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Guan-Li type mean curvature flow for free

boundary hypersurfaces in a ball

Guofang Wang† and Chao Xia‡

In this paper we introduce a Guan-Li type volume preserving mean
curvature flow for free boundary hypersurfaces in a ball. We give a
concept of star-shaped free boundary hypersurfaces in a ball and
show that the Guan-Li type mean curvature flow has long time
existence and converges to a free boundary spherical cap, provided
the initial data is star-shaped.

1. Introduction

Let Bn+1 ⊂ R
n+1 be the open unit Euclidean ball centered at the origin and

S
n = ∂Bn+1 ⊂ R

n+1 the unit sphere. In this paper, we shall consider a mean
curvature type flow for compact hypersurfaces in B

n+1 with free boundary
on S

n. Let Σ ⊂ B̄
n+1 be a properly embedded compact hypersurface with

boundary, which is given by

x : M → B̄
n+1,

where M is a compact Riemannian manifold with boundary ∂M . Here prop-
erly embedded means that

int(Σ) = x(int(M)) ⊂ B
n+1 and ∂Σ = x(∂M) ⊂ ∂Bn+1.

We further assume that Σ has free boundary, in the sense that Σ intersects
∂Bn+1 = S

n orthogonally, that is,

⟨ν, µ ◦ x⟩ = 0 on ∂M,
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where ν is a unit normal vector field of x, which will be specified later, and
µ is the outward unit normal vector field of Sn, i.e., µ ◦ x = x along ∂M .

Let e ∈ S
n ⊂ R

n+1 be a fixed unit vector field. Consider a family of
properly embedded compact hypersurfaces {Σt}t∈[0,T ) with free boundary,
given by embeddings

x : M × [0, T ) → B̄
n+1,

satisfying

(1)

{

∂tx = (n⟨x, e⟩ −H⟨Xe, ν⟩)ν in M × [0, T ),

⟨ν, µ ◦ x⟩ = 0 on ∂M × [0, T ).

with an initial surface x(·, 0) = x0. Here ν and H are a unit normal vector
field and the mean curvature of x(·, t) respectively, Xe is a fixed vector field
in R

n+1 given by

Xe = Xe(x) = ⟨x, e⟩x−
1

2
(|x|2 + 1)e,

for a fixed unit vector e. This vector field plays an important role in our
recent paper [11]. We choose ν in the following way. Let Ωt be the component
of the enclosed domain by Σt and S

n which contains e in its interior. Then ν

is chosen to be the outward normal of Σt with respect to Ωt. Also, throughout
this paper, we make the convention that the enclosed domain Ωt of Σt and
S
n is the one e in its interior. The volume of the enclosed domain Ωt of Σ is

called the enclosed volume of Σt.
The flow is designed in this way so that the enclosed volume of Σt is

preserved along the flow (1). We will discuss it later. Such kinds of flow
was first considered by Guan-Li [5] in the setting of closed hypersurfaces in
space forms and by Guan-Li-Wang [6] in the setting of closed hypersurfaces
in warped product spaces.

The main objective of this paper is to study the existence and the con-
vergence of the flow (1). For this aim we introduce a concept of star-shaped
hypersurfaces with free boundary in B̄

n+1. To arrive at this, we should first
make some comments on the vector field Xe above. Xe is a conformal Killing
vector field with

⟨Xe(x), x⟩ = 0, ∀x ∈ ∂Bn+1.

More precisely, denoting the Euclidean metric by δ, we have

LXe
δ = ⟨x, e⟩δ.
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Let ϕt : B̄
n+1 → B̄

n+1 be the one-parameter family of conformal transforma-
tions generated by Xe. Let Πe be the hyperplane which passes through the
origin and is orthogonal to e. For each point p ∈ Πe, there exists a unique
planar circle passing through p and ±e. One can check that the integral
curves of Xe are given by the intersection of all such planar circles with
B
n+1. We introduce star-shaped hypersurfaces with free boundary in B̄

n+1.

Definition 1.1. 1). A proper embedded hypersurface Σ ⊂ B̄
n+1 is called

star-shaped (with respect to e) if Σ intersects each integral curve of Xe

exactly once.
2). A proper embedded hypersurface Σ ⊂ B̄

n+1 is called strictly star-
shaped (with respect to e) if

(2) ⟨Xe, ν⟩ > 0.

