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In this paper, we study κ-noncollapsed ancient solutions to the
Ricci flow with nonnegative curvature operator in higher di-
mensions n ≥ 4. We impose one further assumption: one of the
asymptotic shrinking gradient Ricci solitons is the standard cylin-
der S

n−1 × R. First, Perelman’s structure theorem on three-
dimensional ancient κ-solutions is generalized to all higher dimen-
sions. Second, we prove that every noncompact κ-noncollapsed
rotationally symmetric ancient solution to the Ricci flow with
bounded positive curvature operator must be the Bryant soliton,
thus extending a very recent result of Brendle in three dimensions
to all higher dimensions.
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1. Introduction

The Ricci flow, a geometric evolution equation introduced by Hamilton [25]
in 1982, served as the primary tool in Perelman’s solution [41–43] of the
Poincaré and geometrization conjectures, in the resolution of the conjecture
of Rauch and Hamilton by Böhm and Wilking [8], as well as in the proof
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of the quarter-pinched differentiable sphere theorem by Brendle and Schoen
[17]. Further applications of the Ricci flow in understanding the geometry
and topology of manifolds in higher dimensions is the central theme in the
study of the Ricci flow.

It is well known that if one flows an arbitrary metric on a compact man-
ifold, the flow will generally develop singularities. Ancient solutions play a
central role in understanding the formation of singularities as they arise nat-
urally in the blowup limits. The study of ancient solutions to the Ricci flow
was initiated by Hamilton [28], whereas substantial progress was made by
Perelman [41]. By analyzing the geometry of κ-noncollapsed ancient solu-
tions, Perelman established a canonical neighborhood theorem for the three-
dimensional Ricci flow: every region with high enough curvature in a Ricci
flow on a closed three-dimensional manifold should necessarily, after scaling,
largely resemble a corresponding piece of a κ-noncollapsed ancient solution,
and hence can only be either a neck, or a cap, or an almost round component.
Such a canonical neighborhood theorem made it possible for him to run the
Ricci flow after singularities by doing surgeries [43]. In higher dimensions,
ancient solutions were also studied in [9, 10] and [21] under various curvature
conditions, and thereby they established canonical neighborhood theorems
and Ricci flows with surgeries under different curvature assumptions.

Perelman [41] asserted that the only noncompact three-dimensional κ-
noncollapsed ancient Ricci flow with positive sectional curvature is the
Bryant soliton. This had been one of the most important conjectures about
the three-dimensional Ricci flow and was recently solved by Brendle in [12].
Such classification of three-dimensional ancient solutions may facilitate the
study of four-dimensional Ricci flow, because as in Perelman [41], we hope for
a proper dimension reduction argument. The corresponding conjecture for
the compact case was that a compact and simply connected ancient solution
satisfying all other aforementioned conditions must be a shrinking sphere or
Perelman’s solution constructed in [43]; Brendle [12] proved that such an
ancient solution must be rotationally symmetric, with his proof details pro-
vided in [11]. After [12] was posted, Bamler and Kleiner [7] also proved the
rotational symmetry for such compact and simply connected ancient solu-
tions. Recently in [2] and [15], the authors proved that a κ-noncollapsed
ancient solution to three-dimensional Ricci flow on S

3 is either isometric to
a family of shrinking round spheres, or the ancient solution constructed by
Perelman. Therefore, combining [12] and [15] implies a full classification of
ancient κ-solutions in dimension three: they are the shrinking round sphere,
the shrinking round cylinder, Perelman’s ancient solution, and the steady
Bryant soliton.
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One may reasonably ask whether Perelman’s conjecture is true in higher
dimensions. However, in the case of dimension n ≥ 4, the geometry of a κ-
noncollapsed ancient Ricci flow becomes complicated, even when assuming
nonnegative curvature operator. The reason is that the dimension reduc-
tion at infinity gives rise to an (n− 1)-dimensional κ-noncollapsed ancient
solution, which, in contrast to the case n = 3, may not be as simple as a
shrinking sphere. Moreover, many examples of compact ancient solutions in
higher dimensions with positive curvature operator, both collapsed and κ-
noncollapsed, were constructed in [5][24][35]. Nevertheless, by adding some
reasonable assumptions, one might still hope to attack this problem; our
Assumption A below provides such a possibility. In particular, as we will
see later, a rotationally symmetric κ-noncollapsed ancient Ricci flow with
positive curvature operator always satisfies Assumption A.

Another classification result for ancient Ricci flows was obtained by
Daskalopoulos, Hamilton, and Sesum [23]. They proved that any ancient so-
lution on the two-sphere must be either a family of shrinking round spheres
or one of the King-Rosenau solutions. For closed type I, κ-noncollapsed an-
cient solutions to the Ricci flow with positive curvature operator, Ni [40]
proved that they must be quotients of shrinking round spheres. It is worth
mentioning that ancient solutions have been studied actively for the heat
equation and other geometric flows, see [3][4][13][14][29][33][34][39] and the
references therein.

In this paper, we consider nonflat ancient solutions to the Ricci flow
(Mn, g(t))t∈(−∞,0] with bounded nonnegative curvature operator in dimen-
sions greater or equal to four. Since sometimes we also use backward time,
we always let the Latin letter t stand for the forward time and the Greek
letter τ the backward time. We fix κ > 0 and always assume that the an-
cient solutions we consider are κ-noncollapsed on all scales. For the sake of
convenience, we define

Definition 1.1. An ancient solution to the Ricci flow is called a κ-
solution if it is nonflat, with bounded nonnegative curvature operator and
κ-noncollapsed on all scales.

Furthermore, we impose the following assumption:

Assumption A: An asymptotic shrinking gradient Ricci soliton (in the
sense of Perelman [41, Section 11.2]) is the standard cylinder Sn−1 × R.
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Remark. In Perelman [41], the asymptotic shrinking gradient Ricci soliton
is obtained by using the monotonicity formula of the reduced volume based
at some fixed space-time point. We also call such space-time point the
base point of the asymptotic shrinker (see Theorem 3.2 below). For the
sake of convenience, when we say that a κ-solution (M, g(t))t∈(−∞,0] (or
sometimes (M, g(τ))τ∈[0,∞) and τ stands for the backward time) satisfies
Assumption A, we always assume that the base point (x0, t0) (or (x0, τ0))
of the asymptotic shrinker S

n−1 × R satisfies t0 > 0 (or τ0 < 0), since we
can always shift the base time to make our case so.

Our idea of introducing Assumption A is inspired by Lemma 3.1 in
[45]: given Assumption A, we have that the asymptotic shrinker based at
any point in M × (−∞, 0] must have Gaussian density no less than that of
S
n−1 × R, and hence can only be Sn−1 × R or Sn (see Section 2 for more de-

tails). This, as we shall see, largely restricts the geometry of the κ-solutions.
It turns out that under Assumption A, many nice properties of κ-

solutions in dimension three can be extended to higher dimensions. We
summarize the most important ones below.

(1) Asymptotically cylindrical at space infinity.

(2) κ-compactness theorem (instead of the precompactness theorem of
Perelman).

(3) Bounded geometry for the non-neck-like region in noncompact solutions
with positive curvature operator.

(4) Neck-stability of Kleiner-Lott [31] (Theorem 3.11 below).

Theorem 1.2 (Asymptotically cylindrical). Let (Mn, g(t))t∈(−∞,0] be
a κ-solution satisfying Assumption A. For any pk → ∞, the sequence
{(M, gk(t), pk)t∈(−∞,0]}∞k=1 converges in the Cheeger-Gromov-Hamilton
sense, after possibly passing to a subsequence, to the shrinking cylinder
S
n−1 × R, where gk(t) = Qkg(tQ

−1
k ) and Qk = R(pk, 0).

Theorem 1.3 (κ-compactness). Let {(Mn
k , gk(t), pk)t∈(−∞,0]}∞k=1 be

a sequence of κ-solutions satisfying Assumption A. Let Qk = Rk(pk, 0)
and ḡk(t) = Qkgk(tQ

−1
k ). Then {(Mn

k , ḡk(t), pk)t∈(−∞,0]}∞k=1 converges
in the Cheeger-Gromov-Hamilton sense, after possibly passing to a
subsequence, to a κ-solution (M∞, g∞(t), p∞)t∈(−∞,0]. Furthermore,
(M∞, g∞(t), p∞)t∈(−∞,0] satisfies the following condition: either the
asymptotic shrinker based at any point in M∞ × (−∞, 0] is S

n−1 × R, or
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(M∞, g∞(t))t∈(−∞,0] is the standard shrinking sphere S
n. In particular, if

the limit splits, it must be S
n−1 × R.

Remark. By Perelman [41], without Assumption A, the normalized se-
quence ḡk(t) will still converge to an ancient solution g∞(t), but g∞(t) may
not have bounded curvature, hence may not be a κ-solution.

Theorem 1.4. For any ε > 0, there exists C(ε) <∞, depending also on
n and κ, such that the following holds. Let (Mn, g(t))t∈(−∞,0] be a κ-
solution satisfying Assumption A. Furthermore, assume that (Mn, g(t)) is
noncompact with positive curvature operator. Let Mε be the points that
are not centers of ε-necks at t = 0. Then we have diam(Mε) ≤ CQ− 1

2 ,
C−1Q ≤ R(x, 0) ≤ CQ for all x ∈Mε, where Q = R(x0, 0) for any point
x0 ∈Mε.

