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A generating function of a complex

Lagrangian cone in H”
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We formulate the space of multivalued branched minimal immer-
sions of compact Riemann surfaces of genus v > 2 into R", and
show that it is a complex analytic set. If an irreducible component
of the complex analytic set admits a non-degenerate critical point,
then we construct a complex Lagrangian cone in H"” derived from
the complex period map, and obtain its applications as follows:
The irreducible component can be divided among some open con-
nected components of non-degenerate critical points, and each con-
nected component admits a special pseudo Kahler structure with
the signature (p, ¢). We induce a sharp inequality between ¢ and
the Morse index of a minimal surface which are two invariants of
the connected component. Furtheremore, we obtain an algorithm
to compute the Morse index and the signature.
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1. Introduction

Let M be a compact Riemann surface of genus . Throughout this paper,
an n-tuple (11, ...,1,) of holomorphic 1-forms on M is called a Weierstrass
data if Y, w,% = 0. If v =0, then there exists no Weierstrass data. For a
Weierstrass data (11, ..., ¢n),

S =Re [ (et

Po

is a multivalued branched minimal immersion of M into R™. If v = 1, then
such a map is totally geodesic. Hence, we may assume v > 2. For a canonical
homology basis {A1, ..., Ay, Bi, ..., By} of M, the real period matrix L of S

is defined by ( S, dS. s [ dS. [ dS. .. [ ds), that is,

wl [ (e, VL D

A multivalued branched minimal immersion of M into R” is called to
be full if the image is not in any affine subspace in R", which is equivalent
to rank L = n. If the column vectors of L span a lattice (L) of R™, then we
get the full branched minimal immersion of M into the n-dimensional flat
torus R™/(L).

We can consider the Jacobi operator of a multivalued branched mini-
mal immersion of M into R™ (for example, see [I1] and [23]). Let index,
be the number of the negative eigenvalues and nullity, the number of the
zero-eigenvalue of the Jacobi operator (counted with multiplicity). index,
is called the Morse index of a minimal surface and an eigenvector for the
zero-eigenvalue is said to be a Jacobi field. If the map is not totally geodesic,
then there exist n independent Jacobi fields caused by parallel tanslations
in R™ which are called trivial Jacobi fields. Thus nullity, > n holds and
nullity, = n if and only if the minimal surface has only trivial Jacobi fields.

There exists no compact orientable immersed minimal surface of genus 2
in a 3-dimensional flat torus. However, there exist many compact orientable
immersed minimal surfaces of genus v > 3. For example, Schwarz’ P-surface,
Schwarz’ D-surface, Schoen’s Gyroid and Schwarz’ CLP-surface are widely
known as embedded minimal surfaces of genus 3. It is important to indicate
some results on index, of minimal surfaces in 3-dimensional flat tori.

(] (U5 (0 (0

)\ o) 7w
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Ross [31] proved that Schwarz’ P-surface is CMC-stable and hence
Schwarz’ D-surface and Schoen’s Gyroid are also CMC-stable, which leads
Schwarz’ P-surface, Schwarz’ D-surface and Schoen’s Gyroid to index, = 1
and nullity, = 3. Montiel and Ros [23] proved that Schwarz’ CLP-surface
has index, = 3 and nullity, = 3.

Ritoré and Ros [28] proved the compactness of the space of index one
embedded minimal surfaces in flat tori. Ritoré [27] proved that index one
immersed minimal surfaces of genus ~ in flat tori satisfy v < 4. Ros [29], [30]
obtained v < 3, in general, index, > #

Grofle-Brauckmann and Wohlgemuth [17] constructed a deformation of
CMC-stable non-minimal surfaces from Schoen’s Gyroid in the same ambi-
ent flat torus. Morgan and Ros [24] proved that there are nearby L'-local
minimizers of the Cahn-Hilliard energy for Schwarz’ P-surface, Schwarz’ D-
surface and Schoen’s Gyroid which are CMC-stable.

Inevitably it is of great significance to classify index one immersed min-
imal surfaces, index one embedded minimal surfaces and CMC-stable em-
bedded minimal surfaces of genus 3 in 3-dimensional flat tori. However, little
is known about an embedded minimal surface of genus 3 with index, = 1 in
a 3-dimensional flat torus for the last few decades since Ross’ result [31].

We review a geometric meaning of nullity,. Let M, be the space of
full multivalued branched minimal immersions of non-hyperelliptic Riemann
surfaces of genus v into R™ and N, the space of full multivalued branched
minimal immersions of hyperelliptic Riemann surfaces of genus « into R,
which are the spaces of equivalence classes of triples of a Riemann surface,
a Weierstrass data and a canonical homology basis [26], [4]. By real period
matrices, we define the real period maps 7 from M, and N, to the space
Ly, 2 of n x 27 real matrices. Here, we refer to Meeks’ conjecture 50 in [20].

Conjecture 50 (Meeks). The differential of the natural map from the
moduli space M = {M, (w1, ws,ws) | M is a compact hyperelliptic Riemann
surface of genus 3 with three independent holomorphic 1-forms satisfying
Zg’zl w? = 0} to the space of real periods C R® of the forms w; evaluated
on a basis of Hy(M,Z) has rank 18 almost everywhere.

We note that M = N3 for n = 3 and the natural map is the real period map.
Pirola [26], Arezzo and Pirola [4] studied M., N, and 7 for full multi-
valued minimal immersions and proved an important formula

nullity, = dimKerm, +n
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for a “smooth point”. In particular, if nullity, = n, then dimpM, = 2ny,
dimpN,, = 2ny and Kerm, = {0}. Thus, a connected component of M., and
N, admitting nullity, = n is locally a graph on an open set in Ly, 2. In par-
ticular, since nullity, = 3 for Schwarz’ P-surface and Schwarz’ CLP-surface
([310, [23]), Meeks’ conjecture 50 is true.

In this paper, we focus attention on such a connected component. We
define the complex period maps from M., and N, to the space K2, of
complex n x 2y matrices by ([, dsto... fA7 asto, 5, dsto... wa dsSt0),
where dS'Y is the (1,0)-component of dS, that is,

Each complex period map induces a special pseudo Kéhler structure on a
connected component (see Theorem , which gives the relation between
the special pseudo Kéhler structure and index, as follows: Let (p, q) be the
signature of the pseudo Kahler metric associated with the special pseudo
Kahler structure on a connected component, where p + ¢ = ny. We prove

(03 1 (] (1

o)\ o) i

index, < 67 —6—2q

for the connected component of M. For a connected component of N, we
get

a<index, <4y —2-2q+a (0<a<y—-2)<5y—4—2q.

a = v — 2 holds except a complex analytic set in the connected component.
Micallef [22] proved that a hyperelliptic stable minimal surface is a holo-
morphic curve, that is, a non-holomorphic hyperelliptic minimal surface has
index, > 1.

In the case where v = 3, n = 3, we obtain 1 < index, < 11 — 2q. In par-
ticular, index, = 1 if ¢ = 5. Hence, some examples mentioned below imply
that the inequality is sharp.

Shoda and the author [12] apply the algorithm (see Theorem and
its application in Subsection 6.2) to compute the signature and indez, of
some one-parameter families of embedded minimal surfaces of genus 3 in
3-dimensional flat tori as follows:
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For tP family, which includes Schwarz’ P-surface [34], [36],
index, =1, (p,q) = (4,5), index, = 2, (p,q) = (5,4) for some parameter val-
ues. Since tD family, which includes Schwarz’ D-surface, consists of conjugate
minimal surfaces of minimal surfaces in tP family, we obtain the same result.

For H family [34], [36], index, =1, (p,q) = (4,5), indexq, = 2, (p,q) =
(5,4) and index, = 3, (p,q) = (6,3) for some parameter values.

For tCLP family, which includes Schwarz’ CLP-surface [34], [36],
indexq = 3, (p,q) = (6,3) for all parameter values.

For rPD family (Karcher’s TT-surface) [19], [34], [36], index, =
1,(p,q) = (4,5) and index, =2, (p,q) = (5,4) for some parameter values.
Schwarz’ P-surface and Schwarz’ D-surface are contained in rPD family.

The set of parameter values corresponding to index, = 1 minimal sur-
faces in tP, tD, H and rPD family are bounded closed intervals which are
contained in the compact set in the Ritoré and Ros compactness theorem
[28].

Finally, we prove that the space of full multivalued holomorphic maps
of non-hyperelliptic Riemann surfaces of genus v > 3 into R® with suit-
able orthogonal complex structures has a special pseudo Kahler structure of
the signature (3v + 3,3+ — 3) and the space of full multivalued holomorphic
maps of hyperelliptic Riemann surfaces of genus v > 2 into R* with suit-
able orthogonal complex structures has a special pseudo Kéhler structure
of the signature (2y + 1,27y — 1). Furthermore, our inequality is sharp for
non-holomorphic stable minimal surfaces in flat tori, which are constructed
by Arezzo and Micallef [3].

I would like to thank Toshihiro Shoda for many useful discussions and
the referee for many helpful suggestions.

2. A quaternion structure of L,, 5, X Ly, 2,

We investigate a quaternion structure of Ly, 2y X Ly, 24, a complex symplectic
form wy on Ly 2y X Ly2y and a complex Lagrangian subspace in L 2, X
Ly, 2.

2.1. A quaternion structure of L, 2 X Ly 2+

We consider L, 2, as the linear space of n x 27y real matrices. We denote
by (LI’LQ) and (Ll, LQ,L3, L4), where Ll, LQ, Lg, L4 S Lnﬁ, an element of
L, 2, and an element of Ly, 2, X Ly, 2+, respectively. Then the canonical inner
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product ( , ) on Ly 2y X Ly, 2, is defined by

4
((L17L27L3aL4)7 (Llla /27 %7L£1)> = trz tLlL;
=1

We define two complex structures I, J on Ly 2, X Ly 2, as

I(L17L27L35L4) = (L4’ _L37L27 _Ll)’ J(L17L27L3aL4)
= (_L37 _L47L17L2)-

Lemma 2.1. I and J preserve ( , ).
We define the symplectic form w compatible with J by
w((L17L27L37L4)7( /17 ,27 g7L21)) = <J(L17L27L37L4)7( ,17 ,27 g’Lil)>

Lemma 2.2. [J = —JI holds and hence 1,1, J and K(= 1.J) give a quater-
nion structure on Ly 2y X Ly 2.

We consider K, , as the complex linear space of n x v complex ma-
trices. The real linear isomorphism ¢ : K, 4 X K, — Ly 2y X Ly 24 is de-
fined by gO(Kl,KQ) = Re(—iKQ,iKl,Kl,KQ) for (Kl,Kz) € Kn,’y X Kn,'y-
gO_l(Ll, Lo, L3, L4) = (L3 — 1Ly, Ly + ZLl) holds.

Lemma 2.3. The complex structures Iy,J1 on K, x K, induced
by ¢ and I,J are given by I1(K;, K2) = (iK1,iK2) and Ji(K1,Ksy) =
(i, —iKy).

¢ allows us to identify L, 2y X Ly 2, with K, x K, as two complex
linear spaces for I, I;. On the other hand, K, , x K, , admits the canonical
Hermitian form

<(K17 KQ)’ (Ki’ Ké)>1 = tr(tKlﬁ—F tK?E)
and the canonical complex symplectic form
wi((K1, K2), (K1, K3)) = tr("Ka K1 — "K1K3)

for (K1, K»), (K1, K3) € Ky~ X Ky ~. The inner product and the symplectic
form induced by ¢ satisfy
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Lemma 2.4.

(p(K1, Ka), p(K1, K3)) = Re((K1, Ka), (K7, K3))1 and
w(@(Kl,K2)790(Ki’Ké)) = Imwl((KluKQ)a (Ki’Ké))

Proof. Let
W1 = Re(—iKQ,iKl,Kl,Kg) and
Wy = Re(—iKé,iKi,Ki,Ké) S ng,y X ng,y.
Then w(Wl, WQ) = <JW1, W2> = trIm(tKgK{ — tKlKé) O

Furthermore, we obtain

Lemma 2.5.

(J1(K1, K2), J1(K1, K3))1 = (K1, Ka), (K7, Kj))1 and
(J1(K1, K2), (K1, Ky))1 = iwi (K1, K2), (K, K})).

Conversely, the complex symplectic form (p~1)*wy induced on Ly 2y X Lpoy
18 given by

(o™ 1) w1 (W, Wa) = —(KWy, Wa) + i(JW7, Wa)
for Wi, Ws € Ln,?’y X Lnyg,y.

Let GL(n, C) be the general linear group consisting of n x n regular ma-
trices. Then g € GL(n,C) acts on K, , x K, 5 by g(K1, K2) = (9K1, gK>).
Let E, be the n x n identity matrix. Let O(n,C) = {4 € GL(n,C)|'AA =
E,} be the complex orthogonal group and SO(n,C) the subgroup {A €
O(n,C)|det A = 1}.

Lemma 2.6. O(n,C) is a complex symplectic transformation group with
respect to wi of Ky X K .

Let Jy = E(’) _577 . Let Sp(v,C) be the C-symplectic group {B €
y

GL(2v,C)|BJy'B = Jy} and Sp(y,R) the R-symplectic group consisting
of real matrices in Sp(~, C).
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d
td _tb
and ctd are symmetric, which is equivalent to B~! = ( ‘ ‘ >

Lemma 2.7. B = <Z b) € Sp(7,C) if and only if a'd—b'c = E,, a'b

_te a
a b
b= (C d) € Sp(V’ C) acts on Kn;y X Kn;y as follows:

(Kl,Kg)B = (Kla + Koc, K1b+ Kgd)

Lemma 2.8. Sp(v,C) is a complex symplectic transformation group with
respect to wy.

Proof. By Lemma 2.7, we get

wi((Kya + Kac, K1b + Kad), (K{a + Khe, K1b + Kbd))
= tr{"(K1b + K2d)(K}ja + Kjc) — "(Kia + Koc) (Kb + Kjd)}
= wi((K1, K2), (K71, K3)).

