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This paper describes a Dehn surgery approach to generating asym-
metric hyperbolic manifolds with two distinct lens space fillings.
Such manifolds were first identified in [20] as the result of a com-
puter search of the SnapPy census, but the current work establishes
a topological framework for constructing vastly many more such
examples. We introduce the notion of a jointly primitive presen-
tation of a knot and show that a refined version of this condition
—longitudinally jointly primitive— is equivalent to being surgery
dual to a (1, 2)–knot in a lens space. This generalizes Berge’s equiv-
alence between having a doubly primitive presentation and being
surgery dual to a (1, 1)–knot in a lens space. Through surgery de-
scriptions on a seven-component link in S3, we provide several ex-
plicit multi-parameter infinite families of knots in lens spaces with
longitudinal jointly primitive presentations and observe among
them all the examples previously seen in [20].
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1. Introduction

In [20], Dunfield-Hoffman-Licata identified 22 manifolds with Heegaard
genus 3 and a pair of lens space fillings. These examples — the DHL man-
ifolds — were identified via the SnapPy census of hyperbolic manifolds ad-
mitting geometric triangulations of 10 or fewer tetrahedra. Specifically, they
searched for 1–cusped, asymmetric manifolds with the property that two of
the shortest slopes in the Euclidean torus cross-section of the cusp provided
fillings whose fundamental groups had a single generator [20]. Remarkably,
these DHL manifolds give the first examples of two phenomena in the subject
of Dehn surgery:

1) They exhibit the “genus drop” phenomenon: a decrease in Heegaard
genus by at least 2 for more than one Dehn filling.

2) They give counterexamples to a “generalized Berge conjecture”: a pair
of surgery dual hyperbolic knots in lens spaces of which neither is a
(1, 1)–knot.

This article arose from the attempt to better understand these phenom-
ena by providing a unifying framework for these sporadic examples found
by a computer search. What emerged from this effort is a characterization
of knots that are framed surgery dual to (1, 2)–knots in lens spaces, some
constructions of families of such knots in lens spaces that are generically hy-
perbolic and asymmetric, and an identification of the DHL manifolds among
the complements of such knots.

More precisely, we define a longitudinally jointly primitive presentation
of a framed knot K in Section 2 and show the following:

Theorem 2.7. A framed knot K has a longitudinal jointly primitive pre-
sentation if and only if its framed surgery dual K∗ is a (1, 2)–knot in a lens
space.

Thereafter we develop several families of framed knots in lens spaces with
longitudinally jointly primitive presentations (detailed in Theorem 4.11,
Theorem 4.13, and Addendum 4.14) among whose complements we locate
the DHL manifolds as detailed in Table 1.

Corollary 1.1. The 22 DHL manifolds can be realized as complements of
(1, 2)–knots in lens spaces.
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For context, recall the surgery characterization of Berge’s doubly prim-
itive property for framed knots and the Berge Conjecture.

Theorem 1.2 ([14], see also e.g. [34, Appendix] and [7, Lemma 3]).
A framed knot K has a doubly primitive presentation if and only if its framed
surgery dual K∗ is a (1, 1)–knot in a lens space. □

Conjecture 1.3 (The Berge Conjecture [14, 23]). Any framed knot in
S3 with a surgery to a lens space is doubly primitive.

The Berge Conjecture and its generalization to knots in S1 × S2 (see [6] and
[25, Conjecture 1.9]) may still hold, but the DHL manifolds show that the
generalization to knots in lens spaces with lens space surgeries fails.

To describe our families of knots with longitudinally jointly primitive
presentations, in Section 4 we introduce the knots Kk(m, r, s, b) in the man-
ifolds Y (m, r, s, b); these are obtained as the image of the knot K after
surgery on the link L shown in Figure 1. The components are named on the
left of Figure 1, and the surgery slopes are given in terms of the parame-
ters m, r, s, b, k on the right. Figure 2 shows the link K ∪ L again, but with
a twice-punctured torus inducing a +1 framing. Performing this framed
(+1)–surgery on K in addition to the surgery on L produces the mani-
fold Y ∗

k (m, r, s, b). For certain constraints on m, r, s, b, both Y (m, r, s, b) and
Y ∗
k (m, r, s, b) are lens spaces for all k ∈ Z. Table 1 presents the 22 DHL man-

ifolds as the exteriors of the knots Kk(m, r, s, b) along with their lens space
fillings Y (m, r, s, b) and Y ∗

k (m, r, s, b), proving Corollary 1.1.
For our constructed families of knots to be “interesting” —beyond sim-

ply accounting for the DHL manifolds— we need to know that, generically,
neither they nor their surgery duals are (1, 1)–knots. As (1, 1)–knots are
strongly invertible and the symmetry group of a hyperbolic manifold is its
isometry group, it suffices to show that the knots in our families are “gener-
ically” hyperbolic and without a strong inversion in their isometry group.
Since our knots arise through parameterized surgery descriptions, we must
take care in developing the proper sense of “generic”. To that end we develop
the following definitions and theorem (building upon [27] and [30]).

Let the multislope ψ = (ψi)
m
i=1 denote slopes on the cusps of M and

let ΨN be the set of multislopes whose constituent slopes all have lengths
greater than a constant N ; see §3.1 for details.

Theorem 3.1. Let M be an m–cusped orientable hyperbolic 3–manifold.
Set C = 7.5832.
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1) For each ψ ∈ ΨC , M(ψ) is a hyperbolic 3–manifold in which the cores
of the filling are mutually disjoint simple closed geodesics.

2) Furthermore, there is a constant CM > C and depending on M
such that for each ψ ∈ ΨCM

, the cores of the filling constitute the
shortest geodesics in M(ψ); in this case Kojima’s restriction map
rest : Isom(M(ψ)) →֒ Isom(M) is a monomorphism.

Definition 3.3 establishes that a multislope ψ for M is fully generic if
ψ ∈ ΨCM

and symmetry-breaking if g(ψ) ̸= ψ for all non-trivial isometries
g ∈ Isom(M).

In our main application of Theorem 3.1, M is one of a handful of hy-
perbolic manifolds obtained from a partial filling of the exterior of the link
K ∪ L. These are chosen so that a further filling along any multislope in
a particular collection SM produces a one-cusped manifold with two lens
space fillings that is the exterior of a subfamily of knots Kk(m, r, s, b). The
isometry group of each M is calculated with SnapPy. From this, we con-
clude that the multislopes in SM are symmetry-breaking for most of these
M . This is done in Section 4.3. Hence, for most of theseM , we can conclude
that the fillings along the fully generic multislopes in SM produce asymmet-
ric, one-cusped hyperbolic manifolds with two lens space fillings. Thus the
corresponding knots Kk(m, r, s, b) and their surgery duals K∗

k(m, r, s, b) can-
not be (1, 1)–knots. These results are the primary content of Theorem 4.11,
Theorem 4.13, and Addendum 4.14.

Among the fillings of these M with multislopes in SM , we locate the
DHL manifolds. However, as we have no estimate on an upper bound for
CM in Theorem 3.1 and hence no explicit length bound that ensures a mul-
tislope is fully generic, our results only establish the existence of infinitely
many examples of asymmetric hyperbolic knots with two lens space fillings,
together with finitely many specific, individually calculated, examples. For
instance, Theorem 4.11 shows that Kk(−1,−1,−4 + 1

n
, b) is a knot in a lens

space with a lens space filling for all n, b, k ∈ Z, while Lemma 4.5 shows the
knot is hyperbolic and asymmetric for n, b, k ∈ Z of suitably large magni-
tude. However we cannot say how large is “suitably large”.

Addendum 4.14 gives several M with multislopes SM producing one-
cusped manifolds with two lens space fillings, although the multislopes in
SM are not symmetry-breaking. A similar argument allows us to conclude
that a strong involution is the only non-trivial isometry of the fillings along
the fully generic multislopes in SM . Thus other arguments are required to



✐

✐

“1-Hoffman” — 2023/9/28 — 0:50 — page 2179 — #5
✐

✐

✐

✐

✐

✐

Jointly primitive knots and surgeries between lens spaces 2179

Figure 1: Left presents the link L = J ∪R ∪ C0 ∪ C1 ∪ L+ ∪ L− together
with the knot K. Right uses the link K ∪ L to give a Dehn surgery diagram
for the knot Kk(m, r, s, b).

determine whether the corresponding knots Kk(m, r, s, b) or their surgery
duals K∗

k(m, r, s, b) are (1, 1)–knots.

