
metric, which is S̃-stable. The second case is treated in Example 4.1 above.
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For the last two cases, the nearly Kähler metric lies in the canonical variation
of the Riemannian submersions given by the twistor fibrations

Sp(2)/(Sp(1)U(1)) −→ Sp(2)/(Sp(1)× Sp(1)) = S4

SU(3)/T 2 −→ SU(3)/S(SU(2)U(1)) = CP2

equipped with the metrics induced by the negative of the Killing form of G.
The Einstein metrics are given by 9.72 of [Bes87] and the first graph of Fig.
9.72 there. The Fubini-Study metric on CP3 is S̃-stable [Koi80] so the strict
nearly Kähler one must be given by the local minimum in the canonical
variation.

For the last case, the fiber and base metrics are Einstein. The Einstein
constant ΛB of the base is 1

2 since we are using the Killing form metric on a
symmetric space (see Corollary 1.6 in [WZ85]). The fibers are SU(2)/U(1)
and hence are symmetric as well. But the Killing form of SU(3) restricts to
3
2 times the Killing form of SU(2) by page 583 of [WZ85]. So the Einstein
constant ΛF of the fibers is 2

3 · 1
2 = 1

3 . It follows that ΛB − 2ΛF = −1
6 <

0 and a destablizing TT-tensor is given, for example, by Theorem 1.1 in
[WW18]. □

Remark 4.5. It is actually known that the Killing form metric on
SU(3)/T 2 is a local minimum for the normalized scalar curvature functional
on the space of SU(3)-invariant metrics. This can be checked by directly
computing the Hessian of the normalized scalar curvature function at the
Killing form metric. Since b2(SU(3)/T

2) = 2, it follows from [CHI04] that
the three invariant Kähler Einstein metrics on it are also ν-unstable.

Analogous computations for SU(n+ 1)/Tn show that the Killing form
metric is also ν-unstable.

Consider next the situation in which we have a circle bundle

(4.2) F = U(1) = (H ·U(1))/H −→ M = G/H
π−→ B = G/(H ·U(1))

where the base is an irreducible compact Hermitian symmetric space of
dimension 2m. B is simply connected and has second Betti number equal
to 1. The above fibration becomes a Riemannian submersion with totally
geodesic fibers if we give G/H and G/(H ·U(1)) the normal metrics induced
byQG. We shall denote these respectively by g and ǧ, and denote the induced
metrics on the fibers by ĝ. In particular the base metric is Kähler-Einstein
and has Ricci curvature 1

2 .
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The canonical variation of g introduced in Chapter 9.G of [Bes87] is the
1-parameter family of metrics

gt = t2ĝ + ǧ

on the total space M , where in the above definition the horizontal and ver-
tical distributions of the Riemannian submersion are used implicitly. There
is a unique choice of t2 (indeed t2 = 2m

m+1) which makes gt into an Einstein

metric with Einstein constant Λ = m
2m+2 . If we multiply gt by 1

4m+4 , then
the resulting metric would have Einstein constant 2m and the submersed
metric on the base would have Einstein constant 2m+ 2. In other words, the
rescaled metric would be Sasaki Einstein. Since stability properties are inde-
pendent of homothety, those of gt are the same as those of the corresponding
Sasaki Einstein metric.

Simply connected Sasaki Einstein manifolds are spin and admit non-
trivial real Killing spinors. So we shall take care in the following to ensure
that G/H is also simply connected. Let t2∗ denote the special value 2m

m+1 . It
follows that the Einstein metric gt∗ admits at least two linearly independent
Killing spinors. We shall show below that in some cases the Einstein metric
gt∗ is ν-unstable by exhibiting an eigenvalue of the Laplacian which is less
than 2Λgt∗ = m

m+1 .
To do this we will use the results in [BeBo82] and [BB90], which we

recall briefly below. Let ∆t and ∆v denote respectively the Laplacian of gt
and the vertical Laplacian of the Riemannian submersion (4.2) (with metric
g1). Because of the totally geodesic property, all fibers of our fibration are
isometric, and the vertical Laplacian is just the collection of Laplacians of
the fibers (for the metrics ĝ). Then ∆1 is the Laplacian of the Killing form
metric, whose eigenvalues can be found using representation theory. We have
the relation

∆t = ∆1 +

(
1

t2
− 1

)
∆v.