For our purpose we will consider strictly star-shaped hypersurfaces in
B̄
n+1 in this paper. This condition is slightly stronger than the condition

of star-shapedness, but clearly much weaker than the convexity. For the
simplicity in this paper we call hypersurfaces satisfying (2) star-shaped hy-
persurfaces.

From now on we consider star-shaped hypersurfaces. Being such a hy-
persurface, it is necessary that M is of ball type. Therefore we use M = S̄

n
+,

the closed hemisphere.
Our main result is the following

Theorem 1.1. Let Σ ⊂ B̄
n+1(n ≥ 2) be a properly embedded compact hy-

persurface with free boundary, given by x0 : S̄
n
+ → B̄

n+1, which is star-shaped
with respect to e. Then there exists a unique solution x : S̄n+ × [0,∞) → B̄

n+1

to (1). Moreover, x(·, t) converges smoothly to a spherical cap or the totally
geodesic n-ball, whose enclosed domain has the same volume as Σ. When
n ≥ 3, or n = 2 and the enclosed volume of x0 is not that of a half ball,
x(·, t) converges exponentially fast.

The family of spherical caps is given by

C±
r (e) = {x ∈ B̄

n+1 : |x±
√

r2 + 1e| = r}, r > 0

and the totally geodesic n-ball is given by

C∞(e) = {x ∈ B̄
n+1 : ⟨x, e⟩ = 0}.
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It is clear that either each spherical cap C±
r (e) or the totally geodesic n-ball

C∞(e) has free boundary, that is, it intersects the support Sn orthogonally.
As a direct consequence, we give a flow proof of the isoperimetric problem

for free boundary hypersurfaces in B
n+1.

Corollary 1.1. Among star-shaped free boundary hypersurfaces with fixed
enclosed volume, the totally geodesic n-ball or the spherical caps have mini-
mal area.

For general hypersurfaces it is a classical result proved by Burago-
Mazaya [3], Bokowsky-Sperner [2] and Almgren [1], by using the method
of symmetrization.

The introduction of flow (1) is motivated by the paper of Guan-Li [5],
in which they used at the first time the Minkowski formula for closed hy-
persurfaces to define a geometric flow for isoperimetric problems. In the
same spirit, the flow (1) is based on the following two Minkowski formulas
obtained in [11] for free boundary hypersurfaces

n

∫

Σ
⟨x, e⟩ =

∫

Σ
⟨Xe, ν⟩H,(3)

∫

Σ
⟨x, e⟩H =

2

n− 1

∫

⟨Xe, ν⟩σ2(κ).(4)

Here κ = (κ1, κ2, · · · , κn) are principal curvatures of Σ and σ2(κ) is the
2nd order mean curvature. From these formulas, one can show that flow (1)
preserves the volume of Ωt and decreases the area of Σt. See Proposition 4.1.
These are crucial properties of this flow.

To prove Theorem 1.1, we first transform the flow equation to a scalar
flow (19) on S

n
+ by using star-shapedness. By using the Möbius transfor-

mation between the half space R̄
n+1
+ and the unit ball B̄n+1, a star-shaped

hypersurface in B̄
n+1 is equivalent to a classical star-shaped hypersurface in

R̄
n+1
+ with a conformal flat metric. We remark that a different reparametriza-

tion based on Möbius transformation between round cylinder and B
n+1 was

used by Lambert-Scheuer [7]. For the scalar flow (19), the C0 estimate fol-
lows directly from the barrier argument. We then show the gradient estimate
for (19).

Finally we mention some previous results on curvature flows with free
boundary in B

n+1. The classical mean curvature flow was considered by
Stahl [9, 10], where it was shown that strictly convex initial data are driven
to a round point in a finite time. The classical inverse mean curvature flow
was treated by Lambert-Scheuer [7], where it was shown that strictly convex
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initial data are driven to a flat perpendicular n-ball in a finite time. Following
a similar idea of this paper, a fully nonlinear inverse curvature type flow was
considered by Scheuer and the authors [8] to show a class of new Alexandrov-
Fenchel’s inequalities for convex free boundary hypersurfaces in B

n+1.
The rest of this paper is organized as follows. In Section 2 we introduce

the Möbius transformation between R̄
n
+ and B̄

n, and reduce flow (1) to a
scalar flow (19), provided that all evolving hypersurfaces are star-shaped.
In Section 3, we show that C0 and C1 estimates of (1). As consequence, we
prove in Section 4 that the global convergence of (1), Theorem 1.1 and its
consequence, Corollary 1.1.