The results that we obtained above enable us to generalize part one of
[12] to higher dimensions.

Theorem 1.5. Let (Mn, g(t))t∈(−∞,0] be a noncompact κ-solution with pos-
itive curvature operator. Furthermore, assume that (M, g(t)) is rotationally
symmetric. Then (M, g(t)) is isometric to the Bryant soliton up to scaling.

Theorem 1.5 together with the strong maximum principle implies

Theorem 1.6. Let (Mn, g(t))t∈(−∞,0] be a noncompact nonflat κ-solution
with nonnegative curvature operator. Furthermore, assume that (M, g(t))
is rotationally symmetric. Then (M, g(t)) is isometric to either the Bryant
soliton up to scaling, or to a family of shrinking cylinders (or a quotient
thereof).

Remark. Theorem 1.5 and 1.6 remain valid if one replaces positive (nonneg-
ative) curvature operator with the weaker condition thatM × R has positive
(nonnegative) isotropic curvature. In fact, any ancient solution with weakly
PIC1 (namely M × R has nonnegative isotropic curvature) has nonnegative
complex sectional curvature (also known as weakly PIC2). This was proved
in [6] for the bounded curvature case and in [33] for the possibly unbounded
curvature case. Our arguments in this paper then go through if one weakens
positive (nonnegative) curvature operator to positive (nonnegative) complex
sectional curvature.

The main technical part in the proof of Theorem 1.5 is due to Bren-
dle and Choi [14] and Brendle [12]. Our contribution here is to extend the
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properties that are satisfied by three-dimensional κ-solutions (asymptoti-
cally cylindrical, neck-stability, etc.) to higher dimensions. Furthermore, we
construct the barriers for higher dimensions following [12]. Note that in The-
orem 1.5 we do not assume that the ancient solution satisfies Assumption A.
Indeed, we will show that in the rotationally symmetric case, Assumption
A is automatically satisfied.

Finally, we would like to mention that part two of [12] has been extended
to higher dimensions by Brendle and Naff [16].

This paper is organized as follows. In Section 2 we show that the sphere
S
n has the highest Gaussian density among all nonflat Ricci shrinkers with

nonnegative curvature operator, and that the cylinder S
n−1 × R has the

highest Gaussian density among all noncompact nonflat Ricci shrinkers with
nonnegative curvature operator. In Section 3 we prove Theorem 1.2, Theo-
rem 1.3, and Theorem 1.4. In Section 4, we extend the barrier construction
in [12] to higher dimensions and prove Theorem 1.5.

2. The Gaussian density of Ricci shrinkers

A shrinking gradient Ricci soliton (or Ricci shrinker for short) is a triple
(Mn, g, f), where (Mn, g) is a smooth complete Riemannian manifold and
f is a smooth function on M called the potential function, satisfying the
equation

Ric+∇2f =
1

2
g.(2.1)

By adding to f a constant, we can always normalize the potential function
in the way that

|∇f |2 +R = f.(2.2)

We define the Gaussian density as the following.

Definition 2.1. Let (Mn, g, f) be a Ricci shrinker normalized as in (2.1)
and (2.2), then the Gaussian density is the quantity

Ṽ(M) = (4π)−
n

2

∫

M

e−fdµg.

As shown in [20], the potential of a noncompact Ricci shrinker has
quadratic growth and the volume has at most Euclidean growth (see also
[37]), thus the Gaussian density of a Ricci shrinker is always well-defined.



✐

✐

“3-Li” — 2023/7/15 — 2:11 — page 2017 — #7
✐

✐

✐

✐

✐

✐

Ancient solutions to the Ricci flow in higher dimensions 2017

Our definition is the same as Cao-Hamilton-Ilmanen [19], and the Gaus-
sian density of an asymptotic shrinker is the same as the asymptotic reduced
volume; see (3.3) and Theorem 3.2. The main result of this section is the
following theorem.

Theorem 2.2. Among all the n-dimensional nonflat Ricci shrinkers with
nonnegative curvature operator, Sn has the highest Gaussian density. Among
all the n-dimensional noncompact nonflat Ricci shrinkers with nonnegative
curvature operator, Sn−1 × R has the highest Gaussian density.

Remark. By [33], Theorem 2.2 holds under the weaker assumption that
M × R has nonnegative isotropic curvature.

The following simple observation indicates that we need only to consider
simply connected Ricci shrinkers. Notice that by Wylie [44], every Ricci
shrinker has finite fundamental group.

Lemma 2.3. Let (M, g, f) be a Ricci shrinker with fundamental group Γ
and let (M̃, g̃, f̃) be its universal cover. Then

Ṽ(M) =
1

|Γ| Ṽ(M̃).

We first deal with the compact case.

Lemma 2.4. Let (Mn, g, f) be a compact simply-connected Ricci shrinker
with nonnegative curvature operator. Then Ṽ(M) ≤ Ṽ(Sn). Furthermore, the
equality holds if and only if M is isometric to S

n.

Proof. By Corollary 4 in [38], we have that (Mn, g) is a symmetric space. We
claim that g is an Einstein metric. It suffices to show that f is a constant.
Suppose this is not true, then let p1 and p2 be the points where f attains its
maximum and minimum, respectively. In particular f(p1) > f(p2). By (2.2),
we have

f(p1) = R(p1), f(p2) = R(p2).

Since (M, g) is a symmetric space, we have that R is a constant, hence
f(p1) = f(p2); this is a contradiction.
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Next, we have that by (2.1) and (2.2), both on M and S
n, it holds that

Ric =
1

2
g, f = R = n

2 .

It then follows from the Bishop-Gromov volume comparison theorem that
Ṽ(M) ≤ Ṽ(Sn) and the equality holds if and only if (Mn, g) is isometric
to S

n. □

The following lemma is used to deal with the noncompact case.

Lemma 2.5. Assume a Ricci shrinker (Mn, g, f) splits as the product of
two Ricci shrinkers (Mn1

1 , g1, f1) and (Mn2

2 , g2, f2), where g = g1 + g2, n =
n1 + n2, and f = f1 + f2. Then

Ṽ(M) = Ṽ(M1)Ṽ(M2).

Proof. This is an easy consequence of Fubini’s theorem. □

Now we need to use the actual values of Ṽ(Sn), one may refer to [19] or
[45] for the following result.

Ṽ(Sn) =
∫

Sn

(4π)−
n

2 e−
n

2 dgSn(2.3)

=

√
2πmm+ 1

2 e−m

Γ(m+ 1)

√

2

e
,

where m = n−1
2 and Γ stands for the the gamma function. By Stirling’s

formula

Γ(m+ 1) =
√
2πmm+ 1

2 e−meθ(m),

where θ(m) ↘ 0 as m↗ ∞, we have that Ṽ(Sn) is a strictly increasing

sequence in n, and its limit is

√

2

e
.

With these preparations, we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. Let (M, g, f) be an arbitrary n-dimensional simply
connected Ricci shrinker with nonnegative curvature operator. If M is com-
pact, then the conclusion follows from Lemma 2.4. If M is noncompact, by
Corollary 4 in [38] we have that M is the product of a Gaussian shrinker
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R
n−k and a compact symmetric space Nk, where 2 ≤ k ≤ n− 1. Then by

Lemma 2.5 and Lemma 2.4 we have that

Ṽ(M) = Ṽ(Rn−k) · Ṽ(Nk)

= 1 · Ṽ(Nk) ≤ Ṽ(Sk)
≤ Ṽ(Sn−1)

(

= Ṽ(Sn−1 × R)
)

< Ṽ(Sn).

This finishes the proof of the theorem. □

Corollary 2.6 (A gap theorem). There exist positive constants εn, de-
pending only on the dimension n, such that the following holds. (1) As-
sume that (Mn, g, f) is a nonflat Ricci shrinker with nonnegative curva-
ture operator and is not isometric to S

n, then Ṽ(M) ≤ Ṽ(Sn)− εn. (2) As-
sume that (Mn, g, f) is a nonflat noncompact Ricci shrinker with nonneg-
ative curvature operator and is not isometric to S

n−1 × R, then Ṽ(M) ≤
Ṽ(Sn−1 × R)− εn−1.

Proof. We first show that (2) follows from (1). Since M is noncompact, by
Corollary 4 of [38] we can assume that M = R×Nn−1, where Nn−1 is not
S
n−1. Then we have

Ṽ(M) = Ṽ(Nn−1) ≤ Ṽ(Sn−1)− εn−1

= Ṽ(Sn−1 × R)− εn−1.

Next we prove (1) by contradiction. Suppose (1) is not true, then we
can find a sequence of Ricci shrinkers with nonnegative curvature operator
{(Mk, gk, fk)}∞k=1, all different from S

n, such that

Ṽ(Mk) ↗ Ṽ(Sn)

as k → ∞. For all k large enough we have

Ṽ(Mk) > Ṽ(Sn−1),

since Ṽ(Sn−1) < Ṽ(Sn). Therefore Mk must be compact and hence Einstein
for all k large enough, by Theorem 2.2 and by the proof of Lemma 2.4,
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respectively. Furthermore, we have

|Rmk| ≤ C(n)Rk = C(n)
n

2
, Vol(gk) = e

n

2 (4π)
n

2 Ṽ(Mk) ≥ c(n) > 0.

