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Existence and multiplicity of solutions for

a class of indefinite variational problems
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In this paper we study the existence and multiplicity of solutions
for the following class of strongly indefinite problems

(P )k

{

−∆u+ V (x)u = A(x/k)f(u) in R
N ,

u ∈ H1(RN ),

where N ≥ 1, k ∈ N is a positive parameter, f : R → R is a
continuous function with subcritical growth and V,A : RN → R are
continuous functions verifying some technical conditions. Assuming
that V is a Z

N -periodic function, 0 ̸∈ σ(−∆+ V ) the spectrum of
−∆+ V , we show how the ”shape” of the graph of function A
affects the number of nontrivial solutions.

1. Introduction

This paper concerns with the existence and multiplicity of solutions for the
following class of problems

(P )k

{

−∆u+ V (x)u = A(x/k)f(u) in R
N ,

u ∈ H1(RN ),

where N ≥ 1, k ∈ N is a positive parameter, f : R → R is a continuous
function with subcritical growth and V,A : R → R are continuous functions
verifying some technical conditions.

In the whole paper, function V is ZN -periodic with

(V1) 0 ̸∈ σ(−∆+ V ), the spectrum of −∆+ V,

which means that the problem is strongly indefinite.
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partially supported by NSFC(11971436, 12011530199) and ZJNSF(LZ22A010001,
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Related to function A, we assume the following conditions:

(H1) Function A : RN → R is a continuous function satisfying

lim
|x|→∞

A(x) = A∞,

with 0 < A∞ < A(x) for any x ∈ R
N .

(H2) There exist l points z1, z2, ..., zl in Z
N with z1 = 0 such that

1 = A(zi) = max
x∈RN

A(x), for 1 ≤ i ≤ l.

The present paper was motivated by some recent results that studied
the existence of ground state solutions for related problems to (P )k, more
precisely, for the strongly indefinite problems of type

(1.1)

{

−∆u+ V (x)u = f(x, u), in R
N ,

u ∈ H1(RN ).

In [8], Kryszewski and Szulkin studied the existence of ground state solution
for (1.1) by supposing condition (V1). Involving the function f : RN × R →
R, they assumed that the function f is continuous, ZN -periodic in x with

(h1) |f(x, t)| ≤ c(|t|q−1 + |t|p−1), ∀t ∈ R and x ∈ R
N

and

(h2) 0 < αF (x, t) ≤ tf(x, t) ∀(x, t) ∈ R
N × R

∗, F (x, t) =

∫ t

0
f(x, s) ds

for some c > 0, α > 2 and 2 < q < p < 2∗ where 2∗ =
2N

N − 2
if N ≥ 3

and 2∗ = +∞ if N = 1, 2. The above hypotheses guarantee that the energy
functional associated to (1.1) given by

J(u) =
1

2

∫

RN

(|∇u|2 + V (x)|u|2) dx−

∫

RN

F (x, u) dx, ∀u ∈ H1(RN ),

is well defined and belongs to C1(H1(RN ),R). By assumption (V1), there is
an equivalent inner product ⟨ , ⟩ in H1(RN ) such that

J(u) =
1

2
∥u+∥2 −

1

2
∥u−∥2 −

∫

RN

F (x, u) dx,
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where ∥u∥ =
√

⟨u, u⟩ and H1(RN ) = E+ ⊕ E− corresponds to the spectral
decomposition of −∆+ V with respect to the positive and negative part of
the spectrum with u = u+ + u−, where u+ ∈ E+ and u− ∈ E−. In order to
prove the existence of solutions for (P1), Kryszewski and Szulkin introduced
a new and interesting generalized linking theorem. In [11], Li and Szulkin
improved this generalized linking theorem and proved the existence of
solution for a class of strongly indefinite problem with f being asymptotically
linear at infinity.

The linking theorems mentioned above were applied in many papers, we
would like to mention Chabrowski and Szulkin [4], do Ó and Ruf [6], Furtado
and Marchi [7], Tang [20, 21] and the references therein.

Pankov and Pflüger [13] also considered the existence of solution for
problem (P1) with the same conditions introduced in [8], however the
approach was based on an approximation technique of periodic function
together with the linking theorem due to Rabinowitz [14]. Later, Pankov
[12] studied the existence of solution for problems of the type

(1.2)

{

−∆u+ V (x)u = ±f(x, u), in R
N ,

u ∈ H1(RN ),

by supposing conditions (V1), (h1)− (h2) and employing the same approach
explored in [13]. In [12] and [13], the existence of ground state solutions was
established by assuming that f is C1 and there exists θ ∈ (0, 1) such that

(h3) 0 < t−1f(x, t) ≤ θf ′t(x, t), ∀t ̸= 0 and x ∈ R
N .

