COMMUNICATIONS IN
ANALYSIS AND GEOMETRY
Volume 30, Number 9, 2059-{2093] 2022

A heat flow problem from Ericksen’s
model for nematic liquid crystals with
variable degree of orientation, II

CHI-CHEUNG POON

We study a heat flow problem for nematic liquid crystals with
variable degree of orientation. Let Q2 be a bounded domain in R™
with smooth boundary and C be the round cone in R x R3,

C={(s,u) ERxR>: s%=ul’}.

Under certain conditions on the double-well potential function
W (s), we prove that there exist solutions (s,u): Q x [0,00) = C
which satisfy the system

[Vul® = [Vs]? W'(s)
B 252 5 s
[Vul> = |Vs]? W'(s)
2 U=
2s s

sy = As

S

upy = Au + u,

with given initial-boundary data. Also, we prove that the solutions
are Holder continuous.
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1. Introduction

In a previous work [3], we studied a heat flow problem for nematic liquid
crystals with variable degree of orientation. After some simplifications and
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choices of material constants, the problem is equivalent to consider the ex-
istence of solutions of harmonic heat flow into the round cone with a lower
order term. Let ) be a bounded domain in R™ with smooth boundary and

C={(s,u) eRxR>: s*=|u.
We look for solutions (s,u) : Q x (0,00) — C which satisfy

2 _ 2 /
o — As— |Vu|* — | Vs . W'(s)

252 s
(1.1) ; ) f
wy = Aut |[Vul® — |Vs| u W'(s)

252 S

S

u.

The system (|1.1)) is the heat flow equation corresponding to the energy
functional

(1.2) /Q (Vs + [Val? + W(s)) da

for H' map (s,u): Q — C. In the parabolic system or the functional
, the function W (s) is usually assumed to be a double-well potential
function. See [2]. In [3], when proving the existence of solutions, we assumed
that W (s) is of the form W (s) = F(s?) for some C" function F. Here, we will
prove that solutions of exist when the potential function W (s) is really
a double-well potential. Let W (s) be a non-negative C'' function defined for
s € (—3,1). We assume that there are s; € (—3%,0) and s € (0, 1) such that

1
(1.3)  W'(s)<0 for se (—5,81), W'(s) >0 for sé&(s9,1),
and
(1.4) lim W(s) =00, and lim W(s) = occ.

s—(=1/2)* s—1-

Also, we further assume that W (s) and has a local minimum at s = 0 and
!/
(1.5) sup { ‘ VVS(S)

We will prove

18 € (31,32)} < 00.

Theorem 1.1. Let Q be a bounded domain in R™ with smooth boundary.

Let W(s) be a C! function which satisfies , and . Let (g, h)
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be a Lipschitz map from Q into the cone C and —% <g(z) <1 for z € Q.
Then, there is a continuous map (s,u) : Q x [0,00) = C such that at any
point (xo,to) where tog > 0 and s(zo,to) # 0, (s,u) is a solution of ina
neighborhood of (o, to). Also, (s,u) satisfies the initial-boundary conditions,

(1.6) (s(z,0),u(z,0)) = (9(z), h(x)), =€,

(1.7) (s(x,t),u(x,t)) = (g9(x),h(x)), x€dQ, t>0,

in the sense of trace. Furthermore, there is a sequence t; such thatt; — oo as
Jj — o0 and (s(z,t;),u(x,tj)) converges a map (so(x),uo(x)) uniformly on
compact subsets in 2. For each point xy € ) where so(zo) # 0, in a neighbor-
hood of xq, (so,u0) is a stationary solution of the system , and (S0, up)
satisfies the boundary condition in the sense of trace.

In [2], F.H. Lin proved that the minimizers of the functional are Holder
continuous. Here we prove that the same result is true for solutions obtained
in Theorem if the potential function W (s) is of C? and

w2

Theorem 1.2. Let (s,u) be the map obtained in Theorem. If we further
assume that W (s) is of C* and (@ holds, then (s,u) is Holder continuous
in Q x (0,00).

1S € (81,82)} < 0.

Note that (1.5) holds if W'(s) is a Lipschitz function in (s1, s2). Also,
(1.8) holds if W”(s) is a Lipschitz function in (s1,s2). By our assumption
that W (s) has a local minimum at s = 0, we have W/(0) = 0. If W'(s) is a
Lipschitz function, then

(W'(s)] = [W'(s) = W'(0)] < Cls].
This proves ([1.5). If W(s) is of C2, by mean value theorem,
W' (s) =W'(s) — W'(0) = W"(5)s

for some § between s and 0. If W’ (s) is a Lipschitz function, then we have

[sW"(s5) = W'(s)] = [W"(s) — W (3)||s| < Cls|*.
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This proves . Both (| and ({ are not needed in [2]. To prove the
existence of energy minimizer, L1n assumed that W(s) is of C! and .
holds. To prove that the energy minimizer is Holder continuous, Lin assumed
that W(s) is of C2.

In [2], F.H. Lin also proved that the minimizers of the functional
are Holder continuous on the boundary. We wish to discuss the boundary
regularity for the solutions obtained in Theorem [I.1]in an upcoming paper.

In this paper, we use the notation B(zg; Ry) = {z € R™: |z — x¢| <
Rop}. When z¢ = 0, we simply write B(Ry) = B(0; Rp).

2. Existence of solutions

We employ the penalization scheme in [3] and consider equations of the form

(2.1) s = As — 2K (5% — |ul?)s — f(s)s,

(2.2) Ou = Au + 2K (s? — |u|®)u — f(s)u,

for some constant K > 0. We assume that the function f(s) is a bounded
function defined on (—o0, 00): there is a constant M > 0 such that

(2.3) If(s)] <M for sé€ (—o0,00).

Later, we will choose f(s) to be a cut-off of the function WT(S) See 1'
(2.20) and (2.21)). Let (s, ux) : Q x [0,00) — R x R? be solutions of (2.20))
and with initial-boundary condition and . We will prove
that the maps (sx,ug) are equicontinuous on each compact subsets in 2 x
(0,00), and there is a sequence that Will converge to a map (s,u) with
properties mentioned in the Theorem

Let (s,u) be a solution of (2.1) and in B(R —R2,0]. For \ €
(0,1), we define

(2.4) 5(x,t) = s(\z, \2t), a(z,t) = u(dz, \*t).

Then (5, %) is defined on the set B(R/\) x (—(R/A)?,0] and is a solution of
the equations

85 = A5 — 202K (5% — |a|?)5 — A2f(5)5,

Oyt = At + 20K (5% — |ul? )u — M f(5)a.
Note that when A € (0,1) and f(s) satisfies , then \2|f(3)| < M.
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For any v > 0, we define
~ 1 _ 1
(2.5) S(x,t) = —s(x,t), a(z,t) = —u(z,t).
Y v
Then (8, a) is a solution of
015 = A5 — 207K (3 — |a]*)5 — f(75)5,
Ot = At + 297K (3% — [a]*)a — f(y8)a.
Note that if f(s) satisfies (2.3)), then we also have |f(~8§)| < M.

Proposition 2.1. Let (sx,ur) be a solution pair of and mn
B(x;4R.) x (t« — (4R4)?,t.]. Suppose that

(2.6)  sup{sk(z,t) + |ux|*(z,t) :
(z,t) € B(xy;4R,) X (ty — (4R,)?,t,]} < L.