2. A scalar flow

In this section we reduce (1) to a scalar flow, provided that all evolving
hypersurfaces are star-shaped.

Without loss of generality, from now on, we assume e = En+1, the (n+
1)-coordinate vector. Let

R
n+1
+ = {z = (z1, · · · , zn+1) ∈ R

n+1 : zn+1 > 0}

be the half space. Define

f : R̄n+1
+ → B̄

n+1,(5)

(z′, zn+1) 7→

(

2z′

|z′|2 + (1 + zn+1)2
,

|z|2 − 1

|z′|2 + (1 + zn+1)2

)

.(6)

Here z′ = (z1, · · · , zn) ∈ R
n. f is bijective and

f(Rn+1
+ ) = B

n+1,(7)

f(∂Rn+1
+ ) = ∂Bn+1,(8)

f({|z| = 1}) = {xn+1 = 0}.(9)

Moreover, f is a conformal diffeomorphism between (R̄n+1
+ , δ

R̄
n+1

+
) and

(B̄n+1, δB̄). Here δ
R̄

n+1

+
and δB̄ denote the restriction of the Euclidean metric

to R̄
n+1
+ and B̄

n+1 respectively. Precisely,

f∗δB̄ = e2wδ
R̄

n+1

+
=

4

(|z′|2 + (1 + zn+1)2)2
δ
R̄

n+1

+
.

In other words, (B̄n+1, δB̄) and (R̄n+1
+ , e2wδ

R̄
n+1

+
) are isometric.
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In R̄
n+1
+ , we use the polar coordinates (ρ, φ, θ) ∈ [0,∞)× [0, π2 ]× S

n−1,
where

ρ2 = |z′|2 + z2n+1, zn+1 = ρ cosφ

and θ ∈ S
n−1 is the spherical coordinate.

By using (ρ, φ, θ) in R̄
n+1
+ , the mapping f can be rewritten as

f(ρ, φ, θ) =

(

2ρ sinφθ⃗

1 + ρ2 + 2ρ cosφ
,

ρ2 − 1

1 + ρ2 + 2ρ cosφ

)

.(10)

Here θ⃗ denotes the position vector of the point z′

|z′| ∈ S
n−1. We also have

f∗δB̄ = e2wδ
R̄

n+1

+
=

4

(1 + ρ2 + 2ρ cosφ)2
(dρ2 + ρ2dφ2 + ρ2 sin2 φgSn−1),

where

w = w(ρ, φ, θ) = log 2− log(1 + ρ2 + 2ρ cosφ).

One may also check that the conformal Killing vector field Xn+1 on B̄+ is
transformed to

X̃ = (f−1)∗(Xn+1) = −ρ∂ρ on R̄
n+1
+ .(11)

The integral curves of X̃ are clearly the rays in R
n+1
+ initiating from the

origin.

Let Σ ⊂ B̄
n+1 be a properly embedded compact hypersurface with

boundary, given by an embedding x : S̄n+ → B̄
n+1. We associate Σ with a

corresponding hypersurface Σ̃ ⊂ R̄
n+1
+ given by the embedding

x̃ = f−1 ◦ x : S̄n+ → R̄
n+1
+ .

In view of (11), Σ is star-shaped with respect to En+1 if and only if Σ̃ is
star-shaped (with respect to the origin) in R̄

n+1
+ , that is, Σ̃ intersects each of

the rays in R
n+1
+ initiating from the origin exactly once, or in other words,

Σ̃ is a graph over S̄n+.
Since (B̄n+1, δB̄) and (R̄n+1

+ , e2wδ
R̄

n+1

+
) are isometric, a proper embedding

x : S̄n+ → B̄
n+1 can be identified as an embedding x̃ : S̄n+ → (R̄n+1

+ , e2wδ
R̄

n+1

+
).