In [12], Pankov obtained a ground state solution by minimizing the energy
functional J on the set

O =
{

u ∈ H1(RN ) \ E− ; J ′(u)u = 0 and J ′(u)v = 0, ∀ v ∈ E−
}

.

The reader is invited to see that if J is strongly definite, that is, when
E− = {0}, the set O is exactly the Nehari manifold associated to J .
Hereafter, we say that u0 ∈ H1(RN ) is a ground state solution if

J ′(u0) = 0, u0 ∈ O and J(u0) = inf
w∈O

J(w).

Szulkin and Weth [15] established the existence of ground state solution
for problem (1.1) by completing the study made in [12]. In fact they also
minimize the energy functional on O, however they have used more weaker
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conditions on f , for example f is continuous, ZN -periodic in x and satisfies

(h4) |f(x, t)| ≤ C(1 + |t|p−1), ∀t ∈ R and x ∈ R
N

for some C > 0 and p ∈ (2, 2∗).

f(x, t) = o(t) uniformly in x as |t| → 0.(h5)

F (x, t)/|t|2 → +∞ uniformly in x as |t| → +∞,(h6)

and

(h7) t 7→ f(x, t)/|t| is strictly increasing on R \ {0}.

The same result was also established by Yang in [25] by applying a monotone
trick. Finally, for the perturbed periodic Schrödinger equation, Alves and
Germano in [1–3] studied the existence and concentration of solution for
strongly indefinite problem like

(1.3)

{

−∆u+ V (x)u = A(ϵx)f(u) in R
N ,

u ∈ H1(RN ),

where V is as above and A is a continuous function satisfying some technical
conditions.

For the definite case, Cao and Noussair [5] considered the existence and
multiplicity of solutions for the following class of problem

(1.4)

{

−∆u+ u = A(ϵx)|u|p−2u in R
N ,

u ∈ H1(RN ).

This equation is strongly definite because V = 1. Using Ekeland’s variational
principle and concentration compactness principle of Lions [10], Cao and
Noussair proved that if A has l equal maximum points, then problem (1.4)
has at least l positive solutions and l nodal solutions if ϵ is small enough.
Later Wu in [24] proved the existence of at least ℓ positive solutions for the
perturbed problem

(1.5)







−∆u+ u = h(εx)|u|r−2u+ λg(εx)|u|q−2u in R
N ,

u ∈ H1(RN ),
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where λ is a positive small parameter, q ∈ [1, 2) and g : RN → R is a
nonnegative continuous satisfying

g(x) → 0 and |x| → +∞.

In [24], an important fact is that the energy functional associated with (1.5)
satisfies the mountain pass geometry and has a well defined Nehari manifold.

Inspired by the results in [5], the aim of the present paper is to prove a
similar result for (P )k, one can see how the ”shape” of A affects the number
of nontrivial solutions. However, we would like point out that one of the main
difficulties is the loss of the mountain pass geometry, because we are working
with a strongly indefinite problem. Then, if Ik denotes the energy functional
associated with (P )k, we need to carry out a careful study involving the
behavior of number ck given by

(1.6) ck = inf
u∈Mk

Ik(u)

where

(1.7) Mk =
{

u ∈ H1(RN ) \ E− ; I ′k(u)u = 0 and I ′k(u)v = 0, ∀ v ∈ E−
}

.

The understanding of the behavior of ck is a key point in our approach to
show the existence of multiple solutions for k large enough.

Hereafter, f : R → R is a continuous function that verifies the following
assumptions:

(f1)
f(t)

t
→ 0 as t→ 0.

(f2) lim sup
|t|→+∞

|f(t)|

|t|q
< +∞ for some q ∈ (1, 2∗ − 1).

(f3) t 7→ f(t)/t is increasing on (0,+∞) and decreasing on (−∞, 0).
(f4) (Ambrosetti-Rabinowitz) There exists θ > 2 such that

0 < θF (t) ≤ f(t)t, ∀ t ̸= 0

where F (t) :=

∫ t

0
f(s)ds.

