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We formulate the space of multivalued branched minimal immer-
sions of compact Riemann surfaces of genus γ ≥ 2 into Rn, and
show that it is a complex analytic set. If an irreducible component
of the complex analytic set admits a non-degenerate critical point,
then we construct a complex Lagrangian cone in Hnγ derived from
the complex period map, and obtain its applications as follows:
The irreducible component can be divided among some open con-
nected components of non-degenerate critical points, and each con-
nected component admits a special pseudo Kähler structure with
the signature (p, q). We induce a sharp inequality between q and
the Morse index of a minimal surface which are two invariants of
the connected component. Furtheremore, we obtain an algorithm
to compute the Morse index and the signature.
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1. Introduction

Let M be a compact Riemann surface of genus γ. Throughout this paper,
an n-tuple t(ψ1, ..., ψn) of holomorphic 1-forms on M is called a Weierstrass
data if

∑n
k=1 ψ

2
k = 0. If γ = 0, then there exists no Weierstrass data. For a

Weierstrass data t(ψ1, ..., ψn),

S(p) = Re

∫ p

p0

t(ψ1, ..., ψn)

is a multivalued branched minimal immersion of M into Rn. If γ = 1, then
such a map is totally geodesic. Hence, we may assume γ ≥ 2. For a canonical
homology basis {A1, ..., Aγ , B1, ..., Bγ} of M , the real period matrix L of S

is defined by
(∫

A1
dS, ...,

∫
Aγ
dS,

∫
B1
dS, ...,

∫
Bγ
dS

)
, that is,

Re
(∫

A1



ψ1
...
ψn


 , ...,

∫

Aγ



ψ1
...
ψn


 ,

∫

B1



ψ1
...
ψn


 , ...,

∫

Bγ



ψ1
...
ψn



)
.

A multivalued branched minimal immersion of M into Rn is called to
be full if the image is not in any affine subspace in Rn, which is equivalent
to rankL = n. If the column vectors of L span a lattice ⟨L⟩ of Rn, then we
get the full branched minimal immersion of M into the n-dimensional flat
torus Rn/⟨L⟩.

We can consider the Jacobi operator of a multivalued branched mini-
mal immersion of M into Rn (for example, see [11] and [23]). Let indexa
be the number of the negative eigenvalues and nullitya the number of the
zero-eigenvalue of the Jacobi operator (counted with multiplicity). indexa
is called the Morse index of a minimal surface and an eigenvector for the
zero-eigenvalue is said to be a Jacobi field. If the map is not totally geodesic,
then there exist n independent Jacobi fields caused by parallel tanslations
in Rn which are called trivial Jacobi fields. Thus nullitya ≥ n holds and
nullitya = n if and only if the minimal surface has only trivial Jacobi fields.

There exists no compact orientable immersed minimal surface of genus 2
in a 3-dimensional flat torus. However, there exist many compact orientable
immersed minimal surfaces of genus γ ≥ 3. For example, Schwarz’ P-surface,
Schwarz’ D-surface, Schoen’s Gyroid and Schwarz’ CLP-surface are widely
known as embedded minimal surfaces of genus 3. It is important to indicate
some results on indexa of minimal surfaces in 3-dimensional flat tori.
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Ross [31] proved that Schwarz’ P-surface is CMC-stable and hence
Schwarz’ D-surface and Schoen’s Gyroid are also CMC-stable, which leads
Schwarz’ P-surface, Schwarz’ D-surface and Schoen’s Gyroid to indexa = 1
and nullitya = 3. Montiel and Ros [23] proved that Schwarz’ CLP-surface
has indexa = 3 and nullitya = 3.

Ritoré and Ros [28] proved the compactness of the space of index one
embedded minimal surfaces in flat tori. Ritoré [27] proved that index one
immersed minimal surfaces of genus γ in flat tori satisfy γ ≤ 4. Ros [29], [30]
obtained γ ≤ 3, in general, indexa ≥ 2γ−3

3 .
Große-Brauckmann and Wohlgemuth [17] constructed a deformation of

CMC-stable non-minimal surfaces from Schoen’s Gyroid in the same ambi-
ent flat torus. Morgan and Ros [24] proved that there are nearby L1-local
minimizers of the Cahn-Hilliard energy for Schwarz’ P-surface, Schwarz’ D-
surface and Schoen’s Gyroid which are CMC-stable.

Inevitably it is of great significance to classify index one immersed min-
imal surfaces, index one embedded minimal surfaces and CMC-stable em-
bedded minimal surfaces of genus 3 in 3-dimensional flat tori. However, little
is known about an embedded minimal surface of genus 3 with indexa = 1 in
a 3-dimensional flat torus for the last few decades since Ross’ result [31].

We review a geometric meaning of nullitya. Let Mγ be the space of
full multivalued branched minimal immersions of non-hyperelliptic Riemann
surfaces of genus γ into Rn and Nγ the space of full multivalued branched
minimal immersions of hyperelliptic Riemann surfaces of genus γ into Rn,
which are the spaces of equivalence classes of triples of a Riemann surface,
a Weierstrass data and a canonical homology basis [26], [4]. By real period
matrices, we define the real period maps π from Mγ and Nγ to the space
Ln,2γ of n× 2γ real matrices. Here, we refer to Meeks’ conjecture 50 in [20].

Conjecture 50 (Meeks). The differential of the natural map from the

moduli space M = {M, (ω1, ω2, ω3) |M is a compact hyperelliptic Riemann

surface of genus 3 with three independent holomorphic 1-forms satisfying∑3
i=1 ω

2
i = 0} to the space of real periods ⊂ R18 of the forms ωi evaluated

on a basis of H1(M,Z) has rank 18 almost everywhere.

We note that M = N3 for n = 3 and the natural map is the real period map.
Pirola [26], Arezzo and Pirola [4] studied Mγ , Nγ and π for full multi-

valued minimal immersions and proved an important formula

nullitya = dimKerπ∗ + n
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for a “smooth point”. In particular, if nullitya = n, then dimRMγ = 2nγ,
dimRNγ = 2nγ and Kerπ∗ = {0}. Thus, a connected component of Mγ and
Nγ admitting nullitya = n is locally a graph on an open set in Ln,2γ . In par-
ticular, since nullitya = 3 for Schwarz’ P-surface and Schwarz’ CLP-surface
([31], [23]), Meeks’ conjecture 50 is true.

In this paper, we focus attention on such a connected component. We
define the complex period maps from Mγ and Nγ to the space Kn,2γ of
complex n× 2γ matrices by (

∫
A1
dS1,0 · · ·

∫
Aγ
dS1,0,

∫
B1
dS1,0 · · ·

∫
Bγ
dS1,0),

where dS1,0 is the (1, 0)-component of dS, that is,

1

2

(∫

A1



ψ1
...
ψn


 , ...,

∫

Aγ



ψ1
...
ψn


 ,

∫

B1



ψ1
...
ψn


 , ...,

∫

Bγ



ψ1
...
ψn



)
.

Each complex period map induces a special pseudo Kähler structure on a
connected component (see Theorem 6.2), which gives the relation between
the special pseudo Kähler structure and indexa as follows: Let (p, q) be the
signature of the pseudo Kähler metric associated with the special pseudo
Kähler structure on a connected component, where p+ q = nγ. We prove

indexa ≤ 6γ − 6− 2q

for the connected component of Mγ . For a connected component of Nγ , we
get

α ≤ indexa ≤ 4γ − 2− 2q + α (0 ≤ α ≤ γ − 2) ≤ 5γ − 4− 2q.

α = γ − 2 holds except a complex analytic set in the connected component.
Micallef [22] proved that a hyperelliptic stable minimal surface is a holo-
morphic curve, that is, a non-holomorphic hyperelliptic minimal surface has
indexa ≥ 1.

In the case where γ = 3, n = 3, we obtain 1 ≤ indexa ≤ 11− 2q. In par-
ticular, indexa = 1 if q = 5. Hence, some examples mentioned below imply
that the inequality is sharp.

Shoda and the author [12] apply the algorithm (see Theorem 5.5 and
its application in Subsection 6.2) to compute the signature and indexa of
some one-parameter families of embedded minimal surfaces of genus 3 in
3-dimensional flat tori as follows:
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For tP family, which includes Schwarz’ P-surface [34], [36],
indexa = 1, (p, q) = (4, 5), indexa = 2, (p, q) = (5, 4) for some parameter val-
ues. Since tD family, which includes Schwarz’ D-surface, consists of conjugate
minimal surfaces of minimal surfaces in tP family, we obtain the same result.

For H family [34], [36], indexa = 1, (p, q) = (4, 5), indexa = 2, (p, q) =
(5, 4) and indexa = 3, (p, q) = (6, 3) for some parameter values.

For tCLP family, which includes Schwarz’ CLP-surface [34], [36],
indexa = 3, (p, q) = (6, 3) for all parameter values.

For rPD family (Karcher’s TT-surface) [19], [34], [36], indexa =
1, (p, q) = (4, 5) and indexa = 2, (p, q) = (5, 4) for some parameter values.
Schwarz’ P-surface and Schwarz’ D-surface are contained in rPD family.

The set of parameter values corresponding to indexa = 1 minimal sur-
faces in tP, tD, H and rPD family are bounded closed intervals which are
contained in the compact set in the Ritoré and Ros compactness theorem
[28].

Finally, we prove that the space of full multivalued holomorphic maps
of non-hyperelliptic Riemann surfaces of genus γ ≥ 3 into R6 with suit-
able orthogonal complex structures has a special pseudo Kähler structure of
the signature (3γ + 3, 3γ − 3) and the space of full multivalued holomorphic
maps of hyperelliptic Riemann surfaces of genus γ ≥ 2 into R4 with suit-
able orthogonal complex structures has a special pseudo Kähler structure
of the signature (2γ + 1, 2γ − 1). Furthermore, our inequality is sharp for
non-holomorphic stable minimal surfaces in flat tori, which are constructed
by Arezzo and Micallef [3].

I would like to thank Toshihiro Shoda for many useful discussions and
the referee for many helpful suggestions.

2. A quaternion structure of Ln,2γ × Ln,2γ

We investigate a quaternion structure of Ln,2γ × Ln,2γ , a complex symplectic
form ω1 on Ln,2γ × Ln,2γ and a complex Lagrangian subspace in Ln,2γ ×
Ln,2γ .

2.1. A quaternion structure of Ln,2γ × Ln,2γ

We consider Ln,2γ as the linear space of n× 2γ real matrices. We denote
by (L1, L2) and (L1, L2, L3, L4), where L1, L2, L3, L4 ∈ Ln,γ , an element of
Ln,2γ and an element of Ln,2γ × Ln,2γ , respectively. Then the canonical inner
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product ⟨ , ⟩ on Ln,2γ × Ln,2γ is defined by

⟨(L1, L2, L3, L4), (L
′
1, L

′
2, L

′
3, L

′
4)⟩ = tr

4∑

i=1

tLiL
′
i.

We define two complex structures I, J on Ln,2γ × Ln,2γ as

I(L1, L2, L3, L4) = (L4,−L3, L2,−L1), J(L1, L2, L3, L4)

= (−L3,−L4, L1, L2).

Lemma 2.1. I and J preserve ⟨ , ⟩.

We define the symplectic form ω compatible with J by

ω((L1, L2, L3, L4), (L
′
1, L

′
2, L

′
3, L

′
4)) = ⟨J(L1, L2, L3, L4), (L

′
1, L

′
2, L

′
3, L

′
4)⟩.

Lemma 2.2. IJ = −JI holds and hence 1, I, J and K(= IJ) give a quater-

nion structure on Ln,2γ × Ln,2γ.

We consider Kn,γ as the complex linear space of n× γ complex ma-
trices. The real linear isomorphism φ : Kn,γ ×Kn,γ → Ln,2γ × Ln,2γ is de-
fined by φ(K1,K2) = Re(−iK2, iK1,K1,K2) for (K1,K2) ∈ Kn,γ ×Kn,γ .
φ−1(L1, L2, L3, L4) = (L3 − iL2, L4 + iL1) holds.

Lemma 2.3. The complex structures I1, J1 on Kn,γ ×Kn,γ induced

by φ and I, J are given by I1(K1,K2) = (iK1, iK2) and J1(K1,K2) =
(iK2,−iK1).

φ allows us to identify Ln,2γ × Ln,2γ with Kn,γ ×Kn,γ as two complex
linear spaces for I, I1. On the other hand, Kn,γ ×Kn,γ admits the canonical
Hermitian form

⟨(K1,K2), (K
′
1,K

′
2)⟩1 = tr(tK1K ′

1 +
tK2K ′

2)

and the canonical complex symplectic form

ω1((K1,K2), (K
′
1,K

′
2)) = tr(tK2K

′
1 −

tK1K
′
2)

for (K1,K2), (K
′
1,K

′
2) ∈ Kn,γ ×Kn,γ . The inner product and the symplectic

form induced by φ satisfy
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Lemma 2.4.

⟨φ(K1,K2), φ(K
′
1,K

′
2)⟩ = Re⟨(K1,K2), (K

′
1,K

′
2)⟩1 and

ω(φ(K1,K2), φ(K
′
1,K

′
2)) = Imω1((K1,K2), (K

′
1,K

′
2)).

Proof. Let

W1 = Re(−iK2, iK1,K1,K2) and

W2 = Re(−iK ′
2, iK

′
1,K

′
1,K

′
2) ∈ Ln,2γ × Ln,2γ .

Then ω(W1,W2) = ⟨JW1,W2⟩ = trIm(tK2K
′
1 −

tK1K
′
2). □

Furthermore, we obtain

Lemma 2.5.

⟨J1(K1,K2), J1(K
′
1,K

′
2)⟩1 = ⟨(K1,K2), (K ′

1,K
′
2)⟩1 and

⟨J1(K1,K2), (K
′
1,K

′
2)⟩1 = i ω1((K1,K2), (K ′

1,K
′
2)).

Conversely, the complex symplectic form (φ−1)∗ω1 induced on Ln,2γ × Ln,2γ

is given by

(φ−1)∗ω1(W1,W2) = −⟨KW1,W2⟩+ i⟨JW1,W2⟩

for W1,W2 ∈ Ln,2γ × Ln,2γ.

Let GL(n,C) be the general linear group consisting of n× n regular ma-
trices. Then g ∈ GL(n,C) acts on Kn,γ ×Kn,γ by g(K1,K2) = (gK1, gK2).
Let En be the n× n identity matrix. Let O(n,C) = {A ∈ GL(n,C) | tAA =
En} be the complex orthogonal group and SO(n,C) the subgroup {A ∈
O(n,C) | detA = 1}.

Lemma 2.6. O(n,C) is a complex symplectic transformation group with

respect to ω1 of Kn,γ ×Kn,γ.

Let J0 =

(
0 −Eγ

Eγ 0

)
. Let Sp(γ,C) be the C-symplectic group {B ∈

GL(2γ,C) |BJ0
tB = J0} and Sp(γ,R) the R-symplectic group consisting

of real matrices in Sp(γ,C).
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Lemma 2.7. B =

(
a b
c d

)
∈ Sp(γ,C) if and only if a td− b tc = Eγ, a

tb

and ctd are symmetric, which is equivalent to B−1 =

(
td −tb
−tc ta

)
.

B =

(
a b
c d

)
∈ Sp(γ,C) acts on Kn,γ ×Kn,γ as follows:

(K1,K2)B = (K1a+K2c,K1b+K2d).

Lemma 2.8. Sp(γ,C) is a complex symplectic transformation group with

respect to ω1.

Proof. By Lemma 2.7, we get

ω1((K1a+K2c,K1b+K2d), (K
′
1a+K ′

2c,K
′
1b+K ′

2d))

= tr{t(K1b+K2d)(K
′
1a+K ′

2c)−
t(K1a+K2c)(K

′
1b+K ′

2d)}

= ω1((K1,K2), (K
′
1,K

′
2)).

□

Consequently, Lemmas 2.6 and 2.8 imply

Proposition 2.1. O(n,C) and Sp(γ,C) are complex linear, complex sym-

plectic transformation groups of Kn,γ ×Kn,γ with respect to ω1.