Note that in the totally geodesic situation, ∆1 and ∆v commute. The opera-
tor ∆v is not elliptic, however, but has discrete spectrum, and its eigenvalues
can have infinite multiplicities. The crucial fact for us is the

Theorem 4.6. ([BeBo82] Theorem 3.6, [BetPi13] Remark 3.3) L2(M, g1)
has a Hilbert space basis consisting of simultaneous eigenfunctions of ∆1

and ∆v.
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It follows from this that every eigenvalue of ∆t is the sum of an eigenvalue
of ∆1 and 1

t2
− 1 times an eigenvalue of ∆v. It is not completely straight-

forward to decide which combinations of eigenvalues occur in general, but
this has been worked out in [BB90].

In our situation, we will assume m > 1; otherwise B = S2 and M , being
of dimension 3, must have constant curvature and so is S̃-stable. Then t2∗ > 1
and 1

t2
∗

− 1 = −
(
m−1
2m

)
< 0. Let h0 denote the usual metric on U(1) = S1 so

that it has circumference 2π. Suppose the Killing form metric induces on the
U(1) fibers in (4.2) the metric ah0 where a > 0. Then since the eigenvalues
of ∆v are of the form 1

a
ℓ2 where ℓ ∈ Z, it follows that the eigenvalues of ∆t∗

are of the form

(4.3) λ+

(
1

t2∗
− 1

)
ℓ2

a
= λ−

(
m− 1

2m

)
ℓ2

a
≤ λ,

where λ is an eigenvalue of ∆1.
In order to apply the results in [BB90], we need to write M = G/H as

G/H ×L U(1) where L := U(1) acts freely on the right of P = G/H = M
and isometrically on the left of F = U(1). Note that the metric on M is
gt∗ and the metric on F is t2∗ah0. On the other hand, the principal bundle
p : P −→ B is the projection of G/H onto B = G/K where both spaces
are equipped with the normal metric induced by QG, and so L indeed acts
via isometries of this metric. Now in the proof of the results in [BB90],
the authors employ a separate canonical variation along the fibers of this
Riemannian submersion, which, when combined with Cheeger’s trick, kills
off the metric along L as the variation parameter tends to infinity. In the limit
we then get the eigenvalues of ∆t∗ expressed as the sum of eigenvalues of the
horizontal Laplacian of the fibration p and “corresponding” eigenvalues of
(F, t2∗ah0). Here “corresponding” means that the action of the group L on the
irreducible summands of the eigenspaces in L2(P,QG) and L2(F, t2∗ah0) must
be the same. Finally, note that the eigenvalues of the horizontal Laplacian
of the fibration p can be written as a difference of an eigenvalue of the
Laplacian of QG and an eigenvalue of the vertical Laplacian corresponding
to the metric ah0. This gives back the form (4.3) of the eigenvalue together
with the additional information as to which ℓ can occur for a given λ.

Observation: The above discussion implies that if we can find an irreducible
unitary representation of G that is of class 1 relative to H on which L acts
non-trivially and if this representation has a Casimir constant ≤ m

m+1 then
the Einstein metric gt∗ is ν-unstable. Furthermore, if inequality holds for the
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Casimir constant, then the same conclusion holds without having to check
whether the action of L is trivial or not.

Example 4.7. Let G = SO(m+ 2),K = SO(m)× SO(2), and H = SO(m)
with m ≥ 3. Then L = SO(2) and B = G/K is the hyperquadric of complex
dimension m. Note that G/H is simply connected. The vector representa-
tion ρm+2 of SO(m+ 2) on Cm+2 has a fixed point set of complex dimension
2 when restricted to SO(m). L acts on the right of Cm+2 via the usual rep-
resentation of U(1) by rotations (ℓ = 1). The element i of the Lie algebra of
U(1) corresponds to the matrix in so(m+ 2) consisting of zeros everywhere
except for a single 2× 2 block in the lower right hand corner given by

(
0 −1
1 0

)
.

This matrix has length 2m with respect to QG, and so the constant a = 2m.
The Casimir constant of ρm+2 is m+1

2m < m
m+1 since QG = 2(m+ 2− 2)Q′

G

where Q′
G is that multiple of the negative of the Killing form so that the

maximal root has length −
√
2. (See pp. 583-586 of [WZ85] for more details.)