In the following, we use˜to indicate the corresponding quantity for x̃ : S̄n+ →
(R̄n+1

+ , e2wδ
R̄

n+1

+
).
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Given a star-shaped hyersurface Σ̃ in (R̄n+1
+ , e2wδ

R̄
n+1

+
), by using the polar

coordinate (ρ, φ, θ) ∈ R̄
n+1
+ , we may write

x̃ = ρ(y)y = ρ(φ, θ)y, y = (φ, θ) ∈ S̄
n
+.

We use σ = dφ2 + sin2 φdθ2 and ∇σ to denote the round metric and the
covariant derivative on S̄

n
+. Set

γ = log ρ, and v =
√

1 + |∇σγ|2.

We have the following correspondence for several geometric quantities.

Proposition 2.1.

(i)

xn+1 = ⟨f(x̃), En+1⟩ =
1

2
(ρ2 − 1)ew.

(ii)

|Xn+1| = ew| − ρ∂ρ| = ρew.

(iii)

⟨Xn+1, ν⟩ = e2w⟨−ρ∂ρ, ν̃⟩ =
ρew

v
.

(iv) The Weingarten transformation h
j
i = gjkhik satisfies

h
j
i = h̃

j
i =

1

ρvew
(σkj −

γkγj

v2
)γik +

[

sinφγϕ
v

+
(ρ2 − 1)

2ρv

]

δ
j
i .

(v)

H = H̃ =
1

ρvew
(σij −

γiγj

v2
)γij +

n sinφγϕ
v

+
n(ρ2 − 1)

2ρv
.

Remark 2.1. We see from (iii) that in case we have C0 estimate, a positive
lower bound for ⟨Xn+1, ν⟩ is equivalent to the gradient estimate for γ.

Proof. (i) follows from (10) and (ii) follows from (11).
It is clear that the unit outward normal is given by

ν̃ = e−wνδ = e−w ρ−1∇σγ − ∂ρ

v
,(12)

where νδ is the unit outward normal of Σ̃ ⊂ (R̄n+1
+ , δ

R̄
n+1

+
). Then (iii) follows

from (11) and (12).
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By a well-known transformation law for the Weingarten transformation
under a conformal change, we know that h̃

j
i of Σ ⊂ (R̄n+1

+ , e2wδ
R̄

n+1

+
) with

respect to −ν̃ is given by

h̃
j
i = e−w((hδ)

j
i +∇δ

νδ
wδ

j
i ),(13)

where (hδ)
j
i is the Weingarten transformation with respect to −νδ of Σ̃ ⊂

(R̄n+1
+ , δ

R̄
n+1

+
) and ∇δ is the Euclidean derivative.

It is known that

(hδ)
j
i = −

1

ρv
δ
j
i +

1

ρv
(σkj −

γkγj

v2
)γik,(14)

On the other hand, using e−w = 1
2(1 + ρ2 + 2ρ cosφ), we have

∇δ
νδ
(e−w) =

〈

(ρ+ cosφ)∂ρ − ρ−1 sinφ∂ϕ,
ρ−1∇σγ − ∂ρ

v

〉

(15)

= −
1

v
(ρ+ cosφ+ sinφγϕ).

(iv) follows from (13), (14) and (15). (v) follows from (iv) by taking trace. □

We return to the flow problem (1) in (B̄n+1, δB̄). By the identification
using f , the corresponding family of embeddings x̃ : Sn+ → (R̄n+1

+ , e2wδ
R̄

n+1

+
)

satisfies

(16)

{

∂tx̃ = (n⟨f(x̃), En+1⟩ − H̃e2w⟨−ρ∂ρ, ν̃⟩)ν̃ in S
n
+ × [0, T ),

⟨ν̃, µ̃ ◦ x̃⟩ = 0, on ∂Sn+ × [0, T ),

with an initial surface x̃(·, 0) = x̃0. Here µ̃ is the downward unit normal of
(R̄n+1

+ , e2wδ
R̄

n+1

+
). As long as x̃(·, t) is star-shaped in R̄

n+1
+ , we may reduce

(16) to a scalar flow.
Using a standard argument (see [4], Eq. (2.4.21)) and Proposition 2.1,

we see that

∂tγ = −
v

ρew

(

n

2
(ρ2 − 1)ew − H̃

ρew

v

)

(17)

=
1

ρvew

(

σij −
γiγj

v2

)

γij +
n sinφγϕ

v
−

n(ρ2 − 1)|∇σγ|2

2ρv

= divσ

(

∇σγ

ρvew

)

−
n+ 1

v
σ

(

∇σγ,∇σ

(

1

ρew

))

.
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The last line above follows from the fact

σ

(

∇σγ,∇σ

(

1

ρew

))

=
ρ2 − 1

2ρ
|∇σγ|2 − sinφγϕ.