Let (K1,K2) ∈ Kn,γ ×Kn,γ and (v′k, v
′′
k) denote the k-th row vector

of (K1,K2). Then we make an isomorphism Θ : Kn,γ ×Kn,γ → K1,nγ ×
K1,nγ by Θ((K1,K2)) = (v′1, ..., v

′
n, v

′′
1 , ..., v

′′
n). We may consider an action

of O(n,C) and Sp(γ,C) on K1,nγ ×K1,nγ such that the following holds.

Proposition 2.2. Θ is an O(n,C), Sp(γ,C)-equivariant, complex sym-

plectic isomorphism from Kn,γ ×Kn,γ to K1,nγ ×K1,nγ.

Proposition 2.2 enable us to apply some results on K1,γ′ ×K1,γ′ (or
K1,γ ×K1,γ) to Kn,γ ×Kn,γ .

Let T ∗Ln,2γ
π1−→ Ln,2γ be the cotangent bundle over Ln,2γ . Let ℓjk be

the (j, k) entry of L ∈ Ln,2γ . Then we obtain the canonical coordinate sys-
tem {ℓjk} in Ln,2γ . Any point of T ∗Ln,2γ is given by

∑n
j=1

∑2γ
k=1 pjkdℓjk

and, hence, {pjk, ℓjk} is the canonical coordinate system in T ∗Ln,2γ .
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∑n
j=1

∑2γ
k=1 pjkdℓjk on T ∗Ln,2γ is called the Liouville-form and the canon-

ical symplectic form on T ∗Ln,2γ is given by
∑n

j=1

∑2γ
k=1 dpjk ∧ dℓjk. Since

{pjk} may be the canonical coordinate system in Ln,2γ , we can identify
T ∗Ln,2γ with Ln,2γ × Ln,2γ whose canonical coordinate system is {pjk, ℓjk}.
The latter Ln,2γ is the base space of T ∗Ln,2γ . The tangent space at any point
of T ∗Ln,2γ is identified with Ln,2γ × Ln,2γ . Hence (L1, L2, L3, L4), where
L1, ..., L4 ∈ Ln,γ , may be a tangent vector. Then the canonical symplectic
form

∑n
j=1

∑2γ
k=1 dpjk ∧ dℓjk is ω as follows: Since dpjk(L1, L2, L3, L4) is the

(j, k) entry of (L1, L2) and dℓjk(L1, L2, L3, L4) is the (j, k) entry of (L3, L4),

n∑

j=1

2γ∑

k=1

dpjk ∧ dℓjk((L1, L2, L3, L4), (L
′
1, L

′
2, L

′
3, L

′
4))

= tr{(L1, L2)
t(L′

3, L
′
4)− (L′

1, L
′
2)

t(L3, L4)}

= ω((L1, L2, L3, L4), (L
′
1, L

′
2, L

′
3, L

′
4)).

Let Z1jk be the (j, k) entry of Z1 ∈ Kn,γ . Then we obtain the canon-
ical complex coordinate system {Z1jk} in Kn,γ . A point of the com-
plex cotangent bundle T ∗Kn,γ over Kn,γ is given by

∑n
j=1

∑γ
k=1 Z2jkdZ1jk

and, hence, {Z1jk, Z2jk} is the canonical complex coordinate system in
T ∗Kn,γ . The canonical complex symplectic form on T ∗Kn,γ is given by∑n

j=1

∑γ
k=1 dZ2jk ∧ dZ1jk. Since {Z2jk} may be the canonical complex co-

ordinate system in Kn,γ , we identify T ∗Kn,γ with Kn,γ ×Kn,γ . The tan-
gent space at any point in T ∗Kn,γ is identified with Kn,γ ×Kn,γ . Hence
(K1,K2), where K1,K2 ∈ Kn,γ , may be a tangent vector at the point. Since
dZ1jk(K1,K2) = K1jk and dZ2jk(K1,K2) = K2jk, we get

n∑

j=1

γ∑

k=1

dZ2jk ∧ dZ1jk((K1,K2), (K
′
1,K

′
2)) = ω1((K1,K2), (K

′
1,K

′
2)).

Thus, the canonical complex symplectic form on the tangent space of T ∗Kn,γ

is ω1 defined on the complex linear space Kn,γ ×Kn,γ .
Let dZ1(K1,K2) = K1 and dZ2(K1,K2) = K2. Then dZ1 and dZ2 are

Kn,γ-valued holomorphic 1-forms on Kn,γ ×Kn,γ such that ω1 = tr tdZ2 ∧
dZ1.

2.2. The Grassmann manifold of complex Lagrangian subspaces

Let T be a complex linear subspace of complex dimension nγ in Hnγ =
Cnγ ×Cnγ = Kn,γ ×Kn,γ with the Hermitian form ⟨ , ⟩1. When ω1 vanishes
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on T , T is called a complex Lagrangian subspace. From Lemmas 2.2 and 2.5,
we obtain

Lemma 2.9. Let S be a real 2nγ-dimensional subspace S in Ln,2γ × Ln,2γ.

Then the following conditions are equivalent:

(1) S is a complex Lagrangian subspace,

(2) ⟨KX,Y ⟩ = 0 and ⟨JX, Y ⟩ = 0 for any X, Y ∈ S, and

(3) S is I-invariant and real Lagrangian, that is, ω induced on S vanishes.

The condition (2) above is called the bilagrangian condition by Hitchin
[18].

Let U(2γ) be the unitary subgroup ofGL(2γ,C) and Sp(γ) the subgroup
Sp(γ,C) ∩ U(2γ). Let LagC be the space of complex Lagrangian subspaces
in K1,γ ×K1,γ . Then, from Lemma 2.5, we obtain

Lemma 2.10. Let T ∈ LagC and {u1, ..., uγ} a unitary basis of T . Then
{ui,−iJ1ui} is a unitary and symplectic basis, that is, ω1(ui,−iJ1uj) = δij,
of K1,γ ×K1,γ and hence t( tu1, ...,

tuγ ,
t(iJ1u1), ...,

t(iJ1uγ)) ∈ Sp(γ).

Thus Sp(γ) transitively acts on LagC and U(γ) is the isotropy group
of the complex Lagrangian subspace spanned by (e1, 0), ..., (eγ , 0), where
{e1, ..., eγ} is the canonical basis of Cγ .

Lemma 2.11. LagC is a Hermitian symmetric space U(γ)\Sp(γ) of com-

pact type and rank γ.

Let V
p1
−→ LagC be the tautological vector bundle over LagC given by

{(T, v) ∈ LagC ×Hγ |T ∈ LagC , v ∈ T}. Let S2
C be the space of γ × γ com-

plex symmetric matrices and RS2
C = {τ ∈ S2

C | Im τ is regular}. The Siegel
upper half space Hγ is defined by {τ ∈ S2

C | Im τ > 0}. Let η : K1,γ ×K1,γ →
K1,γ × {0} be the projection.

Lemma 2.12. Assume that the restriction of η to T ∈ LagC is surjec-

tive. Then there exists τ ∈ S2
C such that T = {(K,Kτ) ∈ K1,γ ×K1,γ |K ∈

K1,γ}.

Proof. A basis {α1, ..., αγ} of T is given by αi = (ei, (ai1, ..., aiγ)),
(ai1, ..., aiγ) ∈ Cγ by the assumption. T ∈ LagC if and only if tr tdZ2 ∧
dZ1(αi, αj) = aij − aji = 0 and hence (aij) ∈ S2

C . □
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Let LagCo be the set of the subspaces which satisfy the assumption as in
Lemma 2.12. Then LagCo is identified with S2

C .

Lemma 2.13. LagCo is a Zariski open set of LagC .

Proof. Let T ∈ LagC and f1, ..., fγ a local holomorphic frame fields on a
neighborhood U of T . Then there exist holomorphic functions akj on U
such that η(fj) =

∑γ
k=1 akjek. T

′ ∈ U ∩ LagCo if and only if det(ajk) ̸= 0
at T ′. □

Lemma 2.14. p−1
1 (LagCo )={(τ, (K,Kτ))|τ ∈S2

C , K∈K1,γ}. Hence, S2
C×

K1,γ is identified with p−1
1 (LagCo ).

We consider the bundle V n = V
⊕

· · ·
⊕
V

p1
−→ LagC . We define a holo-

morphic map Φ of V n into Hnγ as Φ((T, v1), ..., (T, vn)) =
t(tv1, ...,

tvn).
Φ(V n) is a set of complex Lagrangian subspaces T

⊕
· · ·

⊕
T ⊂

Hγ
⊕

· · ·
⊕

Hγ = Hnγ . S2
C ×Kn,γ may be considered as p−1

1 (LagCo ).

Lemma 2.15. Φ on S2
C ×Kn,γ satisfies Φ(τ, Z) = (Z,Zτ), where (τ, Z) ∈

S2
C ×Kn,γ.

dτ is an S2
C-valued holomorphic 1-form and dZ is a Kn,γ-valued holo-

morphic 1-form on S2
C ×Kn,γ .

Lemma 2.16. Φ∗ω1 = tr(dτ ∧ tZdZ).

Proof. Since τ is a symmetric matrix, we get

Φ∗ω1 = tr(td(Zτ) ∧ dZ) = tr(t(dZτ + Zdτ) ∧ dZ)

= tr(τ tdZ ∧ dZ + dτ ∧t ZdZ) = tr(dτ ∧ tZdZ).

□

In general, Φ∗ is not surjective.

Lemma 2.17. If n = 1, then Φ∗ is surjective for a generic point.

Proof. We calculate Φ∗ at (τ, e1). Let K
′ ∈ K1,γ and τ ′ = (τ ′ij) ∈ S2

C . Then
we obtain Φ∗(0,K ′) = (K ′,K ′τ) and Φ∗(τ ′, 0) = (0, (τ ′11, ..., τ

′
1γ)). Therefore,

Φ∗ is surjective at (τ, e1). □

GL(n,C) acts on V n by g(τ,K) = (τ, gK), where g ∈ GL(n,C).
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Lemma 2.18. Φ is GL(n,C)-equivariant.

Let B =

(
a b
c d

)
∈ Sp(γ,C). Then we have

Lemma 2.19. If a+ τc is regular, then B(τ) = (a+ τc)−1(b+ τd) ∈ S2
C .

Thus Sp(γ,C) is a fractional linear transformation group of S2
C , more-

over, we can define the action of B on S2
C ×Kn,γ and hence V n as

B(τ,K) = ((a+ τc)−1(b+ τd),K(a+ τc)).

Lemma 2.20. Φ(B(τ,K)) = Φ(τ,K)B.

Remark 2.1. If n = 1, then Lemmas 2.17, 2.18 and 2.20 imply that Φ∗ is
surjective at each point except the zero-section of V , that is, each point of
C2γ except 0 is a regular value of Φ.

Lemma 2.21. A ∈ O(n,C) and B ∈ Sp(γ,C) preserve Φ∗ω1.

For τ ∈ RS2
C , we define the 2γ × 2γ symmetric matrix P (τ) ∈ Sp(γ,R)

by

P (τ) =

(
(Imτ) + (Reτ)(Imτ)−1(Reτ) −(Reτ)(Imτ)−1

−(Imτ)−1(Reτ) (Imτ)−1

)
.

Lemmas 2.9 and 2.12 give two points of view on complex Lagrangian
subspaces.

Theorem 2.1. Let P be a 2γ × 2γ real matrix. Then the subspace T de-

fined as {(LP,L) ∈ Ln,2γ × Ln,2γ |L ∈ Ln,2γ} is a Lagrangian subspace in

Ln,2γ × Ln,2γ if and only if P is symmetric. We set P =

(
A B
tB C

)
, A and

C are γ × γ real symmetric matrices and B is a γ × γ real matrix. Then

T is complex Lagrangian if and only if P ∈ Sp(γ,R). Let JP be the almost

complex structure on T with respect to I. Then

JP ((L1, L2)P, (L1, L2)) = ((L1, L2)J0, (L1, L2)PJ0).

If C is regular, then there exists τ ∈ RS2
C such that P = P (τ) and

the complex Lagrangian subspace corresponds to τ . In particular, if C > 0,
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then τ ∈ Hγ. In this situation, the real linear map of {(LP (τ), L) ∈ Ln,2γ ×
Ln,2γ |L ∈ Ln,2γ} onto {(K,Kτ) ∈ Kn,γ ×Kn,γ |K ∈ Kn,γ} is given by

((L1, L2)P (τ), (L1, L2)) 7→ (K,Kτ),

where K = L1 + i[L1Reτ − L2](Imτ)
−1.

Proof. The first statement is similar to the argument in Lemma 2.12.
Let (Z1, Z2) be the element corresponding to ((L1, L2)P, (L1, L2)) by
φ−1. We have Z1 = L1 − i(L1B + L2C), Z2 = L2 + i(L1A+ L2

tB). Since
φ−1(T ) is a real subspace where the symplectic form associated with J1
vanishes, φ−1(T ) is complex Lagrangian if and only if it is a complex sub-
space in Kn,γ ×Kn,γ , which is equivalent to (iZ1, iZ2) ∈ φ−1(T ). There-
fore there exists (L′

1, L
′
2) such that (iZ1, iZ2) = φ−1((L′

1, L
′
2)P, (L

′
1, L

′
2)).

We get L′
1 = L1B + L2C, L1 = −L′

1B − L′
2C, L′

2 = −L1A− L2
tB and

L2 = L′
1A+ L′

2
tB. Immediately, L1(Eγ +B2 −AC) + L2(CB − tBC) = 0,

L1(BA−A tB) + L2(CA− tB2 − Eγ) = 0 hold for all (L1, L2) ∈ Ln,2γ .
Hence we get Eγ +B2 −AC = 0, CB − tBC = 0 and BA−A tB = 0,
which are equivalent to P ∈ Sp(γ,R). Since L′

1 = L1B + L2C and L′
2 =

−(L1A+ L2
tB), we get

(L′
1, L

′
2) = (L1, L2)

(
B −A
C − tB

)
= (L1, L2)

(
A B
tB C

)(
0 −Eγ

Eγ 0

)

= (L1, L2)PJ0.

Consequently, JP ((L1, L2)P, (L1, L2)) = ((L1, L2)J0, (L1, L2)PJ0) holds.
If C is regular, then we set Imτ = C−1. Since CB is symmetric, we

set Reτ = −Imτ CB Imτ . Then τ = −BC−1 + iC−1 and P = P (τ). Further-
more, Z1 = L1 + i[L1Reτ − L2](Imτ)

−1 and Z2 = Z1τ . □

If γ = 1, then A,B,C are real numbers satisfying 1 +B2 = AC and
hence C ̸= 0. Thus, the complex Lagrangian subspace ∈ RS2

C . However, we
note

Remark 2.2. {((L1, L2)

(
0 J0

−J0 0

)
, (L1, L2)) | (L1, L2) ∈ Ln,4γ} and

{((L1, L2)




1 0 0 0
0 0 0 J0
0 0 1 0
0 −J0 0 0


 , (L1, L2)) | (L1, L2) ∈ Ln,4γ+2}

are complex Lagrangian subspaces /∈ RS2
C by Theorem 2.1.
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Corollary 2.1. The space of complex Lagrangian subspaces consisting of

{((L1, L2)P, (L1, L2)) | (L1, L2) ∈ Ln,2γ} in Ln,2γ × Ln,2γ corresponds to the

space of symmetric matrices in Sp(γ,R).

Corollary 2.2. The space of complex Lagrangian subspaces consisting of

{((L1, L2)P, (L1, L2)) | (L1, L2) ∈ Ln,2γ , P > 0} in Ln,2γ × Ln,2γ corre-

sponds to Hγ = Sp(γ,R)/U(γ).