The corresponding eigenvalue of ∆t∗ is

m+ 1

2m
− m− 1

2m

1

2m
.

Since the multiplicity of the eigenvalue m+1
2m in L2(SO(m+ 2)/SO(m)) is

2(m+ 2) we obtain a 2(m+ 2)-dimensional positive definite subspace for
the second variation of the ν-functional that is orthogonal to the unstable
direction we found in §3.

Example 4.8. Let G = E6, H = Spin(10), and K = (Spin(10)×
U(1))/∆(Z/4). Then B = G/K is a Hermitian symmetric space of di-
mension 2m = 32, and G/H is simply connected. (But G/K is not effective
since the center Z/3 of E6 (lying in the U(1) factor in K) is the ineffective
kernel.) The Einstein constant Λgt∗ is equal to 16

34 .
Let πλ be one of the two lowest dimensional irreducible unitary repre-

sentations of E6, and λ be its dominant weight. The complex dimension of
πλ is 27, and by Table 25, p. 203, of [Dyn52], upon restriction to Spin(10)
it decomposes as ρ10 ⊕∆+

10 ⊕ I where ρ10 is the vector representation of
Spin(10), ∆+

10 is the positive spin representation, and I denotes a trivial one-
dimensional representation. Hence πλ is of class 1 with respect to Spin(10).
If we picked the other lowest dimensional representation, which is contrage-
dient to πλ, then in the decomposition the + spin representation would be
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replaced by the − spin representation. Now QE6
= 24Q′

E6
so from Table III,

p. 586 of [WZ85], QG(λ, λ+ 2δ) = 1
24 · 52

3 = 13
18 < 16

17 = 2Λgt∗ . So there is no
need to determine the action of L = U(1) on the right of πλ. We obtain a
2 · 27 = 54-dimensional subspace of divergence-free symmetric 2-tensors on
which the second variation of the ν-functional is positive definite.

Example 4.9. Let G = E7, H = E6 and K = E6 ·U(1) where K is the
quotient of E6 ×U(1) by the diagonally embedded Z/3. (The center of E6

is Z/3.) G/H is simply connected. The dimension of G/K = B is 2m = 54
and so the Einstein constant Λ for gt∗ is 27

56 . G/K again is not effective, but
can be made so by dividing by the center of E7, which is Z/2.

We consider the lowest dimensional non-trivial irreducible representation
πλ of E7, which is of dimension 56. By Table 25, p. 204 of [Dyn52], upon
restriction to E6, πλ decomposes as 2I⊕ ρ, where ρ is the real irreducible
representation of E6 corresponding to one of the 27-dimensional irreducible
complex representations of E6. So πλ is of class 1 with respect to E6 with
fixed point set of dimension 2. Because QG = 36Q′

G, the Casimir constant
QG(λ, λ+ 2δ) = 1

36 · 57
2 = 57

72 < 2Λ = 27
28 (see Table III, p. 586 of [WZ85]).

So again we do not need to determine the action of U(1) on this irreducible
summand in L2(G/H) and we obtain a 2 · 56-dimensional subspace on which
the second variation of the ν-functional is positive definite.

Example 4.10. Let G = SU(p+ 2), H = SU(p)× SU(2), and K =
S(U(p)×U(2)) with p ≥ 2. Then G/H is simply connected. Note that G/K
has the distinction of being the only Hermitian symmetric space that is also
quaternionic symmetric. Its dimension is 2m = 4p, so the Einstein constant
Λt∗ = p

2p+1 .

Let µk denote the vector representation of SU(k) on Ck. We claim that
Λ2µp+2, which is irreducible, is of class 1 relative to H. This follows from
the calculation

(4.4) Λ2µp+2| SU(p)× SU(2) = Λ2µp⊗̂I⊕ I⊗̂Λ2µ2 ⊕ µp⊗̂µ2

where I denotes the 1-dimensional trivial representation and ⊗̂ denotes the
external tensor product. Since µ2 has dimension 2 and the determinants in
SU(2) equal to 1, we get a single trivial summand upon restriction, provided
p > 2.
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Let λ denote the dominant weight of µp+2. Since QSU(p+2) = 2(p+
2)Q′

SU(p+2), using Table III of [WZ85], we have

QG(λ, λ+ 2δ) =
1

2(p+ 2)
· 2p · p+ 3

p+ 2
=

p(p+ 3)

(p+ 2)2
< 2Λgt∗ =

2p

2p+ 1
.