Next we examine the boundary condition. Note that µ ⊥ ∂Bn+1. Since
the conformal change f preserves angles, we have µ̃ ⊥ ∂Rn+1

+ and in turn

µ̃ = −e−w∂ϕ.

In view of (12), the boundary condition in (16) reduces to

∇σ
∂ϕ
γ = 0 on ∂Sn+.(18)

In summary, the flow problem (16) reduces to solve the scalar PDE

∂tγ =
1

ρvew

(

σij −
γiγj

v2

)

γij(19)

+
n sinφγϕ

v
−

n(ρ2 − 1)|∇σγ|2

2ρv
, in S

n
+ × [0, T ),

with the initial and the boundary conditions

γ(·, 0) = γ0, in S
n
+,

∇σ
∂ϕ
γ = 0, on ∂Sn+ × [0, T ).

where γ0 is the corresponding function for x0.

3. A priori estimates

The short time existence of the scalar flow (19) follows by the standard
parabolic PDE theory. Next we show the C0 and C1 estimates for (19). The
a priori C0 estimate follows directly from the maximum principle.

Proposition 3.1. Let γ : Sn+ × [0, T ) → R solve (19). Then

min
Sn
+

γ0 ≤ γ ≤ max
Sn
+

γ0.

The key point is the following gradient estimate for γ.
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Proposition 3.2. Let γ : Sn+ × [0, T ) → R solve (19). Then there exists a
constant C, depending on ∥γ0∥C1 and minSn

+
γ0 such that

|∇σγ|2 ≤ C.

Moreover, if n ≥ 3, we have

|∇σγ|2 ≤ C1e
−C2t.

Proof. For notation simplicity, we use ∇ = ∇σ in the proof. Denote

F (∇2γ,∇γ, ρ, φ) =
1

ρvew

(

σij −
γiγj

v2

)

γij +
n sinφγϕ

v
−

n(ρ2 − 1)|∇γ|2

2ρv
,

and

F ij =
∂F

∂γij
, F p =

∂F

∂γp
, F ρ =

∂F

∂ρ
, Fϕ =

∂F

∂φ
.

Then

∂t|∇γ|2 = 2γk(γt)k = 2F ijγkγijk + F p∇p|∇γ|2 + 2F ρρ|∇γ|2 + 2Fϕγϕ.(20)

By a direct computation, we have

F ij =
1

ρvew

(

σij −
γiγj

v2

)

,(21)

F ρ =
ρ2 − 1

2ρ2v

(

σij −
γiγj

v2

)

γij −
n(ρ2 + 1)

2ρ2v
|∇γ|2,(22)

Fϕ = − sinφ
1

v

(

σij −
γiγj

v2

)

γij +
n cosφ

v
γϕ.(23)

Using the Ricci identity

γijk = γkij + γjσki − γkσij

and (21), we have

2F ijγkγijk = F ij∇2
ij |∇γ|2 − 2

1

ρvew

(

σij −
γiγj

v2

)

γikγjk −
2(n− 1)

ρvew
|∇γ|2

= F ij∇2
ij |∇γ|2 −

2

ρvew
|∇2γ|2 +

1

2ρv3ew
∣

∣∇|∇γ|2
∣

∣

2
−

2(n− 1)

ρvew
|∇γ|2.(24)
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Replacing (22), (23) and (24) into (20), we get

∂t|∇γ|2 = F ij∇2
ij |∇γ|2 + F p∇p|∇γ|2

−
2

ρvew
|∇2γ|2 +

1

2ρv3ew
∣

∣∇|∇γ|2
∣

∣

2
−

2(n− 1)