Proof. If τ ∈ Hγ , then P (τ) > 0. Conversely, if P > 0, then C > 0. Thus, it
follows from Theorem 2.1 that there exists τ ∈ Hγ such that P = P (τ). □

3. Energy function

The energy function E on RS2
C × Ln,2γ is defined by E(τ, L) =

1
2tr(P (τ)

tLL), where τ ∈ RS2
C and L ∈ Ln,2γ in [8]. Let M be a complex

submanifold in RS2
C and EM the restriction of E to M × Ln,2γ . We study

critical points of the function EM on M for each fixed L ∈ Ln,2γ .

3.1. A diffeomorphism of RS
2

C × Ln,2γ onto RS
2

C × Kn,γ

The diffeomorphism Ψ : RS2
C × Ln,2γ → RS2

C ×Kn,γ is defined by

Ψ(τ, (L1, L2)) = (τ,
1

2
(L1 + i[L1(Reτ)− L2](Imτ)

−1)),

where L = (L1, L2) ∈ Ln,2γ .

Remark 3.1. By Theorem 2.1, we may define Ψ by (τ, (L1, L2)) 7→
(τ, (L1 + i[L1(Reτ)− L2](Imτ)

−1)). However, we adjust Ψ to the energy
function (see Lemma 3.4). Furthermore, for a multivalued branched minimal
immersion S of M into Rn, dS corresponds to dS1,0 by Ψ (see Subsection
6.1).

Lemma 3.1. Ψ−1(τ,K) = (τ, (Re(2K),Re(2Kτ))).

Remark 3.2. GL(n,C) acts on RS2
C × Ln,2γ by, for g ∈ GL(n,C),

(τ, (Re(2K),Re(2Kτ))) 7→ (τ, (Re(2gK),Re(2gKτ))).

Then Ψ is GL(n,C)-equivariant.
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g =

(
a b
c d

)
∈ Sp(γ,R) acts on Ln,2γ as follows:

(L1, L2)g = (L1a+ L2c, L1b+ L2d).

Lemma 3.2. Ψ is Sp(γ,R)-equivariant.

Proof. Let Ψ(τ, (L1, L2)) = (τ,K) and g =

(
a b
c d

)
∈ Sp(γ,R). Set

A = Re((a+ τc)−1(b+ τd)), B = Im((a+ τc)−1(b+ τd))

and (τg, K̃) = Ψ(τg, (L1, L2)g).

We shall prove K̃ = K(a+ τc).
We first calculate K̃ as follows:

K̃ =
1

2
(L1a+ L2c+ i[(L1a+ L2c)A− (L1b+ L2d)]B

−1)

=
1

2
(L1(a+ iaAB−1 − ibB−1) + L2(c+ icAB−1 − idB−1)).

Since A+ iB = (a+ τc)−1(b+ τd), we have (a+ τc)(A+ iB) = b+ τd.
Hence, we obtain aAB−1 − bB−1 + τ(cAB−1 − dB−1) = −ia− iτc, that is,
a+ τc = iaAB−1 − ibB−1 + τ(icAB−1 − idB−1), and therefore, we get

Re(a+ τc) =− (Imτ)(cAB−1 − dB−1) and

Im(a+ τc) = aAB−1 − bB−1 + (Reτ)(cAB−1 − dB−1).

As cAB−1 − dB−1 = −(Imτ)−1Re(a+ τc), we obtain

aAB−1 − bB−1 = Im(a+ τc) + (Reτ)(Imτ)−1Re(a+ τc).

Consequently, we get

K̃ =
1

2
(L1(a+ iIm(a+ τc) + i(Reτ)(Imτ)−1Re(a+ τc))

+ L2(c− i(Imτ)−1Re(a+ τc))).

K(a+ τc) is given by

1

2
(L1((a+ τc) + i(Reτ)(Imτ)−1(a+ τc)) + L2(−i(Imτ)

−1)(a+ τc)).
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Since

(a+ τc) + i(Reτ)(Imτ)−1(a+ τc)

= a+ iIm(a+ τc) + i(Reτ)(Imτ)−1Re(a+ τc)

and − i(Imτ)−1(a+ τc) = c− i(Imτ)−1Re(a+ τc),

we obtain K̃ = 1
2(L1 + i[L1Reτ − L2](Imτ)

−1)(a+ τc). □

3.2. An energy function E on RS
2

C

Theorem 2.1 implies

Lemma 3.3.

(L1, L2)P (τ) = 2Re(−iKτ, iK),

where K = 1
2(L1 + i[L1Reτ − L2](Imτ)

−1).

A Hermitian form η2 defined in [7] is −iω1((K1,K2), (K ′
1,K

′
2)). It follows

from Proposition 2.1 that η2 is Sp(γ,R)-invariant.

Lemma 3.4. The square norm of the vector Φ(Ψ(τ, L)) with respect to η2
is the energy function, which is Sp(γ,R)-invariant.

Proof. We know −iω1((K1,K2), (K1,K2)) = 2Imtr(K∗
1 K2) and hence

Φ∗(2Imtr(K∗
1K2)) = 2Imtr(K∗Kτ). Since K = 1

2(L1 + i[L1(Reτ)−
L2](Imτ)

−1), we get (Φ ◦Ψ)∗(2Imtr(K∗
1 K2)) = E(τ, L). □

Lemma 3.5. 2Imtr(K∗Kτ) is U(n)-invariant.

Let M be a k-dimensional complex submanifold in RS2
C and τ the holo-

morphic immersion of M into RS2
C . Then, we consider the function EM on

M × Ln,2γ as the restriction of E and define the set C(EM ) of critical points
as

{(q, L) ∈M × Ln,2γ |
∂EM

∂z1
(q, L) = · · · =

∂EM

∂zk
(q, L) = 0},

where (z1, ..., zk) is a local complex coordinate system inM . SinceM ×Kn,γ

is a complex submanifold in RS2
C ×Kn,γ , Ψ induces a complex structure on

M × Ln,2γ . Theorem 2.1 implies
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Proposition 3.1. M × Ln,2γ is a holomorphic trivial vector bundle overM
with respect to the complex structure induced by Ψ. Let Jτ be the complex

structure of the fibre at q ∈M, τ = τ(q). Then Jτ is given by Jτ (L1, L2) =
(L1, L2)P (τ)J0.

In [8], we calculated the gradient vector field of E for a fixed L ∈ Ln,2γ on
RS2

C with respect to the Hermitian form ⟨A,B⟩ = trAB, A,B ∈ S2
C , which

is

gradE(τ, L) = 2i× tKK,whereK =
1

2
(L1 + i[L1Reτ − L2](Imτ)

−1).

Lemma 3.6. dEM = 2Imtr(dτ tKK), where K = 1
2(L1 + i[L1Reτ −

L2](Imτ)
−1).

Proof. We get dE(X) = ⟨τ∗(X), gradE⟩ = trRe(τ∗(X)(2i× tKK)) =
2Imtr(τ∗(X) tKK), where X ∈ TqM . □

By the complex structure on M × Ln,2γ induced by Ψ, we obtain

Theorem 3.1. C(EM ) is a complex analytic set in M × Ln,2γ.

Proof. It follows from Lemma 3.6 that (q, (L1, L2)) ∈ C(EM ) if and only if
tr( ∂τ

∂zℓ (q) tKK) = 0, ℓ = 1, ..., k, where (z1, ..., zk) is a local complex coordi-
nate system in M . Ψ(C(EM )) is a complex analytic set in M ×Kn,γ since
tr( ∂τ

∂zℓ
tKK) is a holomorphic function on M ×Kn,γ . □

We define a holomorphic 1-form Ξ on S2
C ×Kn,γ as tr(dτ tKK), which is

O(n,C)-invariant. Then dE = 2ImΞ on RS2
C ×Kn,γ holds. We can extend

the 1-form to a holomorphic 1-form on V n, which is also denoted by Ξ.

Lemma 3.7. Ξ is an Sp(γ,C)-invariant holomorphic 1-form on V n such

that dΞ = −2Φ∗ω1.

Proof. Let B =

(
a b
c d

)
∈ Sp(γ,C). Then

B∗Ξ = tr
(
[−(a+ τc)−1dτc(a+ τc)−1(b+ τd)

+ (a+ τc)−1dτd]( ta+ tcτ) tKK(a+ τc)
)

= tr
(
dτ [−c(a+ τc)−1(b+ τd) + d]( ta+ tcτ) tKK)

)
= Ξ,

because of [−c(a+ τc)−1(b+ τd) + d]( ta+ tcτ) = Eγ . Lemma 2.16 com-
pletes dΞ = −2Φ∗ω1. □
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We consider the induced 1-form ΞM of Ξ on M ×Kn,γ .

Lemma 3.8. Ψ(C(EM )) is the set of zero points of ΞM on M ×Kn,γ. In

particular, Φ∗ω1 = 0 on Ψ(C(EM )). Ψ(C(EM )) and C(EM ) are O(n,C)×
C∗-invariant and EM is constant on the U(1)-orbit in Ψ(C(EM )) and

C(EM ). IfM is invariant by a subgroup G of Sp(γ,C), then so is Ψ(C(EM ))
and C(EM ).

Proof. The set of critical points is the set of ΞM = 0. By Lemma 3.7, we
get Φ∗ω1 = 0. The set of ΞM = 0 is O(n,C)×C∗-invariant, where C∗ acts
on M ×Kn,γ as a subgroup {αEn |α ∈ C∗} of GL(n,C). Although U(n)
preserves EM by Lemma 3.5, U(n) may not preserve Ψ(C(EM )). However,
the subgroup U(1) = C∗ ∩ U(n) preserves Ψ(C(EM )) and EM . ΞM is G-
invariant by Lemma 3.7 and so is ΞM = 0. □

We put K̃n = {K ∈ Kn,γ |
tKK = 0}.

Proposition 3.2. Ψ(C(ERS2
C
)) = {(τ,K) | τ ∈ RS2

C , K ∈ K̃n}.

Proof. By the proof of Theorem 3.1, Ψ−1(τ,K) is a critical point if and only
if tr(τ̂ tKK) = 0 for any τ̂ ∈ S2

C . Thus
tKK = 0. □

4. A complex isotropic submanifold in T
∗
Ln,2γ

LetX be a real submanifold in T ∗Ln,2γ . ThenX is called a complex isotropic
submanifold if ITpX = TpX and JTpX ⊥ TpX for all p ∈ X. Since IJ = K
implies KTpX ⊥ TpX, this condition is equivalent to that X is a complex
submanifold where (φ−1)∗ω1 = 0 by Lemma 2.5. When dimRX = 2nγ, TpX
is a complex Lagrangian subspace by Lemma 2.9, thus X is called a complex
Lagrangian submanifold.

Since C(EM ) is an analytic set, we can consider an irreducible com-
ponent N of C(EM ). Since SO(n,C)×C∗ is a connected subgroup of
O(n,C)×C∗ preserving Ψ(C(EM )), SO(n,C)×C∗ preserves Ψ(N) and
hence N . By Lemmas 2.18 and 3.8, we obtain

Theorem 4.1. Φ ◦Ψ(N) is an SO(n,C)×C∗-invariant complex isotropic

cone possibly with singularities in Φ(V n|M ).

Corollary 4.1. Φ({(τ,K) |K ∈ K̃n, τ ∈ S2
C})(⊃ Φ(C(ERS2

C
))) is a C∗,

O(n,C), Sp(γ,C)-invariant complex isotropic cone, furthermore, it gives

a compact horizontal complex submanifold [14] possibly with singularities in

CP 2nγ−1.
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Proof. Let T ′ /∈ LagCo . Then we have an element g ∈ Sp(γ,C) and T ∈ LagCo
such that T ′ = g(T ) by Lemma 2.11. There exists τ ∈ S2

C which corresponds

to T . g({(τ,K) |K ∈ K̃n}) is some subset of the fibre of T ′ in V n. This subset
is independent of a choice for g and T because if τ and (a+ τc)−1(b+ τd)

are elements of LagCo for

(
a b
c d

)
∈ Sp(γ,C), then K ∈ K̃n is equivalent to

K(a+ τc) ∈ K̃n. Hence we can extend {(τ,K) |K ∈ K̃n, τ ∈ S2
C} to a C∗-

invariant closed set in V n on LagC . It is the set satisfying Ξ = 0 in V n whose
image is compact in CP 2nγ−1 since LagC is compact. □

Let K2m = {K ∈ K̃2m | rankK = m}. Let O(2m) be the real orthogonal
group. Arezzo and Micallef [3] determined K2m for γ ≥ m.

Lemma 4.1. For γ ≥ m, K2m = (O(2m)×K ′
m,γ)/U(m), where K ′

m,γ is

the subset of Km,γ consisting of matrices of rank m. K2m is open dense in

K̃2m and hence dimCK̃2m = 1
2m(m− 1) +mγ.

Proof. Let K ∈ K̃2m and k1, ..., kγ ∈ C2m the column vectors of K. We de-
note by ⟨ , ⟩ the complex bilinear extension on C2m of the canonical inner
product on R2m. Then tKK = 0 is equivalent to ⟨ki, kj⟩ = 0 for all i, j.
For this reason ⟨ , ⟩ vanishes on the subspace spanned by k1, ..., kγ . Let
TK be the maximal subspace containing the subspace such that ⟨ , ⟩ van-
ishes. Then TK is called to be totally isotropic and dimCTK = m holds. We
can choose a unitary basis of TK such that { 1√

2
(f1 + ifm+1), ...,

1√
2
(fm +

if2m)}, where {f1, ..., f2m} is an orthonormal basis of R2m. Thus there ex-
ists a ∈ Km,γ (γ ≥ m) such thatK = 1√

2
((f1 + ifm+1) · · · (fm + if2m)) a. We

put g = (f1, ..., f2m). Then g ∈ O(2m) and K = 1√
2
g

(
a
ia

)
, which implies

rankK ≤ m and rank a ≤ m. For the map G′ : O(2m)×Km,γ −→ K̃2m as

G′(g, a) = g

(
a
ia

)
, the surjectivity of G′ holds. Furthermore, the restriction

G′ to O(2m)×K ′
m,γ is also a surjective map to K2m. If G′(g, a) = G′(h, b)

for a, b ∈ K ′
m,γ , then h

−1g =

(
A B
C D

)
∈ O(2m) satisfies Aa+ iBa = b and

Ca+ iDa = ib. Therefore, we get (A+ iB)a = (D − iC)a. Since rank a =

m, we obtain A+ iB = D − iC and hence h−1g =

(
A B
−B A

)
∈ SO(2m) is

a unitary matrix u. By using the action of U(m) on O(2m)×K ′
m,γ defined

by u(g,K) = (gu−1, uK), we obtain K2m = (O(2m)×K ′
m,γ)/U(m) which

is open dense in K̃2m. □
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Let Ẽ = {(τ,K) | τ ∈ S2
C ,K ∈ K̃2m}.

Theorem 4.2. For γ ≥ m ≥ 2, Φ(Ẽ) consists of two C∗, SO(2m,C),
Sp(γ,C)-invariant, non-totally geodesic, complex Lagrangian cones possibly

with singularities, which give compact non-totally geodesic, horizontal com-

plex submanifolds possibly with singularities in CP 4mγ−1. For γ ≥ m = 1, it
is contained in the two complex Lagrangian planes.

Proof. Corollary 4.1 implies that Φ(Ẽ) is a complex isotropic cone. We define
the map G : S2

C × SO(2m)×Km,γ → K2m,γ ×K2m,γ as

G(τ, g, a) = (g

(
a
ia

)
, g

(
a
ia

)
τ)

and hG, where h ∈ O(2m) such that deth = −1. Since h induces a complex
symplectic isometry of K2m,γ ×K2m,γ by Lemma 2.6, it is enough to prove
our assertion on G. Let p be (iEγ , E2m,

(
Em 0

)
) ∈ S2

C × SO(2m)×Km,γ .
We first construct a basis of TG,p := G∗(Tp(S2

C × SO(2m)×Km,γ)). TG,p

is spanned by the following vectors:

type 1 (

(
X + iY 0
−tY + iZ 0

)
,

(
X + iY 0
−tY + iZ 0

)
i),

type 2 (

(
α β
iα iβ

)
,

(
α β
iα iβ

)
i), type 3 (0,

(
A B
iA iB

)
),

where X,Z are real skew m×m matrices, Y is a real m×m matrix, α is
an m×m matrix, β is an m× (γ −m) matrix, A is a symmetric m×m
matrix and B is an m× (γ −m) matrix. A vector of type 2 is divided into
a sum of vectors of types 4 and 5 as follows:

type 4 (

(
α 0
iα 0

)
,

(
α 0
iα 0

)
i), type 5 (

(
0 β
0 iβ

)
,

(
0 β
0 iβ

)
i).