Consequently, Lemmas [2.6] and 2.8 imply

Proposition 2.1. O(n,C) and Sp(~, C) are complex linear, complex sym-
plectic transformation groups of K, , x K, with respect to wy.

Let (Ki,K»2) € Kyy X Ky, and (vy,v)) denote the k-th row vector
of (Ki,K3). Then we make an isomorphism © : K, y x K, — Ki 5y X
Kiny by O((K1, K2)) = (v],...,vp,, 0], ...,v};). We may consider an action

of O(n,C) and Sp(vy, C) on Kiny x Ky such that the following holds.

Proposition 2.2. © is an O(n,C), Sp(vy, C)-equivariant, complex sym-
plectic isomorphism from K, 4 X Ky~ to K1 py X K1 py.

Proposition enable us to apply some results on Ky, x Ki . (or
KL’Y X Klﬁ) to Kn’f\/ X Knﬁ.

Let T* Ly, 2 LN Ly 2, be the cotangent bundle over L, 2,. Let £ be
the (j,k) entry of L € Ly, 2. Then we obtain the canonical coordinate sys-
tem {{;;} in L, 2,. Any point of T*L, o, is given by 2?21 Zillpjkdgjk
and, hence, {pji,/;r} is the canonical coordinate system in 7™ Ly 2.
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noS2T kdli. on T*L, o~ is called the Liouville-form and the canon-
j=1 2uk=1Pjkat; 2y

ical symplectic form on 7™ Ly 2y is given by 37, 2?:1 dpji N dljj. Since
{pjr} may be the canonical coordinate system in L, 2,, we can identify
T* Ly, 2 with Ly, 2y X Ly 2 whose canonical coordinate system is {pjx, £;x}-
The latter L, o~ is the base space of T*L,, o~. The tangent space at any point

12y 2y g y

of T*Ly 2, is identified with Ly, 2, X Ly 2. Hence (L1, Lo, L3, Ls), where
Li,...,L4 € Ly, 4, may be a tangent vector. Then the canonical symplectic
form E?:l 2?:1 dpji N\ dljy, is w as follows: Since dp;i (L1, Lo, L3, L4) is the
(4, k) entry of (L1, Lg) and dlji (L1, Lo, L3, Ly) is the (j, k) entry of (L3, L4),

n 2y
D> " dpji A dl((Ly, Lo, Ly, La), (L, Ly, L, L))
=1 k=1
= tr{(L1, La)" (L3, L}) — (LY, L5)" (L3, L)}
:w((L17L27L37L4)7(L/17L/27L37L£1>)'

Let Ziji be the (j, k) entry of Z; € K, 5. Then we obtain the canon-
ical complex coordinate system {Zij;} in K,,. A point of the com-
plex cotangent bundle T*K,,  over K, - is given by Z?Zl Yor_1 ZojidZy i
and, hence, {lek,Zij} is the canonical complex coordinate system in
T*Kp~. The canonical complex symplectic form on T*K, , is given by
Z?:1 > oh_1dZaj AN dZyjj. Since {Zsj;} may be the canonical complex co-
ordinate system in K, ,, we identify T*K,, , with K, , x K,, . The tan-
gent space at any point in T*K,, - is identified with K, , x K, . Hence
(K1, K2), where K1, Ky € K, ~, may be a tangent vector at the point. Since
lejk(K1,K2) = Kljk and dZij(Kl,KQ) = Kij, we get

n

Y
SN dZoji N dZyk (K, K), (K1, K3)) = wi (K1, Ka), (K7, K3)).
j=1 k=1

Thus, the canonical complex symplectic form on the tangent space of T* K,
is wy defined on the complex linear space K, , X K, 5.

Let le(Kl,KQ) =S Kl and dZQ(Kl,KQ) = KQ. Then le and dZ2 are
K, ,-valued holomorphic 1-forms on K, , x K, such that wy = trtdZy A
dzy.

2.2. The Grassmann manifold of complex Lagrangian subspaces

Let T be a complex linear subspace of complex dimension nvy in H" =
C" x C" = K, 4 x K~ with the Hermitian form ( , );. When w; vanishes
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on T, T is called a complex Lagrangian subspace. From Lemmas[2.2]and
we obtain

Lemma 2.9. Let S be a real 2ny-dimensional subspace S in Ly 2y X Ly 2.
Then the following conditions are equivalent:

(1) S is a complex Lagrangian subspace,
(2) (KX,Y)=0and (JX,Y)=0 forany X, Y € S, and

(3) S is I-invariant and real Lagrangian, that is, w induced on S vanishes.

The condition (2) above is called the bilagrangian condition by Hitchin
[18].

Let U(27) be the unitary subgroup of GL(27, C) and Sp(~) the subgroup
Sp(y,C) NU(2y). Let Lag® be the space of complex Lagrangian subspaces
in K, x Ki 4. Then, from Lemma we obtain

Lemma 2.10. Let T € Lag® and {us, Uy} a unitary basis of T. Then
{us, —iJiu;} is a unitary and symplectic basis, that is, wi(u;, —iJ1u;) = d;5,
of K1~ % K1, and hence *(tuy, ..., 'uy, *(iJ1uq), ..., H(iJ1uy)) € Sp(7).

Thus Sp(y) transitively acts on Lag® and U(7y) is the isotropy group
of the complex Lagrangian subspace spanned by (er,0),..., (e,0), where
{e1,...,e4} is the canonical basis of C7.

Lemma 2.11. Lag® is a Hermitian symmetric space U(y)\Sp(y) of com-
pact type and rank ~y.

Let V 2 Lag® be the tautological vector bundle over Lag® given by
{(T,v) € Lag® x HY|T € Lag®, v € T}. Let S2 be the space of v x y com-
plex symmetric matrices and RS = {r € S% |Im7 is regular}. The Siegel
upper half space H, is defined by {r € S% |ImT > 0}. Let n : K1, x K1, —
K 4 x {0} be the projection.

Lemma 2.12. Assume that the restriction of n to T € Lag® is surjec-
tive. Then there exists T € S such that T = {(K,K7) € K1, X K1 4| K €
K4}

Proof. A basis {o,...,a,} of T is given by «a; = (e, (ait,...,aiy)),
(ai1, .., ai) € CY by the assumption. T € Lag® if and only if trfdZs A
dZi (o, o) = a;j — aj; = 0 and hence (a;;) € SZ. O
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Let Lag$ be the set of the subspaces which satisfy the assumption as in
Lemma Then Lagf is identified with SZ.

Lemma 2.13. Lagg is a Zariski open set of Lag®.

Proof. Let T € Lag® and fi, ..., f» a local holomorphic frame fields on a
neighborhood U of T'. Then there exist holomorphic functions az; on U
such that n(f;) = >)_, axjex. T' € UN LagS if and only if det(ajx) # 0
at T". O

Lemma 2.14. p;'(Lagl)={(r,(K,K7))|r€S%, K€ K;,}. Hence, Sx
K  is identified with pfl(LagC).

o

We consider the bundle V" =V @--- @V £ Lag®. We define a holo-
morphic map ® of V" into HY as ®((T,v1), ..., (T,v,)) = (tvy, ..., toy).
(V") is a set of complex Lagrangian subspaces T € ---@T C
H' @ - @H =H". 5% x K,,, may be considered as p; ' (Lag?).

Lemma 2.15. ® on S% x K, ., satisfies ®(1,Z) = (Z,Z1), where (1,Z) €
S2 % Kp .

dr is an Sé—valued holomorphic 1-form and dZ is a K, -valued holo-
morphic 1-form on S(Q; X K .

Lemma 2.16. ®*w; = tr(dr A 'ZdZ).
Proof. Since T is a symmetric matrix, we get

d*wy = tr(*d(Z7) A dZ) = tr("(dZT + ZdT) A dZ)
= tr(r'dZ N dZ + dr N' ZdZ) = tr(dr A 'ZdZ).

In general, ®, is not surjective.
Lemma 2.17. Ifn =1, then ®, is surjective for a generic point.

Proof. We calculate ®, at (7,e1). Let K’ € K1 and 7/ = (7/;) € 5. Then
we obtain (0, K') = (K', K'7) and ®.(7',0) = (0, (114, ..., 71, )). Therefore,
®, is surjective at (7, e1). O

GL(n,C) acts on V" by g(r, K) = (1,9K), where g € GL(n, C).
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Lemma 2.18. ® is GL(n, C)-equivariant.

Let B = <Ccl b) € Sp(v, C). Then we have

d
Lemma 2.19. If a + 7c is regular, then B(t) = (a + 1¢)~1(b+ 7d) € S3.

Thus Sp(v,C) is a fractional linear transformation group of SZ, more-
over, we can define the action of B on S% x K, and hence V" as

B(1,K) = ((a + 1¢) (b + 7d), K(a + 7¢)).
Lemma 2.20. ®(B(t,K)) = ®(1, K)B.
Remark 2.1. If n = 1, then Lemmas [2.17] 2.18 and [2.20] imply that ®, is

surjective at each point except the zero-section of V', that is, each point of
C?7 except 0 is a regular value of ®.

Lemma 2.21. A € O(n,C) and B € Sp(y, C) preserve ®*w.

For T € RSZ, we define the 2y x 2y symmetric matrix P(7) € Sp(v,R)
by

(Im7) + (Rer)(Im7)"'(Rer) —(Rer)(Im7)~!
P(r) = ( —(Im7)~!(Rer) (Im7)~! ) '

Lemmas [2.9) and give two points of view on complex Lagrangian
subspaces.

Theorem 2.1. Let P be a 2y X 2y real matriz. Then the subspace T de-
fined as {(LP,L) € Ly2y X Lpoy|L € Ly 2y} is a Lagrangian subspace in
A B) A and
tB C)’

C are v x v real symmetric matrices and B is a v X v real matriz. Then
T is complex Lagrangian if and only if P € Sp(vy,R). Let Jp be the almost
complex structure on T with respect to I. Then

Ly.2y X Ly 2 if and only if P is symmetric. We set P = <

JP((Ll’LQ)P) (L17L2)) = ((LLLQ)JO, (L1,L2)PJO).

If C is regular, then there exists T € RS% such that P = P(t) and
the complex Lagrangian subspace corresponds to 7. In particular, if C > 0,
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then T € Hy. In this situation, the real linear map of {(LP(T),L) € Ly 2y X
Lpoy|L € Lyoy} onto {(K,K7) € Ky X Ky, | K € Ky, ~} is given by

((L1, L2) P(7), (L1, L2)) = (K, KT),
where K = Ly + i[L1Ret — Lo](Im7)~ 1.

Proof. The first statement is similar to the argument in Lemma [2.12
Let (Z1,Z2) be the element corresponding to ((L1,L2)P,(L1,L2)) by
(p_l. We have Z7 = L1 — Z(LlB + LQC), Zo = Lo+ Z(LlA + Lo tB) Since
¢ Y(T) is a real subspace where the symplectic form associated with J;
vanishes, ¢~ !(T') is complex Lagrangian if and only if it is a complex sub-
space in K, X K, which is equivalent to (iZ1,iZ2) € ¢~ '(T). There-
fore there exists (L), L)) such that (iZy,iZ) = ¢ L((Ly, LY) P, (L}, LY)).
We get L) =L1B+ LyC, L1 =-L\B—-L{C, L)y=—-L1A— Ly'B and
Ly = LY A+ Ly'B. Immediately, L1 (E, + B> — AC) 4+ Lo(CB — 'BC) = 0,
Li(BA—A'B)+ Ly(CA— B> - E,)=0 hold for all (Li,L2) € Ly2,.
Hence we get E,+ B?—AC=0,CB—'BC=0 and BA—A'B=0,
which are equivalent to P € Sp(y,R). Since L] = L1B + LC and L} =
—(L1A+ Lo 'B), we get

sa-taia (2 ) -waio( (2 F)

= (L1, L) PJy.

Consequently, Jp((Ll, LQ)P, (Ll, LQ)) = ((Ll, LQ)J(), (Ll, LQ)PJ()) holds.

If C is regular, then we set Im7 = C~!. Since CB is symmetric, we
set Rer = —Im7 CBIm7. Then 7 = —BC~! +iC~! and P = P(7). Further-
more, Z; = Ly + i[L1Rer — Lo](Im7)~! and Zy = Z;7. O

If v =1, then A, B,C are real numbers satisfying 1+ B? = AC' and
hence C' # 0. Thus, the complex Lagrangian subspace € RS%. However, we
note

Remark 2.2. {((L1,Ly) (_(3]0 ‘éo) (L1, L2)) | (L1, Ls) € Loy} and
1 0O 0 O

() | o 0 0] @ L) (B L) € Lo}
0 —Jp 0 O

are complex Lagrangian subspaces ¢ RS% by Theorem
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Corollary 2.1. The space of complex Lagrangian subspaces consisting of
{((L1,L2)P, (L1, L2)) | (L1,L2) € Lyp 2y} in Ly oy X Ly oy corresponds to the
space of symmetric matrices in Sp(y,R).

Corollary 2.2. The space of complex Lagrangian subspaces consisting of
{((Ll, LQ)P, (Ll, Lz)) | (Ll,Lg) € Ln’g,y, P> 0} m Ln,Z'y X Ln’g,y corre-
sponds to H, = Sp(v,R)/U(7).

Proof. If T € H,, then P(7) > 0. Conversely, if P > 0, then C > 0. Thus, it
follows from Theorem [2.1| that there exists 7 € H, such that P = P(r). O

3. Energy function
The energy function E on RS2 X Ljo, is defined by E(r,L)=
$tr(P(r)'LL), where 7 € RS% and L € Ly, in [§]. Let M be a complex

submanifold in RS% and E)ys the restriction of E to M x Ly, 2,. We study
critical points of the function Ej; on M for each fixed L € Ly, 2.

