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Using standard results from higher (secondary) index theory,
we prove that the positive scalar curvature bordism groups
Posspin4n (G× Z) are infinite for any n ≥ 1 and G a group with non-
trivial torsion. We construct representatives of each of these classes
which are connected and with fundamental group G× Z. We get
the same result for Posspin4n+2(G× Z) if G is finite and contains an
element which is not conjugate to its inverse. This generalizes the
main result of Kazaras, Ruberman, Saveliev, “On positive scalar
curvature cobordism and the conformal Laplacian on end-periodic
manifolds” to arbitrary even dimensions and arbitrary groups with
torsion.

1. Introduction

The classification of Riemannian metrics of positive scalar curvature (up
to suitable natural equivalence relations) is an active object of study in
geometry. One popular way to organize this uses the Stolz positive scalar
curvature exact sequence (compare [11, Proposition 1.27]

(1.1) · · · → Posspinn (BΓ) → Ωspin
n (BΓ) → Rspin

n (BΓ) → Posspinn−1(BΓ) → · · ·

Here, Posspinn (BΓ) is one of our main objects of study, the group of closed n-
dimensional spin manifolds (M, f, g) with a reference map f : M → BΓ and a
Riemannian metric g of positive scalar curvature. The equivalence relation is
bordism, where the bordisms have to carry the corresponding structure. We
use throughout the usual convention that Riemannian metrics on manifolds
with boundary (e.g. on a bordism) must have product structure near the
boundary.

In this setup, Γ is just an arbitrary group. If the starting point is a
connected smooth manifold M , typically one chooses Γ = π1(M). Moreover,
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BΓ is a classifying space for Γ and the map f contains essentially the same
information as the homomorphism f∗ : π1(M) → Γ.

The group Ωspin(BΓ) is the usual bordism group, whereas Rspin
n (BΓ) is

Stolz’ R-group, defined as the set of bordism classes (W, f, g) where W is a
compact (n+ 1)-dimensional spin-manifold, possibly with boundary, with a
reference map f : W → BΓ, and with a positive scalar curvature metric on
the boundary when the latter is non-empty.

Our main goal is to show that the positive scalar curvature bordism
groups Posspinn (BΓ) are rich (more precisely, map onto an infinite cyclic
group) in new situations. Because the starting point often is a fixed con-
nected manifold M with fundamental group Γ, we will show in addition
that the infinitely many different non-trivial representatives can be chosen
to be connected and with fundamental group Γ (mapped bijectively under
the reference map to BΓ), even in dimension 4. Indeed, we are taking up
the main result [9, Theorem 1] of Kazaras, Ruberman, and Saveliev, which
says

Theorem 1.2. Let n = 4 or 6 and {1} ≠ G be a fundamental group of
a 3-dimensional spherical space form if n = 4, or more generally a finite
group with at least one element not conjugate to its inverse if n = 6. Set
Γ := G× Z.

Then Posspinn (BΓ) contains infinitely many elements, represented by
maps f : M → BΓ where M is connected and f induces an isomorphism
in π1.

We improve that theorem by allowing more general groups and all even
dimensions bigger than 2.

Theorem 1.3. Let n > 2 be an even integer. If n = 4k is divisible by 4,
let G be an arbitrary finitely presented group which contains a non-trivial
torsion element. If n = 4k + 2 let G be a finite group such that at least one
of its elements is not conjugate to its inverse. Set Γ := G× Z.

Then Posspinn (BΓ) contains infinitely many elements xj, represented by
connected manifolds Mj with fundamental group Γ as in the Theorem of
Kazaras, Ruberman, and Saveliev.

Even better, we have a non-trivial homomorphism Indρ : R
spin
n+1(BΓ) → R

and the xj lift to elements in Rspin
n+1(BΓ) whose image under Indρ form an

infinite cyclic subgroup of R.

Theorem 1.2 of [9] is based on the beautiful, but rather complicated
and technical index theory for manifolds with periodic ends. The associated
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bordism invariance is very delicate and uses, for the time being, minimal hy-
persurface techniques which cause the dimension restriction in Theorem 1.2

The main point we want to make in this note is that this delicate theory
is actually not necessary for the result at hand. Instead, it can be derived
from well known (and not too complicated) results in higher index theory,
and along the way one gets the more general result. Related techniques and
results are developed in [18] which can be used to get even stronger results,
compare the discussion below.

2. Secondary higher index

The distinction of bordism classes of metrics of positive scalar curvature
in the literature typically relies on secondary index invariants of the Dirac
operator, and this is precisely how we prove the main part of Theorem 1.3.