As a result, TG,p is spanned by vectors of types 1, 3, 4 and 5. Note that A,B of
type 3 and β of type 5 are free except the condition that A is symmetric. The
common vector of types 1 and 4 satisfies X + iY = α and −tY + iZ = iα,
and thus X + iY = α is skew Hermitian because X = Z and Y is symmetric.
We give type 6 as

type 6 (

(
α 0
iα 0

)
,

(
α 0
iα 0

)
i),
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where α is Hermitian. Hence TG,p is spanned by vectors of types 1, 3, 5, 6 and
the real dimension is 2m2 −m+m(m+ 1) + 2m(γ −m) + 2m(γ −m) +
m2 = 4mγ. Namely, the complex dimension of TG,p is 2mγ. Hence, TG,p

is a complex Lagrangian subspace.
Since the maximal rank of G∗ is 2mγ by the complex isotropicness of G,

G∗ has the maximal rank 2mγ for generic points of Ẽ. Each neighborhood
of the generic points admits a decomposition of U × V such that

(1) U ⊂ C2mγ and V ⊂ C
γ(γ+1)

2
+m(m−1)

2
−mγ are open sets,

(2) G(U × {v}) for each v ∈ V is a complex Lagrangian submanifold in
K2m,γ ×K2m,γ ,

(3) G({u} × V ) for each u ∈ U is a point.

Thus, the image of Ẽ is a complex Lagrangian cone possibly with singular-
ities.

We next prove that some second differential of G at p is not containd in
TG,p if m ≥ 2 as follows:

∂2G

∂τ∂a
= (0,

(
α β
iα iβ

)(
A B
tB C

)
) = (0,

(
αA+ β tB αB + βC
iαA+ iβ tB iαB + iβC

)
)

holds, where A and C are symmetric. Let α be a matrix such that the
(1,m) entry is 1 and the others are 0, β = 0. Let A be a matrix such
that (2,m), (m, 2) entries are 1 and the others are 0 and B = C = 0. Then
αA+ β tB is an m×m matrix with the (1, 2) entry = 1 and the (2, 1) entry
= 0, that is, is not symmetric. Thus, the second differential is not contained
in TG,p. If Φ(Ẽ) is a totally geodesic, complex Lagrangian subspace through
G(p), then the complex Lagrangian subspace is TG,p through G(p). Further-
more, the second differential is tangent to TG,p. This is a contradiction.

Assume m = 1. Let g =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO(2,R). Then g

(
a
ia

)
=

(
e−iθa
ie−iθa

)
. Therefore G(τ, g, a) is (

(
e−iθa
ie−iθa

)
,

(
e−iθaτ
ie−iθaτ

)
), which is contained

in the complex Lagrangian subspace {

(
Z1 Z2

iZ1 iZ2

)
}. □

One of two complex Lagrangian cones obtained in Theorem 4.2 is de-
noted by Mγ,m for γ ≥ m ≥ 2. The other complex Lagrangian cone is the
image of Mγ,m by the complex symplectic isometry h.
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5. A special pseudo Kähler structure

Let indexEM
and nullityEM

be the index and the nullity of the Hessian of
EM at a point of C(EM ), respectively. Let N be an irreducible component of
C(EM ). If N has a non-degenerate critical point, then a connected compo-
nent of non-degenerate critical points of N admits a special pseudo Kähler
structure as seen below. We give a relation between the special pseudo Kähler
structure and indexEM

, nullityEM
.

5.1. A review on the set of critical points

Let Rk be the k-dimensional Euclidean space, (q1, ..., qk) the canonical co-
ordinate system in Rk and U a neighborhood of the origin 0 ∈ Rk. Let
(λ1, ..., λn) be the canonical coordinate system in Rn and V a neighborhood
of the origin 0 ∈ Rn. Let F be a real valued function on U × V such that
F (0, 0) = 0. Assume that 0 ∈ U is a critical point of F |U×{0}. When we con-

sider that F is an unfolding of F |U×{0} such that q1, ..., qk are innervariables
and λ1, ..., λn are parameters, the set C(F ) of critical points is defined as

C(F ) = {(q, λ) ∈ U × V |
∂F

∂q1
= · · · =

∂F

∂qk
= 0}.

The origin 0 ∈ U is called a non-degenerate critical point if the Hessian
of F |U×{0} at 0 ∈ U is non-degenerate. We also call (0, 0) ∈ C(F ) to be non-
degenerate. Then, some neighborhood of (0, 0) ∈ C(F ) is an n-dimensional
submanifold in U × V as follows: The Jacobian matrix at (0, 0) of the map
K : U × V → Rk defined by ( ∂F

∂q1
, ..., ∂F

∂qk
) is non-degenerate, that is, K∗ is

surjective at (0, 0) and, by the implicit function theorem, a neighborhood
of (0, 0) ∈ C(F ) is a graph over a neighborhood of 0 ∈ V . In general, if K∗
is surjective at (0, 0), then, again, a neighborhood of (0, 0) in C(F ) is a
submanifold of dimension n in U × V . Such a function F is called a Morse
family.

Let π : U × V −→ V be the projection. Then the null space of the Hes-
sian of F |U×{0} at (0, 0) is a subspace of T0U × {0}. When a neighborhood
of (0, 0) in C(F ) is a submanifold, we can consider π : C(F ) ⊂ U × V −→ V
the restriction of π. The subspace {X ∈ T(0,0)C(F ) |π∗(X) = 0} is called
the null space of C(F ) at (0, 0), which is contained in the null space of the
Hessian of F |U×{0} at (0, 0) since K∗(X) = 0 for X ∈ T(0,0)C(F ) such that
π∗(X) = 0
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If F is a Morse family, then we obtain that the null space of the Hessian
of F |U×{0} at (0, 0) is the null space of C(F ) at (0, 0). Furthermore, we can
construct the Lagrangian embedding of this submanifold into the cotangent
bundle T ∗Rn by

(q, λ) 7→ (
∂F

∂λ1
(q, λ), ...,

∂F

∂λn
(q, λ), λ1, ..., λn)

as follows:
Let (p1, ..., pn, λ1, .., λn) be the canonical coordinate system in T ∗Rn.

Then the Liouville-form is
∑n

j=1 p
jdλj and the symplectic form of T ∗Rn is

given by
∑n

j=1 dp
j ∧ dλj = d(

∑n
j=1 p

jdλj). The Liouville-form induced on

C(F ) is
∑n

j=1
∂F
∂λj dλj = d(F |C(F )), that is, exact and hence the symplectic

form induced on C(F ) vanishes. If (0, 0) be a non-degenerate critical point,
the above map is a Lagrangian embedding since the image is a graph over
a neighborhood of (0, 0).

So we consider the case that (0, 0) is not a non-degenerate critical point.
Let m be the nullity of the Hessian of F |U×{0} at (0, 0) and assume that
∂

∂qα
, α = 1, ...,m are a basis of the null space of the Hessian of F |U×{0} at

(0, 0). Since K∗ is surjective,

rank

(
A′ B′ C ′

D′ E′ F ′

)
= k

holds, where, for α, β = 1, ...,m, α′, β′ = m+ 1, ..., k, δ = 1, ..., n,

A′ =
(

∂2F
∂qα∂qβ

)
, B′ =

(
∂2F

∂qα∂qβ
′

)
, C ′ =

(
∂2F

∂qα∂λδ

)
,

D′ =
(

∂2F
∂qα

′

∂qβ

)
, E′ =

(
∂2F

∂qα
′

∂qβ
′

)
, F ′ =

(
∂2F

∂qα
′

∂λδ

)
.

By the assumption, we get A′ = B′ = D′ = 0 and rankE′ = k −m. Hence,
rankC ′ = m.

We set C ′ = (C ′
1, C

′
2), where C

′
1 is an m× (n−m) matrix and C ′

2 is an
m×m matrix. Without loss of generality, we may assume that C ′

2 is regular.
Then the submanifold in a neighborhood of (0, 0) may be given by

qα
′

= qα
′

(qα, λδ
′

), λδ
′′

= λδ
′′

(qα, λδ
′

),

where δ′ = 1, ..., n−m, δ′′ = n−m+ 1, ..., n. Since

∂F

∂qα
(qβ , qβ

′

(qβ , λδ
′

), λδ
′

, λδ
′′

(qβ , λδ
′

)) = 0,
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its differential at (0, 0) implies C ′
2

(
∂λδ′′

∂qβ

)
= 0. Since C ′

2 is regular, we get

∂λδ′′

∂qβ
= 0 for each β. Since

∂F

∂qα′
(qβ , qβ

′

(qβ , λδ
′

), λδ
′

, λδ
′′

(qβ , λδ
′

)) = 0,

its differential at (0, 0) implies E′
(
∂qβ

′

∂qβ

)
= 0. Similarly, since E′ is regular,

we get ∂qβ
′

∂qβ
= 0 for each β. These show that the null space of the Hessian of

F |U×{0} at (0, 0) is the null space of T(0,0)C(F ).
Furthermore,

(q, λ) 7→ (
∂F

∂λ1
(q, λ), ...,

∂F

∂λn
(q, λ), λ1, ..., λn)

is an embedding of a neighborhood of (0, 0) of C(F ), which completes the
proof.

We call such an F a generating function with respect to this Lagrangian
submanifold in T ∗(Rn).

Conversely, the result above is a sufficient condition that F is a Morse
family. In fact, if some neighborhood of (0, 0) in C(F ) is an n-dimensional
submanifold, the null space of the Hessian of F |U×{0} at (0, 0) is the null
space of T(0,0)C(F ) and the map defined by

f(q, λ) = (
∂F

∂λ1
(q, λ), ...,

∂F

∂λn
(q, λ), λ1, ..., λn)

an embedding, then F is a Morse family at (0, 0) as follows:
Let m be the nullity of the Hessian of F |U×{0} at (0, 0). Without loss of

generality, we assume that { ∂
∂qα

} is a basis of the null space of the Hessian

of F |U×{0} at (0, 0). Let (u1, ..., um, um+1, ..., un) be a local coordinate sys-

tem at (0, 0) in the n-dimensional submanifold such that ∂
∂uα = ∂

∂qα
by the

assumption. Then, we get, at (0, 0),

f∗(
∂

∂uα
) = ((

∑

β

∂2F

∂λδ∂qβ
∂qβ

∂uα
), 0) = (

(
∂2F

∂λδ∂qβ

)(
∂qβ

∂uα

)
, 0).

By the assumption, rank
(

∂2F
∂λδ∂qβ

)
= m and rank

(
∂2F

∂qα
′

∂qβ
′

)
= (k −m).

Therefore, rankK∗ = k.

Proposition 5.1. F is a Morse family at (0, 0) if and only if
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(1) some neighborhood of (0, 0) in C(F ) is an n-dimensional submanifold,

(2) the null space of the Hessian of F |U×{0} at (0, 0) is the null space of

T(0,0)C(F ),

(3) f(q, λ) = (
∂F

∂λ1
(q, λ), ...,

∂F

∂λn
(q, λ), λ1, ..., λn) is an embedding.

5.2. A complex Lagrangian cone

Now we consider a complex submanifold M ⊂ RS2
C in place of U and Ln,2γ

in place of V in Subsection 5.1. Let π : C(EM ) ⊂ RS2
C × Ln,2γ → Ln,2γ be

the projection and its restriction.
Let N be an irreducible component of C(EM ). If N has a non-degenerate

critical point (τ, (L1, L2)), then some neighborhood of (τ, (L1, L2)) is a graph
over an open set of (L1, L2) ∈ Ln,2γ . Therefore we see dimCN = nγ.

N may have a singular locus S1, which is of real codim ≥ 2. Let S2 be
the set of degenerate critical points in N . Since a neighborhood of a point
/∈ S2 in N is a submanifold, S1 ⊂ S2 holds. Since a neighborhood of a point
∈ S2 \ S1 in N is a submanifold and the zero set of the Jacobian of π of the
submanifold is a real analytic set, S2 \ S1 may be a real hypersurface in N
possibly with singularities. If EM is a Morse family at (τ, (L1, L2)) ∈ S2 \ S1,
then, a neighborhood of (τ, (L1, L2)) is a submanifold and there exists a
Lagrangian embedding of the neighborhood as in Proposition 5.1. However,
we note

Lemma 5.1. If N has a non-degenerate critical point, then a Lagrangian

immersion ψ of N into T ∗Ln,2γ possibly with singularities is given by

ψ : (τ, (L1, L2)) ∈ N 7→ ((L1, L2)P (τ), (L1, L2)) ∈ T ∗Ln,2γ .

In particular, ψ = 2φ ◦ Φ ◦Ψ. The obtained Lagrangian submanifold possi-

bly with singularities is a complex Lagrangian cone possibly with singulari-

ties. Some neighborhood of a non-degenerate critial point is the graph : L 7→

(LP (τ(L)), L) on an open set of Ln,2γ, where LP (τ(L)) =
(∂EM

∂ℓij

)
(τ(L), L)

for the canonical coordinate system {ℓij} in Ln,2γ.

Proof. By ψ = 2φ ◦ Φ ◦Ψ, the obtained Lagrangian submanifold possibly
with singularities is a cone. Since (τ(L), L) is a critical point of EM ,
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∂EM

∂ℓij
= tr(P (τ(L)) teijL) =

2γ∑

k=1

P (τ(L))kjLik = (LP (τ(L))ij ,

where eij ∈ Ln,2γ such that the (i, j) entry is 1 and the others are 0. □

Let Tn,2γ = {L ∈ Ln,2γ | column vectors of L span a lattice}. Then Tn,2γ
is dense in Ln,2γ since Tn,2γ contains L with rank = n whose entries are
rational numbers.

Proposition 5.2. Let N be an irreducible component of C(EM ) with a

non-degenerate critical point. Then we have

(1) dimCN = nγ,

(2) ψ gives a complex Lagrangian cone possibly with singularities,

(3) π−1(Tn,2γ) is dense in N .

5.3. Non-degenerate condition

We review non-degenerate condition (see Cortés [7]). The canonical coordi-
nate system in K1,γ ×K1,γ is denoted by {z1, ..., zγ , w1, ..., wγ}. A complex
symplectic form ω2 is given by

∑γ
j=1 dz

j ∧ dwj = −ω1. A Hermitian form
with the signature (γ, γ) is defined as η2(x, y) = iω2(x, y), which is Sp(γ,R)-
invariant. A complex Lagrangian subspace is called to be non-degenerate if
the Hermitian form induced from η2 is non-degenerate. Then, its signature
(p, q) is called the signature of the complex Lagrangian subspace. Sp(γ,R)
acts on the space of non-degenerate complex Lagrangian subspaces and pre-
serves signatures.

Let LagC1 denote the set of non-degenerate complex Lagrangian sub-
spaces ⊂ K1,γ ×K1,γ . The complement of LagC1 in LagC is a real analytic
hypersurface possibly with singularities, because, for a local holomorphic
frame fields f1, ..., fγ of V on a neighborhood U ⊂ LagC , p ∈ U ∩ LagC1 if
and only if det(η2(fj , fk)) ̸= 0 at p.

Lemma 5.2. τ ∈ S2
C is a non-degenerate complex Lagrangian subspace if

and only if τ ∈ RS2
C . Then the signature (p, q) of τ is that of Imτ . In par-

ticular, a complex Lagrangian subspace with q = 0 corresponds to τ ∈ Hγ.