Our main result is the following theorem.

Theorem 1.1. There is k∗ > 0 such that (P )k has at least l nontrivial
solution for k > k∗.
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In the proof Theorem 1.1 we will use some arguments applied in [2],
because the energy functional here has the same geometry explored in that
paper. We would like to point out that our paper completes the study made
in that paper in the sense that here we are assuming different assumptions
on function A, for example, in [2] the function A satisfies the condition

(A1) 0 < A0 = inf
x∈RN

A(x) ≤ lim
|x|→+∞

A(x) < sup
x∈RN

A(x),

which is not assumed in the present paper.
The plan of the paper is as follows: In Section 2 we show a compactness

result for the autonomous problem, which is a crucial result in our approach,
see Theorem 2.3. In Section 3 we show the existence of multiple solutions
for (P )k.

Notation. In this paper, we will use the following notations:

• on(1) denotes a sequence that converges to zero.

• If g is a mensurable function, the integral

∫

RN

g(x) dx will be denoted

by

∫

g(x) dx.

• BR(z) denotes the open ball with center z and radius R in R
N .

• The usual norms inH1(RN ) and Lp(RN ) will be denoted by ∥ ∥H1(RN )

and | |p respectively.

• For each u ∈ H1(RN ), the equality u = u+ + u− yields u+ ∈ E+ and
u− ∈ E−.

2. A compactness result for the autonomous problem.

In this section our main goal is to prove a compactness result for the
autonomous equation that will be used later on. In order to do that, we
need to recall some results that were proved in [2]. Let us consider the
following autonomous problem

(AP )λ

{

−∆u+ V (x)u = λf(u) in R
N ,

u ∈ H1(RN ),

where λ > 0 and V, f verify the conditions (V1) and (f1)− (f4)
respectively. Associated to equation (AP )λ we define the energy functional
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Jλ : H1(RN ) → R by

Jλ(u) =
1

2

∫

(|∇u|2 + V (x)|u|2) dx− λ

∫

F (u) dx,

equivalently

Jλ(u) =
1

2
∥u+∥2 −

1

2
∥u−∥2 − λ

∫

F (u) dx.

In what follows, let us denote by dλ the real number defined by

(2.8) dλ = inf
u∈Nλ

Jλ(u);

where

(2.9) Nλ =
{

u ∈ H1(RN ) \ E− ; J ′
λ(u)u = 0 and J ′

λ(u)v = 0, ∀ v ∈ E−
}

.

Moreover, for each u ∈ H1(RN ), the sets E(u) and Ê(u) designate

(2.10) E(u) = E− ⊕ Ru and Ê(u) = E− ⊕ [0,+∞)u.

The reader is invited to observe that E(u) and Ê(u) are independent of
λ, more precisely they depend on only of the operator −∆+ V . This remark
is very important because these sets will be used in the next sections as well
as the lemma below.

Lemma 2.1. For all u = u+ + u− ∈ H1(RN ) and y ∈ Z
N , if

uy(x) := u(x+ y) then uy ∈ H1(RN ) with u+y (x) = u+(x+ y) and u−y (x) =
u−(x+ y).

In [15], Szulkin and Weth have proved that for each λ > 0, the problem
(AP )λ possesses a ground state solution uλ ∈ H1(RN ), that is,

uλ ∈ Nλ, Jλ(uλ) = dλ and J ′
λ(u) = 0.

Still in [15], the authors also proved that

(2.11) 0 < dλ = inf
u∈E+\{0}

max
v∈Ê(u)

Jλ(u).

Moreover, an interesting and important fact is that for each u ∈ H1(RN ) \
E−, Nλ ∩ Ê(u) is a singleton set and the element of this set is the unique
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global maximum of Jλ|Ê(u), that is, there are t∗ ≥ 0 and v∗ ∈ E− such that

(2.12) Jλ(t
∗u+ v∗) = max

w∈Ê(u)
Jλ(w).

By (2.12), we can define the function

(2.13) mλ : E+ \ {0} → Nλ where mλ(u) = t∗u+ v∗ ∈ Ê(u) ∩Nλ.

Proposition 2.2. The function λ 7→ dλ is decreasing and continuous on
(0,+∞).

The next result is an important compactness result, which is well known
for the strongly definite case, for example if inf

x∈RN
V (x) > 0. Here we prove

that it also holds for the strongly indefinite case and its proof follows as in
[2, Proposition 4.5]. For the completeness of the paper, we outline the proof
here for readers’ convenience.