3.1. A diffeomorphism of R,S% X Ly, 2, onto RS%. X Kp ~

The diffeomorphism ¥ : RS% X Ly 2y — RS% x K, ~ is defined by
1 , _

W(r, (L1, L)) = (7, 5(L1 +i[L1(Rer) — Lo](Tm7) M),
where L = (L1, La) € Ly, 2.
Remark 3.1. By Theorem we may define U by (7,(L1,L2)) —
(7, (L1 +i[L1(ReT) — Lo](Im7)~1)). However, we adjust ¥ to the energy
function (see Lemma3.4)). Furthermore, for a multivalued branched minimal
immersion S of M into R™, dS corresponds to dS'? by ¥ (see Subsection
6.1).
Lemma 3.1. V~!(7,K) = (7, (Re(2K),Re(2KT))).
Remark 3.2. GL(n,C) acts on RS X Ly 2, by, for g € GL(n, C),

(1, (Re(2K),Re(2K71))) — (7, (Re(29K),Re(29KT))).

Then ¥ is GL(n, C)-equivariant.
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9= (Z Z) € Sp(v,R) acts on Ly, 2, as follows:

(Ll, Lz)g = (Lla + LQC, L1b + Lgd).

Lemma 3.2. V¥ is Sp(y, R)-equivariant.
Proof. Let ¥(t,(L1,L2)) = (1, K) and g = <Z Z) € Sp(v,R). Set

A=Re((a+7c¢) Y (b+7d), B=Im((a+71c)"t(b+7d))

and (7g,K) = Y(rg,(L1,L2)g).

We shall prove K = K (a + 7c¢).

We first calculate K as follows:

1
K = §(L1a + Lyc+i[(L1a + Lac)A — (L1b + Lod)|B™Y)

(Li(a+iaAB™t —ibB™) + La(c + icAB™" — idB™1h)).

1
2
Since A+iB = (a+7c¢) b+ 7d), we have (a+7c)(A+iB)=>b+Td.
Hence, we obtain aAB~! —bB~! + 7(cAB™! —dB~') = —ia — itc, that is,
a+71c=1iaAB™! —ibB~! + 7(icAB~! —idB~!), and therefore, we get

Re(a 4 7¢) = — (Im7)(cAB™' — dB™') and
Im(a + 7¢) = aAB™! —bB~! 4 (Rer)(cAB~! —dB™!).

As cAB™! —dB~! = —(Im7) " 'Re(a + 7¢), we obtain
aAB™! —bB™! = Im(a + 7¢) + (Rer)(Im7) 'Re(a + 7¢).

Consequently, we get

K = %(Ll(a + ilm(a + 7¢) 4 i(Rer)(Im7) "*Re(a + 7¢))
+ La(c — i(Tm7) " 'Re(a + 7¢))).

K(a+ 7c) is given by

%(Ll((a + 7¢) + i(Rer)(Im7) "L (a + 7¢)) + La(—i(Im7) 1) (a + 7¢)).
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Since
(a4 7¢) +i(Rer)(Im7) " (a + T¢)
= a+ilm(a + 7¢) + i(Rer)(Im7) " 'Re(a + 7¢)
and —i(Im7) " (a+ 7¢) = ¢ — i(Im7) " 'Re(a + 7¢),
we obtain K = 1(Ly + i[L1Rer — Lo](Im7)~Y)(a + 7¢). O
3.2. An energy function E on RS%
Theorem [2.1] implies

Lemma 3.3.
(L1, Lo)P(1) = 2Re(—iKT,iK),
where K = (L +i[L1Ret — Ly)(Im7)~1).

A Hermitian form 7, defined in [7] is —iw; (K7, K2), (K1, K})). It follows
from Proposition that 79 is Sp(y, R)-invariant.

Lemma 3.4. The square norm of the vector ®(¥(r, L)) with respect to ny
is the energy function, which is Sp(vy, R)-invariant.

Proof. We know —iw: (K1, Ka), (K1, K2)) = 2Imtr( 1 K3) and hence
O* (2Imtr(K7 K»)) = 2Imtr(K*KT). Since = (L1 +i[L1(Rer) —
Lo)(Im7)~ 1), we get (® o U)*(2Imtr(K; K3)) = E( ,L). a

Lemma 3.5. 2Imtr(K* K1) is U(n)-invariant.

Let M be a k-dimensional complex submanifold in RS% and 7 the holo-
morphic immersion of M into RS%. Then, we consider the function Ejs on
M x Ly 2+ as the restriction of E and define the set C'(Eyy) of critical points
as

8EM aEM

{( L)EMXLHZ’Y| (QaL)::W(q’L):O})

where (21, ..., 2¥) is a local complex coordinate system in M. Since M x K, ,

is a complex submanifold in RSC x Ky ~, ¥ induces a complex structure on
M x Ly 9. Theorem implies
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Proposition 3.1. M x L, 2, is a holomorphic trivial vector bundle over M
with respect to the complex structure induced by ¥. Let J. be the complex
structure of the fibre at ¢ € M, = 7(q). Then J, is given by J;(L1, L2) =
(L1, Lo)P(7)Jo.

In [8], we calculated the gradient vector field of E for a fixed L € Ly, 2, on
RS% with respect to the Hermitian form (A, B) = trAB, A, B € S%, which
is

S 1
gradB(r, L) = 2i x KK, where K = 2 (L1 +i[L1Rer — Lo](Im7)™h).
Lemma 3.6. dEj =2Imtr(dr'KK), where K = (Ly+i[LiRer —

Lo](Im7)71).
Proof. We get dE(X) = (1.(X), gradE) = trRe(7(X)(2i x 'KK)) =
2Imtr (7, (X) 'K K), where X € T,M. O

By the complex structure on M x L, 2, induced by ¥, we obtain
Theorem 3.1. C(E\) is a complex analytic set in M X Ly 9.

Proof. It follows from Lemma that (q, (L1, L2)) € C(En) if and only if
tr(%(q) tKK)=0,¢=1,..,k, where (z!,..., 2F) is a local complex coordi-
nate system in M. W(C(E)y)) is a complex analytic set in M x K, , since
tr(% !KK) is a holomorphic function on M x K, . O

We define a holomorphic 1-form = on S% x K, , as tr(dr 'K K ), which is
O(n, C)-invariant. Then dE = 2Im= on RSZ x K, holds. We can extend
the 1-form to a holomorphic 1-form on V", which is also denoted by =.

Lemma 3.7. = is an Sp(v, C)-invariant holomorphic 1-form on V™ such
that d= = —2®*w; .

Proof. Let B = <CCL Z) € Sp(v,C). Then
B*E = tr([—(a +7¢) Ydre(a 4+ m¢)Hb + 7d)
+ (a+re)Ndrd)(ta + ter) 'K K (a + Tc)>
= tr (dT[—C((I +7¢)7 b+ 7d) + d)(ta + ter) tKK)) ==,

because of [—c(a+ 7¢)"1(b+ 7d) +d]('a+ ter) = E,. Lemma com-
pletes d= = —20*w;. O
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We consider the induced 1-form =y of Z on M x K, ,.

Lemma 3.8. V(C(E)r)) is the set of zero points of ZEpr on M X Ky . In
particular, ®*w1 =0 on V(C(En)). Y(C(En)) and C(Ey) are O(n, C) x
C*-invariant and Ey is constant on the U(1)-orbit in W(C(Ey)) and
C(En). If M is invariant by a subgroup G of Sp(v, C), then so is ¥(C(Enr))
and C(Ep).

Proof. The set of critical points is the set of Z3; = 0. By Lemma we
get ®*wy = 0. The set of Zpy = 0 is O(n, C) x C*-invariant, where C* acts
on M x K, as a subgroup {aF, |a € C*} of GL(n,C). Although U(n)
preserves E); by Lemma [3.5] U(n) may not preserve ¥(C(E)y)). However,
the subgroup U(1) = C*NU(n) preserves V(C(Ey)) and Eyr. Zpr is G-
invariant by Lemma |3.7| and so is = = 0. ]

We put K, = {K € K,,,|'"KK = 0}.
Proposition 3.2. U(C(Egsz)) = {(r,K) |7 € RS%, K € K, }.

Proof. By the proof of Theorem U~1(7, K) is a critical point if and only
if tr(7'KK) = 0 for any 7 € SZ. Thus ‘KK = 0. O

4. A complex isotropic submanifold in T*L,, 5,

Let X be a real submanifold in 7™ L, 2. Then X is called a complex isotropic
submanifold if I7,X =T,X and JT,X L T,X for all p € X. Since IJ = K
implies KT, X | T, X, this condition is equivalent to that X is a complex
submanifold where (¢~1)*w; = 0 by Lemma When dimp X = 2nvy, T, X
is a complex Lagrangian subspace by Lemma[2.9] thus X is called a complex
Lagrangian submanifold.

Since C(E)s) is an analytic set, we can consider an irreducible com-
ponent N of C(E)s). Since SO(n,C) x C* is a connected subgroup of
O(n,C) x C* preserving V(C(Eyr)), SO(n,C) x C* preserves ¥(N) and
hence N. By Lemmas and we obtain

Theorem 4.1. ® o U(N) is an SO(n,C) x C*-invariant complex isotropic
cone possibly with singularities in ®(V"™|pr).

Corollary 4.1. ®({(1,K)|K € K,,7 € S3})(D ®(C(Egsz))) is a C*,
O(n,C), Sp(~, C)-invariant complex isotropic cone, furthermore, it gives
a compact horizontal complex submanifold [14] possibly with singularities in
Cp2n'yfl.
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Proof. Let T' ¢ LagS. Then we have an element g € Sp(vy,C) and T € Lag$
such that 77 = ¢(T') by Lemma- 2.11] There exists 7 € SZ which corresponds
toT. g({(r, K) | K € K,}) is some subset of the fibre of 77 in V™. This subset
is independent of a choice for g and T because if 7 and (a + 7¢)~ (b + 7d)

2) € Sp(~,C), then K € K; is equivalent to

K(a+71c) € K,,. Hence we can extend {(r,K)|K € K,, 7€ 523} to a C*-
invariant closed set in V™ on Lag®. It is the set satisfying Z = 0 in V™ whose
image is compact in CP?"7~! since Lag® is compact. 0

are elements of LagS for (Z

Let Ko, = {K € I/{;; |rank K’ = m}. Let O(2m) be the real orthogonal
group. Arezzo and Micallef [3] determined Koy, for v > m.

Lemma 4.1. For v >m, Ky, = (0(2m) x K7, .)/U(m), where Ky, ., is
the subset of Ky, , consisting of matrices of rank m. Kop, is open dense in
Ko, and hence dimcKas,, = %m(m — 1)+ my.

Proof. Let K € I/{_;; and k1,...,k, € C?™ the column vectors of K. We de-
note by (, ) the complex bilinear extension on C?™ of the canonical inner
product on R*". Then ‘KK =0 is equivalent to (k;,k;) =0 for all i, j.
For this reason (,) vanishes on the subspace spanned by ki,...,k,. Let
Tk be the maximal subspace containing the subspace such that (, ) van-
ishes. Then Tk is called to be totally isotropic and dimcTx = m holds. We
can choose a unitary basis of Tk such that { s(f1 + i fm+1), s \1[( fm +

ifom)}, where {f1,..., fam} is an orthonormal ba51s of R?™. Thus there ex-
ists @ € Ky, 5 (7 > m) such that K = \[((fl +ifmy1) o (fm +ifom)) a. We

put ¢ = (f1,., fom). Then g € O(2m) and K = ﬁg (ia)’ which implies

rank K < m and ranka < m. For the map G’ : O(2m) x K, » — Ko, as
G'(g,a) =g (;;), the surjectivity of G’ holds. Furthermore, the restriction
G’ to O(2m) x K, . is also a surjective map to Kop. If G'(g,a) = G'(h,b)

for a, b € K}, ., then h™'g = g IB; € O(2m) satisfies Aa + iBa = b and
Ca+iDa = ib. Therefore, we get (A+iB)a = (D —iC)a. Since ranka =
m, we obtain A +iB = D — iC and hence h™1g = AB lj € SO(2m) is
a unitary matrix u. By using the action of U(m) on O(2m) x K, . defined
by u(g, K) = (gu:,/uK), we obtain Ko, = (0(2m) x K], )/U( ) which

is open dense in Ko,,. O
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Let E = {(r,K)|7 € 52, K € Ko }.
Theorem 4.2. For v >m > 2, ®(E) consists of two C*, SO(2m,C),
Sp(v, C)-invariant, non-totally geodesic, complex Lagrangian cones possibly
with singularities, which give compact non-totally geodesic, horizontal com-
plex submanifolds possibly with singularities in CPY™ =Y. For~v>m =1, it
is contained in the two complex Lagrangian planes.

Proof. Corollaryimplies that @(E ) is a complex isotropic cone. We define
the map G : S% X SO(2m) X K~y — Kopm y X Kop y as

Glrg.) = (o ()9 (1) 7

and hG, where h € O(2m) such that det h = —1. Since h induces a complex
symplectic isometry of Koy, 4 X Ko, 4 by Lemma it is enough to prove
our assertion on G. Let p be (iEy, Eam, (Ey  0)) € S& x SO(2m) x Ky, .

We first construct a basis of T, := G4 (T, (5% x SO(2m) x K ~)). Tap
is spanned by the following vectors:

wpe1 ([(XFO) (X4 0,
ype Y +iz 0)'\~'v+iz 0)"

. A
type 2 (<zaa f@)(zaa z%) 7). type3 (0, <iA 53))’

where X, Z are real skew m X m matrices, Y is a real m x m matrix, « is
an m X m matrix, § is an m x (v —m) matrix, A is a symmetric m x m
matrix and B is an m x (v —m) matrix. A vector of type 2 is divided into
a sum of vectors of types 4 and 5 as follows:

s (5 905 o s (& 2.0 D)o

As aresult, Ti p is spanned by vectors of types 1, 3,4 and 5. Note that A, B of
type 3 and (3 of type 5 are free except the condition that A is symmetric. The
common vector of types 1 and 4 satisfies X +iY = « and —'Y +iZ = ia,
and thus X +¢Y = « is skew Hermitian because X = Z and Y is symmetric.