Let w(R) be a non-decreasing function defined for R € [0,4R.) and w(0) =0

and R? < w(R) for R € [0,4R,). Suppose that for R € (0, R,) and (xo,t0) €
B(s,2R.) x (tx — (2R)? 1],

en m o (sl Dl K (s ) ) e < ().
B(xo;R

Then for (x1,t1), (v2,t2) € B(w, Ry) X (t. — R2,t,], we have

(2.8) sk (x1,t1) — sx(wa, ta)| + |ux (z1,t1) — ug (x2,t2)| < Cy/w(2p),

where p = \/|x1 — 22|2 + [t1 — ta|. The constant C' depends only on m, R,.

Proof. Let (z9,tg) € B(z«; 2R.). We claim that for any R € (0, R, ), we have
to
(2.9) RQm/ / (|0es i |* + [Opurc|?) do dt < Cw(2R),
to—R? J B(zo;R)

where C' is a constant depending only on m, M and L.. Let n(z) be a
cutoff function such that n(z) = 0 when x € B(zp;2R) and n(xz) =1 when
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© € B(zo; R), |V| < C/R. From (1) and 22,
d

— (IVsk(z, )] + [Vug (z,1)?
dt JB(ze:2R)

+ K (s (,) — Jug (2,)*)*)n*(2) dx
= 2/ (Vs Voysk + Vug Voug
B(z0;2R)
+ 2K (5% — Juk|?) (s sk — ugdpur))n® do

= —4/ (VsKatsK + VUK&guK)nVn dx

— 2/ (Ach?tsK + AugOruk
— 2K (s% — |urc|?) (sk s — urOrus))’ dz

= —4/ (VskOisk + Vugdug)nVn dx
— 2/ (|atSK|2 + |8tUK’2)772 dzx
B(z0;2R)
—2/ (f(sK)(sK0t8K+uK8tuK))772 dx
B(z0;2R)
Using (2.3) and ([2.6)), we have

/ (|67255K|2 + |8tuK|2)172 dx
B(z0;2R)

d
< —— (IVsk (@, t)]> + |[Vug (z,1)[?
+ K(s%(2,t) — Jug (2,t)|*)*)n*(z) dx
C

+ = (Vs (2, t)* + |Vug(z,t)|?) dz + CR™.
R B(z0;2R)

By (2.7),
1 [t
ooy / / (|3tSK|2 + |8tuK|2)772 dx dt < Cw(2R) 4+ CR?,
R to—(2R)? J B(z0;2R)

where C' is a constant depending on m, M and L, only. This proves ([2.9).
Now, we proceed to prove (2.8)). Let (zo,tp) and R € (0, R.) be fixed
such that P(xo,tp;2R) C Q x (0,00). Let (x1,t1) and (x9,t2) be points in
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P(.Z'(),to; R/4) and tg S tl. Let

f:((lil—i-xg)/Q, and p:\/’xl—(l}QP—i—‘tl—tQ’.

We note that p < R. For each x € B(Z;r), we observe that

|si(z1,t1) — sk (x,t1)] =

/01 (r1 —x) - Vsg(z1 +7(x —x1),t1) dr

1
§4r/ \Vsk(z1+7(x —z1))| dr.
0

Let £(z) be a non-negative smooth function such that &(x) =1 when z €

B(z;p/2) and &(x) = 0 when x lies outside B(z;r), and |VE| < C/p. After
interchanging the order of integration, we obtain

1
— |si(x1,t1) — sk (x,t1)[{(x) do
P JB(@;p)
1
S o sk (z1,t1) — sk (z,t1)| dz

B(z;p)
4

1
m—1 / / ’VSK($1+T(w—JC1),t1)| dr dzx.
P B(z;p) JO

Let y=x1+7(rx —2x1) and T, =21 +7(% — z1). We note that if = €

B(z; p), then |y — z,| < 7p, and Z, € B(xo; R) for all 0 < 7 < 1. Thus, from
(2.7), we have

<

4 1
p1 /B(_ )/0 |Vsk(x1 + 7(x —x1),t1)] dr do
Z;p

1
<cp o [ sty dy dr
0 JB(Z,;Tp)

L 1/2
< cptm / (rp)™? / Vsk(.t) dy|  dr
0 B(z-;7p)

1
< cpt=m /0 (rp)™ ' \feo(rp) dr
< Cvw(p).

Let

_ - fB(f;p) SK(‘T7t)§($) dx
Sk(zT,t) = fB@;p) @) d
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The computations in the above implies that
sk (@1, t1) = 85 (2, 11)] < C/w(p).
Similarly, we also have
|5k (w2, ta) — 81 (Z, 12)| < C/w(p).
Since [t; — t2| < p?, by ,

t1
5K (5. 1) — 5k (7, 1)) §C'p_m/ / Oysic|€ da di
ta JB(Z;p)

" 1/2
<cpm ( [ s e dt) L p/2H1
t2 JB(Z;p)
<Cvw(2p)
This implies that
sk (21,t1) — sk (22, 12)] < C/w(2p).
Similarly, we can prove that
\uK(xl, tl) — uK(xg, t2)’ S C\/ w(2p).

This completes the proof. O

Theorem 2.2. Let (sx,ux) be a solution pair of and
in B(zs;4R,) X (te — (4R.)?,t.].  Suppose that (@ holds and for
t € (ts — (4R\)% L],

(2.10) /ﬁ (Vs (z,t)* + |Vug (z,1)|?
B(z.;3R.)
+ K(s%(2,t) — lug(z,t)|*)?) do < E,.

Then there is a constant C, depending only on m, M, R., L, and E,
but independent of K, such that for any (z1,t1), (x2,t2) € B(x.; Ry) X (tx —
R2 ],

C 1/2
- t — < |
|5K(x17t1) SK($27 2)| + |UK(:E1’t1) uK(xQ’tQ)’ = <1n(16R§/,02)> ’

where p = \/|x1 — 2|2 + [t1 — ta].
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Proof. Let {(x) be a cutoff function such that £ = 0 outside B(x,;3R,), and
¢ = 1 inside B(w.;2R,), and |V¢| < C/R., and |V2¢| < C/R2. Let

ex(xz,t) = ]Vs;da:,t)]Q + \VuK(:c,t)F + K(s%(x,t) — ]uK(x,t)\z)Q.

Let (wg,t0) € B(zs; Ri) % (tx — R2,t,]. For t < tg, let

(2.11) Ek(t;zo,t0) = |t — 750’/ ex (2, 1)& ()G (x, t; 20, to) da,
Q

(2.12)  Ig(t;zo,to) = /Q (sk(@,t) + |uk (z, 1)) (2)G (2, t; w0, to) da.

Here, G(z,t;xg,to) is the backward heat kernel on R™: for ¢ < ¢y,

| ! |z — o/
G(z,t;x0,t0) = Wexp (4(75—750) '

After a translation, we assume that (xg,t9) = (0,0). Also, we write
Ik (t) = Ik (t;xo,t0)  Ex(t) = Ek(t;x0,t0), G(z,t) = Gz, t;z0, to).
Note that

8iG(z,t) = —AG(z,t), and VG(a:,t):%G.

We need to compute I} (t) and E%(t). The computations are basically
the same as those in [3] section 2. From (2.1) and (2.2)), one can compute
that

(% + luk|®) = A(sk + |ug|?) — 2 (|Vsg|* + |Vug|?) — 4K (s — |ug|*)?
—2f(sk)(sk + Juk|?).