After possibly passing to a subsequence, (Mk, gk) will converge to an Einstein
manifold having the same volume as S

n, hence must be the standard S
n

by the Bishop-Gromov volume comparison theorem. It follows that gk has
strictly positive curvature operator and Mk is diffeomorphic to S

n for all k
large enough because of the smooth convergence. But this is a contradiction,
since the only Einstein manifold with strictly positive curvature operator
that is diffeomorphic to S

n must be the standard S
n, according to Böhm-

Wilking [8]. □

3. On κ-solutions satisfying Assumption A

3.1. Preliminaries of Perelman’s L-geometry

In this subsection, we collect some well-known results concerning Perelman’s
L-geometry. Let (M, g(τ)) be a complete backward Ricci flow, and let (x0, τ0)
be a point in space-time. The reduced distance based at (x0, τ0) and evaluated
at (x, τ), where τ > τ0, is defined by

l(x0,τ0)(x, τ) =
1

2
√
τ − τ0

inf
γ
L(γ)(3.1)

:=
1

2
√
τ − τ0

inf
γ

∫ τ

τ0

√
s− τ0

(

R(γ(s), s) + |γ̇(s)|2g(s)
)

ds,

where the inf is taken among all piece-wise smooth curves γ : [τ0, τ ] →M
satisfying γ(τ0) = x0 and γ(τ) = x. A minimizer of the L-functional is called
a minimizing L-geodesic. The maximum principle implies that

inf
M
l(x0,τ0)(·, τ) ≤

n

2
,(3.2)

for all τ > τ0. The reduced volume based at (x0, τ0) and evaluated at τ > τ0,
is defined by

V(x0,τ0)(τ) =
1

(4π(τ − τ0))
n

2

∫

M

e−l(·,τ)dµgτ (·).

It is known that

lim
τ→τ0+

V(x0,τ0)(τ) = 1
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and the most significant property of the reduced volume is its monotonicity

d

dτ
V(x0,τ0)(τ) ≤ 0.

If the backward Ricci flow is eternal, then we define the asymptotic reduced
volume as

Ṽ(x0, τ0) = lim
τ→∞

V(x0,τ0)(τ).(3.3)

Since 0 < V(x0,τ0)(τ) ≤ 1 and since V(x0,τ0)(τ) is decreasing in τ , we have that
the above limit always exists, and is a function of the base point (x0, τ0).

All the important inequalities for the reduced distance are obtained by
arguments concerning a (unique) minimizing L-geodesic. In the literature,
there are several proofs for the existence of minimizing L-geodesics connect-
ing any two points assuming bounded curvature. Since we need to work in
cases with possibly unbounded curvature, we establish the following lemma
to justify our scenario.

Lemma 3.1. Let (M, g(τ))τ∈[0,T ] be a smooth backward Ricci flow with
Ric ≥ 0. Let x0 and x ∈M be any two points. Let 0 < τ ≤ T . Then there
exists a minimizing L-geodesic connecting (x0, 0) and (x, τ).

Proof. Let γk : [0, τ ] →M satisfying γk(0) = x0 and γk(τ) = x be a sequence
of space-time curves such that L(γk) → infγ L(γ). If we can prove that each
γk cannot escape a compact set, then the existence of a minimizer is a
standard result of the calculus of variation. We may assume

L(γk) ≤ 2C0,

where C0 can be taken as L(γ0) with γ0 : [0, τ ] →M being the minimizing
geodesic connecting x0 and x with respect to the metric g(0). In partic-
ular, C0 can be bounded in terms of τ , D, and the curvature bound in
Bg(0)(x0, D)× [0, τ ], where D = d0(x0, x). Then we have

2C0 ≥
∫ τ

0

√
s
(

R(γk(s), s) + |γ̇k(s)|2g(s)
)

ds

≥
∫ τ

0

√
s|γ̇k(s)|2g(0)ds =

1

2

∫

√
τ

0
| ˙̄γk(σ)|2g(0)dσ,

where we have used R ≥ 0, ∂
∂s
g(s) = 2Ric ≥ 0, and applied the change of

variable γ̄k(σ) = γk(σ
2). It follows that any minimizing geodesic η : [0, σ] →
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M with respect to g(0) connecting x0 and γ̄k(σ) has energy smaller than
4C0. Hence

d0(x0, γ̄k(σ))
2

σ
≤ 4C0

and

γk ⊂ Bg(0)

(

x0, 2

√

C0τ
1

2

)

.

This completes the proof. □

Remark. Note that the proof of Lemma 3.1 implies that every L-minimizer

is also contained in Bg(0)

(

x0, 2

√

C0τ
1

2

)

. By applying Corollary 6.67 in

[36] to a compact exhaustion of M , one obtains that the L-cut locus has
zero measure. Furthermore, one may also prove the above Lemma assuming
only a lower bound for the Ricci curvature.

Remark. By carefully checking the proof of most of the results stated
below, and taking into account Lemma 3.1 and the above remark, one sees
that one does not need to require the ancient solution to be a κ-solution,
but it suffices to assume that the ancient solution has nonnegative curvature
operator, is κ-noncollapsed, and that Hamilton’s trace Harnack [27] holds;
we will always make it clear for which theorems this is true. This is to say,
one may replace the curvature boundedness condition with the validity of
Hamilton’s trace Harnack—a differential inequality that is preserved under
the Cheeger-Gromov-Hamilton convergence.

From this point on, we consider only κ-solutions. By using the mono-
tonicity of the reduced volume, Perelman proved the existence of asymptotic
shrinkers for κ-solutions. The detailed proof of the following theorem can be
found in [36]. Theorem 3.2 and Corollary 3.3 still hold if one replaces the
curvature boundedness by the validity of Hamilton’s trace Harnack.

Theorem 3.2 (Perelman, [41]). Let (M, g(τ))τ∈[0,∞) be a κ-solution,
where τ stands for backward time. Let l(x0,τ0)(x, τ) be the reduced
distance based at (x0, τ0). Let {(xk, τk)}∞k=1 be a sequence of space-
time points, such that τi ↗ ∞ and lim supk→∞ l(x0,τ0)(xk, τk) <∞. Then
{(M, gk(τ), (xk, 1))τ∈[ 1

2
,1]}∞k=1 converges, after possibly passing to a subse-

quence, to (the canonical form of) a nonflat shrinking gradient Ricci soliton,
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called the asymptotic shrinker based at (x0, τ0), where gk(τ) is the scaled flow
1

τk − τ0
g (τ(τk − τ0) + τ0). Furthermore, the Gaussian density of the asymp-

totic shrinker is the same as the asymptotic reduced volume Ṽ(x0, τ0).

As in [41], we have the following observation.

Corollary 3.3. Let (M, g(τ))τ∈[0,∞) be a κ-solution. If its asymptotic
shrinker is the standard sphere S

n, then (Mn, g) is the standard shrinking
sphere.

It is known that on a κ-solution, the reduced distance has exactly
quadratic growth and that the curvature can be controlled by the reduced
distance. One may refer to [36] for the following two lemmas, especially
Lemma 9.25 in [36] for the lower bound in (3.4). Note that the following two
lemmas still hold if we replace the curvature boundedness condition with
Hamilton’s trace Harnack.

Lemma 3.4. There exist constants c > 0 and C <∞, depending only on
the dimension n, such that the following holds. Let (M, g(τ))τ∈[0,∞) be a κ-
solution, where τ stands for the backward time. Then for any x1 and x2 ∈M
and τ > 0, we have

(3.4) −l(x1, τ)− C + c
d2τ (x1, x2)

τ
≤ l(x2, τ) ≤ l(x1, τ) + C + C

d2τ (x1, x2)

τ
,

where l is the reduced distance based at some point (x0, 0).

Lemma 3.5. There exists a constant C <∞, depending only on the dimen-
sion n, such that the following holds. Let (M, g(τ))τ∈[0,∞) be a κ-solution,
where τ stands for the backward time. Then we have

|∇l|2 +R ≤ Cl

τ
,

∣

∣

∣

∣

∂

∂τ
l

∣

∣

∣

∣

≤ Cl

τ
,

where l is the reduced distance based at some point (x0, 0), and these in-
equalities are understood in the barrier sense or in the sense of distribution.

To conclude this subsection, we summarize Perelman’s precompactness
in the following Theorem.
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Theorem 3.6. Let {(Mk, gk(τ), (xk, 0))}∞k=1 be a sequence of κ-
noncollapsed ancient solutions with nonnegative curvature operator satis-
fying Rk(xk, 0) = 1, where τ stands for the backward time. Furthermore as-
sume that on each (Mk, gk) Hamilton’s trace Harnack holds. Let lk and Vk

be the reduced distance and reduced volume based at (xk, 0), respectively.
Then after passing to a subsequence, {(Mk, gk(τ), (xk, 0))}∞k=1 converges in
the Cheeger-Gromov-Hamilton sense to a κ-noncollapsed ancient solution
(M∞, g∞, (x∞, 0)) with nonnegative curvature operator, on which Hamilton’s
trace Harnack holds. Furthermore, lk → l∞ in Cα

loc or weak ∗W
1,2
loc sense, and

Vk(τ) → V∞(τ) for every τ > 0, where l∞ and V∞ are the reduced distance
and reduced volume based at (x∞, 0), respectively.