We give type 6 as
a 0 a 0).
type 6 ((z’a 0) ’ (ia 0> ),
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where « is Hermitian. Hence T, is spanned by vectors of types 1,3, 5,6 and
the real dimension is 2m? —m +m(m + 1) + 2m(y — m) + 2m(y — m) +
m? = 4m~y. Namely, the complex dimension of Ta,p is 2my. Hence, Tg,
is a complex Lagrangian subspace.

Since the maximal rank of G is 2my by the complex isotropicness of G,
G« has the maximal rank 2m~ for generic points of E. Each neighborhood
of the generic points admits a decomposition of U x V such that

y(y+1) + m(m—1)
2

(HUCC*™ andVCC 2

~™7 are open sets,

(2) G(U x {v}) for each v € V is a complex Lagrangian submanifold in
KZm,'y X KZm,'ya

(3) G({u} x V) for each u € U is a point.

Thus, the image of Eisa complex Lagrangian cone possibly with singular-
ities.

We next prove that some second differential of G' at p is not containd in
Tap it m > 2 as follows:

(92G_ o (@ B A B\, 0 aA+ BB aB+ pC
(‘37’8a_(’ ia iB) \!B C )=, icA+iBtB iaB+iﬁC)

holds, where A and C are symmetric. Let o be a matrix such that the
(1,m) entry is 1 and the others are 0, §=0. Let A be a matrix such
that (2,m), (m,2) entries are 1 and the others are 0 and B = C' = 0. Then
aA + BB is an m x m matrix with the (1,2) entry = 1 and the (2,1) entry
= 0, that is, is not symmetric. Thus, the second differential is not contained
in Tg p. If ®(F) is a totally geodesic, complex Lagrangian subspace through
G(p), then the complex Lagrangian subspace is T¢,, through G(p). Further-
more, the second differential is tangent to Tz ,. This is a contradiction.

cosf) —sinf

sinf  cosf
—i6 —i6 —i6

(e . ) . Therefore G(7, g, a) is (<e a> ) <€ igaT > ), which is contained

ie q ie q

Assume m =1. Let g = € SO(2,R). Then g (;;) =

e ar
in the complex Lagrangian subspace {<ZZZ1 ZZZ2 > } .
1 2

One of two complex Lagrangian cones obtained in Theorem is de-
noted by M, ,, for v > m > 2. The other complex Lagrangian cone is the
image of M, ,, by the complex symplectic isometry h.
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5. A special pseudo Kahler structure

Let indexg,, and nullityg,, be the index and the nullity of the Hessian of
E)s at a point of C'(E)y), respectively. Let N be an irreducible component of
C(Ejpr). If N has a non-degenerate critical point, then a connected compo-
nent of non-degenerate critical points of N admits a special pseudo Kéhler
structure as seen below. We give a relation between the special pseudo Kahler
structure and indexg,,, nullityg,, .

5.1. A review on the set of critical points

Let R* be the k-dimensional Euclidean space, (¢', ..., ¢*) the canonical co-
ordinate system in R* and U a neighborhood of the origin 0 € R*. Let
(AL, ..., A") be the canonical coordinate system in R™ and V a neighborhood
of the origin 0 € R"™. Let F be a real valued function on U x V such that
F(0,0) = 0. Assume that 0 € U is a critical point of F|y o3 When we con-
sider that I is an unfolding of F'|;7, oy such that q',...,q¢" are innervariables
and A, ..., \" are parameters, the set C(F) of critical points is defined as

F oF

C(F):{(q,)\)eUxV\gql:-~-—8qk:0}.

The origin 0 € U is called a non-degenerate critical point if the Hessian
of Flyrx 40y at 0 € U is non-degenerate. We also call (0,0) € C(F') to be non-
degenerate. Then, some neighborhood of (0,0) € C(F) is an n-dimensional
submanifold in U x V as follows: The Jacobian matrix at (0,0) of the map
K :U x V — R* defined by (g—g, v g—cﬁ) is non-degenerate, that is, K, is
surjective at (0,0) and, by the implicit function theorem, a neighborhood
of (0,0) € C(F) is a graph over a neighborhood of 0 € V. In general, if K,
is surjective at (0,0), then, again, a neighborhood of (0,0) in C(F) is a
submanifold of dimension n in U x V. Such a function F' is called a Morse
family.

Let m: U x V. — V be the projection. Then the null space of the Hes-
sian of F|yx oy at (0,0) is a subspace of ToU x {0}. When a neighborhood
of (0,0) in C(F) is a submanifold, we can consider 7 : C(F) CU xV — V
the restriction of . The subspace {X € T 0)C(F)|m«(X) =0} is called
the null space of C'(F) at (0,0), which is contained in the null space of the
Hessian of F|y, 0y at (0,0) since Ky (X) =0 for X € T(g0)C(F) such that
m(X) =0
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If F'is a Morse family, then we obtain that the null space of the Hessian
of Flyxqoy at (0,0) is the null space of C'(F') at (0,0). Furthermore, we can
construct the Lagrangian embedding of this submanifold into the cotangent
bundle T*R"™ by

(q,)\) — (ﬁ(q, A)77W<Q7A)7)\ ,...,)\ )

as follows:

Let (p',...,p", AL, .., A") be the canonical coordinate system in T*R".
Then the Liouville-form is Z?:l p?d)N and the symplectic form of T*R" is
given by >0, dp? A dN = d(> 25—y p’dN). The Liouville-form induced on
C(F)is 320, gfj dX = d(F|c(r)), that is, exact and hence the symplectic
form induced on C(F’) vanishes. If (0,0) be a non-degenerate critical point,
the above map is a Lagrangian embedding since the image is a graph over
a neighborhood of (0, 0).

So we consider the case that (0, 0) is not a non-degenerate critical point.
Let m be the nullity of the Hessian of Fy oy at (0,0) and assume that
%, a=1,...,m are a basis of the null space of the Hessian of F‘UX{O} at
(0,0). Since K, is surjective,

A B
rank(D, 1% F,)zk‘

holds, where, for a, 3 =1,....m, o', 8 ' =m+1,...k, 6 =1,...,n,

r O0*F r O*F ’_ O*F
A= (W)’ B = <7aqnaqw>v ¢ = (raw)’

I 0*F ’r_ O%*F ’r O*F
D= (5255) E=(52). F=(a25%)

By the assumption, we get A’ = B’ = D' = 0 and rank E' = k — m. Hence,
rank C' = m.

We set C" = (C1, %), where C] is an m x (n —m) matrix and Cj is an
m x m matrix. Without loss of generality, we may assume that CY is regular.
Then the submanifold in a neighborhood of (0,0) may be given by

qa/ _ qa'(qa7A5')7 )\5// _ )\Jll(qa7A6/)’

where &' =1,....,n—m, 8" =n—m+1,...,n. Since

oF

a*qo&qﬁ, ¢" (@® A7), X N (6P 0)) = o,
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its differential at (0,0) implies C% (axf ) = 0. Since C} is regular, we get

s
%’\7 = 0 for each (. Since

8F ! ’ ’ 1" ’
g (@7 (@ X7), AT A7 (g7 NT) = 0,

its differential at (0,0) implies E’ (%qT[Z) = 0. Similarly, since E’ is regular,

we get 8 S = 0 for each 8. These show that the null space of the Hessian of
Flyxqoy at (0,0) is the null space of T 0)C(F).
Furthermore,

(q, )\) — (W(q7 )\)7 veey W(q, )\),)\ ,...,)\ )

is an embedding of a neighborhood of (0,0) of C(F'), which completes the
proof.

We call such an F' a generating function with respect to this Lagrangian
submanifold in 7% (R").

Conversely, the result above is a sufficient condition that F' is a Morse
family. In fact, if some neighborhood of (0,0) in C(F') is an n-dimensional
submanifold, the null space of the Hessian of F'|; (o at (0,0) is the null
space of T(0)C(F') and the map defined by

OF OF
(on (@A) 3

an embedding, then F' is a Morse family at (0,0) as follows:

Let m be the nullity of the Hessian of F|y oy at (0,0). Without loss of
generality, we assume that { 88 } is a basis of the null space of the Hessian
of Flyxoy at (0,0). Let (ul,...,u™, u™* . u") be a local coordinate sys-
tem at (0,0) in the n—dimensional submanifold such that 5% = 62

assumption. Then, we get, at (0,0),

flg,\) = (g, \), AL, ., A™)

aua Z af;;;ﬁ SZZ ),0) = ((a§;£ﬁ> (%) ,0).

By the assumption, rank (msaqﬁ) =m and rank (%) = (k—m).
Therefore, rank K, = k.

Proposition 5.1. F is a Morse family at (0,0) if and only if
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(1) some neighborhood of (0,0) in C(F) is an n-dimensional submanifold,

(2) the null space of the Hessian of F|yyoy at (0,0) is the null space of
T(0,0)C(F),

OF OF L .
(3) flg,\) = (W(q, )\),...,W(q, A), AN, A" is an embedding.

5.2. A complex Lagrangian cone

Now we consider a complex submanifold M C RS% in place of U and Ly, 2
in place of V' in Subsection 5.1. Let 7 : C'(Ej;) C RS% X Lp oy — Ly 2y be
the projection and its restriction.

Let N be an irreducible component of C(E)s). If N has a non-degenerate
critical point (7, (L1, L2)), then some neighborhood of (7, (L1, L2)) is a graph
over an open set of (L, Ly) € Ly, 2. Therefore we see dimcgN = nvy.

N may have a singular locus S7, which is of real codim > 2. Let S be
the set of degenerate critical points in N. Since a neighborhood of a point
¢ Sy in N is a submanifold, S; C S holds. Since a neighborhood of a point
€ S3\ S1 in N is a submanifold and the zero set of the Jacobian of 7 of the
submanifold is a real analytic set, Sy \ S1 may be a real hypersurface in N
possibly with singularities. If Fjs is a Morse family at (7, (L1, L2)) € S2 \ S1,
then, a neighborhood of (7, (L, L2)) is a submanifold and there exists a
Lagrangian embedding of the neighborhood as in Proposition However,
we note

Lemma 5.1. If N has a non-degenerate critical point, then a Lagrangian
immersion ¥ of N into T™* Ly, 2, possibly with singularities is given by

P (7’, (Ll,LQ)) €N~ ((Ll,LQ)P(T), (Ll,LQ)) S T*Ln,Q'y-

In particular, ¢ = 2¢p o ® o U. The obtained Lagrangian submanifold possi-
bly with singularities is a complex Lagrangian cone possibly with singulari-
ties. Some neighborhood of a non-degenerate critial point is the graph : L —

(LP(1(L)), L) on an open set of Ly, 2, where LP(7(L)) = (%ﬁf)(T(L), L)

for the canonical coordinate system {{;;} in Ly, 2+ .

Proof. By ¥ =2po® oWV, the obtained Lagrangian submanifold possibly
with singularities is a cone. Since (7(L), L) is a critical point of Ejy,
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OF 2
(.%f = tr(P(r(L)) ei;L) = Y P(r(L))kj L = (LP(7(L))i,
E k=1

where e;; € Ly, 24 such that the (i, j) entry is 1 and the others are 0. O

Let Ty, 2y = {L € Ly, 24| column vectors of L span a lattice}. Then T;, 24
is dense in L, 2, since T} 2, contains L with rank = n whose entries are
rational numbers.

Proposition 5.2. Let N be an irreducible component of C(En;) with a
non-degenerate critical point. Then we have

(1) dimeN = ny,
(2) ¥ gives a complex Lagrangian cone possibly with singularities,

(3) m1(Ty,2y) is dense in N.

5.3. Non-degenerate condition

We review non-degenerate condition (see Cortés [7]). The canonical coordi-
nate system in Kj , X Kj , is denoted by {24 .27, wh .. w7} A complex
symplectic form ws is given by Z}:l dz) A dw? = —w;. A Hermitian form
with the signature (v, ) is defined as n2(z,y) = iwa(z,y), which is Sp(vy, R)-
invariant. A complex Lagrangian subspace is called to be non-degenerate if
the Hermitian form induced from 7, is non-degenerate. Then, its signature
(p,q) is called the signature of the complex Lagrangian subspace. Sp(v, R)
acts on the space of non-degenerate complex Lagrangian subspaces and pre-
serves signatures.

Let Laglc denote the set of non-degenerate complex Lagrangian sub-
spaces C K1, x Kj,. The complement of Laglc in Lag® is a real analytic
hypersurface possibly with singularities, because, for a local holomorphic
frame fields f1,..., fy of V on a neighborhood U C Lag®, peUnN Lagfj if

and only if det(n2(f;, fr)) # 0 at p.

Lemma 5.2. 7€ S% is a non-degenerate complex Lagrangian subspace if
and only if T € RS%. Then the signature (p,q) of T is that of Imt. In par-
ticular, a complex Lagrangian subspace with ¢ =0 corresponds to T € H,.
RS% is identified with LagS N Lagf§'.
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Proof. Let (ej,ej7), 1<j <~ be a basis of the complex Lagrangian
subspace. Then n2((e;, €;7), (ex, ex7)) = itr'dZy A dZa((ej, e57), (ex, exT)) =
QImTjk. O

Let W be a complex Lagrangian subspace of K7, x Kj . Then, in gen-
eral, 72 induced on W may be degenerate. Let W,, be the null space and
nullity,, its complex dimension. Cortés gave the following (Proposition 1.1

[7)-

Proposition 5.3. Let W be a complexr Lagrangian subspace. Then W N
W =W,,. In particular, W is non-degenerate if and only if W "W = {0}.