Recall that the classical (higher) index of the Dirac operator can be
defined for closed manifolds, but also for manifolds with boundary provided
the boundary operator is invertible [11, Section 2.2]. In particular, we have
a commutative diagram

(2.1)

Ωspin
n (BΓ) −−−−→ Rspin

n (BΓ)




y





y

Ind

Kn(BΓ)
µ

−−−−→ Kn(C
∗Γ)

Here, µ is the Baum-Connes assembly map which in this setup is not an
isomorphism if Γ is not torsion-free.

This diagram is the easy and elementary part of the diagram “mapping
the Stolz exact sequence to analysis” developed in [11]. Recall that Γ =
G× Z. The diagram (2.1) and the corresponding one forG are closely related
via a kind of Künneth theorem. Indeed, we have a transformation, given by
product with S1 or its fundamental K-theory class (and using that BΓ =
BG× S1 with S1 = BZ)

(2.2)

Ωspin
n (BG) −−−−→ Rspin

n (BG) Ωspin
n+1(BΓ) −−−−→ Rspin

n+1(BΓ)




y





y

Ind
×[S1]
−−−−→





y





y

Ind

Kn(BG)
µ

−−−−→ Kn(C
∗G) Kn+1(BΓ)

µ
−−−−→ Kn+1(C

∗Γ)

Lemma 2.3. After removing the term Rspin
∗ (·), the map ×[S1] of (2.2) is

an embedding as direct summand of the left diagram into the right. In other
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words, the maps ×[S1] are injective and the map µ is compatible with a
suitable direct sum decomposition of the right hand side into the left hand
side and a complement.

Proof. This is certainly well known. For the convenience of the reader we
give here a detailed proof.

For a multiplicative generalized homology theory E∗ and for natu-
ral transformations of such, in particular for Ωspin

∗ → K∗, this is a conse-
quence of the natural Künneth theorem for the special product X × S1

or equivalently of the suspension isomorphism. The desired splitting of

E∗(X)
×[S1]
−−−→ E∗+1(X × S1) is obtained as the composition

E∗+1(X × S1)
pr
−→ Ẽ∗+1(X × S1/X × ∗)

=
−→ Ẽ∗+1(Σ(X+))

σ−1

−−→
∼=

Ẽ∗(X+) = E∗(X).

Here pr is the canonical projection, X+ is the disjoint union of X and an
additional basepoint, Σ(X+) its reduced suspension, and σ is the suspen-
sion isomorphism. The complementary summand is the (injective) image
i∗(E∗+1(X)) ⊂ E∗+1(X × S1) for i : X →֒ X × S1;x 7→ (x, ∗) (or the exte-
rior product with the unit 1), so that we get in particular the direct sum
decomposition

K∗+1(X × S1) = K∗+1(X)⊗ 1⊕K∗(X)⊗ [S1].

For the C∗-algebra K-theory, the Künneth theorem [15, Theorem 4.1]
specializes in our situation to the isomorphism (given by external ten-
sor product) K∗(C

∗G)⊗K∗(C
∗Z) → K∗(C

∗G⊗ C∗Z) = K∗(C
∗Γ). Using

K∗(C
∗Z) = 1 · Z⊕ [S1] · Z with unit 1 ∈ K0 and [S1] ∈ K1(C

∗Z), the im-

age of [S1] under the Baum-Connes isomorphism µS1 : K∗(S
1)

∼=
−→ K∗(C

∗Z),
we obtain the splitting

K∗+1(C
∗Γ) = K∗+1(C

∗G)⊗ 1⊕K∗(C
∗Γ)⊗ [S1].

The Baum-Connes map µ is compatible with external products, proving the
rest of the claims. □

The strategy is now the following.

(1) We recall a suitable homomorphism Indρ : Kn(C
∗G) → R,

a delocalized index. “Delocalized” means in particular that
Indρ ◦µ : Kn(BG) → R is zero.
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(2) We will construct an appropriate element [W, f, g] ∈ Rspin
n (BG) with

Indρ(Ind[W, f, g]) ̸= 0. It generates an infinite cyclic subgroup of

Rspin
n (BG) detected in Kn(C

∗G) and then in R as image of the maps
Ind and Indρ ◦ Ind, respectively.

(3) By the commutativity of (2.1) and using item (1), no non-trivial ele-
ment of this infinite cyclic subgroup is in the image of Ωspin

n (BG) →
Rspin

n (BG), and therefore this infinite cyclic subgroup is mapped in-
jectively to Posspinn−1(BG).

Finally, we take the Cartesian product with S1.

Corollary 2.4. The element W × S1 generates an infinite cyclic subgroup
of Rspin

n+1(BΓ) detected in Kn+1(C
∗Γ) as image of the map Ind.