Proof. The convergence of ancient solutions is a consequence of Perelman’s
bounded curvature at bounded distance theorem and the κ-noncollapsing
assumption. Note that bounded curvature at bounded distance follows from
Corollary 11.5 in [41] and Hamilton’s trace Harnack, and it does not require
curvature boundedness. From Lemma 3.4 and Lemma 3.5 we have that lk
converges to a function l∞ onM∞ × (0,∞). To see l∞ is the reduced distance
from (x∞, 0), we refer the readers to Lemma 7.66 in [22]. Note that even if
Lemma 7.66 requires uniform boundedness of curvature since it is a local
argument, we may still justify its proof as follows. Let us fix an arbitrary τ >
0 and y ∈M∞. Let yk ∈Mk be such that yk → y. By the first remark after
Lemma 3.1, we have that all L-minimizers connecting (xk, 0) and (yk, τ),
as well as the L-minimizer connecting (x∞, 0) and (y, τ), are contained in
compact sets with sizes uniformly bounded. Hence one may directly apply
the proof of Lemma 7.66 in [22] here.

Now we proceed to prove the convergence of reduced volume. By the
smooth convergence of the Ricci flow, we can find K <∞, depending on τ ,
such that

sup
k

sup
s∈[0,τ ]

Rk(xk, s) ≤ K.

Hence we have

lk(xk, τ) ≤
1

2
√
τ

∫ τ

0

√
sKds =

1

3
Kτ.

By Lemma 3.4 we have that

c1d
2
gk(τ)

(xk, x)− C1 ≤ lk(xk, τ) ≤ C1d
2
gk(τ)

(xk, x) + C1,
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where c1 and C1 are positive constants depending on τ but are independent
of k; this same estimate also holds for l∞. In other words, if τ is fixed, then lk
has uniformly quadratic growth centered at xk. Therefore, in the definition
of reduced volume, the integral outside a compact set is negligible. To wit,
for any ε > 0, we can find A <∞, such that

Vk(τ)− ε ≤
∫

Bgk(τ)(xk,A)
e−lk(·,τ)dgk(·, τ) ≤ Vk(τ),

for all k. The conclusion follows from first taking k → ∞, then A→ ∞, and
finally ε→ 0. □

3.2. Necks at space infinity

In this subsection, we show that every noncompact κ-solution satisfying As-
sumption A must be asymptotically cylindrical at space infinity. Note that
Assumption A is a condition at time negative infinity. We first observe that
Assumption A implies every asymptotic shrinker is the standard cylinder.
The idea is that the Gaussian density of a noncompact shrinker with non-
negative curvature operator cannot lie between that of a standard cylinder
and 1 unless it is a standard sphere; see Theorem 2.2. This idea was also
implemented by the second author in [46]. The following Lemma of Yokota
[45] enables us to compare the asymptotic reduced volume based at different
points.

Lemma 3.7 (Lemma 3.1 in [45]). Let (M, g(τ))τ∈[0,∞) be an ancient
Ricci flow with Ricci curvature bounded from below, where τ stands for the
backward time. Let τ1 > τ2. Then we have that for any x1 and x2 ∈M ,

Ṽ(x1, τ1) ≥ Ṽ(x2, τ2).

Lemma 3.8. Let (M, g(τ))τ∈[0,∞) be a κ-solution satisfying Assumption
A, where τ stands for backward time. Let (x1, τ1) be any space-time point in
M × [0,∞). Then the asymptotic shrinker based at (x1, τ1) is the standard
cylinder S

n−1 × R. In particular, we have

V(x1,τ1)(τ) ≥ Ṽ(Sn−1 × R)

for all τ > τ1.

Proof. Let (x0, τ0), where τ0 < 0, be a space-time point such that the asymp-
totic shrinker based at (x0, τ0) is the standard cylinder (see the remark after
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the definition of Assumption A). Since τ1 ≥ 0 > τ0, we have by Lemma 3.7
that

Ṽ(x1, τ1) ≥ Ṽ(x0, τ0) = Ṽ(Sn−1 × R).

By Theorem 2.2, it follows that the asymptotic shrinker based at (x1, τ1) can
only be either Sn−1 × R or Sn. However, the latter case cannot occur, since
otherwise (Mn, g(τ)) would be the standard shrinking sphere by Corollary
3.3, and consequently the asymptotic shrinker based at (x0, τ0) is also the
standard sphere. □

Next, we show that all κ-solutions satisfying Assumption A must be
asymptotic cylindrical. Note that Theorem 1.2 follows from Lemma 3.8 and
Proposition 3.9 below.

Proposition 3.9. Let (Mn, g(τ))τ∈[0,∞) be a noncompact κ-noncollapsed
ancient solution to the Ricci flow, where τ stands for the backward time. As-
sume that g is nonflat with nonnegative curvature operator and that Hamil-
ton’s trace Harnack holds on (Mn, g). Furthermore, assume that

V(x0,0)(τ) ≥ Ṽ(Sn−1 × R)

for all x0 ∈Mn and τ > 0. Let {xk}∞k=0 be an arbitrary sequence such that
d0(x0, xk) −→ ∞. Then {(Mn, gk(τ), (xk, 0))}∞k=1 converges, after passing to
a subsequence, to the standard shrinking cylinder S

n−1 × R. Here gk(τ) is
the scaled flow Qkg(τQ

−1
k ), where Qk = R(xk, 0).

Proof. The convergence and splitting are classical results of Perel-
man [41]. Let

(

Nn−1 × R, ḡ(τ) + dz ⊗ dz, ((y0, 0), 0)
)

be the limit, where
(

Nn−1, ḡ, (y0, 0)
)

is an n− 1-dimensional nonflat κ-noncollapsed ancient so-
lution on which Hamilton’s trace Harnack holds. Let Vk be the reduced
volume of gk based at (xk, 0). Since the reduced volume is invariant with
respect to parabolic scaling, we have that

Vk(τ) ≥ Ṽ(Sn−1 × R) = Ṽ(Sn−1),

for every k and for all τ > 0. By Theorem 3.6 we have

V ḡ

(y0,0)
(τ) = V ḡ+dz⊗dz

(

(y0,0),0
)(τ) = lim

k→∞
Vk(τ) ≥ Ṽ(Sn−1),

for all τ > 0. By Theorem 3.2 we have that the asymptotic shrinker of
(Nn−1, ḡ) is nonflat with Gaussian density no less than that of S

n−1, it
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must then be the standard sphere by Theorem 2.2. Hence (Nn−1, ḡ) can be
nothing but the standard shrinking sphere by Corollary 3.3; this completes
the proof. □

The following Corollary also holds when one replaces the curvature
boundedness by Hamilton’s trace Harnack.

Corollary 3.10. If a κ-solution satisfying Assumption A splits, it must be
the standard shrinking cylinder.

3.3. The κ-compactness theorem

With the preparations in the last two subsections, we prove the κ-
compactness theorem (Theorem 1.3) in this subsection. As Perelman [41]
has already established bounded curvature at bounded distance, the main
point is to prove that the limit has bounded curvature. Our idea of the proof
is the same as Perelman’s in dimension three—since the limit is asymptot-
ically cylindrical at space infinity, unbounded curvature implies ε-necks of
arbitrarily small radii, which cannot happen in a manifold with nonnegative
curvature operator.

Proof of Theorem 1.3. Let {(Mk, gk(τ), (xk, 0))τ∈[0,∞)}∞k=1 be a sequence
of κ-solutions satisfying Assumption A. Furthermore, let us assume
that Rk(xk, 0) = 1 and let (M∞, g∞(τ), (x∞, 0))τ∈[0,∞) be a nonflat κ-
noncollapsed ancient solution with nonnegative curvature operator, on which
Hamilton’s trace Harnack holds, such that

{(Mk, gk(τ), (xk, 0))τ∈[0,∞)}∞k=1 → (M∞, g∞(τ), (x∞, 0))τ∈[0,∞)

in the Cheeger-Gromov-Hamilton sense. Note that the existence of such
(M∞, g∞(τ), (x∞, 0))τ∈[0,∞) arises from Theorem 3.6. Now we proceed to
show that (M∞, g∞(τ), (x∞, 0))τ∈[0,∞) indeed has all the properties claimed
in the statement of Theorem 1.3.

Claim. For any x1 ∈M∞, we have

V(x1,0)(τ) ≥ Ṽ(Sn−1 × R),

for all τ > 0.
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Proof of the claim. Let x̄k ∈Mk be such that (x̄k, 0) → (x1, 0). In particu-
lar, we have

Rk(x̄k, 0) → R∞(x1, 0) > 0.(3.5)

Then we have the following convergence in the Cheeger-Gromov-Hamilton
sense.

{(Mk, gk(τ), (x̄k, 0))τ∈[0,∞)}∞k=1 → (M∞, g∞(τ), (x1, 0))τ∈[0,∞).