The previous half of Proposition is Proposition 1.4 in [7]. a € W N
W if and only if Rea £ilma € W, that is, Rea, Ima € W. Consequently,

W NW = {0} is equivalent to that W does not contain non-zero real vector.
Combining these with Corollaries and we obtain

Proposition 5.4. W C K1, x K1, is non-degenerate if and only if the
projection m : (K1, K3) € W — 2(ReK1,ReK>) € L1 9, is surjective. The
space of non-degenerate complex Lagrangian subspaces is identified with the
space of 2y x 27y symmetric matrices in Sp(y, R). Hy is the space of complex
Lagrangian subspaces such that 1o is positive definite.

A complex Lagrangian submanifold X with the non-degenerate Hermi-
tian form 7, in C?7 is called a Lagrangian pseudo Kihler submanifold, which
admits a special pseudo Kéhler structure [7]. Freed [15] (see, for example,
[18]) formalized a special pseudo Ké&hler structure as follows:

A special pseudo Kéahler manifold is a complex manifold with the com-
plex structure J and

(a) a pseudo Kéahler metric g with a pseudo Kéahler form w,

(b) a flat torsion-free connection V such that Vw = 0 and
(Vx)(Y) = (VyJ)(X) = 0.
Propositions and imply
Corollary 5.1. LetY be a complex Lagrangian submanifold in K, ~ x K,

and w1 1Y — Ly 2. Then Y is a Lagrangian pseudo Kdhler submanifold if
and only if w1« at each point of Y is bijective.
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Let N be an irreducible component with a non-degenerate critical point
of C(Ejps). Then a connected component of non-degenerate critical points
of N may be locally a graph on a neighborhood in L, 2,. From Lemmas

and Theorem Corollary and that SO(n),U(1)

and Sp(vy,R) preserve 72, we obtain

Theorem 5.1. The connected component gives the Lagrangian pseudo
Kihler cone with SO(n) x U(1) as holomorphic isometries. If M is invari-
ant by a subgroup G of Sp(vy,R), then an element of G acts on C(Eyr). An
element of G may change an irreducible component Ny to another irreducible
component No. Then, the element of G changes a connected component of
Ni to a connected component of No as a holomorphic isometry preserving
the special pseudo Kdhler structures. If G is connected, then G is a group of
holomorphic isometries on connected components with special pseudo Kdhler
structures.

Remark 5.1. SO(n, C) preserves an irreducible component, however, may
not preserve a connected component.

It is worth noting that the energy function is defined on a complex
submanifold M in Lag{.

Proposition 5.5. When we identify Lagfj with the space of 2y X 2 sym-

metric matrices in Sp(y, R), we can define the energy function as E(P, L) =
2tr(P'LL) for P € Lag{ and L € Ly, 2.

5.4. A complex Lagrangian graph in T*L,, 2,
We study the signature of a complex Lagrangian graph.

Corollary 5.2. If a non-degenerate complex Lagrangian subspace in

‘B C
Sp(v,R) and ((L1, L2)P, (L1, L2)) is a vector in the complex Lagrangian
subspace, then,

Ly 2y X Ly 2y 1s given by a symmetric 27 X 27 real matriz P = 4 B) €
1 'Ly
ma((L1, Lo)P, (L1, L2)), (L1, La) P, (Ln, L2)) = 5tr((Ln, L2)P (1] ) )

and the signature of na is the half of n x (the signature of P). The complex
structure induced by I is given by PJy (see Theorem [2.1]).
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Proof. Let K1 = §(Ly — i(L1B + LyC)) and Ko = $(Ly +i(L1 A+ Ly ' B)).
Then we obtain

no((K1, K»), (K1, K2)) =itrtdZ; A dZy((K1, K3), (K1, Kb))
1 tL
:§tr<(L1, L) P <tL;> )

Let (L1,..., L2y) and (L, ..., L5, ) be tangent vectors at each point of
LLQ'}/. Then

g

1
WO((Lla ey L2’y)7 (L/17 ceey Léy)) = Q(Lh ey L2’y) tJO t(L/Ia ey L/Q'y)
is a 2-form on Lj 2, which is Sp(y, R)-invariant for the action:

(L1, L) (‘; Z) — (Lya+ Lo, Lyb + Lyd) for (Z 2) € Sp(, R),

where Ll = (Ll, ...,L,y) and LQ = (Lfy_;,_l, ...,Lgfy).

Let (41, ..., f2y) be the canonical coordinate system in L2, and ¢ a func-
tion on an open set U C L1 2. Then (3—2, ey 8‘3—‘5,51, ...,¥2y) is a Lagrangian
graph Ly on U into T* L1 2, and ({1, ..., {2,) is a local coordinate system in
Lg. (L1, ..., L2ay) € L1 2, may be a tangent vector of Ly. The following gives

the special pseudo Kahler structure on L.

Proposition 5.6. Ly in T*Lq 2, is a Lagrangian pseudo Kdahler subman-
ifold if and only if the Hessian of ¢ is an element of Sp(v,R). Then we
have

(1) The complex structure Jy is given by (82;;6,6)‘]07
(2) The pseudo Kdhler metric g4 is given by

1 ¢
(L1, ey Loy) (5= (LY, ooy L
2( 1, ) 27)(88]8€k)( 1> ) 2')/)7
(3) The pseudo Kdhler form wy is wy,
(4) The canomical connection on Ly o, (= R*Y) satisfies (b) in the defini-

tion of the special pseudo Kdhler structure.

Proof. (1) is obtained by Theorem 2.1 Corollary [5.2]implies (2). It is enough
to calculate the pseudo Kéhler form to prove (3). By Corollary and that
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the Hessian of ¢ is an element of Sp(v,R), we get

1 Po o Pd /
§<L177L2’7)(8£‘78€k) J0(8€j8£k> ( IERRS) 2’}/)
1

:§(L1,...,L27)t(]0t( /17"'7 /2')/)

We choose the canonical connection on L 2, as a flat torsin-free connection.
Then the pseudo Kéahler form is parallel and

0 0
(V%J@(%) - (vﬁj‘b)(@iﬂj)
&3¢ 3¢ 0
T (azjaekaep B aekaejazp)JOWaTQ =0

where Jop, is the (p, ¢) entry of Jy. O

Let N be an irreducible component of C(F)s) with a non-degenerate
critical point. Then N gives a complex Lagrangian cone posssibly with
singularities. Let N7 be a connected component of non-degenerate criti-
cal points of IN. Then N; admits a special pseudo Kéhler structure of
the signature (p,q), where p+ g =nvy. Hence, (p,q) and inderg, at a
non-degenerate critical point are invariants of Ni. We investigate a rela-
tion between the two invariants. By Lemma Nj is locally a graph
{(r(L),L)|L € U} on an open set U C Ly, 2. The complex Lagrangian cone
is given by {(LP(7(L)),L)|L € U}.

Let £, be the (j, k) entry of L € L, 2,. We denote by {/;;,} the canonical
coordinate system in Ly, »,. Review ej, € Ly, 2, such that the (j, k) entry is
1 and the others are 0. Let {71, ..., 7%}, where a = 2dimc M, be a local real
coordinate system in M.

We consider the case ¢ = Ej;. By Propositions 2.2 and 5.6,
2tr(P(7(L)) tLL) has the pseudo Kéhler potential a(L). By using 7(L) € M,
we calculate

da -
o tr(P(7(L)) "ejr L),
Pa__~, OPGL), . O t
m —zq:tl“( 9rd e]kL) ol + tr(P(7(L)) ejkGZm)-
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oP(r(L)) tLL)

Differentiating tr( =0 by £, we get

or" OP(r)
) ¢ oP(7); _

Zt 87’%)7’” LL)@@I@—’_QH( or4 ejil) = 0 and hence,

aP(T)t . aTT aTq

Zq:tr( gra 8& B *Zt aTanr )aéjk e’

Thus, we obtain
&a or" or4

P(r(L))‘e; .
8ﬁgm8€]k Zt aTanT )8€jk oy, + tr(P(7(L)) e]keém)

We define the non-degenerate pseudo inner product by Reng on T L, 2.,
which corresponds to g4 in Proposition Then, we get an important
formula by Corollary and Proposition

Theorem 5.2.
0 . o0r1 or"
HessE
Z essEn( a T T
0 0
:tr(P(T(L))tejkegm> Hessa(aek 8fem)

(1) %tr(P(T(L))tejkegm) is the Gram matriz of the basis {%} with re-
spect to Reny on the complex Lagrangian subspace corresponding to
T(L).

(2) 3Hess a(%, %{n) is the Gram matrixz of the basis {6£ } with respect

to Rena on the tangent space at (LP(7(L)),L) of the complex La-
grangian graph.

Note that the tangent space at (LP(7(L)), L) of the complex Lagrangian
graph in Theorem may not be a complex Lagrangian subspace (n > 2)
which is investigated in Theorem

5.5. indexg,, of a complex Lagrangian graph
Assume M C H,. Let N be an irreducible component of C'(Ej;) with a non-

degenerate critical point. Since C(Ey;) C M x Ly, 2, we obtain 7: N — M,
which is a holomorphic map except the singular locus S7 in N.
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(i) Surjective condition at a non-degenerate critical point € N is that 7.
at the point is surjective.

(ii) Surjective condition on an irreducible component N is that generic
non-degenerate critical points of N satisfy surjective condition.

If surjective condition is satisfied at a non-degenerate critical point of NV,
then, generic non-degenerate points of N satisfy surjective condition since
7 is holomorphic, that is, N satisfies surjective condition.

Theorem 5.3. Let N be an irreducible component satisfy surjective condi-
tion. Then

2q + indexg,, < 2dim¢M

for each connected component Ny, where (p,q) is the signature of the special
pseudo Kdhler metric. In particular, the special pseudo Kdhler metric on
Kert, at a non-degenerate critical point € Ny satisfying surjective condition
is positive definite.

Proof. By the asumption, there exists a non-degenerate critical point (79, L)
satisfying surjective condition in Nj. Thus we obtain a neighborhood of
(10, Lo) in Ny is given by {(7(L),L)| L € U}, where 7(Lg) = 79 and U is an
open set C Ly, 2. It is enough to prove the inequality at (7(Lo), Lo).

We consider the symmetric bilinear form on T{;(z,),,)/V of the left hand
side of the formula in Theorem We get the subspace Ty = Kerr,, which
is containd in the kernel of the symmetric bilinear form. Let T be the
subspace where the bilinear form is negative-definite. Therefore, the sym-
metric bilinear form on Ty + T} is non-positive. By Theorem P(7(Lo))
is positive definite. Thus, Theorem implies that the Hessian of a is posi-
tive on Ty + T3, Therefore, 2p > dimpg (T + T3). Since surjective condition is
satisfied, dimgT}, = indexrg,, and dimgTy = 2ny — 2dimc M. Consequently,
2p > indexg,, + 2ny — 2dimc M, together with p + ¢ = nvy, completes the
proof. O

We can identify L € Ly 9, with (‘L0) € Ly41,2,, that is, Ly, C
Ly+1,2y. Then, Ey(7, L) = Ey(7, '(*L0)) and hence C(Ey) for Ly oy is
contained in C'(Eys) for Ly41,2y. If (7, L) is a non-degenerate critical point,
then (7, !(*L0)) is also a non-degenerate critical point. Thus we see that the
graph G of non-degenerate critical points on a neighborhood of L in L,, 2, is
GoN{(r, "(*L0))|T € M,L € Ly 2}, where Gy is a graph of non-degenerate
critical points on a neighborhood of *(*L0) in Ly 11,2+
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It is a simple method to obtain a non-degenerate critical point for L, 41 2
from a non-degenerate critical point for L,, 2, which is called swelling in [10].
The obtained irreducible component is called a degenerative component in
[4]. The point may not satisfy surjective condition, however, generic points
of the irreducible component obtained by swelling may satisfy surjective
condition. In the case, since swelling preserves indexpg,,, it is enough to
calculate indexg,, at a critical point satisfying surjective condition close to
(r, {(L,0)).

Theorem [5.3| implies

Corollary 5.3. Let (p1,q1) be the signature of G1 and (p2, q2) the signature
of Ga. Then q1 < q2 holds. If Ga satisfies surjective condition, indexg,, <
2dimcM — 2q2 in place of q1. In particular, indexg,, < 2dimcM — 2q;. If
q1 = dimgM, then q1 = q2 and indexg,, = 0 on the connected component.

We have the null space of the Hessian of Fj; at a degenerate critical
point and denote by nullityg,, its dimension. We recall that Sy is the set
of degenerate critical points of N. If N has different connected components
of non-degenerate critical points in N, then Sy is an hypersurface possibly
with singularities. We consider a neighborhood of a point of the hypersurface

except singularities. Propositions and imply

Proposition 5.7. If Ey is a Morse family at a point of So \ S, then we
obtain nullityg,, = nullity,,.

Theorem 5.4. Let (1,L) be a critical point of an irreducible component
with a non-degenerate critical point of C(Eyy). Assume that Eyy is a Morse
family at (1, L). Let {Ty} be a basis of the tangent space of the corresponding
complex Lagrangian submanifold above at (K, K7) and W the Gram matrix
(n2(T3,Ty)) of {T} with respect to na. Similarly, we define the real basis
{T%,T}} and the Gram matriz Wy of the real basis {Ty,,T}} with respect to
Rena. Then nullity of W is nullityg,, and nullity of Wy s 2nullityg,,. In
particular, if W or Wy is regular, then (1,K) is a non-degenerate critical
point and the signature is the signature of W or the half of that of W1.