None of its non-zero elements is in the image of Ωspin
n+1(BΓ), and so this

infinite cyclic group generated by W × S1 injects into Posspinn (BΓ).

Proof. This follows from the commutativity of (2.1) and the fact that the
Künneth map (2.2) gives an inclusion as direct summand of the whole map

Kn(BG)
µ
−→ Kn(C

∗G) into Kn+1(BΓ)
µ
−→ Kn+1(C

∗Γ). □

It remains to construct W and Indρ with the appropriate properties. In
all cases, W will be a null bordism of a disjoint union of lens spaces or lens
space bundles, we describe this explicitly later.

Case n ≡ 0 (mod 4). Essentially, this case has been treated in [10] and
we refer to this paper for more details. We choose Indρ : K0(C

∗G) → R to be
equal to the difference of the homomorphisms induced by the standard trace
and by the trivial representation. Recall that the first one gives the L2-index
and it is induced by the canonical trace trG : C∗G → C, while the second
one gives the ordinary index and is induced by the trivial homomorphism
G → {1}.

It is a direct consequence of Atiyah’s L2-index theorem [1, (1.1)] that
Indρ defined in this way vanishes on the image of µ.

Small caveat: we have to use a C∗-completion C∗G of C[G] such that
the trivial homomorphism extends to this completion. For this, one could
use the maximal C∗-completion or a smaller, more geometric one (based on
the direct sum of the regular representation and the trivial representation).
The relevant theory is well known, compare e.g. [14].

We have to compute Indρ for a compact manifold W of dimension n
with boundary L of dimension n− 1, where the boundary is equipped with a
metric of positive scalar curvature, and whereW is equipped with a reference
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map to BG. Again, this is a classical result, an easy special case of the (L2)-
Atiyah-Patodi-Singer index theorem [13]: this index is the Cheeger-Gromov
L2-ρ-invariant of the positive scalar curvature metric of the boundary L,
where we use the G-covering pulled back via the map to BG.

Finally, for a cyclic group Cp of order p which we choose to be prime,
the L2-ρ-invariant is just the Atiyah-Patodi-Singer ρ-invariant associated
to α := 1

pρreg − ρ1, the linear combination of the trivial and the regular
representation in the complexified representation ring.

For the group G with non-trivial torsion element, we choose an embed-
ding ι : Cp → G with induced map Bι : BCp → BG. The L2-ρ-invariant is

compatible with “induction”, meaning that for a map L → BCp
Bι
−→ BG

the L2-ρ-invariants with respect to the covering pulled back from BCp

and from BG coincide. In this situation, therefore, ρ(2)(L) = ρα(L), see
[10, Lemma 2.22].

Finally, we come to the explicit construction of W . We choose for the
boundary L the disjoint union of an appropriate number NL of copies of the
lens space L(p; 1, . . . , 1), the quotient of Sn−1 ⊂ Cn/2 by the action of Cp

where the generator acts by multiplication with a fixed p-th root of unity,
equipped with the quotient metric gL and with map u : L(p; 1, . . . , 1) → BCp

inducing an isomorphism on the fundamental group. This space has a spin
structure (unique if p > 2). The computation of the η-invariant of the Dirac
operator is classical, we get:

Lemma 2.5.

ρ(2)(L(p, 1, . . . , 1)) = ρα(L) = (−1)
n

4
+1 1

p

p−1
∑

j=1

1

|ζj − 1|n/2
̸= 0.

Here, ζ is a primitive p-th root of unity.

Proof. This follows from the equivariant Lefschetz fixed point formula of
Donnelly [4, Proposition 4.1] (applied to Sn−1 bounding an n-dimensional
hemisphere), as observed in [2, Lemma 2.3], compare also [5, Lemma 2.1] or
[6]. Note that the formulas hold in R and not only in R/Z because we have
positive scalar curvature and hence no harmonic spinors. We use that for
our virtual representation ρ we have ρ(g) = −1 if g ̸= e and ρ(e) = 0. □

The group Ωspin
n−1(BCp) is finite because n− 1 is odd, as one deduces

readily from the Atiyah-Hirzebruch spectral sequence. Therefore, we find
NL and a spin null bordism U : W → BCp of L := NL · L(p; 1, . . . , 1) =
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⊔NL

i=1 L(p; 1, . . . , 1). Together with the metric g on the boundary this rep-

resents the desired element (W,U, g) of Rspin
n (BCp).

Remark 2.6. In particular, [2, Theorem 0.1] —the non-triviality of
Rspin

n (BCp)— extends to n = 4 without any difficulty. Indeed, Botvinnik
and Gilkey could have stated the result in this form and their proof would
have worked. However, their main focus was on [2, Theorem 0.2] —that
the space of metrics of positive scalar curvature on a given manifold has
infinitely many component. And this latter result we still can only prove for
dimensions ≥ 5.