By Lemma 3.8 we have

V(x̄k,0)(τ) ≥ Ṽ(Sn−1 × R)

for all τ > 0 and for each k. Therefore by Theorem 3.6 we have that

V(x1,0)(τ) = lim
k→∞

V(x̄k,0)(τ) ≥ Ṽ(Sn−1 × R)

for all τ > 0. Note that in Theorem 3.6 we assumed that the scalar curvatures
at the base points are exactly one, which might not be true for x̄k’s. However,
because of (3.5), this makes a difference only in the scaling factors, which
does not affect lower bounds for the reduced volumes. This completes the
proof of the claim. □

We continue the proof of the theorem. To see that (M∞, g∞)τ∈[0,∞) has
bounded curvature, we need only to show that g∞(0) has bounded curva-
ture since Hamilton’s trace Harnack implies that ∂

∂τ
R∞ ≤ 0. Suppose this

is not true, we can find a sequence yk such that dg∞(0)(yk, x0) → ∞ and
R∞(yk, 0) → ∞. By Proposition 3.9, we can take a scaled limit along (yk, 0)
and obtain a shrinking cylinder. It follows that (M∞, g∞(0)) contains ε-necks
of arbitrary small scales; this is a contradiction (c.f. Proposition 2.2 in [21]).

By the above claim, we have that the asymptotic shrinker based at any
point in M∞ × [0,∞) is either the cylinder or the sphere. It is clear that the
last statement of Theorem 1.3 holds. □

Remark. To see why the limit can possibly be the shrinking sphere, one may
take Perelman’s ancient solution which he constructed in 1.4 of [43]. Fix a
point in space and choose a sequence of times approaching the singular time,
then the blow-up limit along the space-time sequence is the shrinking sphere.
However, Perelman’s solutions has Sn−1 × R as the asymptotic shrinker.
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3.4. The geometry of κ-solutions satisfying Assumption A

In this subsection, we collect some consequences of the κ-compactness
theorem proved in the last subsection. Let us consider a noncompact κ-
solution satisfying Assumption A with strictly positive curvature operator
(Mn, g(t))t∈(−∞,0], then M is diffeomorphic to R

n. Let Mε denote all the
points that are not centers of ε-necks at some certain time, say t = 0. We
follow Corollary 48.1 in [30] to outline the proof of Theorem 1.4.

Proof of Theorem 1.4 (sketch). Indeed, Mε is compact by Proposition 3.9.
We need only to prove the diameter bound for Mε, then all the rest follows
from Perelman’s bounded curvature at bounded distance theorem for κ-
solutions. In the following argument, we always assume t = 0.
Claim: There exists α > 0 depending on κ and ε, such that the following
holds. Assume that x and y ∈Mε satisfy R(x)d2(x, y) > α. Then for any z,
one of the following three holds

(1) R(x)d2(x, z) < α;

(2) R(y)d2(y, z) < α;

(3) R(z)d2(z, xy) < α and z /∈Mε.

Proof of the claim. Assume the claim is not true, then for some ε and κ
we can find a contradicting sequence: κ-solutions {(Mk, gk(t))t∈(−∞,0]}∞k=1

satisfying Assumption A, xk, yk ∈ (Mk)ε, and zk ∈Mk, such that

Rk(xk)d
2(xk, yk) → ∞, Rk(xk)d

2(xk, zk) → ∞, Rk(yk)d
2(yk, zk) → ∞.

Let z′k be the point on xkyk such that d(zk, z
′
k) = d(zk, xkyk). We show that

Rk(xk)d
2(z′k, xk) → ∞. If not, then we can take a scaled limit along xk,

and obtain a κ-solution satisfying the properties stated in the conclusion
of Theorem 1.3. Let z′∞ be the limit of z′k and x∞ the limit of xk. Since
Rk(xk)d

2(xk, yk) → ∞ and Rk(xk)d
2(xk, zk) → ∞, we have that xkyk con-

verges to a ray x∞ξ, and z′kzk converges to a ray z′∞η. Since for every point
on z′∞η, its distance to x∞ξ is fulfilled by the ray z′∞η, we have that the Tits
angle ∠T (ηz

′
∞ξ) ≥ π

2 . On the other hand, by Proposition 3.9, along any se-
quence of points on x∞ξ going off to space infinity, the scaled limit must be
the standard cylinder, this gives us an end along x∞ξ, being an ε-tube. But
this cannot be the only end, because otherwise the ray z′∞η will also go to
infinity along the same end. If this happens, to ensure that ∠T (ζz

′
∞ξ) ≥ π

2 ,
the radius of each central sphere of all ε-necks on this end must be at least
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proportional to the distance from z′∞, this gives positive asymptotic vol-
ume ratio—something that cannot happen on a κ-solution (c.f. 11.4 in [41]).
Since the limit has two ends, it splits as a line and an (n− 1)-dimensional
κ-solution, and by Theorem 1.3 this is the standard cylinder, but x∞ is not
the center of an ε-neck; this is a contradiction. By the same reason we have
Rk(yk)d

2(z′k, yk) → ∞. Now taking a scaled limit along z′k, we obtain a κ-
solution containing a line, it must be the cylinder by Theorem 1.3. It follows
that when k is large enough, zk is close to z′k and is in the neck-like region;
this is a contradiction. □

We continue the proof of the theorem. By the claim, we have that if there
are two points in Mε that are too far from each other, then the manifold
M must be compact. To be more precise, we observe that if case (3) in the
above claim occurs, then, taking into account Perelman’s bounded curvature
at bounded distance (as a consequence of Theorem 1.3), there exists ξ on
xy such that

R(ξ)d2(z, ξ) ≤ C,

where C depends on κ and α. Hence, if every R(x)d2(x, y) > α, the above
claim implies that for any z ∈M , it holds that

d2(z, xy) ≤ C1,

where C1 depends on κ, α, ε, and infξ∈xy R(ξ). It follows thatM is compact;
this is a contradiction.

□

To conclude this section we state the following neck stability result due
to Kleiner-Lott [31].

Theorem 3.11 (Kleiner-Lott [31]). For any positive numbers ε1 and
ε2 small enough, there exists 0 > T > −∞, depending also on κ, such that
the following holds. Let (M, g(t), (x0, 0))t∈(−∞,0] be a κ-solution satisfying
Assumption A. Assume that R(x0, 0) = 1 and that (x0, 0) is the center of an
ε1-neck. Then for all t < T , (x0, t) is the center of an ε2-neck.

Proof. When Assumption A is made, the only possible asymptotic shrinkers
are the standard cylinder, hence our scenario has no difference from the
three-dimensional case. Furthermore, the proof of Kleiner-Lott does not de-
pend on any result that is valid only for three-dimensional geometry (except
for the (S2 × R)/Z2 case, which we will never encounter), one may follow
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the proof of Kleiner-Lott line-by-line to obtain this theorem. One may also
refer to [46] for a simpler proof. Note that the Type I assumption in [46] was
used to deal with the possibility that the limit has unbounded curvature, so
it is not necessary since we already have Theorem 1.3. □

4. On the rotationally symmetric κ-solution

In this section, we proceed to prove Theorem 1.5. Throughout this section,
we consider a κ-solution on R

n that is rotationally symmetric with respect
to its origin O. As we will see in subsection 4.2, a rotationally symmetric
κ-solution satisfies Assumption A. Given that we have established Theo-
rem 1.2–1.4, the proof is the same as the three-dimensional case in [12],
except that we need barriers in higher dimensions. In subsection 4.3 we gen-
eralize Brendle’s barriers to higher dimensions. In subsection 4.4 we outline
the main steps of the proof and the details are omitted.

4.1. The ansatz

We consider the evolving warped product g(t) =
1

u(r, t)
dr ⊗ dr + r2gSn−1 ,

then the Ricci curvature and the scalar curvature are

Ric = −n− 1

2r
u−1urdr ⊗ dr +

(

(n− 2)(1− u)− 1

2
rur
)

gSn−1 ,

R =
n− 1

r2
(

(n− 2)(1− u)− rur
)

.

Letting V = v
∂

∂r
with

v =
1

r

(

(n− 2)(1− u)− 1

2
rur
)

,(4.1)

we may compute

Ric−1

2
LV g =

(

−n− 1

2r
u−1ur +

1

2
u−2urv − u−1vr

)

dr ⊗ dr

=
1

2
u−2

(

uurr −
1

2
(ur)

2 + (n− 2)
ur
r

− uur
r

+
2(n− 2)

r2
u(1− u)

)

dr ⊗ dr.

It follows that the modified Ricci flow equation

∂

∂t
g = −2Ric+LV g
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becomes the following one-dimensional parabolic equation

∂

∂t
u = uurr −

1

2
(ur)

2 + (n− 2)
ur
r

− uur
r

+
2(n− 2)

r2
u(1− u).(4.2)

In the above equation, if the left-hand side is 0, then we have a steady
gradient Ricci soliton.

The nonnegativity of the curvature operator implies the following con-
ditions

0 < u ≤ 1, v ≥ 0, ur ≤ 0.(4.3)

Moreover, since the metric extends smoothly across the origin, we have

1− u(r, t) = O(r2), v(r, t) = O(r),

when r → 0.

4.2. Validity of Assumption A

In this subsection we show that a rotationally symmetric κ-solution
(M, g(t))t∈(−∞,0], of necessity, satisfies Assumption A. For the sake of con-
venience, we always use O to denote the center of symmetry.

Lemma 4.1. Let (M, g(τ))τ∈[0,∞) be a rotationally symmetric κ-solution
with positive curvature operator, where τ stands for the backward time. We
have lim supτ→∞ τR(O, τ) = ∞. In particular, g(τ) is of Type II.

Proof. Assume by contradiction that τR(O, τ) ≤ C, then

l(O,0)(O, τ) ≤
1

2
√
τ

∫ τ

0

√
s
C

s
≤ C.