Thus,
1) = | ok + lunP)EG do+ | (s + luP)POG do
= [ Atk +lunP)E6 do— [ (s + lunPIEAG da
=2 [ (Vs + [Vux? + 2K (s — lurc )G da

9 / Fsx)(5% + Jux|P)EXG da
Q
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Using integrating by parts, we have
(2.13)  Ik(t) = —2/(]V3K]2 + [Vug|* + 2K (s% — Juk|?)*)E2G dx
Q
2 [ Flr) sk + lunPIEG do
Q
+ 2/ (5% + |lug|?)€é (EVE) G dzx
0 2t
- 4/ (skVsk + urgVug )EVEG dx.
Q
It follows that

2
TR (0) < ~Tit) + 2M/(s%( + uge[2)€2G da
Q

+ 2/Q (52 + ug|?)¢ (%vg) G dx
— 4/ (skVsk +urgVug )EVEG dzx,
Q

where M is the constant in (2.3)). Since V&(x) = 0 when € B(2R,), using
(2.6) and (2.10), we obtain

1

mEK(t) < —Ij(t) + 2M Ik (t) + Cexp <1> )

6t

where C' is a constant depending only on the dimension m, M, R,, L, and
E,. In general, given (z0,1o), if t € (tg — R2,to], we have

1

2.14 —F
(2.14) |t — o

K (t; 20, t0) < —I5(t; o, to) + 2M Ik (t; o, to)

T Cexp (M) .

This implies that

1
I}((t; .%'o,to) < QMIK(t;SU(),tQ) + C’exp —_— .
6(¢ —to)

For any t; € (tg — R?,to] and t € (t1,1g), we have

1
(2.15) IK(t; :Eo,to) < C]K(tl;xo,to) + Cexp - |,
6(t — to)
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where C' is a positive constant depending only on m, M, R., L, and Ei,
and is independent of K.
For the function E(t), by a straightforward computation, we have

Bie(t) = = | Kk = luxPPEG do
T /Q ((GtsK + vsK%)Q + <8tuK + Vqut)z) 26 de
— 4lt) /Q F(s5¢) (sK (8tsK v vsK%) g (@u;( + VuKQ%)) 26 du
— 4lt) /Q ((@sK + VSK%) Vs + (8tuK + vuK%) vuK) VEEG da

x
+ 4[t| / (IVsk|* + [Vuk[* + K (s} — |uk|*)?) Ve G dr.
Q
See [3] section 2 or section 4 in this paper. It is not difficult to see that

/ 1 x\2 2
: <= =
(2.16) El(t) < 2|t|/Q <6tsK+VsK2t) 2(2)G dx
1 T\2 o
_ 2|z:|/Q (O + Vuxs ) ()G da

1
+ Clt|Ik(t) + Cexp <6t> ,

and C' is a positive constant depending on m, M, R,, L, and F,. Thus, we
obtain

d 1
2.17 —FEx(t; to) < Clt —to|Ix(t; t C — | .
2171) SEwltion o) < Clt — tollxltszo.to) + Coxp (ot )

Let R € (0,R,). When t € (tg — (4R.)?,to — R?), using (2.6, we see that
Ex(t;x0,t0) > Ex(to — R 20, t0) — Clt — tol.

This implies that

to—R? 2
0 Ex(t;zo,t 1
to-(4R.)>  to—1
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Using ([2.14)), we also have

to—R?
0 E .
/ K (t; 0, t0) gt
to—(4R,)? to—t
1
< §(IK(150 — (4R.)% wo, to) — Ix (to — R* 20, t0)) + C
<C,

and C' is a positive constant depending on m, M, R, L, and E,. Thus,

2C

Ex(to— R% x,t9) < ——n———.
K( 0 ; L0, 0)_ 11’1(16R2/R2)

We may replace ty by tg + R? and obtain

e
F : N< — &
& (o3 2o, to + ) < e

This implies that

C
2-m 2 2 (e 212 < '
By (Tl 9l Ko ) <

By Proposition [2.1], we have

c 1/2
|src (@1, t1) = s (w2, t2)] + Jurc (w1, 11) — uk (w2, ta)] < (m(sz/pg)) )

where p = \/|z1 — 2|2 + |t1 — ta|. The positive constant C' depends only on
m, M, Ry, L, and F,, and is independent of K. O

Now, we begin to prove Theorem Let g(x) be the function in (1.6
and 1} Let g1 and go be constants such that —% <gir<siandso < go <1
and

1 _
(2.18) ) < <glx)<ga<1l for ze.

Let s, = min{s1, g1}, s* = max{so, go} where s1, s2, g1, g2 are the constants

in (1.3) and (2.18). Let

W' (sy) when s € (—00, s4),
(2.19) Vi(s) =< W'(s) when s € [s, ¥,
*) when s € (s*,00).



A heat flow problem from Ericksen’s model 2071

We consider solutions of equations

L SK
(2.20) 3tSK—ASK—2K(82 \u ‘2)8 ((SK) SK,
(2.21) 8tuK = AuK + 2K(82K — |UK|2)UK — is ) UK

with initial-boundary conditions (|1.6)) and (1.7]).
It is easy to check that solutions of (2.20)) and (2.21)) exist as long as the

solutions stay bounded. Let (sg,ux) be a solution pair of (2.20) and (2.21))
defined for ¢ € (0,7]. One can compute that

(222) sk + |uxl?) = Alsk + Jux[?) — 2 (Vs[> + [Vux )

\%4
— 4K (s — Juk]?)? -2 S(K) (sk + lur ).
Let
M—max{‘vis) D s € (—oo,oo)}.

From (2.22)), we have
Bl sk + luxc[*)] < AlM (s + |u|?))-
By the maximum principle, we obtain

sup{(s% + |ug|})(z,t) : (x,t) € Qx (0,T)}

(2.23)
< max{e*MT (g2 + |n|?), g + |h|?}.

Therefore, for each T > 0, solutions of (2.20) and (2.21)) exist for ¢ € (0, T.
From (2.20) and (2.21)), it is easy to see that

(2.24) C;lt/g(\VSK(:U,t)\Q—i-|VuK(x,t)]2+K(s%((x,t)—\uK(x,t)|2)2)dx

= —2/ (|3tSK‘2 + |8tuK|2) dx
Q

— 2/ V(sk) (sKﬁtsK + uKatuK) dx
Q SK

< _/ (|at3K‘2+ |3tUK|2) dm—{—M2/ (5%{_{_ |UK’2) do.
@ Q
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Thus, for all ¢ € (0, 7], we have

(2.25) /Q (Vs (2, 8)2 + [Vug (@, 07 + K (5% (2,0) — Jugc (2, 8)[)?) da

< Eo + CM*T max{e*"" (¢} + |h[*), ¢° + |h|*},

where
Eo = /Q (IVg(@)[? + |Vh(z)[?) dr.

Let T be a fixed positive number. By Theorem the pairs {(sx,uk) :
K > 1} are equicontinuous on each compact set in 2 x (0,7). We may
choose a sequence K; such that K; — oo as i — oo and (sg,, uk,) converges
uniformly to a pair (s, u) on each compact set in €2 x (0, T]. On each compact
set in © x (0, 7], the pair (s,u) satisfies the estimate

1/2
(226) [s(a1,t) —sten )] + e ) — e ) < ()

where p = /|71 — 22|24 [t1 — t2] and C is a positive constant depending on
T, m, M, R,, and the initial data. Moreover, we have s(x,t) = |u(z,t)|? for
all (z,t) € Q x (0,T]. Suppose that s(zg,tg) # 0, by , there is a neigh-
borhood of (zg, tp) such that s(z,t) does not vanish. In that neighborhood,
using the method in [4], one can prove that (s,u) is a C? solution of

Vuf Vs V(s
252 s

Y~ (Vs V(s
252 s

s = As — s

(2.27)
ur = Au +

u.