ρvew
|∇γ|2

+ 2

[

ρ2 − 1

2ρ2v

(

σij −
γiγj

v2

)

γij −
n(ρ2 + 1)

2ρ2v
|∇γ|2

]

ρ|∇γ|2

+ 2

[

− sinφ
1

v

(

σij −
γiγj

v2

)

γij +
n cosφ

v
γϕ

]

γϕ

= F ij∇2
ij |∇γ|2 + F p∇p|∇γ|2

+

(

sinφ−
ρ2 − 1

2ρ
|∇γ|2

)

⟨∇γ,∇|∇γ|2⟩

v3

−
2

ρvew
|∇2γ|2 +

1

2ρv3ew
∣

∣∇|∇γ|2
∣

∣

2
−

2(n− 1)

ρvew
|∇γ|2

+
ρ2 − 1

ρv
∆γ|∇γ|2 −

n(ρ2 + 1)

ρv
|∇γ|4

+
2n cosφ

v
γ2ϕ −

2 sinφ

v
∆γγϕ.(25)

Now we examine the boundary normal derivative of |∇γ|2 and have

∇∂ϕ
|∇γ|2 = 2(γθαγθαϕ + γϕγϕϕ) = γθα [∇∂θα

(γϕ)− (∇∂θα
∂ϕ)γ] = 0.(26)

Here we used γϕ = 0 along ∂Sn+ and the fact that ∇∂θα
∂ϕ = 0.

Assume for t ∈ [0, T ), maxS̄n
+
|∇γ|2(·, t) = |∇γ|2(xt, t). If xt ∈ S

n
+, it fol-

lows from the maximum point condition that

∇|∇γ|2 = 0, ∇2|∇γ|2 ≤ 0.(27)

If xt ∈ ∂Sn+, we see from (26) that ∇∂ϕ
|∇γ|2 = 0, and in turn we also have

(27). Thus, for each t ∈ [0, T ), at xt, we have (27). We choose at xt lo-
cal coordinates x1, · · ·xn such that γ1 = |∇γ|. One has γ1i = 0 for all i by
(27). By further rotating the {x2, · · · , xn} coordinate, we can assume ∇2γ

is diagonal. Then

|∇2γ|2 ≥
1

n− 1
(∆γ)2.
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It follows from (25) that at xt,

0 ≤ ∂t|∇γ|2(xt, t)

≤ −
2

ρvew
|∇2γ|2 −

2(n− 1)

ρvew
|∇γ|2

+
ρ2 − 1

ρv
∆γ|∇γ|2 −

n(ρ2 + 1)

ρv
|∇γ|4 +

2n cosφ

v
γ2ϕ −

2 sinφ

v
∆γγϕ

≤ −
2(1− ϵ)

(n− 1)ρvew

(

∆γ −
(n− 1)(ρ2 − 1)ew

4(1− ϵ)
|∇γ|2

)2

−
2ϵ

(n− 1)ρvew

(

∆γ +
(n− 1)ρew sinφ

2ϵ
γϕ

)2

+
1

ρv

(

(n− 1)(ρ2 − 1)2ew

8(1− ϵ)
− n(ρ2 + 1)

)

|∇γ|4

+
1

v

(

−
2(n− 1)

ρew
|∇γ|2 + 2n cosφγ2ϕ +

(n− 1)ρew sin2 φ

2ϵ
γ2ϕ

)

.(28)

Choosing ϵ = 3
4 , we have

(n− 1)(ρ2 − 1)2ew

8(1− ϵ)
− n(ρ2 + 1)

<
new

2
[(ρ2 − 1)2 − (ρ2 + 1)(1 + ρ2 + 2ρ cosφ)] ≤ −nρ2ew

and

−
2(n− 1)

ρew
|∇γ|2 + 2n cosφγ2ϕ +

(n− 1)ρew sin2 φ

2ϵ
γ2ϕ

≤

(

−
(n− 1)(1 + ρ2 + 2ρ cosφ)

ρ

+ 2n cosφ+
4(n− 1)

3

ρ

1 + ρ2 + 2ρ cosφ

)

|∇γ|2

≤ (−2(n− 1) + 2 cosφ+
2(n− 1)

3
)|∇γ|2

≤ (−
4

3
n+

10

3
)|∇γ|2.