Corollary and Theorem [5.2] imply

Theorem 5.5 (Algorithm). Let (1,L) be a non-degenerate critical point
of an irreducible component of C(Eyr) where surjective condition is satisfied
at the critical point. Let Ty, = (Ag, B) be a basis of the tangent space at
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(K,KT) of the corresponding complex Lagrangian cone in C*". Set T} =
(ZAk,ZBk> Let

(Ck, Di) = Re(24, 2By), (Cy, Dy) = Re(i2Ag,i2By).
Then {(Ck, D), (Cy, D}.)} is a basis of Ly 2. Put
Sk = (Ek, Ex7), i = (B, Eyr),
where

E, = %(Ck + i[CkReT — Dk](ImT)_l)
= Re(Ay) + i[Re(Ap)Rer — Re(By)](Im7) 7!,
E;. = Re(iAg) + i[Re(iAg)Rer — Re(iBy)](Imr) L.

{Sk,S;.} is a real basis of a mon-degenerate complex Lagrangian subspace
defined by T. Let Wy denote the Gram matriz of the real basis {Sk, S;.} and
Wi the Gram matriz of the real basis {T}, T} } with respect to Rena. Then

(1) 2ny — 2dime M is the nullity of Wo — W1,

(2) HessEy is the difference between the tangent space of the non-
degenerate complex Lagrangian cone and the complexr Lagrangian sub-
space by T,

(3) indexp,, is the number of negative eigenvalues of Wo — W7.

Finally we give a geometric property of the signature. Let N be an ir-
reducible component of C(F;s) with a non-degenerate critical point. Then
a connected component N; of non-degenerate critical points of N admits a
special pseudo Kéahler structure of the signature (p, q). It is locally a graph
(LP(7(L)),L) on an open set U C Ly, 2. We investigate ¢ for n = 1 for the
convenient because the proof is available for all n. N admits the orienta-
tion induced by the complex structure except Si. We investigate whether
the projection m : N1 — L1 2, is orientation preserving or reversing for the

1(v+1)
2

orientation of Lj 2 by %(—1) wg, where

1
wo = i(Ll,...,LQW)tJOt( /1,..., IQ,Y)
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Let wg be the induced pseudo Kahler form of wg on Ny, which is the pseudo
Kéhler form by Proposition Then

o 0

_ 5
(82'0" 8z5)dz Adz

wo = —ih

1

where (z',...,27) is a local complex coordinate system in Nl, (h(% 2y

0zP
is the Hermitian matrix with the signature (p, ¢). For 2* = zF 4 iy,

1 O+ 8 0
R det(h(a —, 8—))dm Ao NdzY Ndyt A A dyT.
Proposition 5.8. 7 : Ny — L2, is orientation preserving if (—1) >0
and orientation reversing if (—1)? < 0.

6. Applications to minimal surfaces in flat tori

Sacks and Uhlenbeck [32], Schoen and Yau [33] constructed an incompress-
ible minimal surface as a minimum point of the energy function on the
Teichmiiller space induced by harmonic maps. When the energy function is
smooth, its critical point corresponds to a minimal surface. The index and
the nullity of the Hessian of the energy function at the critical point are
related to index, and nullity, of the minimal surface [§], respectively.

Furthermore, we studied a multivalued harmonic map from a compact
Riemann surface M to R™ with a real period matrix L for a canoni-
cal homology basis {41, ..., Ay, B1,..., By} of M and proved that the en-
ergy is E(r,L) = 1tr(P(r)'LL), where 7 is its Riemann matrix € H,. Let
RM;0n—hyper be the space of Riemann matrices of non-hyperelliptic Rie-
mann surfaces of genus v > 2 and RMp,ye, the space of Riemann matrices
of hyperelliptic Riemann surfaces of genus v > 2. Then, M., may be an open
set in C(ERM,,,_pn,pe.) @a0d Ny an open set in C(ERyy,,,..)- Thus, our results
obtained in Sections 2, 3, 4 and 5 are applicable in the study of compact
orientable minimal surfaces in flat tori.

6.1. A minimal surface in an n-dimensional flat torus

Let M be a compact Riemann surface of genus v and {4;, B;} a canonical
homology basis of M. Let {1;} be the basis of the space of holomorphic 1-
forms on M such thst f A, j = 0i5. The matrix 7 = (755) f B, ;) is called
the Riemann matrix associated with M and {4;, B;}.
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Ahlfors [1] proved that RM,n—hyper s @ (37 — 3)-dimensional complex
submanifold, RMpype, is a (27 — 1)-dimensional complex submanifold in H,
and RMpyper is the singularity of Ran,hyperURMhypeT. Thus we can
consider C(Eru,,,._p,..) a0d C(ERgay,, ... ), which are Sp(v, Z)-invariant by

Lemma since RMyon—hyper and RMpyper are Sp(7, Z)-invariant.
From a Rauch’s result (see, for example, [§]), we note

Lemma 6.1. Let 7 be a Riemann matriz associated with M and {A;, B;}.
Then A = (A;j) € S% is a normal vector of RMon—hyper, RMpyper at T in
H.,, if and only if szzl Aijipy = 0, where each A;j1;10; means a holomor-
phic quadratic differential.

We see that (7, L) € C(RMpon—hyper) if and only if grad E(r, L) =

1 1
2@'(§t(L1 Fi[LiRer — Lg](ImT)*l)) = ((L1 T i[LiRer — LQ}(ImT)fl))
is a normal vector of RMpon—pyper at 7. By Lemmal6.1], this is equivalent to

H(Ly +i[LiRer — Lo)(Tm7) 1) (41, ..y 1by)) X
(L1 +4[LiRer — Lo])(Im7) 1) (¢, ..., ¥b,) = 0.

We consider the above equality as follows: We first determined a mul-
tivalued harmonic map S from M to R™ by integrating dS along a path
from a fixed point whose real peroid matrix is (L;, L2) in [8]. In fact, one
R™-valued harmonic 1-form dS as

(Llu LQ)TT_l t(Rewla ey Rew’w Imwb ceey Imww)7

_ -1
where T, = (EV ReT) and Tt = <E7 ReThiT ) satisfies

0 Imr 0 Imt

(/ dS,...,/ dS,/ ds,...,/ dS) = (L1, Ly).
Al A.y Bl B

’Y

However, by the ambiguity of a canonical homology basis for a
non-hyperelliptic Riemann surface M, we obtain (M,{A;, B;}) and
(M,{—A;,—B;}) for 7. The other is

_(L17 LQ)T‘:1 t(R’ewh (X3 Req/)’w:[mq/}l? 7Im¢7)
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for (M,{—Ai,—B;}). Then
1 . _
dst0 = +5 (L1 +i[LiRer — Lo (Imr) D W1y ey y).
The above equality is equivalent to ‘dS"°dS™0 = 0, which implies that S is

weakly conformal. The complex period map is given by (7, K) — (K, K7). In
this paper, we identify one multivalued branched minimal immersion of M

into R™ with the other. Thus, M., = {(7, L) € C(Egrm,,._p,p..) | rank L = n}
for n.
By C(ERM,,. nyper) — Ln2y, we see that C(Egu,,, ,,,..) 7 (L)

is the space of full multivalued branched minimal immersions of non-
hyperelliptic Riemann surfaces of genus v into R"™ whose real periods are
L. Let G, ={g € Sp(,Z)| Lg = L}. Then Gy, is the subgroup of Sp(vy, Z),
C(ERMyyn_nyper) N (L) is Gp-invariant and a Gp-orbit gives the same
full multivalued branched minimal immersions. If L € T}, 2, then S is a full
branched minimal immersion of M into the flat torus R"™/(L).

We can conclude the similar result in the case of RMjp,p., without the
ambiguity.

Using ¢ in Lemma [2.3] and ¢ in Proposition [5.2], we conclude the follow-
ing.

Theorem 6.1. The complex period map is given by

1 _
2% Y2 C(ERr, 1) | C(BRM,,,..) — H™.
As an application of Proposition [5.2] and Theorem [5.1] we prove

Theorem 6.2. Let N be an irreducible component of C(Egrn

won—nyper) OT
C(Erm,,,.,) admitting a non-degenerate critical point. Then

(1) dimgN = ny,
(2) 1 gives a complex Lagrangian cone in T Ly, 2,
(

3) A dense set of N gives full branched minimal immersions of compact
Riemann surfaces of genus v into n-dimensional flat tori.

The connected component of non-degenerate critical points admits a special
pseudo Kdihler structure with holomorphic isometries S*, SO(n). An element
of Sp(v,Z) gives a correspondence among irreducible components, further-
more, a holomorphic isometry among the special pseudo Kdihler manifolds
in the irreducible components.
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Remark 6.1. The dense set of (3) for RMon—pyper gives non-branched
minimal immersions [g].

We investigated index, and nullity, in [8].

Theorem 6.3. Let S be a full minimal immersion of a compact Riemann
surface M into an n-dimensional flat torus R™ /(L) with a real period matriz
L. If M is not hyperelliptic, then

indexy, = indexrg,,, ,  nullity, = n + nullityg,,,,

non—hyper non—hyper

If M is hyperelliptic, then

ndexq = indeacERMhWT + a,

nullity, = n + nullityERMhypET + 2y —4 - 2q,

where « is an integer satisfying 0 < o <~ — 2. If M has only trivial Jacobi
fields, then a = v — 2 and hence v — 2 < index, holds.

In [§], these results were proved in the case of a compact orientable min-
imal surface in an n-dimensional flat torus. We can formulate these results
for multivalued branched minimal immersions of compact Riemann surfaces
of genus v into R™.

By Theorem for an immersed non-hyperelliptic minimal surface, the
immersion has only trivial Jacobi fields if and only if the corresponding
critical point is non-degenerate.

However, we may not obtain the equivalence for an immersed hyperel-
liptic minimal surface. In fact, the Albanese map of a hyperelliptic Riemann
surface has 2y — 4 non-trivial Jacobi fields (o = 0) and Egryy,,,., is non-
degenerate.

In addition to the above example, there exist immersed hyperelliptic
holomorphic curves of genus v > 2 in complex flat tori of complex dimension
2 with 2y — 4 non-trivial Jacobi fields (o = 0) [6], which implies Egay,,,..
is non-degenerate. Hence these hyperelliptic holomorphic curves can not be
deformed to hyperelliptic holomorphic curves in the same torus up to parallel
translations, since a neighborhood of NV, at the holomorphic curve is a graph
on an open set in Ly, 2.

On the other hand, we note the following by a result of Hitchin [I§].

Proposition 6.1. Let C be an immersed hyperelliptic holomorphic curve of
genusy > 3 in a 2-dimensional complex flat torus T. If C is a non-degenerate
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critical point of Egpy,,,.,, then C can be deformed to non-hyperelliptic holo-
morphic curves in T.

Proof. T has the canonical complex symplectic form. Then C is complex La-
grangian, since the complex symplectic form induced on C is a holomorphic
2-form and hence vanishes. Thus C admits the deformation space of real
dimension 2y — 4 up to parallel translations in 7" [I§]. Therefore C can be
deformed to non-hyperelliptic holomorphic curves in 7. O

index Ertron nyper and index Era,,,,, 8r€ preserved by swelling. Assume
that surjective condition is not satisfied. If we can choose the connected
component satisfying surjective condition by swelling, then we can compute
them. As an application of Theorems and [6.3] we prove

Corollary 6.1. For an irreducible component with a non-degenerate critical
point, we have

(1) A connected component of non-degenerate critical points of an irre-
ducible component N of M., admits a special pseudo Kdhler structure
of the signature (p,q) such that index, < 6y — 6 — 2q. Furthermore,
if surjective condition is satisfied, then a tangent space of the complex
Lagrangian cone corresponding to the connected component determines
index,.

(2) A connected component of non-degenerate critical points of an irre-
ducible component N of N admits a special pseudo Kdhler structure
of the signature (p,q). Furthermore, index, < 4y —2 —2q+ o < 5y —
4 — 2q. The subset of Ny satisfying o < v — 2 is a complex analytic set.
v — 2 < index, holds on N except the complex analytic set. Moreover,
if surjective condition is satisfied, then a tangent space of the com-
plex Lagrangian cone corresponding to the connected component deter-
mines indemERth” and thus index, = inde:cERMhym + v — 2 except
the complex analytic set.

Proof. Irreducible components of C(ERgny,,,_,,,..) and C(Ega,,,.,) for n =
27 is unique [§], [2] (see Corollary below). Since these two irreducible
components admit surjective condition, we have two inequalities by applying
swelling and Corollary

We use B (in p.122 [8]). A symmetric bilinear form 2Imtr(B(u,v) 'K K)
is defined by Theorem 7.10 in [§]. Its real rank is 2 and hence the complex
rank of 2tr(B(p,v)'KK) is . As the determinant of 2tr(B(u,v)'KK) is
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holomorphic, the subset of N, satisfying aw <y — 2 is a complex analytic
set. O

Remark 6.2. It is possible that the complex analytic set may be the empty
set or N. If 2Imtr(B(u,v)'KK) at a critical point (7, K) vanishes, the cor-
responding hyperelliptic minimal surface is holomorphic [8]. In particular,
when n =3 and v = 3, we obtain @ =1 and the complex analytic set is
empty. For the case that the analytic set is IV, see Theorem below.

There exist irreducible components which satisfy or do not satisfy sur-
jective condition [26], [4], [35]. We may obtain a better estimate by Corollary
for an irreducible connected component that does not satisfy surjective
condition. Since SO(n,C) does not preserve a connected component, it is
interesting to study the change of index, and the signature with respect to

the deformation of a minimal surface by SO(n,C) (see, for example, [25]
and [9]).

6.2. Minimal surfaces of genus 3 in 3-dimensional flat tori

6.2.1. How to use the algorithm.

Theorem 6.4. N3 (n = 3) satisfies the following.

(1) N3 consists of only one irreducible component,

(2) N3 admits a non-degenerate critical point, moreover, different con-
nected components of non-degenerate critical points,

(3) N3 is an SO(3,C) x C*-bundle on RMpyper, which satisfies surjective
condition,

(4) N3 causes an embedded non-totally geodesic 9-dimensional complex La-
grangian cone in C8,

(5) Erm,,,., for any L € L3¢ with rankL = 3 is a Morse family,

(6) Each connected component admits a special pseudo Kdhler metric of
signature (p, q) with holomorphic isometries S*, SO(3). 1 < index, <
11 — 2q holds,

(7) There exists a dense set in RMpy,e, whose point gives a minimal im-
mersion into a flat torus.

