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Guan-Li type mean curvature flow for free
boundary hypersurfaces in a ball

GuoranGg Wana! aND CHao Xiat

In this paper we introduce a Guan-Li type volume preserving mean
curvature flow for free boundary hypersurfaces in a ball. We give a
concept of star-shaped free boundary hypersurfaces in a ball and
show that the Guan-Li type mean curvature flow has long time
existence and converges to a free boundary spherical cap, provided
the initial data is star-shaped.

1. Introduction

Let B! C R™*! be the open unit Euclidean ball centered at the origin and
S"® = 9B"*! ¢ R™*! the unit sphere. In this paper, we shall consider a mean
curvature type flow for compact hypersurfaces in B"*! with free boundary
on S". Let ¥ C B"*! be a properly embedded compact hypersurface with
boundary, which is given by

z: M — B,

where M is a compact Riemannian manifold with boundary OM. Here prop-
erly embedded means that

int(2) = z(int(M)) c B"™'  and 9% = 2(OM) C OB" L.

We further assume that ¥ has free boundary, in the sense that X intersects
OB" ! = S" orthogonally, that is,

(vypox)=0 on IdM,
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where v is a unit normal vector field of x, which will be specified later, and
1 is the outward unit normal vector field of S”, i.e., pox = x along OM.

Let e € S" C R™! be a fixed unit vector field. Consider a family of
properly embedded compact hypersurfaces {3 };c(o,7) With free boundary,
given by embeddings

x: M x[0,T) — B,

satisfying

Orx = (n{z,e) — H(X.,v))v in M x[0,T),
) { (n(z,e) — H(Xc,v)) [0,T)

(vypox)=0 on OM % [0,T).

with an initial surface z(-,0) = xo. Here v and H are a unit normal vector
field and the mean curvature of x(-,t) respectively, X, is a fixed vector field
in R**! given by

Xe = Xe(2) = (x, )z — %(]w\Z + 1)e,

for a fixed unit vector e. This vector field plays an important role in our
recent paper [I1]. We choose v in the following way. Let ; be the component
of the enclosed domain by 3; and S™ which contains e in its interior. Then v
is chosen to be the outward normal of 3; with respect to ;. Also, throughout
this paper, we make the convention that the enclosed domain €2; of ¥; and
S™ is the one e in its interior. The volume of the enclosed domain €); of X is
called the enclosed volume of ¥;.

The flow is designed in this way so that the enclosed volume of ¥; is
preserved along the flow . We will discuss it later. Such kinds of flow
was first considered by Guan-Li [5] in the setting of closed hypersurfaces in
space forms and by Guan-Li-Wang [6] in the setting of closed hypersurfaces
in warped product spaces.

The main objective of this paper is to study the existence and the con-
vergence of the flow . For this aim we introduce a concept of star-shaped
hypersurfaces with free boundary in B"T!. To arrive at this, we should first
make some comments on the vector field X, above. X, is a conformal Killing
vector field with

(X.(2),z) = 0,Vz € OB" .

More precisely, denoting the Euclidean metric by §, we have

Lx. 6= (x,e)d.
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Let ¢ : B"T! — B"*! be the one-parameter family of conformal transforma-
tions generated by X.. Let II. be the hyperplane which passes through the
origin and is orthogonal to e. For each point p € Il,, there exists a unique
planar circle passing through p and t+e. One can check that the integral
curves of X, are given by the intersection of all such planar circles with
B"*+!. We introduce star-shaped hypersurfaces with free boundary in B"+!.

Definition 1.1. 1). A proper embedded hypersurface ¥ C B"! is called
star-shaped (with respect to e) if ¥ intersects each integral curve of X,
exactly once.

2). A proper embedded hypersurface ¥ C Bt is called strictly star-
shaped (with respect to e) if

(2) (X,,v) > 0.

For our purpose we will consider strictly star-shaped hypersurfaces in
B"*! in this paper. This condition is slightly stronger than the condition
of star-shapedness, but clearly much weaker than the convexity. For the
simplicity in this paper we call hypersurfaces satisfying star-shaped hy-
persurfaces.

From now on we consider star-shaped hypersurfaces. Being such a hy-
persurface, it is necessary that M is of ball type. Therefore we use M = S’}r,
the closed hemisphere.