Thus

(29) 0 ≤ ∂t|∇γ|2 ≤ −
nρew

v
|∇γ|4 + (−

4

3
n+

10

3
)
1

ρv
|∇γ|2.
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It follows from (29) that |∇γ|2 ≤ C. Moreover, when n ≥ 3, one sees from
(29) that |∇γ|2 ≤ C1e

−C2t. □

4. Global convergence

We first prove the nice properties of (1), mentioned in the Introduction.

Proposition 4.1. Flow (1) satisfies

d

dt
Vol(Ωt) = 0(30)

and

d

dt
Area(Σt) = −

1

n− 1

∫

Σ

∑

i<j

(κi − κj)
2⟨Xn+1, ν⟩dAt ≤ 0.(31)

Proof. From (3), we get

d

dt
Vol(Ωt) =

∫

Σ
(nxn+1 −H⟨Xn+1, ν⟩)dAt = 0.

The first variational formula gives

d

dt
Area(Σt) =

∫

Σ
H(nxn+1 −H⟨Xn+1, ν⟩)dAt.

Using the Minkowski formula (4)

∫

Σ
Hxn+1 −

2

n− 1
σ2(κ)⟨Xn+1, ν⟩dAt = 0,

we get

d

dt
Area(Σt) = −

∫

Σ

(

H2 −
2n

n− 1
σ2(κ)

)

⟨Xn+1, ν⟩dAt

= −
1

n− 1

∫

Σ

∑

i<j

(κi − κj)
2⟨Xn+1, ν⟩)dAt ≤ 0.

□

Now we prove the global convergence.
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Proof of Theorem 1.1. In view of Proposition 2.1 (iii), the C0 and C1 esti-
mates in Propositions 3.1 and 3.2 imply that ⟨Xn+1, ν⟩ ≥ c > 0, that is, the
star-shapedness of Σt is preserved under the flow (1).

Now we are ready to prove the long time existence in Theorem 1.1.
Since equation (19) is a quasilinear parabolic PDE of divergent form, the
higher order a priori estimates follows from the standard parabolic PDE
theory, once we have the C0 and C1 estimates in Propositions 3.1 and 3.2.
Hence we prove that (19) has a smooth solution for all time. The exponential
convergence for n ≥ 3 follows directly from Proposition 3.2.

For the convergence part in two dimensions, we examine the monotonic-
ity of the area functional along the flow. In the following we restrict to n = 2.
By integrating (4.1) over t ∈ [0,∞) and using the uniform estimate, we get

∫ ∞

0

∫

Sn
+

|κ1(y, t)− κ2(y, t)|
2⟨Xn+1, ν⟩dAtdt ≤ C.

where κi(y, t), i = 1, 2 are the principal curvatures of the radial graph at
(y, t). It follows from the uniform bound for ⟨Xn+1, ν⟩ and dAt that

(32) max
y∈S̄n

+

|κ1 − κ2|(y, t) = ot(1),

where ot(1) denotes a quantity which goes to zero as t → ∞. See the proof
of Proposition 5.5 in [5]. With the help of the property (32), we can show
the smooth convergence of flow (1) when n = 2. This idea was used first by
Guan-Li in [5].

Let us go back to the estimate at xt, where maxS̄n
+
|∇γ|2(·, t) =

|∇γ|2(xt, t). Again we choose the local coordinate around xt such that at xt,

γ1 = |∇γ|, γ11 = 0.

In view of Proposition 2.1 (iv), the Weingarten transformation h
j
i is diagonal

in this coordinate which means the coordinate directions are the principal
directions of x(·, t) at xt. Thus the principal curvature κi at xt is given by

κi =
γii

ρvew
+

sinφγϕ
v

+
(ρ2 − 1)

2ρv
, i = 1, 2.