Theorem 4.11 also adjusts the constraints on the parameters m, r, s, b
so that the knots Kk(m, r, s, b) give surgeries between lens spaces and re-
ducible manifolds or surgeries between two reducible manifolds. Remark 4.15
discusses similar modifications to Theorem 4.13. Theorem 3.1 may be ap-
plied as described above to determine the isometry groups of the exteriors of
these knots corresponding to totally generic fillings of the appropriate inter-
mediary filling M . In particular, while Theorem 4.11 shows that for b, k ∈ Z

both Kk(−1,−1,−4, b) and Kk(−1,−2,−3, b) are knots in a connected sum
of lens spaces with a lens space surgery, Lemma 4.6 shows that they are
hyperbolic and asymmetric for b, k ∈ Z of suitably large magnitude.

1.1. Overview

Our families of examples are derived from families of strongly invertible,
hyperbolic framed knots with a jointly primitive presentation either in a
cable space or in a Whitehead link exterior for which the strong inversion
exchanges the two torus boundary components of the ambient manifold. The
jointly primitive presentation of the knot ensures that the framed surgery
produces a cable space. As cable spaces and Whitehead links have many
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Figure 2: The link K ∪ L from Figure 1 is redrawn here with the twice-
punctured torus Seifert surface Σ for C0 ∪ C1. Observe that K embeds in
Σ with framing +1, L+ and L− are unknots that cobound an annulus with
framing 0 that intersects Σ in a curve that K crosses once, and the curves
J and R are disjoint from both Σ and this annulus.

lens space fillings, selecting such fillings in which the jointly primitive knot
becomes a longitudinally jointly primitive knot ensures that the surgered
manifold is a lens space. Further selecting such fillings so that any strong
involution of the knot does not extend to the filled manifold then obstructs
the knot in the lens space from being strongly invertible.

Section 2 introduces jointly primitive presentations of knots and the key
Theorem 2.7 unfolds from this definition. Section 2.3 then relates jointly
primitive presentations to other significant surgery presentations and pro-
poses some related questions. Notably, we ask:

• Question 2.15: If a framed knot in S3 or S1 × S2 has a lens space
surgery, then does it have a longitudinally jointly primitive presenta-
tion?
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• Question 2.16: If a framed knot in S3 or S1 × S2 has a longitudinally
jointly primitive presentation, then is it also doubly primitive?

• Question 2.17: If framed knotsK,K∗ in lens spaces Y, Y ∗ are surgery
dual, then must either K or K∗ have a longitudinally jointly primitive
presentation?

Section 3, and particularly Theorem 3.1, clarifies the hyperbolic geom-
etry of multi-cusped fillings that ensures a “generic” filling does not have
any unexpected symmetries. Section 4 develops several explicit families of
knots in lens spaces exhibiting longitudinally jointly primitive presentations
and checks their hyperbolicity and symmetries. These results are presented
in Theorem 4.11, Theorem 4.13, and Addendum 4.14 and represent the cul-
mination of our goal of placing the DHL manifolds in a natural framework.
With Theorem 2.7, they give sense to the DHL manifolds as recorded in
Table 1 and Corollary 1.1.

Appendix A notes that “natural” examples of hyperbolic manifolds that
are not strongly invertible yet have two lens space fillings arise from a closer
examination of [32]. We identify these examples among our families.

We stress that the techniques outlined in this paper should give rise to
many more asymmetric hyperbolic manifolds with two lens space fillings. As
a testament to this, Appendix B develops more examples of such manifolds
using these techniques with fillings of the “Magic Manifold”.

1.2. Proof of Corollary 1.1

We now summarize the parts of our discussion needed to prove Corollary 1.1.

Proof of Corollary 1.1. As indicated in Table 1, each of the 22 DHL mani-
folds can be obtained via surgery on the link in Figure 1. It is now a simple
matter of bookkeeping to see that we have shown that the relevant surgery
parameters yield LJP knots (i.e. longitudinally jointly primitive knots, de-
fined in §2). First, all rows of the table not decorated by † or ‡ can be seen
as LJP by Theorem 4.11. Four of the remaining rows which are marked
with a † are seen as LJP by Theorem 4.13. The final case is addressed by
Addendum 4.14. □
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2. Jointly primitive presentations

A collection of pairwise disjoint simple closed curves {K1, . . . ,Kn} in the
boundary of a genus g handlebody H with n ≤ g is called jointly primi-
tive if there exists a set of mutually disjoint meridional disks {D1, . . . , Dn}
transverse to the curves such that |Ki ∩Dj | = δij . Equivalently, let H

∗ =
H[K1, . . . ,Kn] be the manifold formed by attaching 2–handles to H along
the curves {Ki}. Then {K1, . . . ,Kn} is jointly primitive if the core arcs
{K∗

1 , . . . ,K
∗
n} of these 2–handles are collectively trivial in H∗; the disks Di

become mutually disjoint bridge disks for the arcs K∗
i . Furthermore, by [24],

the collection {K1, . . . ,Kn} is jointly primitive if and only if attaching 2–
handles to H along any subset of them produces a handlebody. See also
[39].

Definition 2.1. Suppose a 3–manifold M contains a properly embedded
twice-punctured torus Σ such that H =M \ N (Σ) is a handlebody. Let K
be a framed knot in M that may be isotoped to lie in Σ so that it is non-
separating and its framing agrees with the framing by Σ. Such an embedding
of K in Σ is a jointly primitive presentation of K if the two impressions K+

and K− in ∂N (Σ) are a jointly primitive pair of curves in H. A framed knot
K is jointly primitive, or just JP, if it has a jointly primitive presentation.
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Table 1: The 22 DHL manifolds as the knot exteriorsXk(m, r, s, b) and their
lens space fillings. The parameters producing these manifolds are indicated;
a few may be obtained from two sets of parameters. When unmarked in the
final column, the manifold is obtained via Theorem 4.11. When marked with
†, it is obtained with Theorem 4.13. When marked with ‡, it is obtained in
Addendum 4.14.

Xk(m, r, s, b) Y (m, r, s, b) Y ∗

k (m, r, s, b) m r s b k

v3372 L(7, 1) L(19, 7) -1 -1 -3 1 -2

L(19, 7) L(7, 1) -1 -2 -4 -2 1

t10397 L(11, 2) L(14, 3) -1 -1 -3 -2 2

t10448 L(17, 5) L(29, 8) -1 -2 -4 1 1

t11289 L(11, 2) L(26, 7) -1 -1 -3 -2 -2

L(26, 7) L(11, 2) -1 -2 - 5
2

-2 1

t11581 L(7, 1) L(31, 12) -1 -1 -3 1 2

t11780 L(6, 1) L(23, 7) -2 0 -4 1 -1 †

t11824 L(19, 4) L(34, 13) -1 -2 - 5
2

1 1

t12685 L(14, 3) L(29, 8) -2 0 -3 -2 -1 ‡

o934328 L(13, 2) L(34, 13) -1 -1 -3 2 -2

L(34, 13) L(13, 2) -1 -2 - 7
2

-2 1

o935609 L(29, 8) L(50, 19) -1 -2 - 7
2

1 1

o935746 L(17, 3) L(41, 12) -1 -1 -3 -3 -2

L(41, 12) L(17, 3) -1 -2 - 8
3

-2 1

o936591 L(31, 7) L(55, 21) -1 -2 - 8
3

1 1

o937290 L(31, 12) L(19, 4) -1 -2 -4 -3 1

o937552 L(13, 3) L(35, 8) -1 -1 -5 1 -2

o938147 L(29, 12) L(41, 11) -1 -2 -4 2 1

o938375 L(17, 3) L(29, 8) -1 -1 -3 -3 2

o938845 L(18, 5) L(13, 2) -2 0 -4 -2 2 †

o939220 L(13, 2) L(46, 17) -1 -1 -3 2 2

o941039 L(21, 8) L(13, 2) -3 0 -3 -2 2 †

o941063 L(41, 11) L(26, 7) -1 -2 - 5
2

1 1

o941329 L(34, 9) L(49, 18) -1 -2 - 5
2

2 1

o943248 L(18, 5) L(37, 8) -2 0 -4 -2 -1 †
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Figure 3: (a) Performing the indicated 0–surgery produces S1 × S2 in which
the other three components are S1 fibers. Then performing the p/q–surgery
makes the exterior of the remaining two copmonents into the cable space
A(p/q). (b) A slam dunk produces an alternative surgery diagram of the
cable space A(p/q).