Proof. Each hyperelliptic Riemann surface of genus 3 admits a basis of holo-
morphic 1-forms 1); such that 1§ + 13 + 3 = 0 which has no other relation
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among the quadratic differentials 1;1;. In fact, we consider different eight
points {ay,...,ag} C C and construct the plane curve

M:w?=(z—a1) - (2 —ag),

which is a hyperelliptic Riemann surface of genus 3. z is a meromorphic
function on M and % is a holomorphic 1-form on M. Then

f(z):/ztw:M—>J(M)

is the Albanese map, where w = ((1 — 22), (1 4 22)i,22)% and J(M) is
the Jacobi variety of M. w gives a full multivalued minimal immersion of M
in R3. Furthermore, ag'w,a € C*, g € SO(3,C) are different Weierstrass
data, and thus N3 is an SO(3,C) x C*-bundle on RMpyper C RMpyper X
Ls ¢, where surjective condition is satisfied. In particular, dimcN3 = 9.

As a local expression of the complex period map of N3 into T*Lg ¢ =
K373 X K373, we get

1— 22 1— 22

d d
ag(/ i(1+ 22) ;,...,/ i(1+ 2%) 5),
1 Bs

2z 2z

where o € C*, g € SO(3,C), {A1, Aa, A3, By, B2, B3} is a canonical homol-
ogy basis, ag, az, ag are fixed. We obtain the complex Lagrangian (branched)
immersion Fy;, of SO(3,C) x C*x {the space of different five points (with
fixed three points) in C} into K33 x K3 3. When we choose another canon-
ical homology basis, we obtain another local expression of Fl,.

We shall prove that Fj, is an immersion. We can give Fj, by (7, K) —
(K,KT) € K33 x K33, where K = agKy,7 = K; 'K,

1— 22 1— 22 1— 22

d d d
Klz(/ i1+ 22) / i1+ 22) / i1+ | 2,
Ay 2z WA, 2z WS A, 2z w
1— 22 1— 22 1— 22
K2=</ i1+ 22) dz,/ i1+ 22) d'z,/ i1+ 22 | 2.
B 2z W JB, 2z W JB; 2z w

Therefore, each K is regular. Let (79, Ko) € N3 and (7(t), K(t)) be a reg-
ular curve in N3 such that 7(0) = 79, K(0) = Kg. Then F, (7(t), K(t)) =
(K@), K@)'7(t) + K(t)7(t)). If Fi, (7(t), K(t))" = 0 at £ = 0, then K(0)" =
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0,7(0) = 0 because K (0) is regular. Thus F), is an immersion and, further-
more, an embedding.

Since a = 1 in Remark nullity, = 3 + nullityEry, .. holds by v =
3 and Theorem Any null vector of the Hessian of Egyy, ., corresponds
to a non-trivial Jacobi field [8]. We get an infinitesimal minimal deformation
of multivalued immersion in R3 from the non-trivial Jacobi field by using
the argument in [26] and the corresponding infinitesimal deformation in
hyperelliptic Riemann surfaces of genus 3 [8]. Thus the null space of the
Hessian of Egyy,,,., is the null space of N3. Proposition implies that
Erum,,,., is a Morse family.

We prove that the obtained complex Lagrangian cone is not totally
geodesic as follows: Assume that the complex Lagrangian cone is totally
geodeic, that is, a non-degenerate complex Lagrangian subspace. Then, for
the projection 7 of the non-degenerate complex Lagrangian subspace into
L3, m, is isomorphism. The real period map of N3 is the composite of
the complex period map of N3 into the non-degenerate complex Lagrangian
subspace and ;. Thus, a point admitting non-zero null spaces in N3 is a
branched point of the complex period map. Therefore, the set of points ad-
mitting non-zero null spaces in N3 is a complex analytic set, which implies
that the set of non-degenerate critical points in N3 is connected. This con-
tradicts that Schwarz’ P-surface has inderp,,, =0 [31] and Schwarz’
CLP-surface has index gy, =2 [23].

The image of 77 1(T5) by N3 —» RMpyper is also a dense set. O

We see index, =1+ indexg,,,,, for v =3 by Corollary and Re-
mark We can state how to calculate nullity, and index, as follows:

Choose ai,...,a5 and a canonical homology basis {Aj, Ag, A3,
By, By, B3}

T, = 8(/ tw,/ tw)f0r1§i§5, TﬁZ(/ tW,/ tw)7
da; Ay B, Ak By,
0 1 0O O

0 0 0 1 0
T =1-1 0 0|7, Tg=|( 0 0 O0)Ts, To=|0 0 1]7Ts.
0 0 0 -1 0 0 0 -1 0

T is 01_102 for Ty = (C1,Co). If T; for 1 < i <9 are linearly independent,
then {7} } is a basis. W and W5 — W in Theorem [5.4) and Theorem [5.5| give

(1) nullity, is 3+ the number of the zero-eigenvalue of W,

(2) nullity, is 3 + 5 the number of the zero-eigenvalue of W1,
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(3) If |W| # 0, then the critical point corresponding to the minimal surface
is non-degenerate, its signature is the signature of W and indez, is
14 the number of negative eigenvalues of Wy — W7.

Shoda and the author [12] gave W and Wy — W; by periods of Abelian
differentials of the first kind and the second kind.

6.2.2. The deformation space of embedded minimal surfaces of
genus 3 in 3-dimensional flat tori. Let f be the same notation as
in the proof of Theorem Meeks [21] proved that if {a1,...,ag} satisfies

ajasazay > 0 and

as = —(1/a1), a6 = —(1/az), a7 = —(1/a3), as = —(1/a1),

then Ref and Imf give embedded hyperelliptic minimal surfaces of genus 3
in 3-dimensional flat tori and hence there exist two real 5-dimensional spaces
of embedded hyperelliptic minimal surfaces of genus 3 in 3-dimensional flat
tori. The spaces are called Meeks’ family [36]. We remark that Schoen’s
Gyroid, Schwarz’ H-surface and the Lidinoid do not belong to Meeks’ family.

Since Meeks’ family is not a subset of N3 as it stands, we extend Meeks’
family to two real 9-dimensional families by the homothety and SO(3)-
action. Furthermore we consider the deformation space of a fixed minimal
surface (€ Meeks’ family) with a fixed canonical homology basis and con-
struct two 9-dimensional deformation spaces of embedded hyperelliptic min-
imal surfaces of genus 3 in 3-dimensional flat tori. Thus we can consider
Meeks’ family as two 9-dimensional submanifolds in N3. Each deforma-
tion space may contain a minimal surface with different canonical homology
bases. It is interesting to determine the subgroup of Sp(3, Z) preserving the
deformation space.

Furthermore, one Meeks’ family is an image of the other by an element of
Sp(3,Z) as follows: The conjugate surface of Schwarz’ CLP-surface is itself.
Such an example also exists in rPD family (Karcher’s TT-surfaces) C Meeks’
family. Thus, one Meeks’ family intersect the other up to Sp(3,Z) at the two
minimal surfaces which admit no non-trivial Jacobi fields. Its deformations
of such a minimal surface is a graph on a domain in a real 9-dimensional
subspace C L3¢ (see Proposition below). Two Meeks’ families contain
the common neighborhood. By the real analyticity, one Meeks’ family is
identified with the other. Thus we obtain the uniqueness of Meeks’ family
up to Sp(3,7Z).

Finally, we focus attention on the deformation space of embedded min-
imal surfaces of genus 3 in 3-dimensional flat tori.



1998 Norio Ejiri

We first consider the deformation space of a 3-dimensional flat torus
as follows: Column vectors of L € L3¢ span a lattice of R? if and only
if there exist a 3 x 3 real regular matrix X, a 3 x 6 real matrix g with
integer entries and a 6 x 3 real matrix h with integer entries such that
L =Xg and X = Lh. Consequently we get gh = FE3. Therefore, we con-
sider the deformation Ly € L3¢ of L such that Ly = L and column vectors
of Ls span a lattice. Then there exists the 3 x 3 real regular matrix X, such
that Ls = Xg¢9 and Xy = Lgh holds [§]. We define the deformation space
{Xg} of a 3-dimensional flat torus by {Xg¢g|X € GL(3,R),detX > 0} or
{Xg|X € GL(3,R),detX < 0} for g and h satisfying gh = E3, which is an
open subset of a linear subspace {Y g} C L3, where Y is any 3 x 3 real
matrix. Thus dimp{Xg} = 9. Note that {X g} contains its homothetic flat
tori and SO(3)-orbit of a flat torus. We next define the deformation space
of a hyperelliptic minimal surface of genus 3 in a 3-dimensional flat torus
as a connected component of N3 N7~ 1({Xg}) containing the minimal sur-
face. We may consider that some connected component of N3 N7~ ({Xgq}),
q € Sp(3,Z) gives the same deformation space.

By using Proposition 2.2 we can consider the same symplectic form
on Ly 2y X Ly 2y as wy in Proposition which is also denoted by wq, as
follows: For tangent vectors (L1, ..., Lay) and (L}, ..., Ly, ) at each point of
Ln,Q'y- Then

1
WO((LI’ ceey L?V)? (Lllv <oy /27)) = §tr<(L17 o0y L2’y) tJO t(L/l’ ceey Lé'y))

is an Sp(vy, R)-invariant symplectic form.

We obtain a criterion whether {Xg|X € GL(3,R),detX >0} and
{Xg|X € GL(3,R),detX < 0} is Lagrangian with respect to wg for n = 3
and v = 3.

Lemma 6.2. Let {Xg} be the deformation space of a flat torus, where g =
(A, B) and A, B are 3 x 3 matrices. The following statements are equivalent:
(1) {Xg} is Lagrangian with respect to wy in L3¢,
(2) A'B is symmetric, and
(3) Let (Ly, Lo) be an element of {Xg}. Then Li'Ly is symmetric.

The set of (L1, L2) € L3 g such that Ly tLy is mot symmetric is open dense
m L3’6.



A generating function of a complex Lagrangian cone in H* 1999

The real period matrix of Schwarz’ P-surface for a canonical homology
basis is given by Lo = (I E3)gp such that

, goho = E3

OO O OO
_ o O O o o

and I is the elliptic integral in [I2]. Thus the deformation space of the
ambient 3-dimensional flat torus containing Schwarz’ P surface is {Xgo}.
Thus the period matrices of minimal surfaces in Meeks’ family are con-
tained in {Xgo}. Since go satisfies the condition in Lemma the part
of Meeks’ family contained in each connected component with the special
pseudo Kahler structure of A3 is Lagrangian with respect to the pseudo
Kéihler form wg on the connected component. The uniqueness of the Hee-
gaard splitting of T3 (Frohman and Hass [16], Boileau and Otal [5]) implies

Proposition 6.2. The deformation space of an embedded minimal surface
of genus 3 is a connected component of T ({Xgo}) N N3 containing the
embedded minimal surface. Its singularity is in the sets of degenerate points.
FEach connected component of non-degenerate points in the deformation space
is Lagrangian with respect to the pseudo Kdhler form wy on the connected
component.

Meeks’ family is contained in a connected component of 7=({Xgo}) N
Ns.

On the other hand, we remark that there exist deformation spaces of im-
mersed minimal surfaces of genus 3 which are not Lagrangian by Lemma|6.2

There exists a countable set (Property P in [21]) of the associate minimal
surfaces of Schwarz’ P-surface which are immersed in 3-dimensional flat tori,
that is, there exists a countable set {# € S} such that e? act on Schwarz’ P
surface as the associate minimal surface. Let Xpgy € L3¢ be its real period
matrix, where Xy is a 3 x 3 real regular matrix, gg is a 3 x 6 real matrix
with integer entries and has a 6 x 3 real matrix hy with integer entries such
that gghg = F3. The condition in Lemma for gy, hg is satisfied.

We define the deformation space of the associate minimal surface by the
connected component of 7~1({Xgg}) N N3 containing the associate minimal
surface. Since the associate minimal surface has only trivial Jacobi fields,
the deformation space of the associate minimal surface is a 9-dimensional
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submanifold near the associate minimal surface. Furthermore, the connected
component of non-degenerate points of the deformation space is also a 9-
dimensional submanifold which is Lagrangian with respect to the pseudo
Kahler form wp in N3.

In particular, Schoen’s Gyroid is an embedded asociate minimal surface
of Schwarz’ P-surface. By the embedding of Schoen’s Gyroid and Proposi-
tion[6.2] the deformation space of Schoen’s Gyroid is a connected component
of 7 1({Xgo}) N N3 up to Sp(3,Z). A neighborhood of Schoen’s Gyroid in
the deformation space is a 9-dimensional submanifold, which is a Lagrangian
submanifold in N3.

On the other hand, a holomorphic isometry e of A3 in Theorem
also induces a Lagrangian submanifold containing Schoen’s Gyroid as the
image of Meeks’ family by e’ action.

We show that the above two Lagrangian submanifolds are different as
follows:

Lidinoid is an embedded associate minimal surface of Schwarz’ H-surface.
We can construct a one-parameter family of embedded minimal surfaces con-
taining Schoen’s Gyroid and Lidinoid, which is called rG family. rG family
has an intersection point in Meeks’ family up to Sp(3,Z). Any minimal sur-
face from Schoen’s Gyroid, through Lidinoid, to the intersection point of
the one-parameter family gives a non-degenerate critical point except the
intersection point [I3]. Thus there exists a 9-dimensional Lagrangian sub-
manifold consisting of embedded minimal surfaces in 3-dimensional flat tori,
which contains the one-parameter family from Schoen’s Gyroid to the inter-
section point except itself. Since Lidinoid is not an associate minimal surface
of a minimal surface in Meeks’ family, we obtain two different Lagrangian
submanifolds containing Schoen’s Gyroid.