Our main result is the following

Theorem 1.1. Let ¥ C B"*!(n > 2) be a properly embedded compact hy-
persurface with free boundary, given by xg : S?r — B+, which is star-shaped
with respect to e. Then there exists a unique solution x : ST x [0, 00) — B!
to . Moreover, x(-,t) converges smoothly to a spherical cap or the totally
geodesic n-ball, whose enclosed domain has the same volume as 3. When
n >3, or n =2 and the enclosed volume of xg is not that of a half ball,
x(+,t) converges exponentially fast.

The family of spherical caps is given by
CEe)={z eB"™ |2+ Vr241le|=7r},r>0
and the totally geodesic n-ball is given by

Coole) = {x € B! : (z,e) = 0}.
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It is clear that either each spherical cap C:(e) or the totally geodesic n-ball
Cx(e) has free boundary, that is, it intersects the support S orthogonally.

As a direct consequence, we give a flow proof of the isoperimetric problem
for free boundary hypersurfaces in B"+1.

Corollary 1.1. Among star-shaped free boundary hypersurfaces with fized
enclosed volume, the totally geodesic n-ball or the spherical caps have mini-
mal area.

For general hypersurfaces it is a classical result proved by Burago-
Mazaya [3], Bokowsky-Sperner [2] and Almgren [I], by using the method
of symmetrization.

The introduction of flow is motivated by the paper of Guan-Li [5],
in which they used at the first time the Minkowski formula for closed hy-
persurfaces to define a geometric flow for isoperimetric problems. In the
same spirit, the flow is based on the following two Minkowski formulas
obtained in [11] for free boundary hypersurfaces

3) n [ @ = [(Xenm
(1) [wan =21 [(Xena.

n—1

Here k = (K1,Ko, -+ ,Kky) are principal curvatures of ¥ and o9(k) is the
2nd order mean curvature. From these formulas, one can show that flow
preserves the volume of €; and decreases the area of ¥;. See Proposition [1.1]
These are crucial properties of this flow.

To prove Theorem we first transform the flow equation to a scalar
flow (19) on S by using star-shapedness. By using the Mobius transfor-
mation between the half space Rﬁ“ and the unit ball B"*!, a star-shaped
hypersurface in B"*! is equivalent to a classical star-shaped hypersurface in
]RQLH with a conformal flat metric. We remark that a different reparametriza-
tion based on Mé&bius transformation between round cylinder and B"*! was
used by Lambert-Scheuer [7]. For the scalar flow (19)), the C” estimate fol-
lows directly from the barrier argument. We then show the gradient estimate
for .

Finally we mention some previous results on curvature flows with free
boundary in B"*!. The classical mean curvature flow was considered by
Stahl [9] 10], where it was shown that strictly convex initial data are driven
to a round point in a finite time. The classical inverse mean curvature flow
was treated by Lambert-Scheuer [7], where it was shown that strictly convex
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initial data are driven to a flat perpendicular n-ball in a finite time. Following
a similar idea of this paper, a fully nonlinear inverse curvature type flow was
considered by Scheuer and the authors [§] to show a class of new Alexandrov-
Fenchel’s inequalities for convex free boundary hypersurfaces in B!,

The rest of this paper is organized as follows. In Section 2 we introduce
the Mobius transformation between Ri and B", and reduce flow (] to a
scalar flow , provided that all evolving hypersurfaces are star-shaped.
In Section 3, we show that C° and C! estimates of . As consequence, we
prove in Section 4 that the global convergence of (1), Theorem and its
consequence, Corollary

2. A scalar flow

In this section we reduce to a scalar flow, provided that all evolving
hypersurfaces are star-shaped.

Without loss of generality, from now on, we assume e = E, 1, the (n +
1)-coordinate vector. Let

R:l_-‘rl = {z = (217... ’zn+1) € Rn+1 D Zpa1 > 0}

be the half space. Define

(5) RO Bt

27 |22 -1 >
6 /7 n H ) *
e G e e ey
Here 2/ = (21, -+, 2,) € R™. f is bijective and
(7) FREY =B,
(8) FORLHY) = 0B,

(9) f{lzl =1}) = {241 = 0}.