Remark 2.2. Throughout this article, we will consider jointly primitive
presentations of knots in manifoldsM where ∂M is a pair of tori, i.e., where
M is the exterior of a two-component link in some closed 3–manifold. Nev-
ertheless, note that it is possible to have jointly primitive presentations of
knots in manifolds M where ∂M is a single torus.

Recall that a cable space is a Seifert fibered space over the annulus with
(at most) one (possibly degenerate) exceptional fiber. In a cable space, an
annulus that is a union of regular Seifert fibers and that connects the two
boundary components is called a spanning annulus. Letting A denote the
base-space annulus, denote by A(p/q) the cable space obtained by p/q–
surgery on an interior S1 fiber of the product A× S1, with surgery descrip-
tion as in Figure 3. In A(p/q), the exceptional fiber has order |p| and is
the core of the surgery, and we say the cable space has order |p|. When
|p| > 1, the cable space is the exterior of a torus knot in the solid torus.
When |p| = 1, the exceptional fiber is actually a regular fiber and the cable
space is the thickened torus. When p = 0, the exceptional fiber is degenerate
and the cable space is a connected sum of two solid tori (the exterior of the
trivial two-component link).

Remark 2.3. With this definition, the cable space A(p/q) is orientation-
preserving homeomorphic to the exterior of the (p, q′)–torus knot in the solid
torus where qq′ ≡ −1 mod p.

Lemma 2.4. Let M be a 3-manifold which contains a properly embedded
twice-punctured torus Σ such that H =M \N(Σ) is a handlebody. Assume
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a framed knot K in M has a jointly primitive presentation in Σ. If ∂M is
two tori, then surface framed surgery on K produces a cable space in which
the image of Σ is a spanning annulus.

Proof. Upon performing surgery along K, Σ becomes an annulus Σ∗. This
surgery has the effect of gluing 2–handles to the genus 3 handlebody H =
M \ N (Σ) along each of the impressions K± of K. Hence the resultingM∗ is
the solid torus H∗ = H[K+,K−] glued to itself along the two impressions of
the annulus Σ∗ in ∂H∗. As M has two boundary components, so must M∗.
We may orient the core curves of the two impressions of Σ∗ to be parallel
curves in the torus ∂H∗, so that gluing these annuli identifies these oriented
curves coherently.

The fibration of the annulus Σ∗ by circles extends to a Seifert fibration
of M∗ in which the core curve of the solid torus H∗ is the only possible
exceptional fiber. Since ∂M is two tori, M∗ is a cable space and Σ∗ is its
spanning annulus. □

Remark 2.5. Let us define a twisted cable space to be an (orientable)
Seifert fibered space over the Möbius band with (at most) one (possibly
degenerate) exceptional fiber. A non-separating properly embedded annulus
of regular fibers is a twisted spanning annulus. Lemma 2.4 and its proof
extend immediately to show that if ∂M is a single torus, then surgery on K
produces a twisted cable space in which the image of Σ is a twisted spanning
annulus.

Observe that fillings of cable spaces are small Seifert fibered spaces, lens
spaces, and connected sums of lens spaces. (We regard both S3 and S1 × S2

as lens spaces.) This construction therefore suggests a recipe for creating
framed knots K in closed 3–manifolds Y with surgeries to a filling of a cable
space.

Consider a two-component link C0 ∪ C1 ⊂ Y whose exterior M contains
a twice-punctured torus Σ with handlebody complement, and let K be any
framed knot with a jointly primitive presentation in Σ. Then one may say
that K has a jointly primitive presentation in Y . By Lemma 2.4, surgery
on K transforms M into a cable space M∗. Hence surgery on K creates the
manifold which is the filling of the cable space M∗ by the solid tori N (C0)
and N (C1).

Assume for the moment that the cable space has order at least 2. Since
Σ becomes a spanning annulus of the cable space, its boundary components
become regular fibers of the Seifert fibration of the cable space. Hence a
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lens space is produced whenever ∂Σ meets either ∂N (C0) or ∂N (C1) in a
longitudinal curve. Similarly, a connected sum of two lens spaces is produced
when ∂Σ meets either ∂N (C0) or ∂N (C1) in a meridional curve. (However,
if ∂Σ meets one of ∂N (C0) or ∂N (C1) in a meridional curve and the other
in a longitudinal curve, then one of these two lens space summands is S3

and the resulting manifold is just a lens space.) If ∂Σ meets both ∂N (C0)
and ∂N (C1) in non-longitudinal, non-meridional curves, then the result is a
small Seifert fibered space that is not a lens space. We refer to these three
situations as conferring longitudinal, meridional, or rational jointly primitive
presentations on the framed knot K in Y . For short, we say such framed
knots are LJP, MJP, or RJP, respectively.

Remark 2.6.

1) In this article, we focus primarily on the case of LJP framed knots,
though examples and results concerning meridional jointly primitive
presentations also arise naturally.

2) In light of Remark 2.5, one may similarly consider jointly primitive
framed knots K in a twice-punctured torus rational Seifert surface Σ
for a knot C in a closed 3–manifold Y . By joining the two components
of ∂Σ (while regarding them in ∂N (C)), such knotsK have surgeries to
manifolds containing Klein bottles. In particular, if each component
of ∂Σ were a longitude of C, Σ ∪ C would be a 1–sided Heegaard
splitting of Y and K would have a surgery to a prism manifold. We
do not pursue this case further here.

3) One could also define a jointly primitive presentation of a framed knot
with respect to a twice-punctured Klein bottle. We do not address this
either, beyond Remark 2.8 and a mention in Section 2.3.1.

2.1. LJP knots and (1, 2)–knots are surgery dual.

Recall that a lens space decomposes along a torus into two solid tori V and
V ′. A knot in the lens space is a (1, n)–knot if it can be isotoped to meet
each of V and V ′ in a collection of n mutually trivial arcs. More generally, if
a manifold splits along a surface into two handlebodies of genus g (i.e., it has
a genus g Heegaard splitting), then a knot in the manifold is a (g, b)–knot
if it can be isotoped to meet each handlebody in a collection of b mutually
trivial arcs. We say the genus g bridge number of such knot is b if it is not
a (g, b− 1)–knot with respect to any genus g Heegaard splitting.
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Theorem 2.7. A framed knot K has a longitudinal jointly primitive pre-
sentation if and only if its framed surgery dual K∗ is a (1, 2)–knot in a lens
space.

Proof. Throughout, let Y ∗ be the lens space containing K∗ which is surgery
dual to some framed knot K in a 3–manifold Y .

If K is LJP, then K∗ is a (1, 2)–knot:
Assuming K ⊂ Y is LJP, there is a two-component link C0 ∪ C1 ⊂ Y

and a twice-punctured torus Σ properly embedded inM = Y −N (C0 ∪ C1)
such that

1) K is a non-separating curve in Σ whose integral framing is given by
Σ;

2) M −N (Σ) is a genus 3 handlebody H;

3) the two impressions K± of K in ∂H are jointly primitive in H; and

4) σ1 = ∂Σ ∩ ∂N (C1) is a longitude of C1.

To perform framed surgery onK, first regardN (Σ) as Σ× [−1, 1] andN (K)
as

(
K × [−1, 1]

)
× [−1, 1] where the first interval factor determines an an-

nular neighborhood of K in Σ. Then ∂N (K) naturally decomposes into four
annuli, two of which are horizontal annular neighborhoods of the impressions
K± in ∂H while the other two are the vertical annuli

(
K × {±1}

)
× [−1, 1].

Performing Σ–framed surgery on K is then equivalent to attaching four 2–
handles to Y −N (K) along these annuli. The solid torus filling Y −N (K)
splits into these four 2–handles. Furthermore, the union of the cocores of
these four 2–handles is the surgery dual knot K∗ in the resulting manifold
Y ∗. We will show that this structure naturally gives a two-bridge presenta-
tion of K∗ with respect to a genus 1 Heegaard splitting of Y ∗.