By Theorem 3.2, for τk ↗ ∞ the scaled limit (M, τ−1g(ττk), (O, 1))[ 1
2
,1] con-

verges to a nonflat asymptotic shrinker, which must also be rotationally
symmetric with respect to its base point. There exists no such shrinker and
this is a contradiction; see Kotschwar [32]. □

Now let us take τk ↗ ∞ such that τkR(O, τk) ↗ ∞. Let xk be such
that l(O,0)(xk, τk) ≤ n

2 . Such xk’s exist because of (3.2). By Lemma 3.4 and
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Lemma 3.5, we have that

R(x, τk) ≤ C

(

1

τk
+
d2τk(xk, x)

τ2k

)

,

where C is independent of k. Since τkR(O, τk) ↗ ∞, we must have
d2
τk

(xk,O)

τk
↗ ∞, or in other words, the distance between O and xk with re-

spect to the scaled metric τ−1
k g(τk) must go to infinity. Hence, the asymptotic

shrinker obtained along (xk, τk) must contain a geodesic line, which arises
from the geodesic ray emanating from O and passing through xk. Let the
asymptotic shrinker be (Nn−1 × R, ḡ + dz ⊗ dz, (y0, 0)), we proceed to show

that N is the standard sphere. Let {e(k)i }ni=1 be an orthonormal frame at xk
with respect to the metric τ−1

k g(τk), where e
(k)
n is along the radial direction.

We then have Rick(e
(k)
i , e

(k)
i ) are all the same and Rk(e

(k)
i , e

(k)
j , e

(k)
j , e

(k)
i ) are

all the same for i ̸= j and i, j ̸= n. Let {e∞i }ni=1 be an orthonormal frame

on Nn−1 × R at (y0, 0) such that {e(k)i }ni=1 → {e∞i }ni=1. We then have that
Ric∞(e∞i , e

∞
i ) are all the same and positive and that R∞(e∞i , e

∞
j , e

∞
j , e

∞
i )

are all the same and positive, for i ̸= j and i, j ̸= n (it is easy to see that all
such components of Ric∞ are the same, but since the limit shrinker is nonflat
and has nonnegative curvature operator, they must all be positive; similarly
all such sectional curvatures are positive). This fact implies e∞n = ∂z, for if
Ric∞(e∞n , e

∞
n ) > 0, then Ric∞ would have no zero eigenvalues, and hence

g∞ cannot split off a line. As a consequence, the radial distance function r,
after scaling, converges to z locally uniformly.

According to the argument above, we have that Nn−1 has nonnegative
curvature operator and has positive curvature operator at one point y0. It
then follows that Nn−1 is compact (c.f. [38]) and is a round space form
(c.f. [8]). Next, we show Nn−1 must be the standard sphere. For the sake of
convenience we write τ−1

k g(τk) = dr2 + ρk(r)
2gSn−1 . Since

Rk(e
(k)
i , e

(k)
j , e

(k)
j , e

(k)
i ) → R∞(e∞i , e

∞
j , e

∞
j , e

∞
i ) := K > 0

for all i ̸= j and i, j ̸= n, we have that at xk

1− ρ̇2k
ρ2k

→ K > 0.

Consequently ρ2k is bounded from above by 2K−1 at xk for all k large. Note
that the convergence of the Ricci flows is in the locally smooth sense, we
actually have ρ2k is bounded by 2K−1 in larger and larger domains centered
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at xk. It follows that the radii of the S
n−1 factor, after scaling, is uniformly

bounded, and one sees longer and longer necks Sn−1 × I with bounded radius
near xk. Hence N

n−1 × R is diffeomorphic to S
n−1 × R, and consequently is

isometric to the standard S
n−1 × R. Now we have the following Proposition.

Proposition 4.2. A rotationally symmetric κ-solution satisfies Assump-
tion A.

Proposition 4.3. Let (M, g(t), O)t∈(−∞,0] be a rotationally symmet-
ric κ-solution. There exists a sequence of times tk → −∞, such that
(M, gk(t), O)t∈(−∞,0] converges to the Bryant soliton. Here gk(t) = Qkg(tk +

tQ−1
k ) and Qk = R(O, tk).

Proof. Since g(t) is of Type II, we can apply Hamilton’s dilation procedure
[28] to choose a sequence of space-time points (xk, tk), such that the limit of
(M, ḡk(t), xk)t∈(−∞,0] is a steady soliton, here ḡk(t) = Q̄kg(tQ̄

−1
k + tk) and

Q̄k = R(xk, tk).
We claim that dḡk(0)(xk, O) must be bounded. Suppose it is not, the

limit contains a geodesic line that arises from the geodesic rays emanating
from O and passing through xk, and hence splits. By Theorem 1.3, the limit
Ricci steady is the standard shrinking cylinder; this is a contradiction.

Since dḡk(0)(xk, O) is bounded, by Perelman’s bounded curvature at
bounded distance theorem, the two different dilations (M, ḡk(t), xk)t∈(−∞,0]

and (M, gk(t), O)t∈(−∞,0], where gk(t) = Qkg(tk + tQ−1
k ) and Qk = R(O, tk),

are equivalent, since the ratios of their scaling factors are bounded from
above and below, and the distances between their base points are bounded.

It follows that the limit of (M, gk(t), O)t∈(−∞,0] is also a steady soliton.
Since it is rotationally symmetric, it must be the Bryant soliton. □

We let Rmax(t) be the supremum of scalar curvature of (M, g(t)) and
define

R = lim
t→−∞

Rmax(t).

Note that by Hamilton’s trace Harnack, we have ∂R
∂t

≥ 0, hence Rmax(t)
is increasing in t. It follows that the above limit always exists, but could
possibly be 0.

Corollary 4.4. Assume R > 0. Let {ti}∞i=1 be an arbitrary sequence such
that ti→−∞. Then the (not rescaled) sequence {(M, g(t+ti), O)t=(−∞,0]}∞i=1
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converges, after passing to a subsequence, to the Bryant soliton with maxi-
mum scalar curvature being equal to R.

Proof. By passing to a subsequence, we can assume

R ≤ Rmax(ti + i) ≤ R+ i−1.

Next, we choose xi such that

R(xi, ti) ≥ Rmax(ti)− i−1 ≥ R− i−1.

Obviously, the sequence {(M, g(t+ ti), (xi, 0))t∈(−∞,i]}∞i=1 converges to a
nonnegatively curved eternal solution (M∞, g∞(t), (x∞, 0))t∈(−∞,+∞) with
R∞ ≤ R everywhere and R∞(x∞, 0) = R. By Hamilton [26], (M∞, g∞)
is a steady Ricci soliton with maximum scalar curvature being R. Fur-
thermore, by the same argument as in the proof of Proposition 4.3, we
have that dti(xi, O) must be uniformly bounded, and hence {(M, g(t+
ti), (xi, 0))t∈(−∞,i]}∞i=1 and {(M, g(t+ ti), (O, 0))t∈(−∞,i]}∞i=1 have the same
limit. □

4.3. Construction of the barriers

In this subsection, we extend the barriers constructed in section 2 of [12] to
all dimensions. We make use of the following half-complete rotationally sym-
metric steady soliton constructed in Proposition 2.2 of [1] (see also Bryant
[18] for the case of dimension three).

Theorem 4.5. There is a rotationally symmetric steady soliton singular
at the tip and asymptotic to the Bryant soliton at infinity. If we write the

metric as g =
1

ϕ(r)
dr ⊗ dr + r2gSn−1, then ϕ satisfies the equation

ϕ(r)ϕ′′(r)− 1

2
(ϕ′(r))2 + (n− 2)

ϕ′(r)

r

− ϕ(r)ϕ′(r)

r
+

2(n− 2)

r2
ϕ(r)

(

1− ϕ(r)
)

= 0.

Furthermore,

ϕ(r) → +∞ as r → 0,(4.4)

ϕ(r) = (n− 2)2r−2 − (n− 5)(n− 2)3r−4 +O(r−6), as r → ∞.(4.5)
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Remark. We sketch how to obtain the accurate asymptotic behavior as
stated in (4.5). If we write the warped product as g = ds2 + ψ(s)2gSn−1 and
let

x = ψ2, y = (ψ′)2, z = ψψ′′,

then in dimension n the formulas (3.1) and (3.2) in [18] become

0 = xdy − zdx(4.6)

= 2xydz −
(

z2 + 2yz + (n− 2)y2 − (n− 2)z − (n− 2)y
)

dx,

Cxy = −(n− 2)y2 − 2yz + z2 − (n− 3)(n− 2)y(4.7)

− 2(n− 2)z + (n− 2)2,

where (4.7) is a first integral of (4.6). Note that x = r2 and y = ϕ. As
indicated by (2.14) and (2.15) in [1], the singular soliton described in
the above theorem corresponds an integral curve of (4.6) that approaches
(x, y, z) = (+∞, 0, 0). By fixing a proper scale we may let C = 1 in (4.7),
and this gives the following formula that is equivalent to (4.5)

y = (n− 2)2x−1 − (n− 5)(n− 2)3x−2 +O(x−3), as x→ ∞.

As in [12], we fix r∗ > 0 such that ϕ(r∗) = 2 and consider a smooth
function ζ(s) defined on (0, 98

√
n− 2 ], satisfying

d

ds

[

(

(n− 2)s−2 − 1
)−1

ζ(s)
]

=
(

(n− 2)s−2 − 1
)−2

(

2(n− 2)3s−3 − 5(n− 2)
7

2 s−6 − 1

2
(n− 2)−13s27

)

.