Suppose that s(x,t) has a local maximum at (z1,t1) € Q x (0,7] and
s(x1,t1) > max{sa, g2}, where sg and go are the constants in and .
In a neighborhood of (x1,t1), the pair (s,u) is a C? solution of . Since
s2(z,t) = |u(z,t)|?, we have |Vul|?(x,t) — |Vs|?(z,t) > 0 in a neighborhood
near (x1,t1). By the maximum principle, it is impossible. Thus, we must have
s(z,t) < max{sa, g2} for all (z,t) € Q x (0,7]. Similarly, using maximum
principle, one can prove that s(x,t) > min{sy, g1} for all (z,t) € Q x (0,T].
We see that

sup{s2 + |u]2 o (x,t) € Q2 x (0,T)} < max{|s; —i—gl\Q, | s2 —i—gg\Q},
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and is independent of T. From (2.19), this implies that V(s(z,t)) =
W'(s(z,t)) in (2.27). Thus, if s(zo,to) # 0, in a neighborhood of (g, %),
the pair (s,u) is a solution of the system (L.1)).

Let (74,ts) € Q x (0,T] and B(xy;4R,) X (t. — (4R.)% ] € Q x (0, 7).
Since (sk,,uk,) converges uniformly to (s,u) on each compact set in Q x
(0,T], when i is large enough, we have

(2.28) sup{sk, + [ur,|*: (z,t) € B(z.;3Ry) x (£ — (3R.)%, t.]}
< max{|s1 + gi1]% [s2 + g2|*} + 1.

From ([2.24)) and (2.28)), for each t € (0,77,
T
/ / (‘8,58[{‘2 + |8tUK|2) dxr dt
0o Ja
< Eg + CTM?(max{|s1 + g1]%, |s2 + g2|*} + 1).

Thus, we may assume that when i — oo, (Osk,,Owuk,) converges to
(045, Opu) weakly in L?(2 x (0,T], and

[ f o

Since sk, converges to S uniformly on each compact subset in € x (0,7]
and

T
+ |Oruk,|) dz dt — / / (10| + |Opu|) da dt.
0 Q

V)| V)|,
sk, | s |77

by dominated convergence theorem, when i — oo, for any t € (0,7,

¢
lim / / Visk) (SKiatSKi + UK,iatUK,i) dx dt
0 JQ SK;

1—00

¢
— / / Vis) (50ks + udpu) dx dt
0 JQ
t /
= / / Wi (s) (s@ts + u@tu) dx dt.
0 JQ

S

Also, since s? = |u|?, we have

/Q Wi(s) (50ps + udpu) dx = /

S Q

d
2W'(s)0ys dx = 2/ W'(s) du.
dt Jg
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Therefore, for any ¢t € (0,7, as i — oo,

_/t/ V(SK)

—>2/W dx—2/W (2,t)) da.

SKiatSKi + uKﬁtuKi) dx dt

When ¢ is large enough, we have
(2.29)

Ve

From equations (2.20) and (2.21)),

sK Sk, + Uk, atuK) de dt <1 +2/ Wi(g(x)) dx.
Q

0< / ( P) de
Q
V(sk,
:/ sk, (Ask, — 2K;(sk, — |uk,[*)sk, — Visk,) Sk,) dx
Q i
V(sk,
+/ Ovur, (Aug, + 2K, (s%. — |uk, [P)ur, — iSK) ug,) dx
Q K;
1d
o | Vs P [V P Kk, — e ) d
2dt Q ’

V(sk,
—/ (SKl) (SKiatSKi + uKﬁtuKt) dx.
Q SK;
Using (2.29)), we see that, when i is large enough, for ¢ € (0,7),
(2.30) / (IVsk, (@, 1)1 + [Vug, (2, 8)* + Ki(sk, (2, 1) — |uk, (2, 8)[*)?) dz
Q

< 1-|—/Q (IVgl* + |Vh[?) d:c—i—2/Q W(g(x)) dx.

By Theorem [2.2] using (2.28) and (2.30)) instead of (2-23) and (2.25), we
may conclude the following: Let (z4,t.) € Q x (0, 7] and B(x,;4Ry) X (t« —

(4R,)?,t.] € Q x (0,T]. Suppose that (z1,t1), (z2,t2) € B(zy; Ry) x (tsx —
R? t.], when i is large enough,

(2.31) sk, (z1,11) — sk, (T2, t2)| + uk, (71, 1) — uk, (v2,t2)|

: <1«4Rc/p>>/
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where p = \/|x1 — x9|? + |t1 — t2|. The positive constant C' depends only on
m, M, R, and the initial data, and is independent of K and T. When i — oo,
we have

1/2
|s(x1,t1) — s(wa, t2)| + [u(z1,t1) — u(ze, t2)] < (Wcé/ng .

The positive constant C' depends only on m, M, R, and the initial data,
and is independent of T'. This completes the proof of Theorem

3. Holder continuity

In this section, we will prove that the solution pair (s,u) obtained in Theo-
rem |1.1]is Holder continuous in € x (0, 00). Let V (s) be the function defined
in . If W(s) is of C? and both (L5 and hold, then V (s) is of C?
and there is M > 0 such that

V'(s))
s
Similar to [3] Theorem 1.2, we first prove that (s,u) satisfies a unique

continuation property.

V'(s)

S

<M for se&(—o0,00).

)

(3.1) |

Proposition 3.1. Let ty > 0. Either s(z,t9) =0 for all x € Q, or s(z,to)
cannot vanish of infinite order at any point in 2.

Proof. The proof is the same as the proof of [3] Theorem 1.2. Here, we
give a sketch of the proof of Proposition Let tg > 0 and s(z,tg) is not
identically zero on Q. We claim that s(x,to) cannot vanish in an open subset
in Q.

If it is not true, there is zp such that for some R > 0, B(z;2R) C €,
s(z,to) = 0 when = € B(xg; R/8) and

/ (8% + |u*)(z, to) dz = 4¢g > 0.
B(wo,R/4)—B(z0,R/8)

After a translation, we assume that (xg,ty) = (0,0). By continuity, there is
r1 > 0 such that for |t — to| < (2r1)%, we have

/ (8% + |u|®)(x,t) dz > 2co > 0.
B(wo,R/4)—B(w0,R/8)
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Let (sk,ux) be a solution pair of (2.20)) and (2.21)). In the previous section,
we proved that there is a sequence K; such that (sg,,uk,) converges to
(s,u) uniformly on compact sets in 2 x (0,00). Since (sg,, ux,) converges
uniformly to (s,u) on compact subsets, we may assume that for each i =
1,2,3..., for |t —to| < (2r1)2,

5 (2,t) dz > co > 0.