Theorem 2.3. (Compactness result) Let {un} ⊂ H1(RN ) be a (PS)dλ

sequence for Jλ with un ⇀ u in H1(RN ). Then, one of the following two
cases holds:

(i) un → u in H1(RN ),
or

(ii) There exists {yn} ⊂ Z
N with |yn| → ∞ such that the sequence

ũn(x) = un(.+ yn) is strongly convergent to a function H1(RN ) for
some v ∈ H1(RN ) \ {0}.

Proof. We begin the proof by showing that (i) holds if u ̸= 0. In fact, since
{un} is a (PS)dλ

sequence, we know that J ′
λ(u) = 0. Then, if u ̸= 0, we know

that u ∈ Ndλ
, and so,

dλ ≤ Jλ(u) = Jλ(u)−
1

2
J ′
λ(u)u =

∫
(

1

2
f(u)u− F (u)

)

dx

≤ lim inf
n→+∞

∫
(

1

2
f(un)un − F (un)

)

dx

≤ lim sup
n→+∞

∫
(

1

2
f(un)un − F (un)

)

dx

= lim sup
n→+∞

(

Jλ(un)−
1

2
J ′
λ(un)un

)

= dλ.
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Therefore

lim
n→+∞

∫
(

1

2
f(un)un − F (un)

)

dx =

∫
(

1

2
f(u)u− F (u)

)

dx.

Since
1

2
f(un)un − F (un) ≥ 0, ∀n ∈ N,

and supposing that

un(x) → u(x) a.e. in R
N ,

we deduce that

1

2
f(un)un − F (un) →

1

2
f(u)u− F (u) in L1(RN ).

Thus, up to subsequence, there exists H ∈ L1(RN ) such that

1

2
f(un)un − F (un) ≤ H a.e. in R

N

for all n ∈ N. Then, by (f4),

(

1

2
−

1

θ

)

f(un)un ≤ H, ∀n ∈ N.

Consequently, there exists c > 0 such that

f(un)un ≤ cH, ∀n ∈ N.

In what follows, we set

Qn := f(un)u
+
n − f(u)u+.

Our goal is to prove that
∫

|Qn|dx→ 0.

First of all, as f is of subcritical growth,

(2.14)

∫

BR(0)
|Qn|dx→ 0, ∀R > 0.

On the other hand, for each τ > 0, we can fix R large enough a such way
that

∫

BR(0)c
|f(u)u+|dx < τ.
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Claim 2.4. Increasing R if necessary, we also have

∫

BR(0)c
|f(un)u

+
n |dx < 2Θτ, ∀n ∈ N

where

Θ := sup
n∈N

{

(
∫

|u+n |
q+1dx

)
1

q+1

,

∫

|unu
+
n |dx

}

.

In fact, by [2, Lemma 4.4], for each τ > 0 the exists cτ > 0 such that

|gτ (t)| ≤ τ |t| and |jτ (t)|
r ≤ cτ tf(t), ∀t ∈ R,

where r =
q + 1

q
with q given in (f2). Here,

gτ (t) := χδ(t)f(t) and jτ (t) := χ̃δ(t)f(t),

where χδ is the characteristic function on (−δ, δ) and χ̃δ(t) = 1− χδ(t) and
δ > 0 is fixed of a such way that

|f(t)|

|t|
< τ, ∀t ∈ (−δ, δ).

Using the above functions, we have that

∫

BR(0)c
|f(un)u

+
n |dx =

∫

BR(0)c
|gτ (un)||u

+
n |dx+

∫

BR(0)c
|jτ (un)||u

+
n |dx

≤ τ

∫

BR(0)c
|un||u

+
n |dx+

(

∫

BR(0)c
|jτ (un)|

rdx

)1/r(
∫

BR(0)c
|u+n |

q+1dx

)1/(q+1)

≤ τΘ+

(

∫

BR(0)c
cτf(un)undx

)1/r

Θ ≤ τΘ+ cτ

(

∫

BR(0)c
cH dx

)1/r

Θ.

Now, increasing R if necessary, a such way that

cτ

(

∫

BR(0)c
cH dx

)1/r

< τ,

we get
∫

BR(0)c
|f(un)u

+
n |dx ≤ 2τΘ,
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proving Claim 2.4. From (2.14) and Claim 2.4,

∫

|Qn| dx→ 0.