So again it is unnecessary to determine the action of U(1) = L on Λ2µp+2.
We obtain a (p+ 2)(p+ 1)/2-dimensional subspace on which the second
variation of the ν-functional is positive definite.

Notice that when p = 2, G/H = SU(4)/(SU(2)× SU(2)) =
SO(6)/SO(4), which we analysed in Example (4.7). In this special
case, we have an additional trivial summand coming from the Λ2µp in
(4.4), and so the multiplicity of Λ2µp+2 in L2(G/H) is doubled, which is
consistent with the analysis in Example (4.7).

5. Low-dimensional homogeneous Einstein spaces and Sasaki

Einstein spaces

In this section we will first apply the results in the earlier sections and
in [WW18] to determine the stability of low-dimensional simply connected
compact homogeneous Einstein manifolds. Given such a manifold we will
write it in the form G/K where G is compact, connected, semisimple, and
K is a closed subgroup ofG. We also assume thatG acts almost effectively on
G/K. These assumptions are not too restrictive, since the isometry group of
a compact Riemannian manifold is compact, and the semisimple part of the
identity component of a transitive Lie group acting on a simply connected
closed manifold also acts transitively on it.

The S̃ and ν-linear stability of the symmetric metric on compact sym-
metric spaces was analysed by Koiso [Koi80] and Cao-He [CH15]. We shall
therefore assume that (G,K) is not a symmetric pair unless otherwise stated.
Also recall that any product Einstein metric with positive scalar curvature
is S̃-linearly unstable.

We shall begin with dimension five, since Jensen [J69] proved that all
simply connected homogeneous 4-manifolds are symmetric.

I. Dimension five

The classification of simply connected compact homogeneous Einstein
5-manifolds was given in [ADF96]. There are only two non-symmetric cases:
the Stiefel manifold SO(4)/SO(2), and the family (SU(2)× SU(2))/Uk,l

where k, l are relatively prime integers not both equal to 1, and Uk,l is the
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circle embedded by eiθ 7→ (eikθ, eilθ). The unique SU(2)× SU(2)-invariant
Einstein metric is in fact of Riemannian submersion type over S2 × S2. It
is not Sasaki Einstein, and by Corollary 1.3 in [WW18], it is S̃-linearly un-
stable. The case of the Stiefel manifold SO(4)/SO(2) actually corresponds
to the (k, l) = (1, 1) case of the above infinite family. There are two invari-
ant Einstein metrics on this space. One is the Sasaki Einstein metric, which
is S̃-linearly unstable, and the other is the product metric, which is also
S̃-linearly unstable.

The symmetric 5-manifolds are S5 (stable), S3 × S2 (S̃-linearly unsta-
ble), and SU(3)/SO(3), which is neutrally linearly stable, i.e., ν-linearly
stable and the kernel of the second variation operator contains a symmetric
2-tensor orthogonal to the orbit of the diffeomorphism group.

II. Dimension six

The classification of simply connected compact homogeneous Einstein
metrics in dimension 6 is as yet incomplete. The only open case is that of
S3 × S3 with a left-invariant metric. The remaining possibilities are clas-
sified in [NR03]. In the same paper, the authors showed that if the left-
invariant Einstein metric has an additional circle of isometries acting by right
translations, then up to isometries and homotheties it must be the product
metric or the strict nearly Kähler metric induced by the Killing form on
(SU(2)× SU(2)× SU(2))/∆SU(2). Quite recently, this result has been im-
proved in [BCHL18] to allow the same conclusion as long as S3 × S3 = G/K
with K ̸= Z/2.

The stability of the strict nearly Kähler metrics was dealt with in Propo-
sition 4.4 in section 4. The only non-symmetric case is that of CP3 =
Sp(2)/(Sp(1)×U(1)) with the Ziller metric. This metric is S̃-linearly un-
stable as it lies in the canonical variation of the Fubini-Study metric on
CP3, viewed as a Riemannian submersion with totally geodesic fibers over
the self-dual Einstein space HP1 = S4.