(32) (s, + lux,

/B(a:o,R/4)B(a:0,R/8)

Let Ex(t;xo,to) and Ik (t;xo,t0) be functions defined in (2.11)) and (2.12))
and
Ex (t; 20, t0)

3.3 Ng(t:tg. tg) = .
(8:3) & (£ to, to) Ik (t; 0, 10)

Inequality (3.2)) implies that there is a positive constant C' depending only
on m and cg only, so that

1

. i ) > 20(t — tg)
(3.4) Ik, (£ 0, to) = Cexp <20(t —to)

) for to—ri <t<tg.

By (2.13)), (2.16) and (3.2)), one can prove that

d
%NKi (t;x0,t0) < C(1+ Nk, (t;x0,t0)) for to—1ri <t < to.

For detailed computations, see [3] p429-431. Thus, there is a positive con-
stant Ny such that

NKi(t;SUQ,t())ENO for to*T%<t<tg.

By (Z.13) and (3:2), we have

I, (t 20, t0) _ 4Ng +C
IKi(t;.CC(],to) - |t_t0|

for to—?“%<t<t0.

After integrating from to — 77 to ¢, we obtain
I (t; o, t0) > Ik, (to — 125 g, to)|t — to|2VoFC  for to—r? <t < to.
Thus, using (3.2) again, we see that

(3.5) Ik, (to — 2520, t9) > Dr*M for 0 <7 <ry.
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We may replace to by tg + r? in the above arguments to have

Ik, (to; o, to + 12) > Dr*M for 0<7"<%1.

Since (s;,u;) converges uniformly to (s,u) on compact subsets, the same is
true for (s,u), i.e.,

(3.6) / (2(z, t0) + [ulz, £0) [2)E2G (&, to: o, o + 12) da
Q
> Dr*™M for 0<r< %

It contradicts our assumption that s(x,ty) = 0 when = € B(xo; R/8) and the
claim is proved.

Finally, by our claim, for any xo €  and B(zo;2R) C €2, s(x,tp) is not
zero somewhere inside B(xo; R/4), i.e., always holds for some cg > 0.
By repeating the arguments in the above, we see that for any zg € €, the
estimate holds. This proves the Proposition. O

We may improve Proposition [3.1] to the following form:

Proposition 3.2. Suppose that the initial-boundary data (g(x), h(x)) is not
identically zero on 0. For each ty > 0, the function s(x,ty) cannot vanish
of infinite order at any point in €.

Proof. If the Proposition is not true, there is ¢; > 0 such that s(z,t;) =0
for all z € ). Let Ry > 0 such that 4R, < t; We claim that there is tg €
(t1,t1 + R) such that s(x,tg) is not identically zero. If such ty does not ex-
ist, then s(x,t) = 0 for all (z,t) € Q x (t1,t1 + Ry). Since (s(z,t),u(z,t)) =
(g(x),h(x)) in the sense of trace on 01, it is impossible. Thus, the claim is
true. Let 29 € Q. Choose Ry > 0 such that B(z¢;4Ro) C Q and (4Rg)? < to.

By (2.15)), for each ¢,

1

Ik (t; to) < Clg, (t1; t C —
Kl( L0, 0) >~ Kl( 1520, 0)+ exp (6(t—t0)

) for t1 <t <ty.
When i — oo, if s(x,t;) =0 for all z € 2, then

/Q (32(1‘,t) + |u(x,t)]2)§2G(x,t;xg,to) dx

1

< -
< Cexp (6(15 )

) for t; <t <ty.
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Let 71 be the constant in (3.4). From (3.5)),
IKi(t,$[),t0) ZD|7§*7§0‘ for tO*(T1/4) <t <tp.

When i — oo, we have

/Q (2(,) + u(er,£) P)E2C (a2, o)

> D|t — t0|2N1 for tg— (7“1/4)2 <t <Tp.
We have a contradiction. O

Let (24,t)€02x(0,00] and B(w.;4R,) X (tx — (4R.)?%, 1] C Q% (0, 00].
Let (zo,t0) € B(xs; Ri) X (t. — R2,t,]. By Proposition and the conti-
nuity of (s,u), there is ¢y > 0, for each (wg,t0) € (t. — (2R4)?, t.],

(3.7) (s%(z, to) + |u(z, t)|?) dx > 2¢o > 0.

/;(xO;SR*)—B(:L‘O,QR*)

Let Ex(t;xo,t0) and Ik (t;zo,t0) be functions defined in (2.11)) and (2.12]).
Since (sk,,uk,) converges to (s,u) uniformly on compact set in €2 x (0, 00),
when i is large,

(3.8) (s%. (2, t0) + |uk, (2, t0)|?) dz > o > 0.

/B($0;3R*)—B(1‘0,2R*)

Inequality (3.8) implies that there is a positive constant C' depending only
on m and ¢y only, so that

1

. I (t; > -
(3.9) K. (t;wo, to) > Cexp (20(15 .

> for to—Rz<t<t0.
Using (3.9), we can prove that

d 2
(3.10) %NKi(t; $0,t0) < C(l—l—NKi(t;a}o,to)) for to— R; <t <tp.

Hence, we obtain

By, (t; 20, t
B11) N (hao.to) = DElBT0T0) gy B2 e,
' I, (t; z0,t0)
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where Ny is a constant depending on m, R., M and ¢y and the initial data
only. Using ([2.13)), we see that we have

I (t; o, t ANy + C
(3.12) _ (B fo) _ ANo +
IKi, (t’ Zo, tO) |t - t0|

for to—Rz <t <tp.
From (3.12)), for any 0 < Ry < Ry < R., we have

R 2N,
(3.13) IKi(tO —R%;xo,to) > D (R) IKl-(tO —R%;xo,to),
2
where N1 and D are positive constants depends on m, R., M, ¢y and the
initial data only and is independent of i and (xg,ty). In particular, for any

0 < R < R, we have

R2\M
Ik, (to — R* xo,t0) > D (RZ> Ik, (to — R2; w0, o).

*

By (3.9),

€o
IK7(t0 - Ri;l’o,to) > 6’

where C' is a positive constant depending only on m and R,. It follows that
(3.14) IKi(t() — RQ;xo,to) > DR2N1 for to - Rz <t< to.

The constant D depends on ¢y, m, M, R, and the initial data only and can
be chosen independent of ¢ and (xg, tp).

Let  (w4,t) €Qx (0,00] and  B(w.4R.) x (t — (4R)% 1] C
Q2 x (0,00]. We wish to show that when i is large enough, then (sg,,ux,)
is uniformly Holder continuous in B(w,; Ry) % (t. — R2,t,]. To simplify the
notations, we consider function pairs (sx,ur) instead of (sg,,ug,), and
assume that (3.8), (3.10), (3.11), (3.13), (3-14) hold for (sx,ux), with
constants depending only on ¢y, m, M, R, and the initial data only. For
the rest of this section, we will keep all constants depending only on ¢y, m,
M, R, and the initial data only. Usually, they will be denoted simply by C
or c.

By and a mean-value type inequality, we have the following Propo-
sition.