Therefore

f(un)u
+
n → f(u)u+ in L1(RN ).

Analogously,

f(un)u
−
n → f(u)u− in L1(RN ).

Since J ′
λ(un)u

+
n = on(1), it follows that

||u+n ||
2 =

∫

f(un)u
+
n dx→

∫

f(u)u+dx = ||u+||2,

showing that u+n → u+ in H1(RN ), because u+n ⇀ u+ in H1(RN ). Likewise
u−n → u− in H1(RN ). Thereby un = u+n + u−n → u+ + u− = u in H1(RN ),
proving that (i) holds.

Now, we are going to prove that if u = 0, then ii) holds. Assuming that
u = 0 and arguing as in the proof of Proposition 2.2, there are r, η > 0 and
{yn} ⊂ Z

N such that

∫

Br(yn)
|u+n |

2 dx ≥ η > 0.

Since u+n ⇀ 0, the last inequality implies that {yn} is an unbounded
sequence. Setting ũn(x) = un(x+ yn), it follows that {ũn} is also a (PS)dλ

sequence for Jλ with ũn ⇀ ũ in H1(RN ) and ũ+ ̸= 0. Repeating the same
arguments explored in the proof of item i), we have that ũn → ũ in H1(RN ),
finishing the proof. □

3. Existence of multiple solutions for (P )k.

Hereafter, for each k ∈ N, we denote by Ik : H1(RN ) → R the energy
functional associated to (P )k defined as

Ik(u) =
1

2

∫

(|∇u|2 + V (x)|u|2) dx−

∫

A(x/k)F (u) dx,

or equivalently

Ik(u) =
1

2
∥u+∥2 −

1

2
∥u−∥2 −

∫

A(x/k)F (u) dx.
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The same idea explored in [15, Lemma 2.4] shows that

(3.15) 0 < ck = inf
u∈E+\{0}

max
v∈Ê(u)

Ik(u).

By [2, Lemma 2.2], we can argue as [15, Lemma 2.6] to prove that for each
u ∈ H1(RN ) \ E−, Mk ∩ Ê(u) is a singleton set and the element of this set
is the unique global maximum of Ik|Ê(u), that is, there are t̃ ≥ 0 and ṽ ∈ E−

such that

(3.16) Ik(t̃u+ ṽ) = max
w∈Ê(u)

Ik(w).

By (3.16), we can define the function

(3.17) mk : E+ \ {0} → Mk where mk(u) = t̃u+ ṽ ∈ Ê(u) ∩Mk.

Hereafter,

(3.18) Mk =
{

u ∈ H1(RN ) \ E− ; I ′k(u)u = 0 and I ′k(u)v = 0, ∀ v ∈ E−
}

.

Our first lemma shows an important relation between ck and dA(0),
however we will omit its proof because it can be done as [2, Lemma 3.1].

Lemma 3.1. The minimax values ck satisfies the limit below

lim
k→+∞

ck = dA(0).

This together with Proposition 2.2 imply the corollary below.

Corollary 3.2. There exists k∗ > 0 such that ck < dA∞
for all k ≥ k∗,

where A∞ = lim
|x|→+∞

A(x).

Our next result shows that Ik is coercive on Mk, since its proof follows
the same steps found in [2, Proposition 3.4] it will also be omitted.

Proposition 3.3. Ik is coercive on Mk.

Hereafter, we consider the functional Ψ̂k : E+ \ {0} → R defined by
Ψ̂k(u) := Ik(mk(u)). We know that Ψ̂k is continuous by previous lemma.
In the sequel, we denote by Ψk : S+ → R the restriction of Ψ̂k to
S+ = B1(0) ∩ E

+.
The next two results establish some important properties involving the

functionals Ψk and Ψ̂k and their proofs follow as in [15].
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Lemma 3.4. Ψ̂k ∈ C1(E+ \ {0},R), and

(3.19) Ψ̂′
k(y)z =

||mk(y)
+||

||y||
I ′k(mk(y))z, ∀y, z ∈ E+, y ̸= 0.

Corollary 3.5. The following properties hold:

(a) Ψk ∈ C1(S+), and

Ψ′
k(w)z = ||m(y)+||I ′k(m(w))z, for z ∈ TyS

+.

Hence, w ∈ S+ is a critical point of Ψk on S+ if, and only if, u = m(w)
is a critical point of Ik in H1(RN ).