It follows that at xt,

|∆γ| = |γ22 + γ11| = |γ22 − γ11| = ρvew|κ2 − κ1| = ot(1).(33)
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Using (33) and the C1 estimate, we get at (xt, t),

∂t|∇γ|2 ≤ −
2

ρvew
|∇2γ|2 −

2(n− 1)

ρvew
|∇γ|2

+
ρ2 − 1

ρv
∆γ|∇γ|2 −

n(ρ2 + 1)

ρv
|∇γ|4 +

2n cosφ

v
γ2ϕ −

2 sinφ

v
∆γγϕ

≤ −
n(ρ2 + 1)

ρv
|∇γ|4 +

1

v

(

−
2

ρew
|∇γ|2 + 4 cosφγ2ϕ

)

+ ot(1)

≤ −C|∇γ|4 + ot(1).(34)

Here we have used

−
2

ρew
|∇γ|2 + 4 cosφγ2ϕ ≤

(

−
1 + ρ2 + 2ρ cosφ

ρ
+ 4 cosφ

)

|∇γ|2 ≤ 0.

Now we claim that

|∇γ|2 = ot(1).

The smooth convergence follows from this claim and the interpolation the-
orem. We show the claim in two steps.

First, we show that there exists a sequence {ti} with ti → ∞ such that

max
S̄n
+

|∇γ(·, ti)|
2 → 0 as i → ∞.

Assume this is not true. Then there exists ϵ0 > 0 and T0 > 0 such that

max
S̄n
+

|∇γ(·, t)|2 ≥ ϵ0, for t > T0.

From (34) we have that for a large T1 > 0 and for any t > T1, we have

d

dt
max
S̄n
+

|∇γ|2 ≤ −Cmax
S̄n
+

|∇γ|4 +
1

2
Cϵ40 = −

1

2
Cϵ40,

which is impossible.
Second, we show that for any sequence {si} with si → ∞, we have

max
S̄n
+

|∇γ(·, si)|
2 → 0 as i → ∞.

If not, there exists a sequence {si} with si → ∞ such that

max
S̄n
+

|∇γ(·, si)|
2 ≥ ϵ1
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for any si and for some positive constant ϵ1. Without loss of generality, we
may assume that ti < si. We consider the interval Ii := [ti, si] for sufficiently
large i, such that we have from (34) at a maximum point xt ∈ S̄

n
+

(35)
d

dt
max
S̄n
+

|∇γ|2 ≤ −Cmax
S̄n
+

|∇γ|4 +
1

2
Cϵ41

for any t ≥ ti. Let yi ∈ S̄
n
+ and t̄i ∈ [ti, si] such that

|∇γ(yi, t̄i)|
2 = max

t∈[ti,si]
max
S̄n
+

|∇γ(·, t)|2 ≥ ϵ1.

By the first step, we may assume that t̄i ̸= ti for i large. It follows that

d

dt
max
S̄n
+

|∇γ|2(t̄i) ≥ 0.

Together with (35), implies that

|∇γ(yi, t̄i)|
2 < ϵ1,

a contradiction. This proves the claim.
From the claim, it follows easily that γ(t) converges smoothly to a con-

stant γ0 and ρ → ρ0 smoothly for some constant ρ0 > 0, depending on the
initial enclosed volume of x0.

Next we show the exponential convergence in the case n = 2 and the
enclosed volume of x0 is not that of a half ball. In this case, ρ0 ̸= 1. We
return to (28). By choosing ϵ < 1 close to 1, we have

∂t|∇γ|2(xt, t) ≤
1

ρv

(

(ρ2 − 1)2ew

8(1− ϵ)
− n(ρ2 + 1)

)

|∇γ|4

+
1

v

(

−
2

ρew
+ 4 cosφ+

ρew sin2 φ

2ϵ

)

|∇γ|2

≤
1

ρv

(

(ρ2 − 1)2ew

8(1− ϵ)
− n(ρ2 + 1)

)

|∇γ|4

+
1

v

(

−
(1− ρ cosφ)2

ρ

+ ρ sin2 φ

(

1

ϵ(1 + ρ2 + 2ρ cosφ)
− 1

))

|∇γ|2

≤ C|∇γ|4 −

(

(1− ρ cosφ)2

ρ
+ Cρ sin2 φ

)

|∇γ|2.
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As ρ converges to ρ0 ̸= 1,

−

(

(1− ρ cosφ)2

ρ
+ Cρ sin2 φ

)

≤ −C1

for some C1 > 0 and t large. Then the exponential convergence follows. □

Proof of Corollary 1.1. It follows from Theorem 1.1 and Proposition 4.1. □
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