Case n ≡ 2 (mod 4). Here, we have nothing new to offer, the construc-
tion of Indρ and L are given in [2]. One uses an appropriate virtual rep-
resentation ρ of dimension 0 and the associated twisted index (which then
vanishes on the image of µ) and a suitable explicitly constructed L. For the
readers convenience we recall the construction. Start with the sphere bundle
S of the bundle η ⊕ η → CP 1, where η is the tautological complex line bun-
dle over CP 1. Use the diagonal U(1)-action to divide by the action of the
cyclic subgroup Cp to obtain a manifold X. Then set L0 := X ×Kr where
K is the Kummer surface, a 4-dimensional simply connected spin manifold
with non-vanishing Â-genus. In [2, Lemma 2.3] a spin structure, positive
scalar curvature metric and classifying map to BCp are constructed for L0.
We can now continue exactly as in the case n ≡ 0 (mod 4), using L0 instead
of L(p, 1, . . . , 1) to obtain (W,U, g) in the new case. In [2], the associated η-
invariant homomorphism ηρ : Posspinn−1(BG) → R is used and computed. It is
not stated, but implicit in [2] (and a direct consequence of the Atiyah-Patodi-

Singer index theorem) that the composition Rspin
n (BG) → Posspinn−1(BG)

ηρ

−→

R equals Rspin
n (BG)

Ind
−−→ Kn(C

∗G)
Indρ

−−−→ R, so that the program described
above goes through.

Remark 2.7. The map Indρ out of Kn(C
∗G) is really just a tiny special

case of the idea to map the diagram (1.1) first to analysis/K-theory as
in (2.1) but then further to non-commutative homology, to then pair with
non-commutative cohomology, as carried out in [12] in general, and also
with a different approach in [3,17]. Very similar constructions based on non-
commutative cohomology and higher index theory, for groups constructed
even more generally than Γ = G× Z, have been used in [7] to prove non-
triviality of Posspinn (BΓ).

Remark 2.8. If one assumes something more about G, it is possible to
prove even finer results. LetG be a group with torsion. Under the assumption
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that for G holds the Strong Novikov Conjecture, namely that the assembly
map for G is rationally injective, [18, Corollary 3.13] gives a good lower
bound for the rank of Posspinn (B(G× Z)) for any n ≥ 3 and not only for its
cardinality.

On the other hand, let us consider the weaker assumption that G is
finitely embeddable into a Hilbert space (see [16, Definition 1.3]). If G con-
tains elements of pairwise different prime order {p1, . . . , pl}, then the method
of Weinberger and Yu allows to construct a free abelian subgroup of rank
l in Rspin

4k (BG) for k ≥ 1. This free abelian subgroup is mapped injectively
under Ind to K0(C

∗G)/ im(µ). Therefore, in this situation our methods ap-
ply to get, just taking Cartesian product with S1, a free abelian subgroup of
rank l in Rspin

4k+1(B(G× Z)) mapping injectively to Posspin4k (B(G× Z)). It is
worth to mention that the relevant statements (and of course also the proof)
in [16] are not completely correct. However, in [18, Section 3.2] the authors
address the gaps in the original proof of [16, Corollary 4.2] for manifolds of
dimension 4k + 3, which we are using here.

3. Positive scalar curvature bordism

To complete the proof of Theorem 1.3, one has to show that we can actu-
ally find representatives which are connected and such that the map to BΓ
induces an isomorphism π1(M) → Γ. However, this is a general and well-
known fact from the Gromov-Lawson surgery construction of positive scalar
curvature metrics and is already carried out in [9, Section 5] and [8, Section
9.3]. As we have nothing new to offer here, we don’t repeat this proof.

Remark 3.1. In dimension n ≥ 5, one can do even better: given an ar-
bitrary connected closed spin manifold M with reference map f : M → BΓ
which is an isomorphism on π1 and a manifold f : M ′ → BΓ with positive
scalar curvature metric g′ bordant toM → BΓ, one can find a metric g onM
of positive scalar curvature such that [M ′, f ′, g′] = [M,f, g] ∈ Posspinn (BΓ).
In other words: one can often choose the underlying manifoldM representing
a class in Posspinn (BΓ).

If n = 4, however, this method breaks down. Nonetheless, some trace of
this remains true, as shown in [8, Section 9]: in the above situation, one can
represent [M ′, f ′, g′] by (M̃, f̃ , g) where M̃ is the connected sum of M with
an (unspecified) number of copies of S2 × S2.
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