Decompose Y −N (K) as the handlebody H and the manifold H ′ =
N (C0 ∪ C1) ∪N (Σ′), where Σ′ = Σ−N (K). We may regard N (Σ′) as Σ′ ×
[−1, 1]. This induces a decomposition of Y ∗ into V = H[K+,K−] and V

′ =
H ′[K ′

+,K
′
−] where K

′
± = ∂Σ′ − ∂Σ are the cores of the vertical annuli.

The jointly primitive presentation of K in Σ implies that the curves
K± are jointly primitive in H. Hence, attaching 2–handles to H along the
impressions K± yields a solid torus V = H[K+,K−] in which the cocores of
these two 2–handles form a pair of trivial arcs.

Since K is a non-separating curve in Σ, Σ′ is a 4–punctured sphere. As
N (Σ′) = Σ′ × [−1, 1], it may be viewed as a solid torus joined to thickenings
of the two annuli ∂Σ× [−1, 1] by two 1–handles. Now attaching the solid tori
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N (C0) and N (C1) along the two annuli ∂Σ× [−1, 1], we see H ′ = N (C0 ∪
C1) ∪N (Σ′) consists of three solid tori joined by two 1–handles. Hence H ′

is a genus 3 handlebody.
Again because K is a non-separating curve in Σ, there is a properly

embedded arc a in Σ with ∂a ⊂ σ1 that crosses K once. Restricting to Σ′,
a splits into two arcs a± connecting K ′

± to σ1. Then in N (Σ′), these two
arcs give rise to properly embedded disks D′

± such that |K ′
i ∩D′

j | = δij for
i, j ∈ {+,−}. Furthermore, since these disks each cross σ1 × {0} once and
σ1 is a longitude of C1, they may be extended through N (C1) to meridional
disks of H ′ without altering how they intersect K ′

±. Thus the pair of curves
K ′

± are jointly primitive in the handlebody H ′. Attaching 2–handles to H ′

along the curves K ′
± therefore yields a solid torus V ′ = H ′[K ′

+,K
′
−] in which

the cocores of these two 2–handles form a pair of trivial arcs.
Thus Y ∗ is a lens space and K∗ is a (1, 2)–knot.

If K∗ is a (1, 2)–knot, then K is LJP:
Now assume K∗ is a knot with a (1, 2)–presentation in the manifold Y ∗.

That is, Y ∗ admits a genus one Heegaard splitting as the union of two solid
tori V ∪ V ′ with the property thatK∗ intersects each of V and V ′ in a trivial
pair of arcs which we denote as K∗

a ,K
∗
c and K∗

b ,K
∗
d , respectively.

Choose an orientation of K∗ and let these arcs inherit this orientation.
SinceK∗

a ,K
∗
c is a trivial pair of arcs in V , there is a disjoint pair of meridional

disks Da, Dc of V that contain the arcs K∗
a ,K

∗
c . We may now take a core

curve C0 of V that intersects each of Da and Dc once. Orient C0 and the
disks so that both intersections are positive. Furthermore, we may isotope
C0, maintaining transversality to Da and Dc, so that its intersection with
these disks is to the left of K∗

a and to the right of K∗
c . Thus K

∗
a and K∗

c

cut off subdisks Ea ⊂ Da and Ec ⊂ Dc that are disjoint from C0 and the
orientation on K∗

a is opposite the induced orientation on ∂Ea while the
orientation on K∗

c agrees with the induced orientation on ∂Ec. See Figure 4.
Next, choose an essential simple closed curve C1 in ∂V that intersects Da

and Dc coherently and intersects each of Ea and Ec once. Then C1 is a cable
of C0 in V and a spanning annulus A intersects each of K∗

a and K∗
c once.

Observe that V may be regarded as a neighborhood of C0 ∪A ∪ C1.
Since K∗

b and K∗
d are a trivial pair of arcs in V ′, they have disjoint bridge

disks Eb and Ed in V
′; that is, Eb and Ed are a disjoint pair of embedded disks

in V ′ such that ∂Ei is the union of K∗
i and an arc in ∂V ′ for i = b, d. Thus, in

the genus 3 handlebody H = V ′ −N (K∗
b ∪K∗

d), the disks Eb and Ed certify
the core curves Kb and Kd of the annuli ∂N (K∗

b ) ∩ ∂H and ∂N (K∗
d) ∩ ∂H

as jointly primitive.
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Figure 4: The curve C0 is chosen to intersect the disks Da and Dc disjoint
from the subdisks Ea and Ec as shown.

By construction, K∗ intersects A geometrically twice but algebraically
zero times. Thus A may be tubed along either arc of K∗ −A to form a twice-
punctured torus Σ. Then after any integral surgery on K∗ to a manifold Y ,
the surgery dual curve K may be viewed as lying in Σ so that Y −N (C0 ∪
Σ ∪ C1) = H and the impressions of K in ∂N (Σ) are the curves Kb and
Kd in ∂H. As C1 is a boundary component of A, it is also a boundary
component of Σ. Thus Σ meets ∂N (C1) in a longitudinal curve. Hence K
has a longitudinally jointly primitive presentation in Σ ⊂ Y . □

Remark 2.8. At the end of the above proof, if C0 were instead isotoped
to intersect Dc to the left of K∗

c , the above construction would result in K∗

intersecting A both algebraically and geometrically twice. Then tubing A
would form a twice-punctured Klein bottle Σ, and the surgery dual knot
K would have a longitudinally jointly primitive presentation in this Σ ⊂ Y
instead. Indeed, the above proof easily extends to show that a framed knot
K is longitudinal jointly primitive with respect to a twice-punctured Klein
bottle if and only if it is longitudinal jointly primitive with respect to a
twice-punctured torus.

Corollary 2.9. If a framed knot K in a closed 3–manifold Y has a jointly
primitive presentation, then the tunnel number of K is at most 3 and the
Heegaard genus of Y is at most 4. If K has a longitudinally jointly primitive
presentation, then its tunnel number is at most 2 and the Heegaard genus of
Y is at most 3.



✐

✐

“1-Hoffman” — 2023/9/28 — 0:50 — page 2190 — #16
✐

✐

✐

✐

✐

✐

2190 K. L. Baker, N. R. Hoffman, and J. E. Licata

Proof. Since the Heegaard genus of a manifold containing a tunnel number
n knot is at most n+ 1, we need only bound the tunnel numbers of these
knots.

Suppose K has a jointly primitive presentation with respect to the link
C0 ∪ C1 and twice-punctured torus Σ. Observe first that Σ−K may be cut
into a disk D by a pair of arcs running from K to each component of ∂Σ,
together with a third arc from K to itself. Form two lassos from the first two
arcs meeting ∂Σ by joining them to C0 or C1 with an arc in a meridional
disk of N (C0) or N (C1). Then these two lassos together with the third arc
form a 3 tunnel system for K. (The lassos may be made into proper tunnels
by banding the loops C0 and C1 along the arcs from the loops to K.) The
exterior of K and these tunnels is a genus 4 handlebody that may be viewed
as the genus 3 handlebody H = Y −N (C0 ∪ Σ ∪ C1) together with an extra
1–handle whose cocore is the disk D.

Note that a knot with a (g, b)–presentation has tunnel number at most
g + b− 1: from a minimum of a knot in such a presentation, g tunnels to
form a spine of the lower handlebody and b− 1 tunnels to connect the other
minima of the knot will form a tunnel system. Thus a knot with a (1, 2)–
presentation has tunnel number at most 2. If K has a longitudinally jointly
primitive presentation, then its surgery dual has a (1, 2)–presentation by
Theorem 2.7. Hence K has tunnel number at most 2. □

2.2. Fibered jointly primitive presentations

The proof of Theorem 2.7 shows that an integral surgery dual to a (1, 2)–
knot has infinitely many LJP presentations, distinguished by the order of
wrapping of ∂Σ about C0. Indeed, one may always find an LJP presentation
in which Σ is longitudinal on each of C0 and C1; in particular, Σ will be a
Seifert surface for the link C0 ∪ C1. It seems desirable to identify a further
feature that gives preference to certain jointly primitive presentations over
others.

Definition 2.10. Suppose K is a knot with a jointly primitive presentation
in a twice-punctured torus Σ properly embedded in the exterior of a link
C0 ∪ C1 ⊂ Y . The jointly primitive presentation is fibered if Σ is a fiber in
a fibration of Y −N (C0 ∪ C1).