Moreover, f is a conformal diffcomorphism between (Rt 5@1“) and
(B™*t1, 55). Here 5]1@1“ and dg denote the restriction of the Euclidean metric

to ]R’}fl and B! respectively. Precisely,

4
(1217 + (1 + 2n41)?)?

*¢  _ 2wg _ _
f 5153 =€ 511%1“ = (5R1+1.

In other words, (B"*!,dg) and (R, 621”5@1“) are isometric.
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In ]R’}fl, we use the polar coordinates (p,¢,6) € [0,00) x [0, 5] x S,
where

2 12 2
p :‘Z‘ + Zn41> Zndl = PCOSQ

and 0 € S*! is the spherical coordinate.
By using (p, ¢,0) in RT‘I, the mapping f can be rewritten as

2psin<p§ p?—1
14 p2+2pcose’ 1+ p2+2pcose |

(10) fp,0,0) = (

Here 6 denotes the position vector of the point |j| € S™ 1. We also have

4
f*(SB — €2w5Rn+1 =

d2+2d2+2s'2 i),
" (1+p2+2pcow)2(p p dp® + p”sin® pggn-1)

where
w = w(p,p,0) =log2 —log(1 + p® + 2pcos ).

One may also check that the conformal Killing vector field X, ;1 on B, is
transformed to

(11) X = (fNu(Xnp1) = —pd,p on R

The integral curves of X are clearly the rays in R’frl initiating from the
origin.

Let ¥ c B"*! be a properly embedded compact hypersurface with
boundary, given by an embedding x : S"} — B!, We associate ¥ with a
corresponding hypersurface X C R’f‘l given by the embedding

:E:ffloa;:g’}r%]RT'l.

In view of , Y. is star-shaped with respect to E,41 if and only if Y is
star-shaped (with respect to the origin) in ]RSLFH, that is, ¥ intersects each of
the rays in ]RZ‘FH initiating from the origin exactly once, or in other words,
¥ is a graph over S’}r.

Since (B"*1, 65) and (R7, 62“’(5M+1) are isometric, a proper embedding
z:S% — B"*! can be identified as an embedding # : ST — (R%, €2w5R1+1).
In the following, we use”to indicate the corresponding quantity for z : St —
(R7_:_+1, €2w5R7+z+1 )
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Given a star—shapeii hyersurface ¥ in (Riﬂ, €2w(5Ri+1 ), by using the polar
coordinate (p,p,0) € RT’I, we may write

z=p(y)y = ple.0)y,y = (p.0) € ST

We use o = dp? + sin? df? and V7 to denote the round metric and the
covariant derivative on S} . Set

v=1logp, and v = /1 + |Voy|2.
We have the following correspondence for several geometric quantities.

Proposition 2.1.

i 1
Tn1 = (f(Z), Eny1) = 5(02 —1)e".
[ Xnt1| = €| = pOp| = pe®.

w
(Xni1.0) = (= pd, ) = .

(iv) The Weingarten transformation hg = ¢’ h,, satisfies

e B oY singye (PP =17
: pve? (o v2 Vi + v + 2pv :
(v)
~ 1 i VY nsingy, n(p?—1)
H=H= (o — )Yij + .

pvew v2 v 2pv

Remark 2.1. We see from (iii) that in case we have C¥ estimate, a positive
lower bound for (X,11,v) is equivalent to the gradient estimate for ~y.

Proof. (i) follows from and (ii) follows from (L1)).
It is clear that the unit outward normal is given by

-1
Voy -0
(12) v=e vy = ewl Y 1%

’
(%

where v; is the unit outward normal of ¥ C (R’}fl? 5@1“)‘ Then (iii) follows

from and .
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By a well-known transformation law for the Weingarten transformation
under a conformal change, we know that h! of ¥ C (]R’rH, 621"5M+1) with
respect to —7 is given by

(13) Wl = e ((hs)! + V3, wd?),

where (h(;)g is the Weingarten transformation with respect to —vs of 3 C
(R, 61@1“) and V? is the Euclidean derivative.
It is known that

(14) (hs)] = —pfv(sg + E(C’k] - UT)%k,

On the other hand, using e™" = %(1 + p% + 2pcos ¢), we have

—1x70A, _
(15) vis(e—W) = <(p + cos )0, — p_1 sin 0, /)VUM)>

1
= —;(p + cos p +sin py,).