Since we have

(

(n− 2)s−2 − 1
)−2

(

2(n− 2)3s−3 − 5(n− 2)
7

2 s−6 − 1

2
(n− 2)−13s27

)

= −5(n− 2)
3

2 s−2 +O(1),

when s→ 0, and

(

(n− 2)s−2 − 1
)−2

(

2(n− 2)3s−3 − 5(n− 2)
7

2 s−6 − 1

2
(n− 2)−13s27

)

=
1

2
(n− 2)

3

2

(

n− 19

4

)

(
√
n− 2− s)−2 +O(1),
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as s→
√
n− 2. It follows that

ζ(s) = 5(n− 2)
5

2 s−3 +O(s−2), as s→ 0,

and that ζ(s) is smooth at s =
√
n− 2, and

ζ(
√
n− 2) = (n− 2)

(

n− 19

4

)

Lemma 4.6. There exists a large number N <∞, depending only on n,
such that the following holds. Let

ψa(s) = ϕ(as)− (n− 2)a−2 + a−4ζ(s)

for s ∈ [Na−1, 98
√
n− 2 ], then

ψa(s)ψ
′′
a(s)−

1

2
(ψ′

a(s))
2 + (n− 2)

ψ′
a(s)

s
− ψa(s)ψ

′
a(s)

s

+
2(n− 2)

s2
ψa(s)(1− ψa(s))− sψ′

a(s) < 0

for s ∈ [Na−1, 98
√
n− 2 ] and for all a large enough.

Proof. ζ satisfies the following equation

(n− 2)s−2
(

sζ ′(s) + 2ζ(s)
)

− sζ ′(s)

= s
(

(n− 2)s−2 − 1
)2 d

ds

[

(

(n− 2)s−2 − 1
)−1

ζ(s)
]

= 2(n− 2)3s−2 − 5(n− 2)
7

2 s−5 − 1

2
(n− 2)−13s28.

With this we compute

(n− 2)s−2
(

sψ′
a(s) + 2ψa(s)

)

− sψ′
a(s)

= (n− 2)s−2
(

asϕ′(as) + 2ϕ(as)
)

− asϕ′(as)− 2(n− 2)2a−2s−2

+

(

2(n− 2)3a−4s−2 − 5(n− 2)
7

2a−4s−5 − 1

2
(n− 2)−13a−4s28

)

= (n− 2)s−2(asϕ′(as) + 2ϕ(as))− 4(n− 5)(n− 2)3a−4s−4

+

(

2(n− 2)3a−4s−2 − 5(n− 2)
7

2a−4s−5 − 1

2
(n− 2)−13a−4s28

)

+O(a−6s−6),
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ψa(s)ψ
′′
a(s)−

1

2
(ψ′

a(s))
2 − s−2ψa(s)

(

sψ′
a(s) + 2(n− 2)ψa(s)

)

= a2ϕ(as)ϕ′′(as)− 1

2
a2(ϕ′(as))2 − s−2ϕ(as)

(

asϕ′(as) + 2(n− 2)ϕ(as)
)

− (n− 2)ϕ′′(as)− 2(n− 2)3a−4s−2 + (n− 2)a−2s−2
(

asϕ′(as)

+ 4(n− 2)ϕ(as)
)

+O(a−6s−7)

= a2ϕ(as)ϕ′′(as)− 1

2
a2(ϕ′(as))2 − s−2ϕ(as)

(

asϕ′(as) + 2(n− 2)ϕ(as)
)

− 2(n− 2)3a−4s−2 + 4(n− 4)(n− 2)3a−4s−4 +O(a−6s−7).

Adding them up and using the equation of ϕ(r), we have

ψa(s)ψ
′′
a(s)−

1

2
(ψ′

a(s))
2 + (n− 2)

ψ′
a(s)

s
− ψa(s)ψ

′
a(s)

s

+
2(n− 2)

s2
ψa(s)(1− ψa(s))− sψ′

a(s)

= 4(n− 2)3a−4s−4 − 5(n− 2)
7

2a−4s−5 − 1

2
(n− 2)−13a−4s28 +O(a−6s−7)

for all s ∈ [r∗a
−1, 98

√
n− 2 ]. Apparently, if we fix N large enough,

then the right-hand-side of the above equation is negative for all s ∈
[Na−1, 98

√
n− 2 ], this completes the proof. □

Next, we construct the barrier on [r∗a
−1, Na−1]. Let βa(r) be the solu-

tion to the following equation

βa(r)ϕ
′′(r) + β′′a(r)ϕ(r)− ϕ′(r)β′a(r) +

n− 2

r
β′a(r)

− 1

r

(

βa(r)ϕ
′(r) + β′a(r)ϕ(r)

)

+
2(n− 2)

r2
(

1− 2ϕ(r)
)

βa(r) = −1

with prescribed condition

βa(N) = a−3ζ(a−1N)− (n− 2)a−1,

β′a(N) = a−4ζ ′(a−1N).

Seeing that the above prescribed data for βa are bounded independent of
a, and ϕ is a smooth function on [r∗, N ], we have that βa, β

′
a, and β′′a are

bounded independent of a on the interval [r∗, N ].
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Lemma 4.7. Let ψa(s) = ϕ(as) + a−1βa(as) for all s ∈ [r∗a
−1, Na−1]. We

have that for all a large enough

ψa(s)ψ
′′
a(s)−

1

2
(ψ′

a(s))
2 + (n− 2)

ψ′
a(s)

s
− ψa(s)ψ

′
a(s)

s

+
2(n− 2)

s2
ψa(s)(1− ψa(s))− sψ′

a(s) < 0

whenever s ∈ [r∗a
−1, Na−1].

Proof. By using the equation of ϕ and βa, we have

ψa(s)ψ
′′
a(s)−

1

2
(ψ′

a(s))
2 + (n− 2)

ψ′
a(s)

s
− ψa(s)ψ

′
a(s)

s

+
2(n− 2)

s2
ψa(s)(1− ψa(s))

= a2
[

ϕ(as)ϕ′′(as)− 1

2

(

ϕ′(as)
)2

+ (n− 2)
ϕ′(as)

as
− ϕ(as)ϕ′(as)

(as)2

+
2(n− 2)

(as)2
ϕ(as) (1− ϕ(as))

]

+ a

[

βa(as)ϕ
′′(as) + β′′a(as)ϕ(as)− ϕ′(as)β′a(as) +

n− 2

as
β′a(as)

− 1

as

(

βa(as)ϕ
′(as) + β′a(as)ϕ(as)

)

+
2(n− 2)

(as)2
(1− 2ϕ(as))βa(as)

]

+ βa(as)β
′′
a(as)−

1

2
(β′a(as))

2 − 1

as
βa(as)β

′
a(as)−

2(n− 2)

(as)2
(βa(as))

2

= −a+ βa(as)β
′′
a(as)−

1

2
(β′a(as))

2 − 1

as
βa(as)β

′
a(as)

− 2(n− 2)

(as)2
(βa(as))

2

≤ −a+ C.

On the other hand

sψ′
a(s) = asϕ′(as) + sβ′a(as) ≥ −C,

the conclusion follows immediately if we take a≫ C large enough. □

We summarize the above two lemmas in the following proposition.
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Proposition 4.8. The function

ψa(s) =

{

ϕ(as)− (n− 2)a−2 + a−4ζ(s), for s ∈ [Na−1, 98
√
n− 2 ]

ϕ(as) + a−1βa(as), for s ∈ [r∗a
−1, Na−1]

is continuously differentiable, and satisfies the inequality

ψa(s)ψ
′′
a(s)−

1

2
(ψ′

a(s))
2 + (n− 2)

ψ′
a(s)

s
− ψa(s)ψ

′
a(s)

s

+
2(n− 2)

s2
ψa(s)(1− ψa(s))− sψ′

a(s) < 0,

for all s ∈ [r∗a
−1, 98

√
n− 2 ] and for all a large enough.

Proposition 4.9. There is a small positive constant θ, depending only on
n, such that

ψa(s) ≥ (n− 2)a−2
(

(n− 2)s−2 − 1
)

+
n− 2

16
a−4

for all s ∈ [
√
n− 2− θ,

√
n− 2 + θ]. In particular, if a is sufficiently large,

then ψa(s) ≥ n−2
32 a

−4 for all s ∈ [r∗a
−1,

√
n− 2(1 + 1

100a
−2)].

Proof. Since

ζ(
√
n− 2)− (n− 5)(n− 2) = (n− 2)(n− 19

4
)− (n− 5)(n− 2) =

n− 2

4
,

we can chose θ > 0 small enough such that ζ(s)− (n− 5)(n− 2)3s−4 ≥ n−2
8

for all s ∈ [
√
n− 2− θ,

√
n− 2 + θ]. Therefore

ψa(s) = ϕ(as)− (n− 2)a−2 + a−4ζ(s)

= (n− 2)a−2
(

(n− 2)s−2 − 1
)

+ a−4
(

ζ(s)− (n− 5)(n− 2)3s−4
)

+O(a−6)

≥ (n− 2)a−2
(

(n− 2)s−2 − 1
)

+
n− 2

8
a−4 +O(a−6),

for all s ∈ [
√
n− 2− θ,

√
n− 2 + θ]. Hence, if a is sufficiently large, we have

ψa(s) ≥ (n− 2)a−2
(

(n− 2)s−2 − 1
)

+
n− 2

16
a−4

for all s ∈ [
√
n− 2− θ,

√
n− 2 + θ]. In particular ψa(s) ≥ n−2

32 a
−4 for all

s ∈ [
√
n− 2− θ,

√
n− 2(1 + 1

100a
−2)], when a is large enough. On the other
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hand, it is easy to see that ψa(s) ≥ n−2
32 a

−4 for all s ∈ [r∗a
−1,

√
n− 2− θ] if

a is sufficiently large. This completes the proof. □

Since the ancient solution is of Type II, we have that the size of non-
neck-like region must be small compared to

√
−t. As in [12], we also have

the following.