(b) {wn} is a (PS)c sequence for Ψk if and only if {mk(wn)} is a (PS)c
sequence for Ik.

(c) (PS)c condition holds for Ψk if, and only if, (PS)c condition holds
for Ik.

Then we can establish the following compactness criteria for Ψk.

Lemma 3.6. The functional Ψk satisfies the (PS)c condition for

c ≤ d1 + γ, where γ =
1

2
(dA∞

− d1).

Proof. Let {ωn} ⊂ S+ be a (PS)c sequence for Ψk. From Corollary 3.5,
un = mk(ωn) is also a (PS)c sequence for functional Ik. Then by
Proposition 3.3, {un} is a bounded sequence in H1(RN ), and passing to
a subsequence of {un}, still denoted by {un}, there exists u ∈ H1(RN ) such
that

un ⇀ u in H1(RN ) and un(x) → u(x) a.e. in R
N .

Since f ∈ C(R,R), it is possible to prove that

(3.20) Ik(un)− Ik(vn)− Ik(u) = on(1)

and

(3.21) ∥I ′k(un)− I ′k(vn)− I ′k(u)∥ = on(1),

where vn = un − u.
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Recalling that I ′k(u) = 0 and Ik(u) ≥ 0, it follows from (3.20)–(3.21) that

(3.22) ∥I ′k(vn)∥ = on(1) and Ik(vn) → c∗ = c− Ik(u).

This implies that {vn} is a (PS)c∗ sequence for Ik with c∗ ≤ d1 + γ.
Claim 1. For each R > 0 fixed, we have

(3.23) lim
n→+∞

sup
y∈RN

∫

BR(y)
|vn|

2dx = 0.

Assuming for instance the claim, we can apply Lions [9] to deduce that
vn → 0 in Lq(RN ), or equivalently, un → u in Lq(RN ). From this, f(un)u

±
n →

f(u)u± in L1(RN ), which implies that u±n → u±n in H1(RN ), proving the
lemma.

Now, we are going to prove Claim 1. If the claim does not hold, there
are ξ > 0 and {yn} ⊂ Z

N such that

lim sup
n→+∞

∫

BR(yn)
|vn|

2dx ≥ ξ > 0.

The last limit ensures that {yn} is an unbounded sequence.
Setting ṽn = vn(.+ yn), we have that {ṽn} is a bounded sequence in

H1(RN ). Hence, there exist ṽ ∈ Lp′

(RN ) \ {0} and subsequence of {ṽn}, still
denoted by itself, such that

ṽn ⇀ ṽ in H1(RN ),

ṽn(x) → ṽ(x) a.e. in R
N

and

∫

BR(0)
|ṽ|2 dx ≥ ξ > 0.

Since I ′k(vn)ψ(.− yn) = on(1), ∀ψ ∈ H1(RN ), the above limits ensure that
J ′
A∞

(ṽ)ψ = 0, then ṽ is a nontrivial critical point of solution of JA∞
. As a
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consequence,

dA∞
≤ JA∞

(ṽ)

= JA∞
(ṽ)−

1

2
J ′
A∞

(ṽ)ṽ

= lim
n→∞

∫

A((x+ yn)/k)(
1

2
f(ṽn)ṽn − F (ṽn))dx

≤ lim inf
n→∞

[Ik(vn)−
1

2
I ′k(vn)vn]

= c∗ ≤ d1 + γ,

which contradicts the fact that γ < dA∞
− d1. Hence Ψk satisfies (PS)c

condition for c ≤ d1 + γ. □

In what follows, let us fix ρ0, r0 > 0 such that Bρ0
(ai) ∩Bρ0

(aj) = Ø

for i ̸= j and i, j ∈ {1, ..., l},
l
⋃

i=1

Bρ0
(ai) ⊂ Br0(0) and K ρ0

2
=

l
⋃

i=1

B ρ0
2
(ai).

Moreover, we also set function Qk : H1(RN ) \ {0} → R
N by

Qk(u) =

∫

RN χ(x/k)|u|2 dx
∫

RN |u|2 dx
,

where χ : RN → R
N is given by

χ(x) =







x, if |x| ≤ r0,

r0
x

|x|
, if |x| > r0.

The following lemma is very useful to obtain (PS)c sequences for Ψk.