RS2
C is identified with LagCo ∩ LagC1 .
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Proof. Let (ej , ejτ), 1 ≤ j ≤ γ be a basis of the complex Lagrangian
subspace. Then η2((ej , ejτ), (ek, ekτ)) = itrtdZ1 ∧ dZ2((ej , ejτ), (ek, ekτ)) =
2Imτjk. □

Let W be a complex Lagrangian subspace of K1,γ ×K1,γ . Then, in gen-
eral, η2 induced on W may be degenerate. Let Wη2

be the null space and
nullityη2

its complex dimension. Cortés gave the following (Proposition 1.1
[7]).

Proposition 5.3. Let W be a complex Lagrangian subspace. Then W ∩
W =Wη2

. In particular, W is non-degenerate if and only if W ∩W = {0}.

The previous half of Proposition 5.3 is Proposition 1.4 in [7]. a ∈W ∩
W if and only if Re a± iIm a ∈W , that is, Re a, Im a ∈W . Consequently,
W ∩W = {0} is equivalent to thatW does not contain non-zero real vector.
Combining these with Corollaries 2.1 and 2.2, we obtain

Proposition 5.4. W ⊂ K1,γ ×K1,γ is non-degenerate if and only if the

projection π1 : (K1,K2) ∈W 7→ 2(ReK1,ReK2) ∈ L1,2γ is surjective. The

space of non-degenerate complex Lagrangian subspaces is identified with the

space of 2γ × 2γ symmetric matrices in Sp(γ,R). Hγ is the space of complex

Lagrangian subspaces such that η2 is positive definite.

A complex Lagrangian submanifold X with the non-degenerate Hermi-
tian form η2 in C2γ is called a Lagrangian pseudo Kähler submanifold, which
admits a special pseudo Kähler structure [7]. Freed [15] (see, for example,
[18]) formalized a special pseudo Kähler structure as follows:

A special pseudo Kähler manifold is a complex manifold with the com-
plex structure J and

(a) a pseudo Kähler metric g with a pseudo Kähler form ω,

(b) a flat torsion-free connection ∇ such that ∇ω = 0 and

(∇XJ)(Y )− (∇Y J)(X) = 0.

Propositions 2.2 and 5.4 imply

Corollary 5.1. Let Y be a complex Lagrangian submanifold in Kn,γ ×Kn,γ

and π1 : Y → Ln,2γ. Then Y is a Lagrangian pseudo Kähler submanifold if

and only if π1∗ at each point of Y is bijective.
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Let N be an irreducible component with a non-degenerate critical point
of C(EM ). Then a connected component of non-degenerate critical points
of N may be locally a graph on a neighborhood in Ln,2γ . From Lemmas
2.18, 2.20, 3.8 and 5.1, Theorem 4.1, Corollary 5.1 and that SO(n), U(1)
and Sp(γ,R) preserve η2, we obtain

Theorem 5.1. The connected component gives the Lagrangian pseudo

Kähler cone with SO(n)× U(1) as holomorphic isometries. If M is invari-

ant by a subgroup G of Sp(γ,R), then an element of G acts on C(EM ). An
element of G may change an irreducible component N1 to another irreducible

component N2. Then, the element of G changes a connected component of

N1 to a connected component of N2 as a holomorphic isometry preserving

the special pseudo Kähler structures. If G is connected, then G is a group of

holomorphic isometries on connected components with special pseudo Kähler

structures.

Remark 5.1. SO(n,C) preserves an irreducible component, however, may
not preserve a connected component.

It is worth noting that the energy function is defined on a complex
submanifold M in LagC1 .

Proposition 5.5. When we identify LagC1 with the space of 2γ × 2γ sym-

metric matrices in Sp(γ,R), we can define the energy function as E(P,L) =
1
2tr(P

tLL) for P ∈ LagC1 and L ∈ Ln,2γ.

5.4. A complex Lagrangian graph in T
∗
Ln,2γ

We study the signature of a complex Lagrangian graph.

Corollary 5.2. If a non-degenerate complex Lagrangian subspace in

Ln,2γ × Ln,2γ is given by a symmetric 2γ × 2γ real matrix P =

(
A B
tB C

)
∈

Sp(γ,R) and ((L1, L2)P, (L1, L2)) is a vector in the complex Lagrangian

subspace, then,

η2(((L1, L2)P, (L1, L2)), ((L1, L2)P, (L1, L2))) =
1

2
tr
(
(L1, L2)P

(
tL1
tL2

))

and the signature of η2 is the half of n× (the signature of P ). The complex

structure induced by I is given by PJ0 (see Theorem 2.1).
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Proof. Let K1 =
1
2(L1 − i(L1B + L2C)) and K2 =

1
2(L2 + i(L1A+ L2

tB)).
Then we obtain

η2((K1,K2), (K1,K2)) =i tr
tdZ1 ∧ dZ2((K1,K2), (K1,K2))

=
1

2
tr
(
(L1, L2)P

(
tL1
tL2

))
.

□

Let (L1, ..., L2γ) and (L′
1, ..., L

′
2γ) be tangent vectors at each point of

L1,2γ . Then

ω0((L1, ..., L2γ), (L
′
1, ..., L

′
2γ)) =

1

2
(L1, ..., L2γ)

tJ0
t(L′

1, ..., L
′
2γ)

is a 2-form on L1,2γ , which is Sp(γ,R)-invariant for the action:

(L1, L2)

(
a b
c d

)
= (L1a+ L2c, L1b+ L2d) for

(
a b
c d

)
∈ Sp(γ,R),

where L1 = (L1, ..., Lγ) and L2 = (Lγ+1, ..., L2γ).
Let (ℓ1, ..., ℓ2γ) be the canonical coordinate system in L1,2γ and ϕ a func-

tion on an open set U ⊂ L1,2γ . Then ( ∂ϕ
∂ℓ1
, ..., ∂ϕ

∂ℓ2γ
, ℓ1, ..., ℓ2γ) is a Lagrangian

graph Lϕ on U into T ∗L1,2γ and (ℓ1, ..., ℓ2γ) is a local coordinate system in
Lϕ. (L1, ..., L2γ) ∈ L1,2γ may be a tangent vector of Lϕ. The following gives
the special pseudo Kähler structure on Lϕ.

Proposition 5.6. Lϕ in T ∗L1,2γ is a Lagrangian pseudo Kähler subman-

ifold if and only if the Hessian of ϕ is an element of Sp(γ,R). Then we

have

(1) The complex structure Jϕ is given by ( ∂2ϕ
∂ℓj∂ℓk

)J0,

(2) The pseudo Kähler metric gϕ is given by

1

2
(L1, ..., L2γ)(

∂2ϕ

∂ℓj∂ℓk
)t(L′

1, ..., L
′
2γ),

(3) The pseudo Kähler form ωϕ is ω0,

(4) The canonical connection on L1,2γ(= R2γ) satisfies (b) in the defini-

tion of the special pseudo Kähler structure.

Proof. (1) is obtained by Theorem 2.1. Corollary 5.2 implies (2). It is enough
to calculate the pseudo Kähler form to prove (3). By Corollary 5.2 and that
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the Hessian of ϕ is an element of Sp(γ,R), we get

1

2
(L1, ..., L2γ)(

∂2ϕ

∂ℓj∂ℓk
) tJ0(

∂2ϕ

∂ℓj∂ℓk
) t(L′

1, ..., L
′
2γ)

=
1

2
(L1, ..., L2γ)

tJ0
t(L′

1, ..., L
′
2γ).

We choose the canonical connection on L1,2γ as a flat torsin-free connection.
Then the pseudo Kähler form is parallel and

(∇ ∂

∂ℓj

Jϕ)(
∂

∂ℓk
)− (∇ ∂

∂ℓk

Jϕ)(
∂

∂ℓj
)

=
∑

p,q

(
∂3ϕ

∂ℓj∂ℓk∂ℓp
−

∂3ϕ

∂ℓk∂ℓj∂ℓp
)J0pq

∂

∂ℓq
= 0,

where J0pq is the (p, q) entry of J0. □

Let N be an irreducible component of C(EM ) with a non-degenerate
critical point. Then N gives a complex Lagrangian cone posssibly with
singularities. Let N1 be a connected component of non-degenerate criti-
cal points of N . Then N1 admits a special pseudo Kähler structure of
the signature (p, q), where p+ q = nγ. Hence, (p, q) and indexEM

at a
non-degenerate critical point are invariants of N1. We investigate a rela-
tion between the two invariants. By Lemma 5.1, N1 is locally a graph
{(τ(L), L) |L ∈ U} on an open set U ⊂ Ln,2γ . The complex Lagrangian cone
is given by {(LP (τ(L)), L) |L ∈ U}.

Let ℓjk be the (j, k) entry of L ∈ Ln,2γ . We denote by {ℓjk} the canonical
coordinate system in Ln,2γ . Review ejk ∈ Ln,2γ such that the (j, k) entry is
1 and the others are 0. Let {τ1, ..., τα}, where α = 2dimCM , be a local real
coordinate system in M .

We consider the case ϕ = EM . By Propositions 2.2 and 5.6,
1
2tr(P (τ(L))

tLL) has the pseudo Kähler potential a(L). By using τ(L) ∈M ,
we calculate

∂a

∂ℓjk
= tr(P (τ(L)) tejkL),

∂2a

∂ℓℓm∂ℓjk
=
∑

q

tr(
∂P (τ(L))

∂τ q
tejkL)

∂τ q

∂ℓℓm
+ tr(P (τ(L)) tejkeℓm).
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Differentiating tr(∂P (τ(L))
τq

tLL) = 0 by ℓjk, we get

∑

r

tr(
∂2P (τ)

∂τ q∂τ r
tLL)

∂τ r

∂ℓjk
+ 2tr(

∂P (τ)

∂τ q
tejkL) = 0 and hence,

∑

q

tr(
∂P (τ)

∂τ q
tejkL)

∂τ q

∂ℓℓm
= −

1

2

∑

q,r

tr(
∂2P (τ)

∂τ q∂τ r
tLL)

∂τ r

∂ℓjk

∂τ q

∂ℓℓm
.

Thus, we obtain

∂2a

∂ℓℓm∂ℓjk
= −

1

2

∑

q,r

tr(
∂2P (τ)

∂τ q∂τ r
tLL)

∂τ r

∂ℓjk

∂τ q

∂ℓℓm
+ tr(P (τ(L)) tejkeℓm).

We define the non-degenerate pseudo inner product by Reη2 on T
∗Ln,2γ ,

which corresponds to gϕ in Proposition 5.6. Then, we get an important
formula by Corollary 5.2 and Proposition 5.6.

Theorem 5.2.

∑

q,r

HessEM (
∂

∂τ q
,
∂

∂τ r
)
∂τ q

∂ℓjk

∂τ r

∂ℓℓm

= tr
(
P (τ(L)) tejkeℓm

)
−Hess a(

∂

∂ℓjk
,
∂

∂ℓℓm
).

(1) 1
2tr

(
P (τ(L)) tejkeℓm

)
is the Gram matrix of the basis { ∂

∂ℓjk
} with re-

spect to Reη2 on the complex Lagrangian subspace corresponding to

τ(L).

(2) 1
2Hess a(

∂
∂ℓjk

, ∂
∂ℓℓm

) is the Gram matrix of the basis { ∂
∂ℓjk

} with respect

to Reη2 on the tangent space at (LP (τ(L)), L) of the complex La-

grangian graph.

Note that the tangent space at (LP (τ(L)), L) of the complex Lagrangian
graph in Theorem 5.2 may not be a complex Lagrangian subspace (n ≥ 2)
which is investigated in Theorem 2.1.

5.5. indexEM
of a complex Lagrangian graph

AssumeM ⊂ Hγ . Let N be an irreducible component of C(EM ) with a non-
degenerate critical point. Since C(EM ) ⊂M × Ln,2γ , we obtain τ :N −→M ,
which is a holomorphic map except the singular locus S1 in N .
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(i) Surjective condition at a non-degenerate critical point ∈ N is that τ∗
at the point is surjective.

(ii) Surjective condition on an irreducible component N is that generic
non-degenerate critical points of N satisfy surjective condition.

If surjective condition is satisfied at a non-degenerate critical point of N ,
then, generic non-degenerate points of N satisfy surjective condition since
τ is holomorphic, that is, N satisfies surjective condition.

Theorem 5.3. Let N be an irreducible component satisfy surjective condi-

tion. Then

2q + indexEM
≤ 2dimCM

for each connected component N1, where (p, q) is the signature of the special

pseudo Kähler metric. In particular, the special pseudo Kähler metric on

Kerτ∗ at a non-degenerate critical point ∈ N1 satisfying surjective condition

is positive definite.

Proof. By the asumption, there exists a non-degenerate critical point (τ0, L0)
satisfying surjective condition in N1. Thus we obtain a neighborhood of
(τ0, L0) in N1 is given by {(τ(L), L) |L ∈ U}, where τ(L0) = τ0 and U is an
open set ⊂ Ln,2γ . It is enough to prove the inequality at (τ(L0), L0).

We consider the symmetric bilinear form on T(τ(L0),L0)N of the left hand
side of the formula in Theorem 5.2. We get the subspace Tf = Kerτ∗, which
is containd in the kernel of the symmetric bilinear form. Let Tb be the
subspace where the bilinear form is negative-definite. Therefore, the sym-
metric bilinear form on Tf + Tb is non-positive. By Theorem 2.1, P (τ(L0))
is positive definite. Thus, Theorem 5.2 implies that the Hessian of a is posi-
tive on Tf + Tb. Therefore, 2p ≥ dimR(Tf + Tb). Since surjective condition is
satisfied, dimRTb = indexEM

and dimRTf = 2nγ − 2dimCM . Consequently,
2p ≥ indexEM

+ 2nγ − 2dimCM , together with p+ q = nγ, completes the
proof. □

We can identify L ∈ Ln,2γ with t( tL 0) ∈ Ln+1,2γ , that is, Ln,2γ ⊂
Ln+1,2γ . Then, EM (τ, L) = EM (τ, t( tL 0)) and hence C(EM ) for Ln,2γ is
contained in C(EM ) for Ln+1,2γ . If (τ, L) is a non-degenerate critical point,
then (τ, t( tL 0)) is also a non-degenerate critical point. Thus we see that the
graph G1 of non-degenerate critical points on a neighborhood of L in Ln,2γ is
G2 ∩ {(τ, t( tL 0))|τ ∈M,L ∈ Ln,2γ}, where G2 is a graph of non-degenerate
critical points on a neighborhood of t( tL 0) in Ln+1,2γ .
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It is a simple method to obtain a non-degenerate critical point for Ln+1,2γ

from a non-degenerate critical point for Ln,2γ , which is called swelling in [10].
The obtained irreducible component is called a degenerative component in
[4]. The point may not satisfy surjective condition, however, generic points
of the irreducible component obtained by swelling may satisfy surjective
condition. In the case, since swelling preserves indexEM

, it is enough to
calculate indexEM

at a critical point satisfying surjective condition close to
(τ, t( tL, 0)).

Theorem 5.3 implies

Corollary 5.3. Let (p1, q1) be the signature of G1 and (p2, q2) the signature
of G2. Then q1 ≤ q2 holds. If G2 satisfies surjective condition, indexEM

≤
2dimCM − 2q2 in place of q1. In particular, indexEM

≤ 2dimCM − 2q1. If
q1 = dimCM , then q1 = q2 and indexEM

= 0 on the connected component.

We have the null space of the Hessian of EM at a degenerate critical
point and denote by nullityEM

its dimension. We recall that S2 is the set
of degenerate critical points of N . If N has different connected components
of non-degenerate critical points in N , then S2 is an hypersurface possibly
with singularities. We consider a neighborhood of a point of the hypersurface
except singularities. Propositions 2.2, 5.1 and 5.3 imply

Proposition 5.7. If EM is a Morse family at a point of S2 \ S1, then we

obtain nullityEM
= nullityη2

.