Remark 2.11. When Σ is a fiber, the handlebody H = Y −N (C0 ∪ C1)−
N (Σ) is a product Σ× [−1, 1] in which the impressions of K ⊂ Σ are the
curves K± = K × {±1}. As such, each curve K± is individually already a
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primitive curve in H; hence H[K+,K−] is a solid torus only if the pair is
jointly primitive.

As will be shown, the knots of Theorem 4.10, Theorem 4.13, and Adden-
dum 4.14 are all fibered LJP. Thus, it is reasonable to ask if Theorem 2.7
can be improved to a statement about fibered longitudinal jointly primitive
presentations.

Question 2.12. If a framed knot K ⊂ Y has a longitudinally jointly primi-
tive presentation, then does it also have a fibered longitudinally jointly prim-
itive presentation?

Indeed, many of the LJP knots in lens spaces obtained in Appendix B
are not given as fibered LJP knots and do not obviously also have a fibered
LJP presentation. Furthermore, doubly primitive knots are LJP as we will
see in Corollary 2.14, but it is not immediately clear whether or not they
have fibered LJP presentations.

2.3. Connections and questions

The notion of a jointly primitive presentation introduced in this paper has
close connections to other objects in the literature. This subsection notes a
few important relationships and poses some further questions.

2.3.1. Meridional jointly primitive presentations. The reader may
notice that a meridional jointly primitive presentation of a framed knot K
is simply a knot K realized as a framed, non-separating curve in a once-
punctured torus (or Klein bottle Σ̂) that is (rationally) bounded by another
knot C0. By the same philosophy as Lemma 2.4, surgery on the framed
knot K transforms the surface Σ̂ into a disk D so that N (C0 ∪D) is a
once-punctured lens space.

In another article in progress [5], the first author exploits this construc-
tion to recover and extends all examples found in the literature of hyperbolic
manifolds with two reducible surgeries. Applying similar techniques, he fur-
ther extends the examples of reducible surgeries on hyperbolic knots in lens
spaces.

All the knots in these examples admit a strong inversion. This prompts
a couple of natural questions.

Question 2.13. Is there a 1–cusped, asymmetric hyperbolic manifold with
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1) a lens space filling and a distinct reducible filling?

2) two reducible fillings?

2.3.2. Doubly primitive knots. A framed knot K in a closed 3–
manifold Y has a doubly primitive presentation if K may be isotoped to
embed in a genus 2 Heegaard surface so that K is primitive in each of
the two handlebodies [14]. The Berge Conjecture asserts that any framed
knot in S3 with surgery to a lens space has a doubly primitive presentation
[14, 23]. A similar conjecture proposes that any framed knot in S1 × S2 with
surgery to a lens space has a doubly primitive presentation [6], [25]. Since
doubly primitive knots are surgery dual to (1, 1)–knots which stabilize to
have (1, 2)–presentations, Theorem 2.7 implies that each doubly primitive
knot has a longitudinally jointly primitive presentation.

Corollary 2.14. If a framed knot K in a closed 3–manifold Y has a dou-
bly primitive presentation, then it admits a longitudinally jointly primitive
presentation. □

Given this observation, there are a couple of natural questions exploring
this relationship.

Question 2.15. If a framed knot in S3 or S1 × S2 has a lens space surgery,
then is it LJP?

Question 2.16. If a framed knot in S3 or S1 × S2 is LJP, then is it also
doubly primitive?

Indeed, following the above discussion, the Berge Conjecture and its
analogy for S1 × S2 imply affirmative answers to Questions 2.15 and 2.16.

Question 2.17. If framed knots K,K∗ in lens spaces Y, Y ∗ are surgery
dual, then must either K or K∗ be LJP? Equivalently, must either K or K∗

have a (1, 2)–presentation?

Since Berge knots (the doubly primitive knots in S3 [14, 25]) are LJP
by Corollary 2.14, we may make a few inferences.

Remark 2.18. There are Berge knot complements with arbitrarily large
volume [2]. Therefore, it would be impossible for any single link, let alone
the link in Figure 2, to be the common ancestor of all LJP knots in a given
lens space.
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Remark 2.19. There are Berge knots in S3 whose genus 1 bridge number
is arbitrarily large (see e.g., [16, Theorem 1.3] and [10, Theorem 1.3]). Hence
Theorem 2.7 implies that, while they are LJP knots themselves, these Berge
knots of large genus 1 bridge number are not surgery dual to LJP knots in
lens spaces.

Indeed, [8] can be used to show that “most” of the LJP knots in
lens spaces obtained in Theorem 4.11 have genus 1 bridge number greater
than 2. Let us use the surgery descriptions and notation of some knots
and manifolds described in Section 4.2. For example, since the exterior
of L+ with the surgery duals to C0 ∪ C1 in Y (−1, r, s, b) for r ∈ Z can
be seen through surgery calculus to be the hyperbolic “magic manifold”,
Thurston’s Hyperbolic Dehn Surgery Theorem implies that the image of
L+ in Y (−1,−1,−3 + 1/n, b) is hyperbolic for integers n, b of suitably large
magnitude. Hence the annulus cobounded by L+ and L− cannot lie in the
Heegaard torus of the lens space and the work of [8] applies.

2.3.3. LJP knots in the Poincaré homology sphere. In [9], longitu-
dinally jointly primitive presentations were used to create framed knots in
the Poincaré homology sphere without doubly primitive presentations that
nevertheless admit lens space surgeries. The Whitehead link is a fibered
link with a twice-punctured torus fiber. With respect to the framing of the
Whitehead link by this fiber, −1 surgery on both components produces the
Poincaré homology sphere.

In Section 4.2 we give surgery descriptions of some manifolds and knots.
Using that notation, the manifold M(−1,+1) is the exterior of the White-
head link and Y (−1,+1,−1,−1) is the Poincaré homology sphere filling of
it. It turns out that there are (at least) two families of jointly primitive knots
in M(−1,+1) that induce families of LJP knots in the Poincaré homology
sphere. One family may be described as Kk(−1,+1,−1,−1), and it may be
shown that these correspond to a subfamily of Hedden’s knots [4, 26]. The
other, which corresponds to the family in [9], doesn’t exactly fit into the
Kk(m, r, s, b) structure. Nonetheless, it may be described by surgery on the
link L ∪K of Figure 1 as the images of K in S3

L(1/2, 0, 2, 2, 1/k,−1/(k + 1))
for k ∈ Z, up to homeomorphism. We note that the trivial filling of K here
then produces the mirror image of Y (−1,+1,−1,−1).

In line with Question 2.15 we also ask the following.

Question 2.20. If a framed knot in the Poincaré homology sphere has a
lens space surgery, then is it LJP?
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3. Symmetries and Dehn surgery

A manifoldM is asymmetric if its only self-homeorphisms are isotopic to the
identity. This section outlines a method for obtaining asymmetric manifolds
as fillings of cusped hyperbolic manifolds.

For hyperbolic 3–manifolds, asymmetry is equivalent to having trivial
isometry group, which in the case of cusped manifolds may be checked using
the Epstein-Penner canonical cell decomposition (see [38]). More generally,
methods to ensure asymmetry are well known to experts and are discussed
in the one-cusped case in [20, §2] (see also [1, Theorem 5.2]). Here, we devote
additional care to the case of multi-cusped manifolds in order to precisely
establish our notions of generic and symmetry-breaking fillings. (See also
[11, §4].)

3.1. Isometry groups of fillings

For m ≥ 1, let M be a compact orientable 3–manifold whose boundary con-
sists of tori T1, . . . , Tm. For each j, fix a basis for H1(Tj ;Z) so that a slope
(an isotopy class of essential simple closed curve) in Tj may be expressed
as a pair of relatively prime integers ψj = (pj , qj). Since orientation of a
slope is irrelevant, we may also express the slope as the rational number
pj/qj allowing 1/0. We further allow “empty” slopes which are expressed
as the pair (∞,∞) or as the symbol ∗. A multislope for M is an m–tuple
ψ = (ψ1, . . . , ψm) of slopes in ∂M . The set of all multislopes is Ψ. The Dehn
filling M(ψ) of M along the multislope ψ is obtained by attaching solid tori
to ∂M so that the meridian of the solid torus attached to Tj is identified
with the slope ψj . If ψj is the empty slope, then Tj is left unfilled. The core
curves of the attached solid tori in M(ψ) are the cores of the filling.