(iv) follows from ([L3), and (15). (v) follows from (iv) by taking trace. [

We return to the flow problem in (B"*! 63). By the identification
using f, the corresponding family of embeddings = : S"} — (R’}rﬂ, 62“}5@T1)
satisfies

(16) Ot = (n(f(2), Bn1) — He* (—pd,, v))0  in ST x [0,T),
(D,fiox) =0, on 9S% x [0,T),

with an initial surface Z(-,0) = Zo. Here fi is the downward unit normal of
(R, 62w(5R7+L+1). As long as z(-,t) is star-shaped in Rfrl, we may reduce
to a scalar flow.

Using a standard argument (see [4], Eq. (2.4.21)) and Proposition
we see that

v (n ~ pe®
17 Oy=—— | =(p* = 1)e¥ — H—
| G
_ L (A sy, n(p* —1)|V7y[?

pve? v? " v 2pv

g 1 1
:diVU<v Z) —n+ U<VU’Y,VU <w>>
pve v pe
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The last line above follows from the fact

1 p2 -1 2 .
o (V”’y, \Y%d <p€w>> = TP\V"W\ — sin py,,.

Next we examine the boundary condition. Note that p L dB"*!. Since
the conformal change f preserves angles, we have i L QRTFI and in turn

fo=—e "Y0,.
In view of , the boundary condition in (16| reduces to
(18) V3,7 =0on 0S].

In summary, the flow problem reduces to solve the scalar PDE

1 ij vy
(19) Oy = <Uj T2 > Vij

pve?

nsingy, n(p? —1)|Voy?
_I_ —
v 2pv

, in ST x[0,T),
with the initial and the boundary conditions

7(70) =70, in Sr}}?
5,7=0, ondS}x[0,T).

where g is the corresponding function for zg.

3. A priori estimates
The short time existence of the scalar flow follows by the standard
parabolic PDE theory. Next we show the C° and C! estimates for . The
a priori C? estimate follows directly from the maximum principle.

Proposition 3.1. Lety: S} x [0,T) = R solve (19). Then

minyp < 7y < max .
st st

The key point is the following gradient estimate for ~.
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Proposition 3.2. Let v:S% x [0,T) = R solve (19)). Then there exists a

constant C, depending on |[yo|lc1 and ming: o such that
Voy? < C.
Moreover, if n > 3, we have
V9|2 < Cre™ =,

Proof. For notation simplicity, we use V = V? in the proof. Denote

F(V ’Y,V’y,p,gp) — <0’”—2> Yij + e ( )| | :
pve v v 2pv
and
Fij:ai, sza—F, szai7 Fso:aiF.
0735 O dp ¢
Then

(20) OV = 27k (V)k = 2F T yiyiji + FPVp|VA* + 2F7p|V[* + 2F %,

By a direct computation, we have

o o in
(21) Fii = (w - ) :
pvet
(22) F? = pm (o” ) Yis gp o Mot D) g,
1/ .
(23) F¥ = —sin v (U” ) Yij + nczs«pv .

Using the Ricci identity
Yijk = Vkij T VjiOki — Vk0ij
and , we have
g g 1 N 2(n —1)
— 2 2 oA
2F eyijr = FUV 5|V — QW (0” - 112> YikVjk T

wIva 2 - 2=l
pve

VI

(24) = FIVE|Vy? — V22

vew 2pvie

|Vy

>



Guan-Li type mean curvature flow 2167
Replacing , and into , we get

VAP = FIVEIVA? + FPV, VA

2(n—1)
. V2|2 V|V 22_7V 2
pvew‘ 7l +2pvgew| V)2 — IVl
2 17 2
pr=1( . Y n(p®+1) o o 2
2 i - Ty v
+ [zpzv (0 2 >%J opr VI PV

o1 Ay 7,COS (P
+2 [— sin @; <U” — 1)2> Yij + T%o Ve

= FOVG|Vy [ + FPV, [V

. 21 Vv, VIVy[?
+(sinp-" V2 (Vv l 71
2p v
1 2 2(n-—1)
o vQ 2 \vikvi 2 B SO | v/ 2
perl el +2pvgew| VAP — IV
2 2
pe—1 n(p”+1
+ Ary|VA[? ~ gIVW1
pv pv
2n cos @ 2sin @
(25) 802 — 222 Ay,

Now we examine the boundary normal derivative of |V~|? and have

(26) Vaw |v')’|2 = 2('7&,7(%@ + 'Y<p7<ptp) = 9. [Vaga (7@) - (vﬁga aso)’y] =0.