Lemma 3.7. There exist α0 > 0 and k1 > 0 such that if u ∈ S+ and
Ψk(u) ≤ d1 + α0, then Qk(u) ∈ K ρ0

2
, ∀k ≥ k1.

Proof. If the lemma is not true, then there exist αn → 0, kn → +∞ and
ωn ∈ S+ such that

Ψkn
(ωn) ≤ c∞ + αn

and

Qkn
(ωn) ̸∈ K ρ0

2
.
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Hereafter, we consider the functional Θ̂λ : E+ \ {0} → R defined by
Θ̂λ(u) := Jλ(mλ(u)) and denote by Θλ : S+ → R the restriction of Θ̂λ to
S+ = B1(0) ∩ E

+, where mλ was given in (2.13)
From definition of Θ1 and Ψk,

d1 ≤ Θ1(ωn) ≤ Ψkn
(ωn) ≤ d1 + αn, ∀n ∈ N.

Then,

{ωn} ⊂ S+ and Θ1(ωn) → d1.

From Ekeland’s Variational principle, we can assume that Θ′
1(ωn) → 0.

Hence, un = m1(ωn) verifies

{un} ⊂ N1, J1(un) → d1 and J ′
1(un) → 0.

By virtue of Theorem 2.3, we need to consider the following two cases:

(i) un → u ̸= 0 in H1(RN ),
or

(ii) There exists {yn} ⊂ Z
N with |yn| → ∞ such that the sequence vn =

un(.+ yn) is strongly convergent to a function H1(RN ) for some
v ∈ H1(RN ) \ {0}.

It is easy to see that if (i) holds, then ωn → ω ̸= 0 in H1(RN ). However, if
(ii) holds, we must have ωn(.+ yn) → ω̂ in H1(RN ).

Analysis of (i): Applying Lebesgue’s dominated convergence theorem

Qkn
(ωn) =

∫

RN χ(x/kn)|ωn|
2dx

∫

RN |ωn|2dx
→

∫

RN χ(0)|ω|2dx
∫

RN |ω|2dx
= 0 ∈ K ρ0

2
.

From this, Qkn
(ωn) = Qkn

(un) ∈ K ρ0
2

for n large enough, which is a
contradiction.

Analysis of (ii): Setting un = mkn
(ωn), vn(x) = un(x+ yn) and ω̂n(x) =

ωn(x+ yn), we have that I ′kn
(vn)vn = 0, I ′kn

(vn)ϕ = 0 for all ϕ ∈ E−.
Next, we distinguish two cases:

(I) |yn/kn| → +∞
or

(II) yn/kn → y for some y ∈ R
N , for some subsequence.
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If (I) holds, since there are s > 0 and z ∈ E− such that sω̂+ + z ∈ M∞, it
follows from ω̂+

n → ω̂+ in H1(RN ) that

dA∞
≤ JA∞

(sω̂+ + z)

= lim
n→+∞

(

1

2
s2||ω̂+

n ||
2 −

1

2
||z||2 −

∫

A((x+ yn)/kn)F (sω̂
+
n + z)dx

)

= lim
n→∞

Ikn
(sω+

n + z) ≤ lim
n→∞

Ψkn
(ωn) = d1

which contradicts Lemma 3.1.
Now, if (II) holds, the previous argument yields

(3.24) dA(y) ≤ d1,

where dA(y) is the mountain pass level of the functional JA(y) : H
1(RN ) → R

given by

JA(y)(u) =
1

2
∥u+∥2 −

1

2
∥u−∥2 −A(y)

∫

F (u) dx.

One can see that

dA(y) = inf
u∈MA(y)

JA(y)(u),

where

MA(y) = {u ∈ H1(RN ) \ {0} : J ′
A(y)(u)u = 0}.

If A(y) < 1, it is possible to prove that dA(y) > d1, which contradicts (3.24).
Then A(y) = 1 and y = zi for some i = 1, ..., l. Hence

Qkn
(ωn) =

∫

RN χ(x/kn)|ωn|
2dx

∫

RN |ωn|2dx
=

∫

RN χ((x+ yn)/kn)|ω̂n|
2dx

∫

RN |ω̂n|2dx
→ ai ∈ K ρ0

2

from where it follows that Qkn
(ωn) ∈ K ρ0

2
for n large, which is absurd,

because we are assuming that Qkn
(ωn) ̸∈ K ρ0

2
. This finishes the proof. □

Next, we specify the following symbols.