Proposition 3.3. Let R, € (0,1) and B(z+;4R.) C Q and t. > (4R,)%.
There is a positive constant C, independent of K, such that for any (zo,ty) €
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B(ry; Ry) X (te — R2,t.) and Ry € (0, Ry), we have

(3.15) sup{sK z,t) + |ug(x,t)|* : (x,t) € B(xo; 2Ry) x (to — 4R3, o]}

2 2
< s (x,t) + |ug (z,t dzx dt.
< s / o / oy R0+ )

Proposition 3.4. Let H > 1. There are positive constants R € (0, %) and
€ < 1, such that the following holds: Suppose that R € (0, R), and (sk,uk)
is a solution pair of equations (2.20) and (2.21) in B(4R) x (—(4R)%.0], and
if

1_2/ ex(z,t) de <€ for te (—(4R)% 0],
R™% JB(20:4R)

where efc(x,t) = [V (2, 1) + [Vug (z,1)]* + 2K (sk (x, ) — |ur (z,1)[*)?,
and

sup{s(x,t) + |ug|*(x,t) : (x,t) € B(4R) x (—(4R)%,0]} < H,

sup{s%(z,t) + |ux|*(z,t) : (x,t) € B(2R) x (—(2R)?,0]} =1,
then

s%-(x,t) + |ug|*(z,t) > 1/3  for (x,t) € B(2R) x (—(2R)?,0].

The choice of R and € may depend on the constants m, M, and H, but is
independent of K.

Proof. Let R € (0, 3) be a the constant to be determined. If the Proposition
is not true, there is a sequence (sx,,ur,) which are solutions of (2.20) and
2.21)) in B(4R;) x (—(4R;)?,0] with R; < R and K = K; in (2.20) and
2.21)), and

1
(3.16) sup / e, (z,t) dr =¢; -0 as j— oo,
te(—(4R,)20] B5"" JB(aRy)

where ex,(z,t) = |Vsk, (z,1)]* + |[Vug, (z, t)]* + 2Kj(5%(j (x,t) —
|urk, (=, 1)])?,

(3.17) sup{s%(j (x,t) + |qu|2(a:,t) : (z,t) € B(4R;) x (—(4Rj)2,0]} < H,

(3.18) sup{s%(j (x,t) + |qu|2(x,t) : (z,t) € B(2R;j) x (—(2Rj)2,0]} =1,
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but
1
(3.19) inf{s%(j (,t) + Jur,|*(z,t) : (z,t) € B(2R;) x (—(2R;)?,0]} < 3

However, using rescaling we may assume that R; = R for all j. Also,
Theorem implies that (sk,,uk,)’s are uniformly continuous in compact
subsets in B(4R) x (—(4R)?,0]. It follows that there is a subsequence, also
called (sg,,ur,), which converges uniformly to a function pair (sg,up) in
compact subsets in B(4R) x (—(4R)?,0]. By (3.18) and (3.19),

sup{s2(z,t) + |uo|*(z,t) : (x,t) € B(2R) x (—(2R)%,0]} =1,
and

inf{s3(z,t) + Juo|*(x,t) : (x,t) € B(2R) x (—(2R)?,0]} <

W =

By (83.16)), (s0,u0) depends only on t. We may further assume that there are
t1,t2 € [-(2R)?,0] such that s3(t1) + |uo(t1)]?> = 1 and s3(t2) + |uo(t2)]* <
1/3.

Let £(z) be a cutoff function such that {(x) =0 when z ¢ B(3R) and
&(z) = 1 when z € B(2R). By (2.22)), one can compute that

4
dt Jp(3R)

__ / V(sk, + lux,?) - V€ do
B(3R) ’

(8%(3_ (x,t) + |UKj|2(:U,t))§2(x) dx

2 [ (Vs [V )+ 20 (5, — ) do
B(3R) :

Visgk.
+/ —27(8&)(5%(]_ + |qu|2)£2 dx.
B(3R) SK

:
When j — oo, we have

\jt(s(%(t) + Juo(B)| < 2M (3(4) + [uo (1))

in the weak sense. This implies that

|(s3(t1) + [uo(t2)[?) — (s3(t1) + |uo(t2)[?)] < M=t — 1.
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If we choose R € (0, %) so that

we have a contradiction. O

Proposition 3.5. Let B(z,;4R.) C Q and t, > (4R.)%. There are posi-
tive constants c¢1 and co, independent of K, such that for any (xo,to) €
B(zy; Ry) x (tx — R2,t.] and R € (0, R,/4), we have

1 to—2R?
(3.20) / / s (2, t)]* + |ug (z,t) > do dt
R™+2 [, _6r2 JB(zo2R)

> c1 Ik (to — (4R)%; 20, to).

Proof. If the (3.20) is not true, there are sequences K, R;, (z;,t;) such that

1 tj—QRJ?
(3.21) mH/ / s, (@, O + Jug, (, 8)2 da dt
R; t;—6R2 JB(x;;2R;)

1
< EIKJ (tj — (4Rj)2; xj, tj).
By choosing subsequences, we may assume that (z;,t;) — (zo,to) and
(322) Rj — Ry as j— oo.

We first assume that Ry = 0, i.e., R; — 0 as j — oo. From ({2.15)), there
are positive constants C; and Ca, such that if ¢ € (¢; — (4R;)?,t;], then

-1
(323) IKJ-( ;SUj,tj) < C].IKj (t]’ — (4Rj)2;$j,tj) + C2 exXp (24.R2> .
J

Using (3.14), we see that for each j and t € (t; — (4R;)%,¢;],

(3.24) IKj (t;a:j,tj) < 201[[(]. (tj — (4Rj)2;a:j,tj).
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It is easy to see that
3.25 sic (@, 0))? + Juk (2, )| do dt
(325) RM/MR / 51 O + e (,1)

_/ R ACEIRAR
< Clg, (4 —(4R) s Tj,t5).

Using the same arguments and equation (3.11)), for ¢ € (t; — (4R;)?,t;], we
have

EKJ(t; JIj,t]‘) < CIK].(t;x], ) < CIK (t - (4R ) 3L, ])

This implies that for each t € (t; — (4R;)?,t;], we have

1
j 25 AR
< CIKj (tj — 4R]2-;$j,tj).
Let

SK, (a:j + Rjx,t; + Rjzt) UK, (xj + Rjx,t; + Rjzt)

5@ 1) = VI, (& — (AR))% a5, 15) uy1) = VI, — (4R))% xj, )

For each j, the functions s;(x,t) and u;(x,t) are defined for (z,t) € B(4) x
(—16,0]. The pair (sj,u;) is a solution to equations (2.1) and (2.2). By
Proposition and (]3.25)), we have

(3.27) |5 (2, )2 4 |uj(z,0)|* < C, for (x,t) € B(3) x (=9, —1].
By (8.26),

(3.28) t (8111615) ; /3(4) (IVs;? + [Vu,|* + Kj(s%(j - |u%(j|)2)(x,t) dx < C.
6 — ,—

The function pair (s;,u;) is a solution of equations (2.1)) and ( . Using
(3.27) and (3.28), by Theorem [2.2] -, we see that there is a subsequence also
called (s;,u;), which converges to a function pair (sg,up) uniformly on com-
pact sets in B(3) x (=9, —1). Let £(x) be a cutoff function such that £(x) =0
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when |z| > 2 and £(z) = 1 when |z| < 2. Let

1 jz/?

I(t) = 7 /3(4) (Isj (@, ) + |uj (2, t)[*) € (x) exp (415) dz.

By (3.13)), there are positive constants C' > 0 and Nj, both independent of
1, such that

L) > CL(—4)|t*™ = |t for —9<t<—1.
When j — 0o, we see that
Io(t) > Clt|* ™M for —8<t< —2.

However, by (3.21)), so(x,t) = 0 and ug(x,t) = 0 for (x,t) € B(2) x (—6,—2).
We have a contradiction.