Let M be the m–cusped orientable hyperbolic 3–manifold that is the
interior of M , where we identify ∂M with ∂M and fillings ψ with M(ψ).
Following the discussion surrounding [27, Equations (26) p1068 and (37)
p1076], (but using different notation), the normalized length |ψj | of a slope
ψj is the translation distance of the appropriate holonomy representative of
ψj in the horoball neighborhood of area 1, and the normalized length |ψ| of
a multislope ψ = (ψ1, . . . , ψm) is defined by

1

|ψ|2 =
∑

j

1

|ψj |2
.
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The normalized length of the empty slope is defined to be ∞. Consequently,
the normalized length of a multislope is finite unless it is the empty mul-
tislope ψ∞ =

(
(∞,∞), (∞,∞), . . . , (∞,∞)

)
. Let ΨN ⊂ Ψ be the subset of

multislopes in ∂M whose component slopes each have normalized length
greater than N . That is,

ΨN = {ψ = (ψ1, . . . , ψm) : |ψj | > N
√
m for all j = 1, . . . ,m}.

Note that for each N , the complement of ΨN is finite and if ψ ∈ ΨN , then
|ψ| > N .

Consider a hyperbolic 3–manifold M̂ containing a geodesic link L so
that M = M̂ − L. Let IL be the group of isometries of M̂ which preserve L
setwise. In [30, Section 5], Kojima describes how restricting the domain of

an isometry f ∈ IL to M = M̂ − L induces an isometry rest(f) of M . Then
[30, Lemma 5] shows that this restriction map is a monomorphism.

Theorem 3.1. Let M be an m–cusped orientable hyperbolic 3–manifold.
Set C = 7.5832.

1) For each ψ ∈ ΨC , M(ψ) is a hyperbolic 3–manifold in which the cores
of the filling are mutually disjoint simple closed geodesics.

2) There is a constant CM > C depending on M such that for each
ψ ∈ ΨCM

, the cores of the filling constitute the shortest geodesics in
M(ψ) so that Kojima’s restriction map rest is a monomorphism
Isom(M(ψ)) →֒ Isom(M).

Remark 3.2. The manifold-dependent constant CM in Theorem 3.1(2) is

necessary. For example, consider a hyperbolic 3–manifold M̂ with an isome-
try that exchanges two disjoint simple geodesics L1 and L2. Then this isom-
etry of M̂ does not restrict to an isometry of M = M̂ − L1, the complement
of one of the geodesics. Hence Isom(M̂) is not a subgroup of Isom(M).

Proof. [27, Theorem 1.2] makes Thurston’s Hyperbolic Dehn Surgery The-
orem [37, Theorem 5.8.2] explicit and states that any ψ ∈ ΨC is in the hy-
perbolic Dehn surgery space for M . This implies that M(ψ) is a hyperbolic
manifold and the core curves of the filling are mutually disjoint geodesics;
see [27].

For ψ ∈ ΨC , [27, Theorem 5.12] bounds the difference between the vol-
umes of M and M(ψ) in terms of |ψ|. By [33, Theorem 1B], this translates
to a bound on the sum of the lengths of the geodesic cores of the fillings.
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In particular, as |ψ| goes to ∞, the total length of the geodesic cores of the
fillings goes to 0.

We now partition Ψ according to which components of a multislope are
the empty slope. For each subset J of {1, . . . ,m}, let ΨJ be the subset
of multislopes ψ = (ψ1, . . . , ψm) in Ψ such that ψi = (∞,∞) if and only if
i ̸∈ J . (In particular, note that (a) J determines the set of cusps of M that
are filled by a multislope ψ ∈ ΨJ and (b) Ψ∅ is the singleton set consisting of
the empty multislope ψ∞ for whichM(ψ∞) =M .) Then let ΨJ

N = ΨJ ∩ΨN .
Since ΨN has finite complement in Ψ for all numbers N , it follows that the
complement of ΨJ

N is finite in ΨJ .
For each J ̸= ∅, we may order the multislopes in ΨJ

C as {ψi} so that
for each N we have ψi ∈ ΨJ

N for all but a finite number of initial terms
of the sequence. In particular, this means that ψi converges to the empty
multislope ψ∞; more precisely, the sequence {(|ψi

1|, . . . , |ψi
m|)} converges to

(∞, . . . ,∞) and the corresponding sequence of filled manifoldsM(ψi) limits
to the unfilled manifold M =M(ψ∞).

Then [12, Theorem E.2.4] shows that for suitably small ϵ > 0 (depending
on M and J), there exists a sufficiently large constant CJ

M > C, so that if
ψ ∈ ΨCJ

M
, then (a) the total length of core geodesics of the filling M(ψ) is

less than ϵ, and (b) the ϵ–thin part of M(ψ) consists of the tubular neigh-
borhoods of the core geodesics and cusp neighborhoods of the unfilled cusps.
By definition, any geodesic of length less than ϵ must be in the ϵ–thin part of
M(ψ) (e.g., [12, Section D.1]). Furthermore, by [12, Theorem D.3.11] these
core curves are the unique geodesics in these tubular neighborhoods. Thus,
the cores of the fillings are the unique simple geodesics inM(ψ) of length less
than ϵ. Therefore any isometry of M(ψ) must fix the link of core geodesics
of the ψ–filling. Thus [30, Lemma 5] gives the natural monomorphism rest
of Isom(M(ψ)) into Isom(M).

Finally, set CM to be the maximum of these constants CJ
M among all

non-empty subsets J of {1, . . . ,m}. Then if ψ ∈ ΨCM
, the conclusion of the

previous paragraph holds. □

Definition 3.3. A multislope ψ for M is generic if it belongs to the hyper-
bolic Dehn surgery space of M . A multislope ψ is fully generic if ψ ∈ ΨCM

.
We further say a generic multislope ψ for M is symmetry-breaking if
g(ψ) ̸= ψ for all non-trivial isometries g ∈ Isom(M).

Together, Theorem 3.1 and Definition 3.3 immediately give the following.
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Corollary 3.4. If ψ is a fully generic, symmetry-breaking multislope for
the cusped hyperbolic 3–manifold M , then the filling M(ψ) is an asymmetric
hyperbolic manifold. □

3.2. Strong inversions and unbreakable symmetries

A manifoldM is strongly invertible at a collection of boundary tori T if there
is an orientation-preserving order 2 self-homeomorphism (i.e., involution) of
M whose fixed locus is non-empty and meets each component of T . A knot or
link L in the manifold M̂ is strongly invertible if its exteriorM = M̂ −N (L)
is strongly invertible at the collection T = ∂N (L).

An element of the symmetry group of M is called a strong inversion
(at T ) if it is represented by an orientation-preserving involution of the
kind above. Any strong inversion of M at a torus component T ⊂ ∂M re-
stricts to T as the hyperelliptic involution and consequently extends to an
orientation-preserving involution of any Dehn filling ofM along T . Thus the
symmetry group of a manifold that contains a strong inversion at a collec-
tion of boundary tori cannot be reduced to the trivial group via any Dehn
filling of those tori.

More generally, for a manifold M and a collection of boundary tori T ,
any symmetry of M that fixes each T ∈ T set-wise and fixes the slopes on
each T ∈ T will extend across any Dehn filling of M along T , so there can
be no symmetry-breaking multislopes in T .

4. Some families of jointly primitive knots

In this section we introduce a collection of families of framed knots in either
lens spaces or connected sums of lens spaces through surgery descriptions
on a common link. These knots are either LJP or MJP and correspondingly
have surgeries to either lens spaces or connected sums of lens spaces.

4.1. Notational conventions

First, let “Q = Q ∪ {1
0
} and Ẑ = Z ∪ {1

0
} denote the sets of the rational num-

bers and the integers, respectively, each extended by 1
0
= ∞.