Here we used v, = 0 along dS"} and the fact that Vg, 9, = 0.
Assume for ¢ € [0,7'), maxg, VA2 (- t) = [V (24, t). If 24 € ST, it fol-
lows from the maximum point condition that

(27) VIVAP =0, V*V4)* <.

If z; € OS"}, we see from that Vg _ |V~|? =0, and in turn we also have
. Thus, for each ¢t € [0,T), at x;, we have . We choose at x; lo-
cal coordinates z!,---2" such that 7; = |Vy|. One has v;; = 0 for all i by
. By further rotating the {z? ---, 2"} coordinate, we can assume V2y
is diagonal. Then

1
V2 ? > H(A’Y)Q'
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It follows from that at ¢,

0 < O|Vy[*(at,t)
2 2(n—1
< _ﬁyv27|2 — Lw) v
pve pve
21 n(p* +1
E AV - nle 1) "
pv pv v v
20— ¢) (n=1)(* = De” oo\’
Y (A~ —
(n —1)pvev ( 4(1—€) VAl
2¢ (n—1)pe¥sing \?
- (A
(n —1)pvev ( Tt 2¢ Te
L1 (=D 1
pU 8(1 —¢)

(28) +% (_2(7)@;1)

_'_

(P + 1>) VAt

(n —1)pe? sin? ¢ 2)
v | -

|V7|? + 2n cos goyi + 5 o

Choosing € = %, we have

(n = 1)(p* = 1)

2
— 1
8(1—6) n(p + )
nev o 2 (o 2 2w
< 5 [(p°—=1)" = (p*+ 1)(1 + p° +2pcosp)] < —np“e
and
2(n—1) 2 5  (n—1)pe?sin®¢ ,
_ 7|V’y| + 2n cos 7, + 5 2
< (_(n—l)(1+p2+2pcosgp)
B P
4(n—1) ) )
2 \Y
+ 2ncosp + 3 1+p2+2,0COSg0> 7|
2(n—1) 9
<(=2(n—1)+2cosp + T)|V7|
4 10
< (—zn+ )|VAl
< (—ant vy
Thus
npe" 4 10, 1
(20)  0<VAP < =TV 4 (mgnt ) 9P
v 3 3 pv
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It follows from that |V~|? < C. Moreover, when n > 3, one sees from
that |Vy|? < Cre 2t O

4. Global convergence

We first prove the nice properties of , mentioned in the Introduction.

Proposition 4.1. Flow satisfies

d
(30) %Vol(Qt)
and
(31) dA (%) /E YdA; <0
N Xpa1,v < 0.
di reaf 2. n—l Z +1 t

Proof. From , we get

d
%VOI(Qt) /(nxn+1 - H<Xn+1, 1/>)dAt = 0.
%

The first variational formula gives

d
aArea(Et) = / H(nzp — H(X 41, v))dA;.
b

Using the Minkowski formula

/ Hzxpyp1 —
by

diArea(Et) / <H2— 2n10_2( )) (Xny1,v)dAy

n —

= n_l/z n+1,U>)dAt§0.

1<)

o9 (k)(Xnt1,v)dA =0,

we get

Now we prove the global convergence.
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Proof of Theorem . In view of Proposition (iii), the C° and C' esti-
mates in Propositions and imply that (X, 11,v) > ¢ > 0, that is, the
star-shapedness of Y; is preserved under the flow .

Now we are ready to prove the long time existence in Theorem
Since equation is a quasilinear parabolic PDE of divergent form, the
higher order a priori estimates follows from the standard parabolic PDE
theory, once we have the C° and C?! estimates in Propositions and
Hence we prove that has a smooth solution for all time. The exponential
convergence for n > 3 follows directly from Proposition

For the convergence part in two dimensions, we examine the monotonic-
ity of the area functional along the flow. In the following we restrict to n = 2.
By integrating over t € [0,00) and using the uniform estimate, we get

/ / 51(y, 1) — Koy, t)|* (X1, v)dAdt < C.
0o Js

where k;(y,t), i = 1,2 are the principal curvatures of the radial graph at
(y,t). It follows from the uniform bound for (X,,11,v) and dA; that

(32) max |k1 — k2|(y,t) = o0¢(1),
yesy

where 0,(1) denotes a quantity which goes to zero as t — co. See the proof
of Proposition 5.5 in [5]. With the help of the property , we can show
the smooth convergence of flow when n = 2. This idea was used first by
Guan-Li in [5].