Next, we assume that Rg > 0 in (3.22)). Recall that the function pairs
(sk,ur) are uniformly continuous. By choosing subsequences, we may as-
sume that as i — oo, (xj,t;) converges to (zo,to) and (sKJ,uK converges

uniformly to a pair (50, ug) in B(zo;4Ro) % (to — (4Ro)?, o). By ( - there
is a positive constant C', independent of j such that

Ik, (t;2j,t;) > Clt — ;M for te (t; — (4R;)% t; — RY).
When j — oo, we have
Io(t) > Clt — to[*™ for € (to — (3Ro)? to — Rp),
where

o) = g [ (ol O 5 o D)

|t —to]™/? Jp
o [1E= @MY
P\t~ 1)

and £(z) is a cutoff function such that £(x) = 1 when = € B(z;2R.). How-
ever, by (3.21)), so(z,t) = 0 and ug(z,t) = 0 for (x,t) € B(xg;2Ro) X (to —
6R3,to — 2R%). We have a contradiction. O

Proposition 3.6. Let B(x.;4R.) C Q and t. > (4R.)2. There are positive
constants Ry < R and ¢y < 1, depending only on m, Ry, M and the initial
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data, such that if Ry € (0, Ry) and (z1,t1) € B(wy; Ry) X (t. — R2,t.] and
NK(tl — 4R%;$1,t1) S €0, then

sup{|Vsk|> + |Vug|? + K(s% + Jux|*)?:

C

(z,t) € B(x1; RY) x (t; — R}, 1]} < T
1

and C > 0 is constant depending on co, m, M, R, and the initial data only.

Proof. Let (z1,t1) € B(zs;4Ry) x ((ts — R%,t,] and R > 0. Set § € (0, 3)
and 0 = §R. For any = € R™ and t; — R <t < t; — 4R?, we have

CG(x,t;xy1,t1) if |x—x1| <R/S
. 2 < s Ly L1, U1

Gz, tiz1,t01 +207) < { CR ™exp (—cd?) if |x—xz1|>R/S
See [4] p491-492. Thus, when t; — R? <t < t; — 4R?, we obtain

(3.29) Gz, t;x1,t, + 20°%) < CG(z,t; 21, t1) + CR ™ exp (—05_2) ,

where C'is a positive constant depending on m only. Also, it is easy to check
that if § € (0, 3) and o = 6 R, then when t; — R? <t < t; — 4R?

(3.30) G(x,t; r1,t1 + 202) > CG(Z’,t; l’l,tl),

where C' is a positive constant depending on m only.

Let €y and Ry be positive constants to be determined (see ,
and ) Let 0 < Ry < Ry. Let 6; = (k|In Ry|)~"/2 and k be a constant
to be determined. Let oy = 1 R1. By ,

Ex(t; — 4R%;a:1,t1 + 20%) < CEk(t1 — 4R%;x1,t1) + CR; ™ exp (—061_2) .
Also, by , we have

Ir(ty —ARY; 21,1, + 20%) > Clk(t; — 4R2: 1, t1).
This implies that

CRy™exp (—051_2)
I (t1 — 4R%;21,t1)

NK(tl — 4R%;$1,t1 —+ 20’%) < CNK(tl — 4Rf;x1,t1) +

By , we have
CR;™exp (—05f2)

NK(t1 — 4R%;l’1,t1 + 20’%) < CNK(tl — 4R%;a:1,t1) + RN
1




2086 Chi-Cheung Poon
We choose 01 = (k|In Ry|)~'/? with k large enough so that

CR;{™ exp (—cd7?)
CRI™

1
75)

< CR? for all R;€ (0

By (3.10) and (3.11),

NK(tl — (401)2;1‘1,t1 + 20’%) < NK(tl — 4R%;:L’1,t1 + 20’%) + CN()R%
< CNK(tl 4R1,.’L'1,t1) —i—CR%

Let R and € be the constants in Proposition If Ng(t; —4R?;21,t1) < o
and R; < Ry, then

(3.31) Nk (t; — (40’1)2; x1,t1 + 20%) < Ce¢y+ CR%.
By Proposition we have

(3.32)  sup{sk(z,t) + |ug(z,t)|?: (z,t) € B(z1;201) x (t1 — 407, 14]}

t1
> m+2/ / (sk(z,t) + |uk(z, 1)) dx dt
t1— (20’1 B(1‘1,20'1

> eIk (t — (401)% 21, b1 + 207).

By (2.17)), for t € (t1 — 40, t1],

1
— /B( o (|VSK|2+|VUK|2+2K(S%(—|UK|2)2)(x,t) dx

01

< Bx(t; 1,11 + 207)
< OEk(t; — (401)% 21,11 + 207) + CRIIk (t — (401)% 21,81 + 207)

1
C
+ C exp <24 >
By (3.31]), we have

EK(tl—(40'1) xl,t1+201) (CE()—‘rCR )IK(tl (40’1)2;.%'1,1514-20%),
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and by (3.14)), for t € (t; — 402, t1],

1

m—2
01

(3.33)

/ (|V3K|2 + |VuK\2 + 2K(5%< — |uK\2)2)(az,t) dx
B(x1;201)
< CE()IK(tl — (401)2;x1,t1 + 20’%)

+ C'R%IK(tl — (401)2; r1,t1 + 20%)

—l—Cexp(

240%

) 01_2N1[K(t1 — (401)2;$1,t1 + 20%).

Let R and € be the constants in Proposition Now, we choose Ry € (0, %)
such that

_ —1
(3.34) 0<Ry<R and CR:+Cexp ( ) Ry*M <

€
24 R2 2’

and choose ¢y € (0,1) such that

(3.35) Cep <

N |

In conclusion, we have

(3.36)

m—2

/B( - (|V8K|2 + |[Vug|? + 2K (s% — |uK\2)2)(a:,t) dz
1 T1;401

SEIK<t1—(401)2;x1,t1+20'%) for te(t1—40'%,t1].

Furthermore, by Proposition and (3.13),

(3.37)  sup{sk(x,t) + |ux(z,t)*: (z,t) € B(x1;401) x (t1 — (401)%, t1]}
< CIg(ty — (801)%; 21, by + 20%)
< CIK(tl - (401)2;$1,t1 + 20%).

Using (3.32)), (3.36) and (3.37)), by Proposition there is a positive con-

stant g such that

(3.38) sup{sk(z,t) + |ux(2,t)]*: (z,t) € B(x1;201) x (t1 — (201)% t1]}
> vl (ty — (401)% 21,1 + 207).
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From equations (2.20)) and (2.21)), we have

(=0 + D) (Vs |* + [Vur |* + K (sk — lux|*)?)
= 2|V28K|2 + 2|V2UK|2 + 16K |sgVsg — UKVUK|2
+ 8K (s — uxc[*)*(sk + luxc|?) + 8K (s — uxc[*)(| Vx| = [Vux[?)
Vis)\", ,V
+2Vsk - (skVsg + ugVug) <is)> + 29(|VSK|2 + |VUK|2)

V(s)

2

+AK —(sfc — |ux[*)”.

Let

f = min{1, \/fonK(tl — (401)%;m1,t1 + 20%)}.

By (3.38)), s%(x,t) + |uk (z,t)[* > B2 for (z,t) € B(x1;2071) x (t1 — 40%,14].
Thus, on B(z1;201) % (t; — 402,t1], by (2.28) and (3.1)), we have

(=0 + A)(|Vsk |2 + |Vug|? + K(s% — Juk|?)?)