We are interested in the closure of the above 9-dimensional Lagrangian
submanifold containing Schoen’s Gyroid and Lidinoid in N3 and the in-
tersection of it and Meeks’ family since any point of the intersection is a
degenerate critical point.

Proposition 6.3. The intersection point of rG family and Meeks’ family
up to Sp(3,7Z) is a degenerate point.

Proof. Assume that the intersection point is a non-degenerate point of
Meeks’ family. Since a neighborhood of the non-degenerate point in Meeks’
family is the graph in N3 on an open set in the deformation of the ambient
flat torus, some part near the non-degenerate point of rG family is contained
in the graph. Hence any minimal surface of the part is contained in Meeks’
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family. By the real analyticity, Lidinoid is contained in Meeks’ family. This
is a contradiction. g

7. The deformation space of a holomorphic curve in a
complex flat torus

The deformation space of an immersed holomorphic curve of genus « in a
2-dimensional complex flat torus is of complex dimension v and admits a
special Kéhler structure by using a Hitchin’s result [18].

Here, we consider the space of full multivalued holomorphic maps of
compact Riemann surfaces of genus v > 2 in R?” with suitable orthogonal
complex structures. If v < m, then the holomorphic map is not full. Hence
we may assume m < . We review the results obtained by Colombo and
Pirola [6] and investigate special pseudo Kéhler structures of the spaces.

7.1. The signature of M, ,,

We will use notation as in the proof of Theorem TGGE,, Espa)Meyms
where rank a = m, is spanned by (K,iK), where K is a tangent vector of

Ko, and (<8> ) (;:;_)), where 7 € S%. Let a = (a1, az2), where a; is an

m X m matrix and ag is an m X (v —m) matrix. Suppose that a; is reg-
. A B :
ular. Then we solve the equation: (aj,a2) | ; B C> = 0 with respect to

% g . Then A =aj'asCtazta;! and B = —a]'asC. Therefore

dimR{(<8> , (;Z;)) |7 = (% g) € SZ} = 2my — m? + m. Lemma

implies dimzpKo,,, = 2m~y + m? —m. It follows that the real dimension of

tangent spaces of these points is 2m~y — m? +m + 2my + m? — m = 4ms.
In general, we consider rank (aj,as) =m. Since there is a v X v or-

thogonal matrix u such that (aj,a2) = (af, dy)u satisfies rank a) = m. Let

u 0
<0 u) € Sp(v,R). Then

(<i(jzl’> ! (z‘ci’>) (g 2) - (Z’Z) X <Z(Z}ILL>) - (<ZCZL> ! (zi) )

By Proposition dimrTqE,, B,y a) My,m = 4my, where rank a = m. Thus
the tangent spaces are complex Lagrangian subspaces by Theorem

T =
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We prove that the tangent spaces at these points satisfy non-degenerate
condition. It is enough to give a proof for points satisfying rank a; = m.

( X Y al a i X Y aj a9 )
—tY Z ial ’iaz ’ —tY VA ia1 iag ’

where X, Z are real skew symmetric matrices,

ay dh ia)  iadh a1 as T T12
( - ! v ) / !/ )) (0’ . . t 0 )
ia) il —ay —db ta1  ias T12

span the tangent space. Proposition implies that non-degenerate condi-
tion is equivalent to a claim that if the real part of the sum of these vectors
is 0, then the sum is zero. We prove the claim as follows:

Assume that the real parts of the sum of these vectors is 0. Thus we
obtain two equations:

X Y aq as
I“{(—@f Z><un um>}+RB
f X Y\ (a1 a2 iay  iad
Reif <—tY Z) (z’al ia2>} +Re (—a’l —al,

The former equation is given by

Red) = — XRea; + YIma;, Ima) = —'YRea; — ZIma; and
Rea), = — XReas + YImas, Ima) = —"YReay — ZImas,

which, together with the latter equation, implies

(X — Z —i('Y —Y))(a1,a2) = i (a1, a2) <[11 Tl?).
T12 0
It is equivalent to Xal = iarT + 163 119, Xasy —im where X =
(X — Z—z(tY Y)). X is skew symmetric. Since ‘7z = itax X tay 1, we
get Xa1 ai + az agX = jaymy tar. Thus Xa1 a1+ as a2X is symmetrlc It
follows that X (a1 a1 + as ag) is a symmetric matrix because X is skew
symmetric. We denote (aj‘ay + as ‘az) by Y, which is a positive definite
Hermitian matrix since rank(a;, ag) = m. Note that S = XY is symmetric.
We choose a unitary matrix U such that U* YU is positive diagonal. We
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set X' = 'UXU and }7’ =U*YU. X'Y' = tUﬁ’U is symmetric. Since X' is
skew symmetric and Y’ is positive diagonal, X’ = 0 and hence X = 0. Thus
we obtain

X Y air as CLll CL/2 . 11 T2\ _
(—Y X) <z’a1 ia2>+<ia’1 ial =0 and ‘19 0 =0,

which complete the proof of the claim.
We investigate the signature (p,q) of M., at (¢Ey, Eom, (Em 0)). Its
tangent space is spanned by

X+iY 0 [ X+i¥ 0, A B
type 1 (<—tY+iZ 0)’(—tY+iZ 0) i, tped (O (z’A iB))’

where X, Z are real skew, Y is real and A is symmetric.

type 5 ((8 Z@)(g Z%)z‘), type 6 ((f; 8)(;; 8) i),

where « is Hermitian. The non-degenerate pseudo inner product Reno
is null on the subspace spanned by type 3, whose real dimension is
m(m + 1) + 2m(y — m) = 2m~y — m? + m. Consequently 2¢ > 2m~y — m? +
m. Three subspaces spanned by vectors of types 1, 5 and 6 are orthogo-
nal each other, furthermore, the pseudo inner product is positive definite
on three subspaces and hence 2p > m(m — 1) + m? 4 2m(y — m) + m? =
2my +m? — m. p+ q = 2my implies 2¢ = 2m~y — m? +m and 2p = 2m~y +

m2—m.

O Hy x Koy — Kopmy X Koy is an Sp(y, R), SO(2m)-equivariant
map. Let N, ,, be ®(Hy x Kay,) in Koy 4 X Koy, , which is given by

G({(r,g9,a)|T € Hy, g € SO(2m), a € K, ~, ranka = m}).

The orbits of G(iEy, Eom,a) with ranka = m by Sp(vy,R) and SO(2m) is
N, m. Since Sp(v,R) and SO(2m) are holomorphic isometries of Rens, the
signature was preserved.

Theorem 7.1. For ®, ®.(T(; g)Hy X Kay) is a complex Lagrangian sub-

space with the signature (my + %, my — %)
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7.2. The signature of the space of multivalued holomorphic maps

The space of full multivalued holomorphic maps of non-hyperelliptic Rie-
mann surfaces of genus v in R?>™ with suitable orthogonal complex struc-
tures is given by £ = {(7, K) |7 € RMyon—nyper, K € Koy} 8], [B] up to h
in the proof of Theorem If m > 3, then there exists an immersed holo-
morphic curve with only trivial Jacobi fields [6] which is a non-degenerate
critical point of E. Hence, non-degenerate critical points of E is an open
dense set of E by the real analyticity of E.

By Theorem the complex dimension of the irreducible component
containing a non-degenerate critical point of £ in M, for n = 2m is 2my.
On the other hand, by Lemma and m < -, we obtain

1
dimcFE — 2my =3y -3+ im(m — 1) +my —2my
1
= Sm—3)(m (27~ 2))
Thus if m >4, then F is not an irreducible component of M.. Arezzo
and Micallef [3] proved that the deformation of a non-hyperelliptic holo-
morphic curve with only trivial Jacobi fields can be deformed to a non-
holomorphic, non-hyperelliptic stable minimal surface. If m = 3, then, The-

orems [£.2 and [7.1] imply

Theorem 7.2. E is not an irreducible component in M., for v > m > 4.
There exists an irreducible component of M. containing a non-degenerate
critical point of E. The corresponding holomorphic curve with only trivial
Jacobi fields can be deformed to a non-holomorphic, non-hyperelliptic stable
minimal surface. For v > m =3, E has a special pseudo Kdhler structure
of signature (3y + 3,3y — 3) with holomorphic isometries S', SO(6) and
Sp(vy,Z) possibly with a complex analytic set as singularities.

Proof. We first prove that F for v > m = 3 gives an irreducible component of
M., In fact, an irreducible component containing a non-degenerate critical
point of E contains an open set consisting of non-degenerate critical poins
in E. Since no ® : (17,K) — K is a holomorphic map such that (no ®)(no
®) vanishes on the open set. Hence ‘(no ®)(no®) =0 on the irreducible
component. So, the irreducible component is contained in F.

We next calculate the signature. Since ® : E(C H, x Kg) = K¢ % K¢
is holomorphic and E has a non-degenerate critical point, the singular locus
of the map is an complex analytic set. For (7, K) € E except the complex
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analytic set, T, i) E is a non-degenerate complex Lagrangian subspace with
the signature (3y + 3,3y — 3) by Theorem O

For m = 2, dim¢gF = 4y + v — 2 = dimg L4 2, + v — 2. Note that v — 2
is the dimension of the deformation space (up to translations) for an im-
mersed holomorphic curve of genus v in a 2-dimensional complex flat torus.
It is plausible that, for the projection m of E into Ly32,, 7 is surjective.
Does E or E x C? containing parallel translations by vectors of C? admit a
special pseudo Kéahler structure?

The space of full multivalued holomorphic maps of hyperelliptic Riemann
surfaces of genus v in R?™ with suitable orthogonal complex structures is
F={(1,K) |1 € RMpyper, K € Koy, } up to h in the proof of Theorem
If v >m >2, F has a non-degenerate critical point by [6]. Hence, non-
degenerate critical points of F' is an open dense set of F' by real analyticity
of F.

By Lemma [4.1]
. 1
dimgF —2my =2y — 1+ im(m — 1)+ my —2my

1
= S0m—2)(m — (27~ 1))
and hence if v >m > 3, then F' is not an irreducible component of N.
Micallef [22] proved that a non-holomorphic hyperelliptic minimal surface is
unstable (index, > 1). On the other hand, if m = 2, then we get

Theorem 7.3. F for v >m >3 can not give an irreducible component
of Ny. There exists an irreducible component of N, containing a non-
degenerate critical point of F'. The corresponding hyperelliptic holomorphic
curve can be deformed to a non-holomorphic hyperelliptic minimal surface,
which is unstable. For m = 2, F' has a special pseudo Kdahler structure of sig-
nature (2y + 1,2y — 1) with holomorphic isometries S*, SO(4) and Sp(v, Z)
possibly with a complex analytic set as singularities.

A hyperelliptic minimal surface is said to be hyperelliptically stable [§]
if the Hessian of Fgryy,,,., is semi-positive at the critical point corresponding
to the minimal surface. Corollary [5.3] and Theorems imply

Corollary 7.1. There exist connected components of signature (n7y —
37 +3,3y—3),y > 4,7 <n <2y satisfying surjective condition for non-
hyperelliptic minimal surfaces and connected components of signature (ny —
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2y + 1,2y —1),v > 3,5 < n < 2y satisfying surjective condition for hyper-
elliptic minimal surfaces which contain non-holomorphic minimal surfaces.
In particular, corresponding non-hyperelliptic minimal surfaces are stable
and corresponding hyperelliptic minimal surfaces are hyperelliptically stable.
For n = 2~, there exists a unique irreducible component of non-hyperelliptic
minimal surfaces and a unique irreducible component of hyperelliptic min-
imal surfaces. Then the above connected component is also unique in each
irreducible component. The two connected components admit a holomorphic
isometry group Sp(vy,Z). Furthermore, the irreducible component of non-
hyperelliptic minimal surfaces contains a connected component for unstable
non-hyperelliptic minimal surfaces.

Proof. E in Theorem [7.2] is an irreducible component satisfying surjective
condition of M., for n = 6 and v > 4. Its signature is (3y + 3,3~ — 3). Since
FE has the open dense set of non-degenerate critical points of F/, we obtain an
irreducible component satisfying surjective condition of M., for n =7 and
~v > 4 by swelling of a non-degenerate critical point. By Corollary the
signature of the connected component containing the swelled non-degenerate
critical point is (7 — 3y + 3,3y — 3). Repeatedly, we obtain the desired con-
nected components for non-hyperelliptic minimal surfaces. Similarly, by us-
ing F' in Theorem we construct the connected component for hyperel-
liptic minimal surfaces.

For n = 2y, M., and N, admit a unique irreducible component, which
satisfies surjective condition. We review it [8]. Let P(7) be an embedding
of RMpon—hyper and RMp,y,e, into the space 5’12% of 2y x 2v real symmetric
matrices and the energy function for L is the height function in the direc-
tion of !LL. Then a point (7, L), where rank L = 2, is a critical point of
$tr(P(7)'LL) if and only if 'LL is a normal vector of the submanifolds
P(RMnon—hyper) and P(RMpyper) in Sz. Thus M, /O(27), N, /O(2y) are
identified with the subset (7, L) consisting of L which is a normal vector and
a positive definite matrix, which is an open set of the normal bundle. In each
normal space at P(7), the subset (7, L) consisting of L above is a non-empty
convex set which contains the positive definite matrix corresponding to the
Albanese map. If (7, L1) and (7, Ly) are stable, then (7, (1 — s)L; + sL9) for
any s € [0, 1] is stable. Thus we get a uniqueness of such a connected com-
ponent [§], [2]. We see that the action of SO(n, C) deforms a stable minimal
surface except a holomorphic curve to an unstable minimal surface [9]. O

Remark 7.1. All obtained stable non-hyperelliptic minimal surfaces and
all obtained hyperelliptically stable hyperelliptic minimal surfaces satisfy the
equality in Theorem We are very interested in its geometric meaning.
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