Let us go back to the estimate at x;, where maxg, VA2 (-, t) =
|V7|?(z4,t). Again we choose the local coordinate around z; such that at z,

1 =1Vvl, 71 =0.

In view of Proposition (iv), the Weingarten transformation hf is diagonal
in this coordinate which means the coordinate directions are the principal
directions of z(-,t) at x;. Thus the principal curvature ; at x; is given by

.. ; 2 1
= i +smm¢+(p )

= , 1=12.
pve? v 2pv

It follows that at xy,

(33)  [AY] = |v22 + 11l = [v22 — 11| = pve®|r2 — k1| = o (1).
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Using and the C! estimate, we get at (xy,1),

2 2(n — 1
i 20— 1) 1g,p

ve pve®

2 2 -
p°—1 n(p®+1) 2ncos p 2sing
+ P M| VP = = [V [ %~ Ay
pU pU v v
2
n(p”+1 1 2
<t gyl <—w|w|2 + 4cos wi) +oy(1)
pU v\ pe

A

(34) —C|VA[" + (D).

Here we have used

< 1+ p? +2pcosp

2
_pcﬁ’v’)"g + 4 cos py) < + 4 cos go) VA2 <0.

Now we claim that
VAP = ou(1).

The smooth convergence follows from this claim and the interpolation the-
orem. We show the claim in two steps.
First, we show that there exists a sequence {¢;} with ¢; — oo such that

max |[Vy(-,t)]> = 0 asi— oo.
51

Assume this is not true. Then there exists e¢g > 0 and Ty > 0 such that

max |Vy(-,t)|* > €, for t > Tp.

S
From we have that for a large T7 > 0 and for any ¢ > T3, we have

d 1 Loa
&I%%XW’YF <-C néz%x IVA[* + 5063 = —5060,

which is impossible.
Second, we show that for any sequence {s;} with s; — oo, we have

max |[Vy(-, s))> = 0 asi— oo.
51

If not, there exists a sequence {s;} with s; — oo such that

max VA 52 > e
57
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for any s; and for some positive constant e€;. Without loss of generality, we
may assume that ¢; < s;. We consider the interval I; := [t;, s;] for sufficiently
large 4, such that we have from (34) at a maximum point z; € S7}

d 1
(35) — max |Vv]? < —Cmax |VA[* + ZC¢]
dt s sn 2

for any t > t;. Let y; € SCLF and t; € [t;, s;] such that

IVy(yi, ) > = max max|Vy(-,1)]? > €.
tefti,si] S

By the first step, we may assume that t; # t; for i large. It follows that

d .
o Max [y (f) = 0.

+

Together with , implies that
IV (i, 6)|* < e,

a contradiction. This proves the claim.

From the claim, it follows easily that «(¢) converges smoothly to a con-
stant 79 and p — pg smoothly for some constant py > 0, depending on the
initial enclosed volume of xg.

Next we show the exponential convergence in the case n = 2 and the
enclosed volume of zy is not that of a half ball. In this case, pg # 1. We
return to . By choosing € < 1 close to 1, we have

2 2€'w
V(a0 < oo (G5 — i) o

v
1 2 e sin?

+ - <—w +4cosp+ M) V|2
v pe

2¢e
1 [(p?—1)%ev
SC)mﬁ+n)Wﬂ4

pU 8(1—¢)
1 1— 2
N (Jﬂcoseo)
v p

1
) ’
-1 \%
+ psin @(6(1+p2+2pcosg0) >>’ 7‘
2

1— 2
< CIVyl* - (w;josgo) + Cpsin 90> V2.
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As p converges to pg # 1,

_ 2
<(1PCOS@) + Cpsin2 90> <-4

for some C7 > 0 and t large. Then the exponential convergence follows. [

Proof of Corollary[1.1] It follows from Theorem [I.I]and Proposition O
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