Lemma 4.10 (Lemma 2.7 in [12]). Given any δ > 0, we have
lim inft→−∞ supr≥δ

√
−t u(r, t) = 0.

Proposition 4.11 (Proposition 2.8 in [12]). There exists a large con-
stant K such that the following holds. Suppose a ≥ K and t̄ ≤ 0. Suppose

that r̄(t) is a function satisfying
∣

∣

∣

r̄√
−2(n−2)t

− 1
∣

∣

∣
≤ 1

100a
−2 and u(r̄(t), t) ≤

n−2
32 a

−4 for all t ≤ t̄. Then u(r, t) ≤ ψa(
r√
−2t

) for all t ≤ t̄ and r∗a
−1

√
−2t ≤

r ≤ r̄(t). In particular u(r, t) ≤ Ca−2 for all t ≤ t̄ and 1
2

√

−2(n− 2)t ≤ r ≤
r̄(t).

Proposition 4.12 (Proposition 2.9 in [12]). Suppose there exists
r̄(t) such that r̄(t) =

√

−2(n− 2)t+O(1) and u(r̄(t), t) ≤ O( 1
−t
) as t→

∞. Then we can find a large constant K ≥ 100n2, such that u(r, t) ≤
ψa(

r√
−2t+Ka2

) whenever a ≥ K, t ≤ −K2a2, and r∗a
−1

√
−2t+Ka2 ≤ r ≤

r̄(t). In particular, if t = −K2a2, then the set {r ≤ 1
2

√

−2(n− 2)t} ⊂
(M, g(t)) has diameter at least ∼ (−t).

4.4. Uniqueness of rotationally symmetric κ-solutions

Once we have the valid barriers constructed in the last subsection, the re-
maining arguments are the same as section 3 and section 4 in Brendle [12].
In this section, we will outline the main ideas of the proof of Theorem 1.5,
and it is left to the readers to check the details following [12].

We fix a point q in the rotationally symmetric κ-solution such that q is
the center of an ε-neck when t = 0; the existence of such q is guaranteed by
Proposition 3.9. Let r̄(t) denote the radius of the product factor Sn−1 that
passes through q at time t. By using the neck stability of Kleiner-Lott [31]
(Theorem 3.11 in our case), one can show that (q, t) is always the center of
an ε-neck and that the scaled limit along (q, t) is the standard cylinder as
the asymptotic shrinker, and this implies when t→ −∞

r̄(t)
√

−2(n− 2)t
→ 1.(4.8)
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Furthermore, since q is a fixed point in the Ricci flow, we have

d

dt
r̄(t) = −v(r̄, t) = −1

r̄

(

(n− 2)
(

1− u(r̄, t)
)

− 1

2
r̄ur(r̄, t)

)

.

Let the function F (z, t) be defined by

F

(

∫ ρ

r̄(t)
u−

1

2 (r, t)dr, t

)

= ρ.

In other words, F (z, t) stands for the radius of the sphere that has distance z
from the point q. By analyzing the equations satisfied by F (z, t) around (0, t)
when −t is large, one obtains a more accurate behavior of r̄(t) than (4.8).
Now we summarize some properties of F (z, t).

Proposition 4.13 (Proposition 3.3 in [12]). The function F satisfies
the equation

0 = Ft(z, t)− Fzz(z, t) +
n− 2 + (Fz(z, t))

2

F (z, t)

+ (n− 1)Fz(z, t)

(

−Fz(0, t)F (0, t)
−1 +

∫ F (z,t)

F (0,t)

u
1

2 (r, t)

r2
dr

)

.

Corollary 4.14 (Corollary 3.4 in [12]).

∣

∣

∣

∣

Ft(z, t)− Fzz(z, t) +
n− 2 + (Fz(z, t))

2

F (z, t)

∣

∣

∣

∣

≤ (n− 1)F (0, t)−1Fz(0, t)Fz(z, t)

+ (n− 1)max {Fz(z, t), Fz(0, t)}
∣

∣

∣

∣

1

F (z, t)
− 1

F (0, t)

∣

∣

∣

∣

Fz(z, t).

Let τ < 0, we define the following rescaling of F .

G(ξ, τ) := e
τ

2F (e−
τ

2 ξ,−e−τ )−
√

2(n− 2),

we then have Gξ(ξ, τ) > 0 and Gξξ(ξ, τ) ≤ 0, since u
1

2 > 0 and ur ≤ 0, re-
spectively. Furthermore, G(ξ, τ) → 0 locally smoothly as τ → −∞ because
of (4.8).
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Proposition 4.15 (Proposition 3.6 in [12]). G(ξ, τ) satisfies

∣

∣

∣

∣

∣

Gτ (ξ, τ)−Gξξ(ξ, τ) +
1

2
ξGξ(ξ, τ)−G(ξ, τ) +

(Gξ(ξ, τ))
2 + 1

2(G(ξ, τ))
2

√

2(n− 2) +G(ξ, τ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Gτ (ξ, τ)−Gξξ(ξ, τ) +
1

2
ξGξ(ξ, τ)

− 1

2

(
√

2(n− 2) +G(ξ, τ)
)

+
n− 2 + (Gξ(ξ, τ))

2

√

2(n− 2) +G(ξ, τ)

∣

∣

∣

∣

∣

≤ n− 1
√

2(n− 2) +G(0, τ)
Gξ(0, τ)Gξ(ξ, τ)

+ (n− 1)

∣

∣

∣

∣

∣

1
√

2(n− 2) +G(ξ, τ)
− 1
√

2(n− 2) +G(0, τ)

∣

∣

∣

∣

∣

×max {Gξ(ξ, τ), Gξ(0, τ)}Gξ(ξ, τ).

It is important to see that the principal part in the equation of G is also

Gτ (ξ, τ)−Gξξ(ξ, τ) +
1

2
ξGξ(ξ, τ)−G(ξ, τ).

Therefore, one may follow the same argument as in [12] to obtain

|G(0, τ)| ≤ O(e
τ

2 ), Gξ(0, τ) ≤ O(e
τ

2 ),

and consequently

∣

∣

∣
r̄(t)−

√

−2(n− 2)t
∣

∣

∣
≤ O(1), u(r̄(t), t) ≤ O( 1

−t
).

Applying Proposition 4.12 to r̄(t) one obtains the following.

Proposition 4.16 (Proposition 3.11 in [12]). For −t large, the
set {r ≤ 1

2

√

−2(n− 2)t} ⊂ (M, g(t)) has diameter ∼ (−t). Moreover,
limt→−∞Rmax(t) > 0

After showing that

R := lim
t→−∞

Rmax(t) > 0,

we proceed to work with the quantity R+ u−1v2. Note that if we are on a
steady soliton, that is, if u is constant in time, then R+ u−1v2 = R+ |V |2 ≡
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const everywhere. We collect some equations satisfied by R+ u−1v2, they
are analogous to the correspondent equations in [12] and their proofs are
straightforward computations.

Proposition 4.17. We have the following equations and inequalities.

Rt −
n− 1

r
u−1utv ≥ 0.(4.9)

(R+ u−1v2)t +
v

n− 1

(

1 +
r

n− 1
u−1v

)−1

(R+ u−1v2)r ≥ 0(4.10)

(R+ u−1v2)r = −n− 1

r

(

1 +
r

n− 1
u−1v

)

u−1ut(4.11)

(R+ u−1v2)t = u(R+ u−1v2)rr +
n− 1

r
u(R+ u−1v2)r(4.12)

+O(r)(R+ u−1v2)r.

Following the same argument as in [12] one may obtain

R+ u−1v2 ≥ R,
(R+ u−1v2)r ≥ 0,

everywhere in space-time and furthermore

lim
r→∞

r2u(r, t) = (n− 2)2R−1,

whenever −t is large enough. Since we also have limr→∞ u(r, t) = 0 and
limr→∞ rur(r, t) = 0, where the second equation follows from the fact that
the radial component of the Ricci curvature is very small compared to its
orbital components on an ε-neck, by using the identity

R+ u−1v2 =
u−1

r2

(

n− 2 + u− 1

2
rur

)2

− n− 1

r2
(n− 2 + u),

we obtain that when −t is large

lim
r→∞

R+ u−1v2 =
(n− 2)2

(n− 2)2R−1
= R.

Summarizing the above facts, we have

R+ u−1v2 ≡ R,
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when −t is large. Finally, since

(R+ u−1v2)r = −n− 1

r

(

1 +
r

n− 1
u−1v

)

u−1ut,

we have ut ≡ 0 when −t is large. This implies the κ-solution is a rotationally
symmetric steady soliton, hence the Bryant soliton.
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