The symmetric cases are all S̃-linearly unstable except for S6 and CP3,
which are both stable.

III. Dimension seven

The seven-dimensional simply connected compact homogeneous Einstein
manifolds were classified in [Nik04]. Except for S7 the symmetric cases are
all product manifolds, and hence are S̃-linearly unstable. As for the non-
symmetric cases, those which are not product manifolds consist of

(1) the Aloff-Wallach spaces Nk,l, with k, l relatively prime integers;
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(2) the circle bundles over S2 × S2 × S2;

(3) the circle bundles over CP2 × S2;

(4) the Jensen squashed 7-sphere;

(5) the Stiefel manifold SO(5)/SO(3);

(6) the isotropy irreducible space Sp(2)/SU(2) where the embedding of
SU(2) is via the irreducible 4-dimensional symplectic representation.

The first case is covered by Theorem 1.3, proved in §2.2 and 2.3. The
second and third cases have S̃-coindex of at least 2 and 1 respectively by
results in [WW18]. The metric in case 4 lies in the canonical variation of the
Riemannian submersion given by the Hopf fibration. It is clearly S̃-linearly
unstable since the round metric on S7 is stable. The Euclidean cone of the
Jensen sphere has Spin(7) holonomy, i.e., the Jensen metric is nearly parallel
G2 with only a 1-dimensional space of real Killing spinors. The fifth case is
discussed in §3 and in Example 4.7 in §4. The nature of the last case remains
open.

The discussions in I - III above completes the proof of Theorem 1.5.

One of the two isometry classes of SU(3)-invariant Einstein metrics on
N1,1 is 3-Sasakian and fits into the more general context of regular 3-Sasakian
manifolds. We refer the reader to Chapter 13 of [BG08] for background about
this family of spaces. It turns out that regular 3-Sasakian manifolds are
given by certain principal SO(3) or Sp(1) bundles over a quaternionic Kähler
manifold with positive scalar curvature. (One gets an Sp(1) bundle only
when the quaternionic Kähler manifold is quaternionic projective space.)
The prevailing conjecture is that the only quaternionic Kähler manifolds
with positive scalar curvature are the quaternionic symmetric spaces. This
conjecture has been proved in dimensions 4 [Hit81] and 8 [PS91].

The 3-Sasakian metric makes the bundle projection into a Riemannian
submersion with totally geodesic fibres. By looking at the canonical vari-
ation of this Riemannian submersion, it follows immediately that there is
a second Einstein metric on the principal bundle that is not isometric to
the 3-Sasakian metric. (This fact was independently observed by Bérard
Bergery and S. Salamon.) In fact the second Einstein metric is always a
local minimum in the canonical variation, see e.g., Theorem 3.4.1 in [BG99].
So this more general viewpoint explains the existence of the second Einstein
metric and its S̃-linear instability, and applies in particular to N1,1. The

S̃-linear instability of the 3-Sasakian metric, which cannot be detected from
the canonical variation, can be explained by Corollary 1.7 in [WW18], since
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it is also the Sasaki Einstein metric on the circle bundle over one of the
homogeneous Kähler Einstein metrics on SU(3)/T , which has b2 > 1.

The same argument works for the regular 3-Sasakian manifold over
the complex Grassmannian SU(p+ 2)/(S(U(p)×U(2)), which are the only
Hermitian symmetric spaces with a quaternionic Kähler structure. For the
twistor spaces of the other compact quaternionic symmetric spaces, the sec-
ond Betti number is 1, so their instability is at present unclear. We have
therefore deduced

Corollary 5.1. The two Einstein metrics lying in the canonical variation of
the regular 3-Sasakian fibration SO(3) −→ SU(p+ 2)/(S(U(p)×∆S1)) −→
SU(p+ 2)/(S(U(p)×U(2)), p ≥ 1, are both S̃-linearly unstable.

Added in Proof. Case (6) on p. 1924 has been resolved in [SWW22], see
Theorem 5.6 there. It is also shown in [SWW22] that any complete Sasaki
Einstein manifold of dimension > 3 with nonzero second Betti number is S̃
linearly unstable. Note that the Stiefel manifolds discussed in the present
paper have zero second Betti number.
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