We employ the convention that the lens space L(p, q) is obtained from
S3 via (−p/q)–surgery on the unknot or by surgery on the linear chain link
of n components with integer framings a1, . . . , an, where

−p/q = [a1, . . . , an] = a1 − 1/(a2 − 1/(· · · − 1/an))
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as in [35]. We also let L[a1, . . . , an] denote the lens space L(p, q).
Extending this notation for more general surgeries on linear chain links,

we allow ai = ∞ in order to describe connected sums of lens spaces. For
example, L[2, 3,∞, 4, 5, 6] = L[2, 3]#L[4, 5, 6]. We also allow the initial and
terminal coefficients to be rational numbers so that

L[[s1, . . . , sn′ ], a1, . . . , an, [r1, . . . , rn′′ ]] = L[sn′ , . . . , s1, a1, . . . , an, r1, . . . , rn′′ ]

for integers a1, . . . , an, s1, . . . , sn′ , r1, . . . , rn′′ ; both versions describe the
same lens space by Dehn surgeries on appropriate chain links with these
coefficients. This relationship is due to the surgery calculus “slam dunk”
move; see, for example, [22, Section 5.3, Figure 5.30].

Note that these extensions of notation do not generally hold for contin-
ued fraction expansions of rational numbers. For example, 18

11
= [2, 3, 4] ̸=

[[3, 2], 4] = 9
4
.

4.2. A surgery diagram

Consider the surgery diagram of Figure 1 and fix b,m, r, s ∈ “Q. Choosing
k ∈ Z determines a 1–parameter family of framed knots Kk(m, r, s, b) in
the closed 3–manifold Y (m, r, s, b). Figure 5 shows how a presentation of
Y (m, r, s, b) as surgery on a twisted 4–chain link may be obtained from the
surgery diagram in Figure 1 when the trivial surgery is performed on K.
Note that the choice of k affects the framing on K, but not the ambient
3–manifold.

Let Kk(m, r, s, b) inherit the +1–framing of K ⊂ S3, and define
Y ∗
k (m, r, s, b) to be the result of this framed surgery on Kk(m, r, s, b). It

follows that

Y (m, r, s, b) = S3
L(1− 1

m+1
, r, 1 + s, 1 + 1

b
, 1
k
,− 1

k
)

and Kk(m, r, s, b) is the image of K under this surgery, while Y ∗
k (m, r, s, b)

is the result of a further +1–surgery on K with surgery dual K∗
k(m, r, s, b).

Let C ′
0 and C ′

1 be the cores of the surgeries on C0 and C1, respectively.
LetM(m, r) ⊂ Y (m, r, s, b) andM∗

k (m, r) ⊂ Y ∗
k (m, r, s, b) be the exteriors of

C ′
0 ∪ C ′

1, i.e., the manifolds with two torus boundary components obtained
by leaving C0 and C1 unfilled. Let Kk(m, r) be the corresponding framed
knot inM(m, r), and let K∗

k(m, r) be the corresponding surgery dual framed
knot in M∗

k (m, r). As shown in Figure 2, there is a twice-punctured torus Σ
bounded by C0 ∪ C1 which contains K as a +1–framed curve. Hence we may
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Figure 5: A simple surgery description of the ambient manifold Y (m, r, s, b)
is obtained from Figure 1.

regard Σ as properly embedded inM(m, r) and containing the framed knots

Kk(m, r). We now observe that for certain choices of m, r ∈ “Q, Σ confers a
jointly primitive presentation upon the knots Kk(m, r) for k ∈ Z.

Lemma 4.1. If m = −1 and r ∈ “Q, then Kk(−1, r) is jointly primitive in
M(−1, r). If m, r ∈ Z, then Kk(m, r) is fibered jointly primitive in M(m, r).

Proof. The proof of the lemma is an application of the Montesinos trick
relating Dehn surgery on a link to rational tangle replacement in its dou-
ble branched cover. We begin by pushing the definition of jointly primitive
through this correspondence before tackling the specific example.

Suppose that the link L ⊂M admits an involution γ whose fixed point
set intersects each component of L in two points. In the quotient, the link
components become arcs with endpoints on the branch locus. A surface
in the quotient containing one of these arcs will lift to a surface Σ ⊂M
containing the corresponding component Li. When attaching 2–handles to
the imprints of Li in M −N (Σ) yields a handlebody, this surface confers a
jointly primitive presentation, and we may evaluate this via the correspond-
ing operations in the quotient.

Recall that a rational n–string tangle is any 1–manifold properly em-
bedded in the 3–ball that is homeomorphic to n vertical arcs in the product
D2 × I. The double branched cover of a rational n–string tangle is a genus
n− 1 handlebody. Note, too, that in the double branched cover, attaching
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a cap to a tangle along an arc in the boundary corresponds to attaching a
2–handle along the closed curve that is the lift of the arc; see Figure 9. Hence
we may say a collection of arcs in the boundary of a rational n–string tangle
is jointly primitive if attaching caps along any subset of them produces a
rational tangle.

Figure 6: After taking the quotient of K ∪ L of Figure 1 by an involution
exchanging C0 and C1, the figure evolves by isotopies and rational tangle
replacement. Note that in the final isotopy, the framings of the blue and red
arcs change by 1.

With this definition in hand, we turn to the link K ∪ L of Figure 1,
which is shown again in Figure 6 together with an axis of involution. Moving
left to right, the second picture shows its quotient by the involution. The
image of the fixed point set becomes the branch locus, and the quotient
identifies the components C0 and C1 into a single unknot C; the other four
components of K ∪ L descend to arcs in the quotient. Continuing to the
right, the subsequent pictures describe a sequence of isotopies. Note that
the last isotopy changes the framings on the arcs of K and J by 1. Figure 8
depicts straightening out the last image of Figure 6 and then performing a
rational tangle replacement on the image of R. This transforms the branch
locus B into a 4–string braid B∗ with braid axis C. The rational tangle
replacement introduced a new arc R∗ (dual to R) that is level with respect
to C, as are the arcs coming from K, L+, L−, and J . We therefore use
standard parametrization of slopes for rational tangle replacements on these
level arcs. See Figure 7(Left) and (Middle).

The exterior of C is a solid torus containing the link Bk(m, r), where the
parameters m and r designate the appropriate rational tangle replacements
on the arcs of L+, L−, J , and R∗. The double cover of the solid torus
branched over Bk(m, r) is the manifold M(m, r) which contains the knot
Kk(m, r). Observe that C bounds a disk D which intersects Bk(m, r) four
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4 = -4 =

=

-1/4 1/4

0

1/0

3 -3

2/5

= q/p
p/q

p/q

=
p/q

q/p-

Figure 7: (Left) A horizontal or vertical arc with a coefficient corresponds
to a rational tangle in standard position, depicted with a disk, as shown.
(Middle) Our convention for the standard parametrization of rational tangle
is established though several basic examples. (Right) Oblong rectangles la-
beled with an integer correspond to sequences of half twists with handedness
dictated by the sign of the integer.

Figure 8: (Left) The final image of Figure 6 is straightened out so that
the branch locus is nearly braided. (Right) A rational tangle replacement
exchanges the vertical arc with slope r with a horizontal arc with slope −1

r
.

This results in a branch locus that is presented as a closed 4–string braid
about the green braid axis C.

times and contains the arc κ corresponding toK; this disk lifts to the surface
Σ containing Kk(m, r).

By construction, H is the double branched cover of the ball S3 −N (C ∪
D) ∼= D × I branched over Bk(m, r) = Bk(m, r) ∩D × I and the arc κ leaves
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two impressions κ+ and κ− in ∂(D × I). This is shown for m = −1 and

r ∈ “Q in Figure 9(a). We examine the jointly primitive property in this case
explicitly and leave the even simpler case m, r ∈ Z to the reader. Note that
the fiberedness in this simpler case is due to Bk(m, r) ⊂ D × I being a 4–
string braid when m, r ∈ Z. Indeed Bk(m, r) will be a closed 4–braid with
braid axis C so that M(m, r) is a twice-punctured torus bundle.

Figure 9: (a) The rational tangle Bk(−1, r) and the rational tangles obtained
by attaching caps along (b) one, (c) the other, or (d) both impressions κ+

and κ− of κ.

Since Bk(m, r) is a rational 4–string tangle, H is indeed a genus 3 han-
dlebody. In Figure 9, the label −1

r
on a ball indicates that it should be filled

with a rational tangle of the given slope. The rectangles indicate vertical
compositions of half twists whose number and handedness are dictated by
the label. See Figure 7(Right).