4
> 862K (s3 — |ux[*)? — 487 K* (s — |ux|*)? — @(IVSKI2 + [Vug|?)?
— CO|Vskl|(|Vsk| + [Vux|) = C(|Vsk|* + [Vux/*)
— CK(s% — luk|?)?
D
=P
— E(|Vsk|? + [Vuk | + K(sk — |ux[*)?),

(IVskl® + |Vurl® + K (sic — [ux|*)?)

where C, D, E are positive constants depending only on ¢y, m, M, R, and
the initial data only. Let

ex(x,t) = Vg (z,1) > + [Vug (2, 1)]* + K (s (2,t) — |ug (z,1)[*).
The function eg satisfies the differential inequality
A D
Orex < Aeg + @6[( + Feg.
For (x,t) € B(z1;201) x (t1 — 402,t1], let

si(x,t) . ug(z,t)

B ) UK(I’,t) = B ;

and  éx(x,t) = |Vig (2, t)|> + |Vig (z,t)]* + BK (5% (2, 1) — |ax(z,t)]*)>.

§K(:L',t) =
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By and ,

1< |3z, )* + Jag (2, t)> < C for (x,t) € B(x1;201) x (t1 — 4%, t1].
The function €x satisfies the differential inequality

(3.39) Ot < Aég + Dé3 + Eég.

Let £(z) be a cutoff function such that &(z) =1 when |z — 2] < 301 and

&(x) =0 when |xr —x1| > 20;1. By the small-energy-regularity theory ([I]
Lemma 2.4 and Lemma 4.4), there is a positive constant € such that if

to—o7 /4 -
/ exc (2, DE ()G, b1, 10) da dt < &,
to—o? B(z1;201)
then
- ~ = 9 C
(3.40) sup{éx(z,t) : (z,t) € B(x1;001) X (t1 — (001)*, t1]} < (5 )2,
o1

where § ~ (|Inoy])~/2. Moreover, the constant ¢ depends only on the con-
stants D and E in equation (3.39). By (3.33)), if we further choose €y and
Ry such that

. < — L —
(3.41) Cep < 5 and CRj+ Cexp <24R§> R, <5
then
to—o7 /4 -
/ o OE@EE , b) de d
t()*a'% B 2?1;20'1
c b
<a /B( ., (935l 4 9+ 2K s — ) o
1 1—4o? 213201
< €.

Since o1 = 612 and d; ~ (|InRy|)~"/2 and & ~ (|Inay])~/2, we may as-
sume that 6oy > R?. Thus, li implies that

C
sup{ex(z,t) : (x,t) € B(xy; R?) x (t; — R‘ll,tl] < T
1

The proof is complete. O
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Theorem [1.2] follows immediately from the following Holder estimate on
(S KU K) .

Theorem 3.7. Let R, be a positive number such that B(z.;4R,) C Q and
te > (4R.)2. Suppose that (3.10), (3.11), (3.15), (3.14) hold for (si,ux).
There are positive constants C and o, independent of K such that for any
(w1,t1), (z2,t2) € B(xy; Ry) X (t. — R2,t.], we have

(3.42) Isk(z1,t1) — sk (w2, t2)| + |uk (z1,t1) — uk (w2, t2)|
2
< C(|x1 — 1‘2‘2 + ‘tl — t2|)a/ .

Proof. Let ¢g and Ry be the constants in Proposition Let (xo,t0) €
B(xy; Ry) X (ts — Rf,t*). Suppose that

(343) NK(to — (4R)2, l’o,to) >¢ for Re (O,RQ)
This implies that

E(t; :L’o,t()) > eofK(t; :L’o,to) for te (to — 4Rg,t0).

By (2.14) and (2.28)) and (3.14)), if Ry is chosen small enough and ¢ € (ty —
R2,tp), then

d
— —Ig(t; 20, 10)

dt
> 2 Ee(tz0,t0) — 2M I (t: 20, t0) — C <1>
zZ o &K (l;Zo,t0) — K\l;Zo,00) — U €xXp
|t — 1o 6[t — tol
2¢9
> WIK(t;«TO7tO) — 2M Ik (t; zo, to)
— 1o
C 1
— I (t: t
It — to2M: P <6|tt0|> K (t520, to)
€0
> ———— Ik (t; w0, o).
[t — o ( )

Then we see that

262
I (to — R*20,10) < C <Ro> Ik (to — (4Ro)*; o, to), for R € (0, Ro),

where C is a positive constant independent of K and cs is a positive constant
depending only on ¢y and is independent of K. By (3.11)) and (2.28)), when
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(3.43]) holds, we have

R

(3.44) Ex (to — R% wo,t0) < C <
Ry

262
> , for R e (0,Ryp).

If (3.43) is not true, there is Ry € (0, Rp) such that
NK(tO — (4R)2; xo, to) >e¢ for RE€ (Rl, Ro),

and N (tg — (4R1)?%; 20, tg) = €o. Then using the computations in the above,
we have

2C2
IK(t() - RQ;.’L'o,to) < C <£}> IK(to - (4R0)2;x0,t0), for R € (Rl,Ro).

Again, by (3.11) and (2.28), this implies that

R 2C2
(3.45) EK(to - R2;ZE0,7§0) < C (R) s for Re€e (Rl,Ro).
0

By (2.17) and (3.45)), for R € (R}, R1), we have

(3.46) Ex(to — RQ; xo,to) < CEK(tO — R%; xo,to) + CR%
< CR}” + CR}
< CR?* for Re€ (R}, Ry);

where ¢z = $ min{co, 1}. When R € (0, R}), we write
Ex(to — R?; wo, to)
= RQ/ e (x,to — R*)&* ()G (x,to — R*; @, to) da
|x—z0| <R/2

+ Rz/ e (x,to — R*)E*(2)G(x, to — R*; 0, t0) d.
|x—x0|>R/?
By Proposition when (z,t) € B(zo; R?) x (to — Ri;to),
ex(z,t) = |Vsi|” + [Vur|* + K(sk — Jux|?)? <
If R € (0,R}), then RY/? < R?. Thus,

R2/ . ex(z,tg — R?)&* (2)G(x,tg — R?; w0, 1) do < —+ <CR.
T—Xo SRl 2



2092 Chi-Cheung Poon

By (230).

RQ/ - ex(x,to — R2)§2(:U)G(m,t0 — R% xo, to) dx
r—x0|>R/2

< CR* ™ exp <;};> i

Therefore, we obtain

(3.47) Ek(to — R% x0,t9) <CR for R € (0,R}).
By (3.45)), (3.46) and (3.47), if (3.43) is not true, then

(3.48) FEx(to — R* xg,t)) < CR?** for R e (0,Ryp).

Let a = c3. By (3.44) and (3.48), at any (zo,t0) € B(w«; Rs) x (t* — R2,t¥)
and R € (0, R,), we always have

Ex(to — R* xg,t)) < CR** for R € (0,Ryp).
We may replace to by tg 4+ R? and have
Ex(to; zo, to + R?) < CR*™* for R € (0, Rp).

This implies that for each tg > (4R.)? and B(xg;4R,) C €,
R2m/ (Vsxl + [Vul? + K(sk — luxc)?) (2. to) da < CR,
B(zo;R)

for all R € (0, Rp), and Ry, C and « are positive constants depending only
on ¢g, m, M, R, and the initial data only. By Proposition this proves
(13-42)). O
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