Theorem 5.4. Let (τ, L) be a critical point of an irreducible component

with a non-degenerate critical point of C(EM ). Assume that EM is a Morse

family at (τ, L). Let {Tk} be a basis of the tangent space of the corresponding

complex Lagrangian submanifold above at (K,Kτ) and W the Gram matrix

(η2(Ti, Tj)) of {Tk} with respect to η2. Similarly, we define the real basis

{Tk, T
′
k} and the Gram matrix W1 of the real basis {Tk, T

′
k} with respect to

Reη2. Then nullity of W is nullityEM
and nullity of W1 is 2nullityEM

. In

particular, if W or W1 is regular, then (τ,K) is a non-degenerate critical

point and the signature is the signature of W or the half of that of W1.

Corollary 5.1 and Theorem 5.2 imply

Theorem 5.5 (Algorithm). Let (τ, L) be a non-degenerate critical point

of an irreducible component of C(EM ) where surjective condition is satisfied

at the critical point. Let Tk = (Ak, Bk) be a basis of the tangent space at
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(K,Kτ) of the corresponding complex Lagrangian cone in C2nγ. Set T ′
k =

(iAk, iBk). Let

(Ck, Dk) = Re(2Ak, 2Bk), (C ′
k, D

′
k) = Re(i2Ak, i2Bk).

Then {(Ck, Dk), (C
′
k, D

′
k)} is a basis of Ln,2γ. Put

Sk = (Ek, Ekτ), S′
k = (E′

k, E
′
kτ),

where

Ek =
1

2
(Ck + i[CkReτ −Dk](Imτ)

−1)

= Re(Ak) + i[Re(Ak)Reτ − Re(Bk)](Imτ)
−1,

E′
k = Re(iAk) + i[Re(iAk)Reτ − Re(iBk)](Imτ)

−1.

{Sk, S
′
k} is a real basis of a non-degenerate complex Lagrangian subspace

defined by τ . Let W2 denote the Gram matrix of the real basis {Sk, S
′
k} and

W1 the Gram matrix of the real basis {Tk, T
′
k} with respect to Reη2. Then

(1) 2nγ − 2dimCM is the nullity of W2 −W1,

(2) HessEM is the difference between the tangent space of the non-

degenerate complex Lagrangian cone and the complex Lagrangian sub-

space by τ ,

(3) indexEM
is the number of negative eigenvalues of W2 −W1.

Finally we give a geometric property of the signature. Let N be an ir-
reducible component of C(EM ) with a non-degenerate critical point. Then
a connected component N1 of non-degenerate critical points of N admits a
special pseudo Kähler structure of the signature (p, q). It is locally a graph
(LP (τ(L)), L) on an open set U ⊂ Ln,2γ . We investigate q for n = 1 for the
convenient because the proof is available for all n. N admits the orienta-
tion induced by the complex structure except S1. We investigate whether
the projection π : N1 → L1,2γ is orientation preserving or reversing for the

orientation of L1,2γ by 1
γ!(−1)

γ(γ+1)

2 ωγ
0 , where

ω0 =
1

2
(L1, ..., L2γ)

tJ0
t(L′

1, ..., L
′
2γ).
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Let ω̃0 be the induced pseudo Kähler form of ω0 on N1, which is the pseudo
Kähler form by Proposition 5.6. Then

ω̃0 = −ih(
∂

∂zα
,
∂

∂zβ
)dzα ∧ dzβ ,

where (z1, ..., zγ) is a local complex coordinate system in N1, (h(
∂

∂zα ,
∂

∂zβ
))

is the Hermitian matrix with the signature (p, q). For zk = xk + iyk,

1

γ!
(−1)

γ(γ+1)

2 ω̃0
γ = det(h(

∂

∂zα
,
∂

∂zβ
))dx1 ∧ · · · ∧ dxγ ∧ dy1 ∧ · · · ∧ dyγ .

Proposition 5.8. π : N1 −→ L1,2γ is orientation preserving if (−1)q > 0
and orientation reversing if (−1)q < 0.

6. Applications to minimal surfaces in flat tori

Sacks and Uhlenbeck [32], Schoen and Yau [33] constructed an incompress-
ible minimal surface as a minimum point of the energy function on the
Teichmüller space induced by harmonic maps. When the energy function is
smooth, its critical point corresponds to a minimal surface. The index and
the nullity of the Hessian of the energy function at the critical point are
related to indexa and nullitya of the minimal surface [8], respectively.

Furthermore, we studied a multivalued harmonic map from a compact
Riemann surface M to Rn with a real period matrix L for a canoni-
cal homology basis {A1, ..., Aγ , B1, ..., Bγ} of M and proved that the en-
ergy is E(τ, L) = 1

2tr(P (τ)
tLL), where τ is its Riemann matrix ∈ Hγ . Let

RMnon−hyper be the space of Riemann matrices of non-hyperelliptic Rie-
mann surfaces of genus γ ≥ 2 and RMhyper the space of Riemann matrices
of hyperelliptic Riemann surfaces of genus γ ≥ 2. Then, Mγ may be an open
set in C(ERMnon−hyper

) and Nγ an open set in C(ERMhyper
). Thus, our results

obtained in Sections 2, 3, 4 and 5 are applicable in the study of compact
orientable minimal surfaces in flat tori.

6.1. A minimal surface in an n-dimensional flat torus

Let M be a compact Riemann surface of genus γ and {Ai, Bi} a canonical
homology basis of M . Let {ψi} be the basis of the space of holomorphic 1-
forms on M such thst

∫
Ai
ψj = δij . The matrix τ = (τij) = (

∫
Bj
ψi) is called

the Riemann matrix associated with M and {Ai, Bi}.
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Ahlfors [1] proved that RMnon−hyper is a (3γ − 3)-dimensional complex
submanifold, RMhyper is a (2γ − 1)-dimensional complex submanifold in Hγ

and RMhyper is the singularity of RMnon−hyper

⋃
RMhyper. Thus we can

consider C(ERMnon−hyper
) and C(ERMhyper

), which are Sp(γ,Z)-invariant by
Lemma 3.8 since RMnon−hyper and RMhyper are Sp(γ,Z)-invariant.

From a Rauch’s result (see, for example, [8]), we note

Lemma 6.1. Let τ be a Riemann matrix associated with M and {Ai, Bi}.
Then A = (Aij) ∈ S2

C is a normal vector of RMnon−hyper, RMhyper at τ in

Hγ if and only if
∑γ

i,j=1Aijψiψj = 0, where each Aijψiψj means a holomor-

phic quadratic differential.

We see that (τ, L) ∈ C(RMnon−hyper) if and only if gradE(τ, L) =

2i
(1
2
t(L1 + i[L1Reτ − L2](Imτ)−1)

)1
2

(
(L1 + i[L1Reτ − L2](Imτ)−1)

)

is a normal vector of RMnon−hyper at τ . By Lemma 6.1, this is equivalent to

t((L1 + i[L1Reτ − L2](Imτ)
−1)t(ψ1, ..., ψγ))×

(L1 + i[L1Reτ − L2](Imτ)
−1)t(ψ1, ..., ψγ) = 0.

We consider the above equality as follows: We first determined a mul-
tivalued harmonic map S from M to Rn by integrating dS along a path
from a fixed point whose real peroid matrix is (L1, L2) in [8]. In fact, one
Rn-valued harmonic 1-form dS as

(L1, L2)T
−1
τ

t(Reψ1, ...,Reψγ , Imψ1, ..., Imψγ),

where Tτ =

(
Eγ Reτ
0 Imτ

)
and T−1

τ =

(
Eγ −Reτ Imτ−1

0 Imτ−1

)
satisfies

(

∫

A1

dS, ...,

∫

Aγ

dS,

∫

B1

dS, ...,

∫

Bγ

dS) = (L1, L2).

However, by the ambiguity of a canonical homology basis for a
non-hyperelliptic Riemann surface M , we obtain (M, {Ai, Bi}) and
(M, {−Ai,−Bi}) for τ . The other is

−(L1, L2)T
−1
τ

t(Reψ1, ...,Reψγ , Imψ1, ..., Imψγ)
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for (M, {−Ai,−Bi}). Then

dS1,0 = ±
1

2
(L1 + i[L1Reτ − L2](Imτ)

−1) t(ψ1, ..., ψγ).

The above equality is equivalent to tdS1,0dS1,0 = 0, which implies that S is
weakly conformal. The complex period map is given by (τ,K) 7→ (K,Kτ). In
this paper, we identify one multivalued branched minimal immersion of M
intoRn with the other. Thus,Mγ = {(τ, L) ∈ C(ERMnon−hyper

) | rankL = n}
for n.

By C(ERMnon−hyper
)

π
−→ Ln,2γ , we see that C(ERMnon−hyper

) ∩ π−1(L)
is the space of full multivalued branched minimal immersions of non-
hyperelliptic Riemann surfaces of genus γ into Rn whose real periods are
L. Let GL = {g ∈ Sp(γ,Z) |Lg = L}. Then GL is the subgroup of Sp(γ,Z),
C(ERMnon−hyper

) ∩ π−1(L) is GL-invariant and a GL-orbit gives the same
full multivalued branched minimal immersions. If L ∈ Tn,2γ , then S is a full
branched minimal immersion of M into the flat torus Rn/⟨L⟩.

We can conclude the similar result in the case of RMhyper without the
ambiguity.

Using φ in Lemma 2.3 and ψ in Proposition 5.2, we conclude the follow-
ing.

Theorem 6.1. The complex period map is given by

1

2
φ−1ψ : C(ERMnon−hyper

)
⋃
C(ERMhyper

) −→ Hnγ .

As an application of Proposition 5.2 and Theorem 5.1, we prove

Theorem 6.2. Let N be an irreducible component of C(ERMnon−hyper
) or

C(ERMhyper
) admitting a non-degenerate critical point. Then

(1) dimCN = nγ,

(2) ψ gives a complex Lagrangian cone in T ∗Ln,2γ,

(3) A dense set of N gives full branched minimal immersions of compact

Riemann surfaces of genus γ into n-dimensional flat tori.

The connected component of non-degenerate critical points admits a special

pseudo Kähler structure with holomorphic isometries S1, SO(n). An element

of Sp(γ,Z) gives a correspondence among irreducible components, further-

more, a holomorphic isometry among the special pseudo Kähler manifolds

in the irreducible components.
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Remark 6.1. The dense set of (3) for RMnon−hyper gives non-branched
minimal immersions [8].

We investigated indexa and nullitya in [8].

Theorem 6.3. Let S be a full minimal immersion of a compact Riemann

surface M into an n-dimensional flat torus Rn/⟨L⟩ with a real period matrix

L. If M is not hyperelliptic, then

indexa = indexERMnon−hyper
, nullitya = n+ nullityERMnon−hyper

.

If M is hyperelliptic, then

indexa = indexERMhyper
+ α,

nullitya = n+ nullityERMhyper
+ 2γ − 4− 2α,

where α is an integer satisfying 0 ≤ α ≤ γ − 2. If M has only trivial Jacobi

fields, then α = γ − 2 and hence γ − 2 ≤ indexa holds.

In [8], these results were proved in the case of a compact orientable min-
imal surface in an n-dimensional flat torus. We can formulate these results
for multivalued branched minimal immersions of compact Riemann surfaces
of genus γ into Rn.

By Theorem 6.3, for an immersed non-hyperelliptic minimal surface, the
immersion has only trivial Jacobi fields if and only if the corresponding
critical point is non-degenerate.

However, we may not obtain the equivalence for an immersed hyperel-
liptic minimal surface. In fact, the Albanese map of a hyperelliptic Riemann
surface has 2γ − 4 non-trivial Jacobi fields (α = 0) and ERMhyper

is non-
degenerate.

In addition to the above example, there exist immersed hyperelliptic
holomorphic curves of genus γ ≥ 2 in complex flat tori of complex dimension
2 with 2γ − 4 non-trivial Jacobi fields (α = 0) [6], which implies ERMhyper

is non-degenerate. Hence these hyperelliptic holomorphic curves can not be
deformed to hyperelliptic holomorphic curves in the same torus up to parallel
translations, since a neighborhood of Nγ at the holomorphic curve is a graph
on an open set in Ln,2γ .

On the other hand, we note the following by a result of Hitchin [18].

Proposition 6.1. Let C be an immersed hyperelliptic holomorphic curve of

genus γ ≥ 3 in a 2-dimensional complex flat torus T . If C is a non-degenerate
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critical point of ERMhyper
, then C can be deformed to non-hyperelliptic holo-

morphic curves in T .

Proof. T has the canonical complex symplectic form. Then C is complex La-
grangian, since the complex symplectic form induced on C is a holomorphic
2-form and hence vanishes. Thus C admits the deformation space of real
dimension 2γ − 4 up to parallel translations in T [18]. Therefore C can be
deformed to non-hyperelliptic holomorphic curves in T . □

indexERMnon−hyper
and indexERMhyper

are preserved by swelling. Assume
that surjective condition is not satisfied. If we can choose the connected
component satisfying surjective condition by swelling, then we can compute
them. As an application of Theorems 5.3 and 6.3, we prove

Corollary 6.1. For an irreducible component with a non-degenerate critical

point, we have

(1) A connected component of non-degenerate critical points of an irre-

ducible component N of Mγ admits a special pseudo Kähler structure

of the signature (p, q) such that indexa ≤ 6γ − 6− 2q. Furthermore,

if surjective condition is satisfied, then a tangent space of the complex

Lagrangian cone corresponding to the connected component determines

indexa.

(2) A connected component of non-degenerate critical points of an irre-

ducible component N of Nγ admits a special pseudo Kähler structure

of the signature (p, q). Furthermore, indexa ≤ 4γ − 2− 2q + α ≤ 5γ −
4− 2q. The subset of Nγ satisfying α < γ − 2 is a complex analytic set.

γ − 2 ≤ indexa holds on N except the complex analytic set. Moreover,

if surjective condition is satisfied, then a tangent space of the com-

plex Lagrangian cone corresponding to the connected component deter-

mines indexERMhyper
and thus indexa = indexERMhyper

+ γ − 2 except

the complex analytic set.

Proof. Irreducible components of C(ERMnon−hyper
) and C(ERMhyper

) for n =
2γ is unique [8], [2] (see Corollary 7.1 below). Since these two irreducible
components admit surjective condition, we have two inequalities by applying
swelling and Corollary 5.3.

We use B (in p.122 [8]). A symmetric bilinear form 2Imtr(B(µ, ν) tKK)
is defined by Theorem 7.10 in [8]. Its real rank is 2α and hence the complex
rank of 2tr(B(µ, ν) tKK) is α. As the determinant of 2tr(B(µ, ν) tKK) is
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holomorphic, the subset of Nγ satisfying α < γ − 2 is a complex analytic
set. □

Remark 6.2. It is possible that the complex analytic set may be the empty
set or N . If 2Imtr(B(µ, ν) tKK) at a critical point (τ,K) vanishes, the cor-
responding hyperelliptic minimal surface is holomorphic [8]. In particular,
when n = 3 and γ = 3, we obtain α = 1 and the complex analytic set is
empty. For the case that the analytic set is N , see Theorem 7.3 below.

There exist irreducible components which satisfy or do not satisfy sur-
jective condition [26], [4], [35]. We may obtain a better estimate by Corollary
5.3 for an irreducible connected component that does not satisfy surjective
condition. Since SO(n,C) does not preserve a connected component, it is
interesting to study the change of indexa and the signature with respect to
the deformation of a minimal surface by SO(n,C) (see, for example, [25]
and [9]).

6.2. Minimal surfaces of genus 3 in 3-dimensional flat tori

6.2.1. How to use the algorithm.

Theorem 6.4. N3 (n = 3) satisfies the following.

(1) N3 consists of only one irreducible component,

(2) N3 admits a non-degenerate critical point, moreover, different con-

nected components of non-degenerate critical points,

(3) N3 is an SO(3,C)×C∗-bundle on RMhyper, which satisfies surjective

condition,

(4) N3 causes an embedded non-totally geodesic 9-dimensional complex La-

grangian cone in C18,

(5) ERMhyper
for any L ∈ L3,6 with rankL = 3 is a Morse family,

(6) Each connected component admits a special pseudo Kähler metric of

signature (p, q) with holomorphic isometries S1, SO(3). 1 ≤ indexa ≤
11− 2q holds,

(7) There exists a dense set in RMhyper whose point gives a minimal im-

mersion into a flat torus.