Ωi
k = {u ∈ S+ : |Qk(u)− zi| < ρ0},

∂Ωi
k = {u ∈ S+ : |Qk(u)− zi| = ρ0},

αi
k = inf

u∈Ωi
k

Ψk(u),

α̃i
k = inf

u∈∂Ωi
k

Ψk(u).
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Lemma 3.8. There exists k2 ∈ N such that

αi
k < d1 + γ and αi

k < α̃i
k,

for all k ≥ k2, where γ =
1

2
(dA∞

− d1) > 0.

Proof. Let u ∈ H1(RN ) be a ground state critical point for Ψ1, i.e.,

w ∈ S+, Ψ1(w) = d1 and Ψ′
1(w) = 0 (See Corollary 3.5).

For 1 ≤ i ≤ l and k ∈ N, we define the function w̃i
k : RN → R by

w̃i
k(x) = w(x− kzi). Clearly w̃

i ∈ S+. Setting uik = mk(w̃
i
k), we have

Claim 2. For all 1 ≤ i ≤ l, we have

lim sup
k→+∞

Ψk(w̃
i
k) = lim sup

k→+∞
Ik(u

i
k) ≤ d1.

By definition, uik = tk(w
i
k)

+ + vk with tk > 0 and vk ∈ E−, changing
variable, we have

Ik(u
i
k) =

t2k
2
∥w+∥2 −

1

2
∥v̂k∥

2 −

∫

A((x+ kzi)/k)F (tkw + v̂k) dx.

Supposing that tk → t0 and v̂k ⇀ v̂ in H1(RN ), we get

lim sup
k→+∞

Ik(u
i
k) ≤

t20
2
∥w+∥2 −

1

2
∥v̂∥2 −

∫

F (t0w + v̂) dx ≤ Ψ1(w) = d1

for i ∈ {1, ..., l} and Claim 2 is proved.
Once Qk(w̃

i
k) → zi as k → +∞, it means that ũik ∈ Ωi

k for k sufficiently
large. On the other hand, from Claim 2,

lim sup
k→+∞

Ψk(ũ
i
k) < d1 +

α0

4
.

Hence, there is k∗ ∈ N such that

(3.25) αi
k < d1 +

α0

4
, ∀k ≥ k∗.

Then, decreasing α0 if necessary,

αi
k < d1 + γ, ∀k ≥ k∗,



✐

✐

“1-Alves” — 2023/7/15 — 1:08 — page 1951 — #19
✐

✐

✐

✐

✐

✐

Indefinite variational problems 1951

which is the first inequality. To obtain the second one, note that if u ∈ ∂Ωi
k,

then

u ∈ S+ and |Qk(u)− zi| = ρ0 >
ρ0
2
,

that is, Qk(u) ̸∈ K ρ0
2
. Thus, from Lemma 3.7

Ψk(u) > d1 + α0 for all u ∈ ∂Ωi
k and k ≥ k1,

and so

(3.26) α̃i
k = inf

u∈∂Ωi
k

Ψk(u) ≥ d1 + α0, ∀k ≥ k1.

Consequently, from (3.25)–(3.26),

αi
k < α̃i

k, ∀k ≥ k1,

and the results are derived by fixing k2 = max{k1, k∗}. □

Proof of Theorem 1.1. From Lemma 3.4, there exists k2 ∈ N such that

αi
k < α̃i

k for ∀k ≥ k2.

Arguing as in [5, Proof of Therem 2.1], the above inequality permits to use
Ekeland’s variational principle to get a (PS)αi

k
sequence {uin} ⊂ Ωi

k for Ψk.

Noting that αi
k < d1 + ρ, from Lemma 3.2 there exists ui such that uin → ui

in H1(RN ). So

ui ∈ Ωi
k, Ψk(u

i) = αi
k and Ψ′

k(u
i) = 0.

Since
Qk(u

i) ∈ Bρ0
(zi), Qk(u

j) ∈ Bρ0
(zj),

Bρ0
(zi) ∩Bρ0

(zj) = ∅ for i ̸= j.

We deduce that ui ̸= uj for i ̸= j for 1 ≤ i, j ≤ l. Hence Ψk possess at
least l nontrivial critical points for all k ≥ k∗ on S+, with k∗ ≥ k2. From
Corollary 3.5, Ik possess at least l nontrivial critical points for all k ≥ k2 in
H1(RN ), finishing the proof. □
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