Proof. Each hyperelliptic Riemann surface of genus 3 admits a basis of holo-
morphic 1-forms ψi such that ψ2

1 + ψ2
2 + ψ2

3 = 0 which has no other relation
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among the quadratic differentials ψiψj . In fact, we consider different eight
points {a1, ..., a8} ⊂ C and construct the plane curve

M : w2 = (z − a1) · · · (z − a8),

which is a hyperelliptic Riemann surface of genus 3. z is a meromorphic
function on M and dz

w
is a holomorphic 1-form on M . Then

f(z) =

∫ z
tω :M −→ J(M)

is the Albanese map, where ω = 1
2((1− z2), (1 + z2)i, 2z)dz

w
and J(M) is

the Jacobi variety of M . ω gives a full multivalued minimal immersion of M
in R3. Furthermore, αg tω, α ∈ C∗, g ∈ SO(3,C) are different Weierstrass
data, and thus N3 is an SO(3,C)×C∗-bundle on RMhyper ⊂ RMhyper ×
L3,6, where surjective condition is satisfied. In particular, dimCN3 = 9.

As a local expression of the complex period map of N3 into T ∗L3,6 =
K3,3 ×K3,3, we get

αg
(∫

A1




1− z2

i(1 + z2)
2z


 dz

w
, ...,

∫

B3




1− z2

i(1 + z2)
2z


 dz

w

)
,

where α ∈ C∗, g ∈ SO(3,C), {A1, A2, A3, B1, B2, B3} is a canonical homol-
ogy basis, a6, a7, a8 are fixed. We obtain the complex Lagrangian (branched)
immersion FN3

of SO(3,C)×C∗× {the space of different five points (with
fixed three points) in C} into K3,3 ×K3,3. When we choose another canon-
ical homology basis, we obtain another local expression of FN3

.
We shall prove that FN3

is an immersion. We can give FN3
by (τ,K) 7→

(K,Kτ) ∈ K3,3 ×K3,3, where K = αgK1, τ = K−1
1 K2,

K1 =
(∫

A1




1− z2

i(1 + z2)
2z


 dz

w
,

∫

A2




1− z2

i(1 + z2)
2z


 dz

w
,

∫

A3




1− z2

i(1 + z2)
2z


 dz

w

)
,

K2 =
(∫

B1




1− z2

i(1 + z2)
2z


 dz

w
,

∫

B2




1− z2

i(1 + z2)
2z


 dz

w
,

∫

B3




1− z2

i(1 + z2)
2z


 dz

w

)
.

Therefore, each K is regular. Let (τ0,K0) ∈ N3 and (τ(t),K(t)) be a reg-
ular curve in N3 such that τ(0) = τ0,K(0) = K0. Then FN3

(τ(t),K(t))′ =
(K(t)′,K(t)′τ(t) +K(t)τ(t)′). If FN3

(τ(t),K(t))′ = 0 at t = 0, then K(0)′ =
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0, τ(0)′ = 0 because K(0) is regular. Thus FN3
is an immersion and, further-

more, an embedding.
Since α = 1 in Remark 6.2, nullitya = 3 + nullityERMhyper

holds by γ =
3 and Theorem 6.3. Any null vector of the Hessian of ERMhyper

corresponds
to a non-trivial Jacobi field [8]. We get an infinitesimal minimal deformation
of multivalued immersion in R3 from the non-trivial Jacobi field by using
the argument in [26] and the corresponding infinitesimal deformation in
hyperelliptic Riemann surfaces of genus 3 [8]. Thus the null space of the
Hessian of ERMhyper

is the null space of N3. Proposition 5.1 implies that
ERMhyper

is a Morse family.
We prove that the obtained complex Lagrangian cone is not totally

geodesic as follows: Assume that the complex Lagrangian cone is totally
geodeic, that is, a non-degenerate complex Lagrangian subspace. Then, for
the projection π1 of the non-degenerate complex Lagrangian subspace into
L3,6, π1∗

is isomorphism. The real period map of N3 is the composite of
the complex period map of N3 into the non-degenerate complex Lagrangian
subspace and π1. Thus, a point admitting non-zero null spaces in N3 is a
branched point of the complex period map. Therefore, the set of points ad-
mitting non-zero null spaces in N3 is a complex analytic set, which implies
that the set of non-degenerate critical points in N3 is connected. This con-
tradicts that Schwarz’ P-surface has indexERMhyper

= 0 [31] and Schwarz’
CLP-surface has indexERMhyper

= 2 [23].

The image of π−1(T3,6) by N3 −→ RMhyper is also a dense set. □

We see indexa = 1 + indexEhyper
for γ = 3 by Corollary 6.1 and Re-

mark 6.2. We can state how to calculate nullitya and indexa as follows:

Choose a1, ..., a5 and a canonical homology basis {A1, A2, A3,
B1, B2, B3}.

Ti =
∂

∂ai
(

∫

Ak

tω,

∫

Bk

tω ) for 1 ≤ i ≤ 5, T6 = (

∫

Ak

tω,

∫

Bk

tω ),

T7 =




0 1 0
−1 0 0
0 0 0


T6, T8 =




0 0 1
0 0 0
−1 0 0


T6, T9 =



0 0 0
0 0 1
0 −1 0


T6.

τ is C−1
1 C2 for T6 = (C1, C2). If Ti for 1 ≤ i ≤ 9 are linearly independent,

then {Ti } is a basis. W andW2 −W1 in Theorem 5.4 and Theorem 5.5 give

(1) nullitya is 3+ the number of the zero-eigenvalue of W ,

(2) nullitya is 3 + 1
2 the number of the zero-eigenvalue of W1,
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(3) If |W | ≠ 0, then the critical point corresponding to the minimal surface
is non-degenerate, its signature is the signature of W and indexa is
1+ the number of negative eigenvalues of W2 −W1.

Shoda and the author [12] gave W and W2 −W1 by periods of Abelian
differentials of the first kind and the second kind.

6.2.2. The deformation space of embedded minimal surfaces of
genus 3 in 3-dimensional flat tori. Let f be the same notation as
in the proof of Theorem 6.4. Meeks [21] proved that if {a1, ..., a8} satisfies
a1a2a3a4 > 0 and

a5 = −(1/a1), a6 = −(1/a2), a7 = −(1/a3), a8 = −(1/a4),

then Ref and Imf give embedded hyperelliptic minimal surfaces of genus 3
in 3-dimensional flat tori and hence there exist two real 5-dimensional spaces
of embedded hyperelliptic minimal surfaces of genus 3 in 3-dimensional flat
tori. The spaces are called Meeks’ family [36]. We remark that Schoen’s
Gyroid, Schwarz’ H-surface and the Lidinoid do not belong to Meeks’ family.

Since Meeks’ family is not a subset of N3 as it stands, we extend Meeks’
family to two real 9-dimensional families by the homothety and SO(3)-
action. Furthermore we consider the deformation space of a fixed minimal
surface (∈ Meeks’ family) with a fixed canonical homology basis and con-
struct two 9-dimensional deformation spaces of embedded hyperelliptic min-
imal surfaces of genus 3 in 3-dimensional flat tori. Thus we can consider
Meeks’ family as two 9-dimensional submanifolds in N3. Each deforma-
tion space may contain a minimal surface with different canonical homology
bases. It is interesting to determine the subgroup of Sp(3,Z) preserving the
deformation space.

Furthermore, one Meeks’ family is an image of the other by an element of
Sp(3,Z) as follows: The conjugate surface of Schwarz’ CLP-surface is itself.
Such an example also exists in rPD family (Karcher’s TT-surfaces) ⊂ Meeks’
family. Thus, one Meeks’ family intersect the other up to Sp(3,Z) at the two
minimal surfaces which admit no non-trivial Jacobi fields. Its deformations
of such a minimal surface is a graph on a domain in a real 9-dimensional
subspace ⊂ L3,6 (see Proposition 6.2 below). Two Meeks’ families contain
the common neighborhood. By the real analyticity, one Meeks’ family is
identified with the other. Thus we obtain the uniqueness of Meeks’ family
up to Sp(3,Z).

Finally, we focus attention on the deformation space of embedded min-
imal surfaces of genus 3 in 3-dimensional flat tori.
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We first consider the deformation space of a 3-dimensional flat torus
as follows: Column vectors of L ∈ L3,6 span a lattice of R3 if and only
if there exist a 3× 3 real regular matrix X, a 3× 6 real matrix g with
integer entries and a 6× 3 real matrix h with integer entries such that
L = Xg and X = Lh. Consequently we get gh = E3. Therefore, we con-
sider the deformation Ls ∈ L3,6 of L such that L0 = L and column vectors
of Ls span a lattice. Then there exists the 3× 3 real regular matrix Xs such
that Ls = Xsg and Xs = Lsh holds [8]. We define the deformation space
{Xg} of a 3-dimensional flat torus by {Xg |X ∈ GL(3,R), detX > 0} or
{Xg |X ∈ GL(3,R), detX < 0} for g and h satisfying gh = E3, which is an
open subset of a linear subspace {Y g} ⊂ L3,6, where Y is any 3× 3 real
matrix. Thus dimR{Xg} = 9. Note that {Xg} contains its homothetic flat
tori and SO(3)-orbit of a flat torus. We next define the deformation space
of a hyperelliptic minimal surface of genus 3 in a 3-dimensional flat torus
as a connected component of N3 ∩ π

−1({Xg}) containing the minimal sur-
face. We may consider that some connected component of N3 ∩ π

−1({Xgq}),
q ∈ Sp(3,Z) gives the same deformation space.

By using Proposition 2.2, we can consider the same symplectic form
on Ln,2γ × Ln,2γ as ω0 in Proposition 5.6, which is also denoted by ω0, as
follows: For tangent vectors (L1, ..., L2γ) and (L′

1, ..., L
′
2γ) at each point of

Ln,2γ . Then

ω0((L1, ..., L2γ), (L
′
1, ..., L

′
2γ)) =

1

2
tr
(
(L1, ..., L2γ)

tJ0
t(L′

1, ..., L
′
2γ)

)

is an Sp(γ,R)-invariant symplectic form.
We obtain a criterion whether {Xg |X ∈ GL(3,R), detX > 0} and

{Xg |X ∈ GL(3,R), detX < 0} is Lagrangian with respect to ω0 for n = 3
and γ = 3.

Lemma 6.2. Let {Xg} be the deformation space of a flat torus, where g =
(A,B) and A, B are 3× 3 matrices. The following statements are equivalent:

(1) {Xg} is Lagrangian with respect to ω0 in L3,6,

(2) A tB is symmetric, and

(3) Let (L1, L2) be an element of {Xg}. Then L1
tL2 is symmetric.

The set of (L1, L2) ∈ L3,6 such that L1
tL2 is not symmetric is open dense

in L3,6.
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The real period matrix of Schwarz’ P-surface for a canonical homology
basis is given by L0 = (IE3)g0 such that

g0 =



0 −1 0 0 0 0
1 0 −1 0 0 0
0 0 0 1 0 1


 , h0 =




0 1 0
−1 0 0
0 0 0
0 0 0
0 0 0
0 0 1



, g0h0 = E3

and I is the elliptic integral in [12]. Thus the deformation space of the
ambient 3-dimensional flat torus containing Schwarz’ P surface is {Xg0}.

Thus the period matrices of minimal surfaces in Meeks’ family are con-
tained in {Xg0}. Since g0 satisfies the condition in Lemma 6.2, the part
of Meeks’ family contained in each connected component with the special
pseudo Kähler structure of N3 is Lagrangian with respect to the pseudo
Kähler form ω̃0 on the connected component. The uniqueness of the Hee-
gaard splitting of T 3 (Frohman and Hass [16], Boileau and Otal [5]) implies

Proposition 6.2. The deformation space of an embedded minimal surface

of genus 3 is a connected component of π−1({Xg0}) ∩N3 containing the

embedded minimal surface. Its singularity is in the sets of degenerate points.

Each connected component of non-degenerate points in the deformation space

is Lagrangian with respect to the pseudo Kähler form ω̃0 on the connected

component.

Meeks’ family is contained in a connected component of π−1({Xg0}) ∩
N3.

On the other hand, we remark that there exist deformation spaces of im-
mersed minimal surfaces of genus 3 which are not Lagrangian by Lemma 6.2.

There exists a countable set (Property P in [21]) of the associate minimal
surfaces of Schwarz’ P-surface which are immersed in 3-dimensional flat tori,
that is, there exists a countable set {θ ∈ S1} such that eiθ act on Schwarz’ P
surface as the associate minimal surface. Let Xθgθ ∈ L3,6 be its real period
matrix, where Xθ is a 3× 3 real regular matrix, gθ is a 3× 6 real matrix
with integer entries and has a 6× 3 real matrix hθ with integer entries such
that gθhθ = E3. The condition in Lemma 6.2 for gθ, hθ is satisfied.

We define the deformation space of the associate minimal surface by the
connected component of π−1({Xgθ}) ∩N3 containing the associate minimal
surface. Since the associate minimal surface has only trivial Jacobi fields,
the deformation space of the associate minimal surface is a 9-dimensional
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submanifold near the associate minimal surface. Furthermore, the connected
component of non-degenerate points of the deformation space is also a 9-
dimensional submanifold which is Lagrangian with respect to the pseudo
Kähler form ω̃0 in N3.

In particular, Schoen’s Gyroid is an embedded asociate minimal surface
of Schwarz’ P-surface. By the embedding of Schoen’s Gyroid and Proposi-
tion 6.2, the deformation space of Schoen’s Gyroid is a connected component
of π−1({Xg0}) ∩N3 up to Sp(3,Z). A neighborhood of Schoen’s Gyroid in
the deformation space is a 9-dimensional submanifold, which is a Lagrangian
submanifold in N3.

On the other hand, a holomorphic isometry eiθ of N3 in Theorem 6.4
also induces a Lagrangian submanifold containing Schoen’s Gyroid as the
image of Meeks’ family by eiθ action.

We show that the above two Lagrangian submanifolds are different as
follows:

Lidinoid is an embedded associate minimal surface of Schwarz’ H-surface.
We can construct a one-parameter family of embedded minimal surfaces con-
taining Schoen’s Gyroid and Lidinoid, which is called rG family. rG family
has an intersection point in Meeks’ family up to Sp(3,Z). Any minimal sur-
face from Schoen’s Gyroid, through Lidinoid, to the intersection point of
the one-parameter family gives a non-degenerate critical point except the
intersection point [13]. Thus there exists a 9-dimensional Lagrangian sub-
manifold consisting of embedded minimal surfaces in 3-dimensional flat tori,
which contains the one-parameter family from Schoen’s Gyroid to the inter-
section point except itself. Since Lidinoid is not an associate minimal surface
of a minimal surface in Meeks’ family, we obtain two different Lagrangian
submanifolds containing Schoen’s Gyroid.

We are interested in the closure of the above 9-dimensional Lagrangian
submanifold containing Schoen’s Gyroid and Lidinoid in N3 and the in-
tersection of it and Meeks’ family since any point of the intersection is a
degenerate critical point.

Proposition 6.3. The intersection point of rG family and Meeks’ family

up to Sp(3,Z) is a degenerate point.

Proof. Assume that the intersection point is a non-degenerate point of
Meeks’ family. Since a neighborhood of the non-degenerate point in Meeks’
family is the graph in N3 on an open set in the deformation of the ambient
flat torus, some part near the non-degenerate point of rG family is contained
in the graph. Hence any minimal surface of the part is contained in Meeks’
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family. By the real analyticity, Lidinoid is contained in Meeks’ family. This
is a contradiction. □

7. The deformation space of a holomorphic curve in a

complex flat torus

The deformation space of an immersed holomorphic curve of genus γ in a
2-dimensional complex flat torus is of complex dimension γ and admits a
special Kähler structure by using a Hitchin’s result [18].

Here, we consider the space of full multivalued holomorphic maps of
compact Riemann surfaces of genus γ ≥ 2 in R2m with suitable orthogonal
complex structures. If γ < m, then the holomorphic map is not full. Hence
we may assume m ≤ γ. We review the results obtained by Colombo and
Pirola [6] and investigate special pseudo Kähler structures of the spaces.

7.1. The signature of Mγ,m

We will use notation as in the proof of Theorem 4.2. TG(iEγ ,E2m,a)Mγ,m,
where rank a = m, is spanned by (K, iK), where K is a tangent vector of

K2m, and (

(
0
0

)
,

(
aτ
iaτ

)
), where τ ∈ S2

C . Let a = (a1, a2), where a1 is an

m×m matrix and a2 is an m× (γ −m) matrix. Suppose that a1 is reg-

ular. Then we solve the equation: (a1, a2)

(
A B
tB C

)
= 0 with respect to

τ =

(
A B
tB C

)
. Then A = a−1

1 a2C
ta2

ta−1
1 and B = −a−1

1 a2C. Therefore

dimR{(

(
0
0

)
,

(
aτ
iaτ

)
) | τ =

(
A B
tB 0

)
∈ S2

C} = 2mγ −m2 +m. Lemma 4.1

implies dimRK2m = 2mγ +m2 −m. It follows that the real dimension of
tangent spaces of these points is 2mγ −m2 +m+ 2mγ +m2 −m = 4mγ.

In general, we consider rank (a1, a2) = m. Since there is a γ × γ or-
thogonal matrix u such that (a1, a2) = (a′1, a

′
2)u satisfies rank a′1 = m. Let(

u 0
0 u

)
∈ Sp(γ,R). Then

(

(
a′

ia′

)
, i

(
a′

ia′

)
)

(
u 0
0 u

)
= (

(
a′u
ia′u

)
, i

(
a′u
ia′u

)
) = (

(
a
ia

)
, i

(
a
ia

)
).

By Proposition 2.1, dimRTG(iEγ ,E2m,a)Mγ,m = 4mγ, where rank a = m. Thus
the tangent spaces are complex Lagrangian subspaces by Theorem 4.2.
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We prove that the tangent spaces at these points satisfy non-degenerate
condition. It is enough to give a proof for points satisfying rank a1 = m.

(

(
X Y
−tY Z

)(
a1 a2
ia1 ia2

)
, i

(
X Y
−tY Z

)(
a1 a2
ia1 ia2

)
),

where X, Z are real skew symmetric matrices,

(

(
a′1 a′2
ia′1 ia′2

)
,

(
ia′1 ia′2
−a′1 −a′2

)
), (0,

(
a1 a2
ia1 ia2

)(
τ11 τ12
tτ12 0

)
)

span the tangent space. Proposition 5.4 implies that non-degenerate condi-
tion is equivalent to a claim that if the real part of the sum of these vectors
is 0, then the sum is zero. We prove the claim as follows:

Assume that the real parts of the sum of these vectors is 0. Thus we
obtain two equations:

Re{

(
X Y
−tY Z

)(
a1 a2
ia1 ia2

)
}+Re

(
a′1 a′2
ia′1 ia′2

)
= 0 and

Rei{

(
X Y
−tY Z

)(
a1 a2
ia1 ia2

)
}+Re

(
ia′1 ia′2
−a′1 −a′2

)

+Re

(
a1 a2
ia1 ia2

)(
τ11 τ12
tτ12 0

)
= 0.

The former equation is given by

Rea′1 =−XRea1 + Y Ima1, Ima′1 = −tY Rea1 − ZIma1 and

Rea′2 =−XRea2 + Y Ima2, Ima′2 = −tY Rea2 − ZIma2,

which, together with the latter equation, implies

(X − Z − i(tY − Y ))(a1, a2) = i (a1, a2)

(
τ11 τ12
tτ12 0

)
.

It is equivalent to X̃a1 = i a1τ11 + i a2 tτ12, X̃a2 = i a1τ12 where X̃ =

(X − Z − i( tY − Y )). X̃ is skew symmetric. Since tτ12 = i ta2X̃
ta−1

1 , we
get X̃a1

ta1 + a2
ta2X̃ = ia1τ11

ta1. Thus X̃a1
ta1 + a2

ta2X̃ is symmetric. It
follows that X̃(a1

ta1 + a2
ta2) is a symmetric matrix because X̃ is skew

symmetric. We denote (a1
ta1 + a2

ta2) by Ỹ , which is a positive definite
Hermitian matrix since rank(a1, a2) = m. Note that S̃ = X̃Ỹ is symmetric.
We choose a unitary matrix U such that U∗ Ỹ U is positive diagonal. We
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set X̃ ′ = tUX̃U and Ỹ ′ = U∗Ỹ U . X̃ ′Ỹ ′ = tUS̃U is symmetric. Since X̃ ′ is
skew symmetric and Ỹ ′ is positive diagonal, X̃ ′ = 0 and hence X̃ = 0. Thus
we obtain

(
X Y
−Y X

)(
a1 a2
ia1 ia2

)
+

(
a′1 a′2
ia′1 ia′2

)
= 0 and

(
τ11 τ12
tτ12 0

)
= 0,

which complete the proof of the claim.
We investigate the signature (p, q) of Mγ,m at (iEγ , E2m, (Em 0)). Its

tangent space is spanned by

type 1 (

(
X + iY 0
−tY + iZ 0

)
,

(
X + iY 0
−tY + iZ 0

)
i), type 3 (0,

(
A B
iA iB

)
),

where X,Z are real skew, Y is real and A is symmetric.

type 5 (

(
0 β
0 iβ

)
,

(
0 β
0 iβ

)
i), type 6 (

(
α 0
iα 0

)
,

(
α 0
iα 0

)
i),

where α is Hermitian. The non-degenerate pseudo inner product Reη2
is null on the subspace spanned by type 3, whose real dimension is
m(m+ 1) + 2m(γ −m) = 2mγ −m2 +m. Consequently 2q ≥ 2mγ −m2 +
m. Three subspaces spanned by vectors of types 1, 5 and 6 are orthogo-
nal each other, furthermore, the pseudo inner product is positive definite
on three subspaces and hence 2p ≥ m(m− 1) +m2 + 2m(γ −m) +m2 =
2mγ +m2 −m. p+ q = 2mγ implies 2q = 2mγ −m2 +m and 2p = 2mγ +
m2 −m.

Φ : Hγ ×K2m −→ K2m,γ ×K2m,γ is an Sp(γ,R), SO(2m)-equivariant
map. Let Nγ,m be Φ(Hγ ×K2m) in K2m,γ ×K2m,γ which is given by

G({(τ, g, a)|τ ∈ Hγ , g ∈ SO(2m), a ∈ Km,γ , rank a = m}).

The orbits of G(iEγ , E2m, a) with rank a = m by Sp(γ,R) and SO(2m) is
Nγ,m. Since Sp(γ,R) and SO(2m) are holomorphic isometries of Reη2, the
signature was preserved.

Theorem 7.1. For Φ, Φ∗(T(τ,K)Hγ ×K2m) is a complex Lagrangian sub-

space with the signature (mγ + m(m−1)
2 ,mγ − m(m−1)

2 ).
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7.2. The signature of the space of multivalued holomorphic maps

The space of full multivalued holomorphic maps of non-hyperelliptic Rie-
mann surfaces of genus γ in R2m with suitable orthogonal complex struc-
tures is given by E = {(τ,K) | τ ∈ RMnon−hyper,K ∈ K2m} [8], [3] up to h
in the proof of Theorem 4.2. If m ≥ 3, then there exists an immersed holo-
morphic curve with only trivial Jacobi fields [6] which is a non-degenerate
critical point of E. Hence, non-degenerate critical points of E is an open
dense set of E by the real analyticity of E.

By Theorem 6.2, the complex dimension of the irreducible component
containing a non-degenerate critical point of E in Mγ for n = 2m is 2mγ.
On the other hand, by Lemma 4.1 and m ≤ γ, we obtain

dimCE − 2mγ = 3γ − 3 +
1

2
m(m− 1) +mγ − 2mγ

=
1

2
(m− 3)(m− (2γ − 2)).

Thus if m ≥ 4, then E is not an irreducible component of Mγ . Arezzo
and Micallef [3] proved that the deformation of a non-hyperelliptic holo-
morphic curve with only trivial Jacobi fields can be deformed to a non-
holomorphic, non-hyperelliptic stable minimal surface. If m = 3, then, The-
orems 4.2 and 7.1 imply

Theorem 7.2. E is not an irreducible component in Mγ for γ ≥ m ≥ 4.
There exists an irreducible component of Mγ containing a non-degenerate

critical point of E. The corresponding holomorphic curve with only trivial

Jacobi fields can be deformed to a non-holomorphic, non-hyperelliptic stable

minimal surface. For γ ≥ m = 3, E has a special pseudo Kähler structure

of signature (3γ + 3, 3γ − 3) with holomorphic isometries S1, SO(6) and

Sp(γ,Z) possibly with a complex analytic set as singularities.

Proof. We first prove that E for γ ≥ m = 3 gives an irreducible component of
Mγ . In fact, an irreducible component containing a non-degenerate critical
point of E contains an open set consisting of non-degenerate critical poins
in E. Since η ◦ Φ : (τ,K) → K is a holomorphic map such that t(η ◦ Φ)(η ◦
Φ) vanishes on the open set. Hence t(η ◦ Φ)(η ◦ Φ) = 0 on the irreducible
component. So, the irreducible component is contained in E.

We next calculate the signature. Since Φ : E(⊂ Hγ ×K6) → K6,γ ×K6,γ

is holomorphic and E has a non-degenerate critical point, the singular locus
of the map is an complex analytic set. For (τ,K) ∈ E except the complex
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analytic set, T(τ,K)E is a non-degenerate complex Lagrangian subspace with
the signature (3γ + 3, 3γ − 3) by Theorem 7.1. □

For m = 2, dimCE = 4γ + γ − 2 = dimCL4,2γ + γ − 2. Note that γ − 2
is the dimension of the deformation space (up to translations) for an im-
mersed holomorphic curve of genus γ in a 2-dimensional complex flat torus.
It is plausible that, for the projection π of E into L4,2γ , π∗ is surjective.
Does E or E ×C2 containing parallel translations by vectors of C2 admit a
special pseudo Kähler structure?

The space of full multivalued holomorphic maps of hyperelliptic Riemann
surfaces of genus γ in R2m with suitable orthogonal complex structures is
F = {(τ,K) | τ ∈ RMhyper,K ∈ K2m} up to h in the proof of Theorem 4.2.
If γ ≥ m ≥ 2, F has a non-degenerate critical point by [6]. Hence, non-
degenerate critical points of F is an open dense set of F by real analyticity
of F .

By Lemma 4.1,

dimCF − 2mγ = 2γ − 1 +
1

2
m(m− 1) +mγ − 2mγ

=
1

2
(m− 2)(m− (2γ − 1))

and hence if γ ≥ m ≥ 3, then F is not an irreducible component of Nγ .
Micallef [22] proved that a non-holomorphic hyperelliptic minimal surface is
unstable (indexa ≥ 1). On the other hand, if m = 2, then we get

Theorem 7.3. F for γ ≥ m ≥ 3 can not give an irreducible component

of Nγ. There exists an irreducible component of Nγ containing a non-

degenerate critical point of F . The corresponding hyperelliptic holomorphic

curve can be deformed to a non-holomorphic hyperelliptic minimal surface,

which is unstable. For m = 2, F has a special pseudo Kähler structure of sig-

nature (2γ + 1, 2γ − 1) with holomorphic isometries S1, SO(4) and Sp(γ,Z)
possibly with a complex analytic set as singularities.

A hyperelliptic minimal surface is said to be hyperelliptically stable [8]
if the Hessian of ERMhyper

is semi-positive at the critical point corresponding
to the minimal surface. Corollary 5.3 and Theorems 7.2, 7.3 imply

Corollary 7.1. There exist connected components of signature (nγ −
3γ + 3, 3γ − 3), γ ≥ 4, 7 ≤ n ≤ 2γ satisfying surjective condition for non-

hyperelliptic minimal surfaces and connected components of signature (nγ −
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2γ + 1, 2γ − 1), γ ≥ 3, 5 ≤ n ≤ 2γ satisfying surjective condition for hyper-

elliptic minimal surfaces which contain non-holomorphic minimal surfaces.

In particular, corresponding non-hyperelliptic minimal surfaces are stable

and corresponding hyperelliptic minimal surfaces are hyperelliptically stable.

For n = 2γ, there exists a unique irreducible component of non-hyperelliptic

minimal surfaces and a unique irreducible component of hyperelliptic min-

imal surfaces. Then the above connected component is also unique in each

irreducible component. The two connected components admit a holomorphic

isometry group Sp(γ,Z). Furthermore, the irreducible component of non-

hyperelliptic minimal surfaces contains a connected component for unstable

non-hyperelliptic minimal surfaces.

Proof. E in Theorem 7.2 is an irreducible component satisfying surjective
condition of Mγ for n = 6 and γ ≥ 4. Its signature is (3γ + 3, 3γ − 3). Since
E has the open dense set of non-degenerate critical points of E, we obtain an
irreducible component satisfying surjective condition of Mγ for n = 7 and
γ ≥ 4 by swelling of a non-degenerate critical point. By Corollary 5.3, the
signature of the connected component containing the swelled non-degenerate
critical point is (7γ − 3γ + 3, 3γ − 3). Repeatedly, we obtain the desired con-
nected components for non-hyperelliptic minimal surfaces. Similarly, by us-
ing F in Theorem 7.3, we construct the connected component for hyperel-
liptic minimal surfaces.

For n = 2γ, Mγ and Nγ admit a unique irreducible component, which
satisfies surjective condition. We review it [8]. Let P (τ) be an embedding
of RMnon−hyper and RMhyper into the space S2

R of 2γ × 2γ real symmetric
matrices and the energy function for L is the height function in the direc-
tion of tLL. Then a point (τ, L), where rankL = 2γ, is a critical point of
1
2tr(P (τ)

tLL) if and only if tLL is a normal vector of the submanifolds
P (RMnon−hyper) and P (RMhyper) in S2

R. Thus Mγ/O(2γ), Nγ/O(2γ) are

identified with the subset (τ, L̃) consisting of L̃ which is a normal vector and
a positive definite matrix, which is an open set of the normal bundle. In each
normal space at P (τ), the subset (τ, L̃) consisting of L̃ above is a non-empty
convex set which contains the positive definite matrix corresponding to the
Albanese map. If (τ, L̃1) and (τ, L̃2) are stable, then (τ, (1− s)L̃1 + sL̃2) for
any s ∈ [0, 1] is stable. Thus we get a uniqueness of such a connected com-
ponent [8], [2]. We see that the action of SO(n,C) deforms a stable minimal
surface except a holomorphic curve to an unstable minimal surface [9]. □

Remark 7.1. All obtained stable non-hyperelliptic minimal surfaces and
all obtained hyperelliptically stable hyperelliptic minimal surfaces satisfy the
equality in Theorem 5.3. We are very interested in its geometric meaning.
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[28] M. Ritoré and A. Ros, The space of index one minimal surfaces and sta-

ble constant mean curvature surfaces embedded in flat three manifolds,
Trans. Amer. Math. Soc. 348 (1996), 391–410.

[29] A. Ros, One-sided complete stable minimal surfaces, J. Differential.
Geom. 74 (2006), 69–92.

[30] A. Ros, Stable periodic constant mean curfvature surfaces and meso-

scopic phase separation, Interfaces and Free Boundaries 9 (2007), no. 3,
355–365.

[31] M. Ross, Schwarz’ P and D surfaces are stable, Differential. Geom.
Appl. 2 (1992), 179–195.

[32] J. Sacks and K. Uhlenbeck, The existence of minimal immersions of

2-sphere, Ann. of Math. (2) 113 (1981), 1–24.

[33] R. Schoen and S.-T. Yau, The existence of incompressible minimal sur-

faces and the topology of three dimensional manifold with non-negative

scalar curvature, Ann. of Math. (2) 110 (1979), 127–142.
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