Figures 9(b) and (c) each show a cap attached to Bk(m, r) along one
impression of κ, followed by an isotopy of the tangle into a form that is
more clearly a rational 3–string tangle. Figure 9(d) shows caps attached to
Bk(m, r) along both impressions of κ followed by a sequence of isotopies
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until it is clear that the result is a rational 2–string tangle. It follows from
the general discussion at the beginning of the proof that Σ gives a jointly
primitive presentation of Kk(m, r) in M(m, r). □

Lemma 4.2. For m, r ∈ Z, the manifold M∗
k (m, r) is the cable space

A([1, k + 1, r + 1,m+ 1,−k]).
For m = −1 and r ∈ “Q, the manifold M∗

k (−1, r) is the cable space
A([1, k + 1, r − k + 1]).

Proof. Figure 10(a) shows a tangle surgery description of a link in the
solid torus exterior of the green unknot C whose double branched cover
is M∗

k (m, r). The framing on the arc κ corresponding to K is 0 since the
framing of κ by a meridional disk of the solid torus corresponds to the fram-
ing of K by Σ. Figures 10(b) and (c) manipulate this expression.

Whenm, r ∈ Z, this becomes single arc with slope [1, k,−1, r,m+ 1,−k]
as shown in Figure 10(d). Using the calculus of continued fractions, this slope
may be simplified to [1, k + 1, r + 1,m+ 1,−k]. As the double cover of the
solid torus S1 ×D2 branched over two parallel copies of the core curve is
S1 × (S1 × [−1, 1]), the arc shown in Figure 10(d) lifts to a circle θ × (S1 ×
0) for some point θ ∈ S1. Hence M∗

k (m, r) = A([1, k + 1, r + 1,m+ 1,−k]).
When m = −1 and r ∈ “Q, Figures 10(e),(f),(g) reduce Figure 10(c) to

Figure 10(d), except that the arc now has slope [1, k,−1, r − k]. This slope
simplifies to [1, k + 1, r − k + 1]. HenceM∗

k (−1, r) = A([1, k + 1, r − k + 1]).
□

Lemma 4.3. Assume either m = −1 and r ∈ “Q or m, r ∈ Z. If b ∈ Z,
then Kk(m, r, s, b) is LJP and Y ∗

k (m, r, s, b) is a lens space. If b = ∞, then
Kk(m, r, s,∞) is MJP and Y ∗

k (m, r, s,∞) is a connected sum of lens spaces.

Proof. By assumption, Lemma 4.1 implies that Kk(m, r) has a jointly prim-
itive presentation on Σ in M(m, r). Hence for any filling of C ′

0 and C ′
1,

Kk(m, r, s, b) has a jointly primitive presentation in M(m, r, s, b).
Assume b ∈ Z. Since ∂Σ meets C0 and C1 with slope +1, any curve of

slope 1 + 1
b
on C1 has distance 1 from ∂Σ. Thus when C ′

1 is surgery dual to
(1 + 1

b
)–surgery on C1, ∂Σ will be a longitude of N (C ′

1). Hence Kk(m, r, s, b)
is longitudinally jointly primitive and Y ∗

k (m, r, s, b) is a lens space.
Similarly, when C ′

1 is surgery dual to 1–surgery on C1, ∂Σ will be a
meridian ofN (C ′

1). Note that if b = ∞, then 1 + 1
b
= 1. HenceKk(m, r, s,∞)

is meridionally jointly primitive and Y ∗
k (m, r, s,∞) is a connected sum of lens

spaces. □
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Figure 10: Figure 8(Left) is shown with the slope 0 on the arc correspond-
ing to K in (a). The 0 tangle replacement is performed along with the
re-expression of the arcs with non-integral coefficients as arcs with integral
coefficients, which after an isotopy is given in (b). In (c), the two crossings
are then presented as arcs with slopes +1 and −1. Assuming that m, r ∈ Z,
in (d) we coalesce these tangle replacements into a single replacement. Al-
ternatively, (e) is obtained from (c) by setting m = −1 and performing the
ensuing 0 tangle replacement. Since k ∈ Z, we combine the arcs with slopes
−k and r in (f). The arcs are further combined into a single replacement
in (g).

4.3. Hyperbolicity and symmetries of Kk(m, r, s, b)

In this section, we show that certain families of manifolds are hyperbolic
and that some of them admit strong inversions, while others are (generi-
cally) asymmetric. Our first lemma establishes a criterion for the existence
of a strong inversion; however, showing that a manifold is asymmetric gener-
ally involves some computation. In service of this computation, we first use
SnapPy to determine the hyperbolicity and symmetry group of the multi-
cusped manifolds that each family limits to. The relevant symmetry group
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computation follows from an analysis of the symmetries of the canonical
cell decomposition of the multi-cusped manifold. For the manifolds of in-
terest, the canonical cell decomposition is often an ideal triangulation; in
such cases we refer to it as the canonical triangulation. In the cases where
the canonical cell decomposition has non-tetrahedral cells, SnapPy builds a
triangulation with finite vertices via a natural subdivision of the canonical
cell decomposition. This triangulation is canonically defined and its combi-
natorial symmetries are in fact the full symmetry group of the manifold. We
will call this triangulation the canonical triangulation with finite vertices.
Moreover, SnapPy, when run as a module inside of Sage, has the function-
ality to rigorously compute either the canonical cell decomposition or the
canonical triangulation with finite vertices for a given cusped hyperbolic
3-manifold M .

In the examples listed here, the isomorphism signature also includes
framing data (which agrees with the figures and conventions of this paper),
so the interested reader can observe our computations in SnapPy (as a Sage
module) if they so desire.

Thereafter we appeal to the discussion of symmetries and symmetry
breaking from §3 to show that when the free parameters in each family are
chosen to have suitably large magnitude, the corresponding multislope used
to fill the limiting manifold is fully generic and symmetry-breaking.

Lemma 4.4. Kk(m, r, s, b) is strongly invertible if s ∈ {0,−1,−2,∞} or
b ∈ {∞,−1,−1/2, 0}.

Proof. Since the rotation of L ∪K along the vertical axis in Figure 1 ex-
changes C0 and C1 and acts by strong inversion on the remaining com-
ponents, we observe that Kk(m, r, s, b) = Kk(m, r, 1/b, 1/s). Furthermore
Kk(m, r, s, b) is strongly invertible for s ∈ {0,−1,−2,∞} if and only if it is
strongly invertible for the corresponding b = 1/s ∈ {∞,−1,−1/2, 0}. There-
fore we only check that performing 1 + s surgery on C0 produces a strongly
invertible link for the four cases s = ∞, s = 0, s = −1, and s = −2.

When s = ∞, we may omit component C0 from Figure 1. Letting C1

“hang freely” upon the other components, one sees that this link can be
positioned to be strongly invertible along a vertical axis. For the three cases
s ∈ {0,−1,−2}, Figure 12 shows the results of handleslides over C0 and
isotopies in each case. The resulting links are strongly invertible in the cases
s = −1 and s = −2, while in the case s = 0, the inversion is free on C1 and
acts by strong inversion on the other components. □

We now employ rigorous computation to find asymmetric manifolds.
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Figure 11: Setting m = −1 in (a) makes the component J of L have the
surgery coefficient ∞. Performing this filling causes L+ to be a meridian of
the component R, so that K ∪ L becomes the toroidal link in (b). However
since L+ has surgery coefficient 1/k, we may use Rolfsen twists to “ab-
sorb” L+ into R so that the resulting link in (c) is hyperbolic (in fact, it is
L12n2253). Continuing to use the labeling of the components from the orig-
inal link K ∪ L, this is the 5–component link K ∪R ∪ C0 ∪ C1 ∪ L−. With
its surgery coefficients, it describes the framed knot Kk(−1, r, s, b).

Lemma 4.5. For n, b, k ∈ Z of suitably large magnitude and (r, s) ∈
{(−1,−4 + 1

n
), (−2,−3 + 1

n
)}, the manifolds Xk(−1, r, s, b) are hyperbolic

and asymmetric.

Proof. Let M be the complement of the five-component link K ∪R ∪
C0 ∪ C1 ∪ L− shown in Figure 11(c) and consider the multislope ϕk,r,s,b =
(∗, r − k, 1 + s, 1 + 1/b,−1/k). According to Figure 11, this filling yields the
manifold Xk(−1, r, s, b).

SnapPy run as a Sage module determines that M is a hyperbolic mani-
fold with canonical triangulation given by

sage: import snappy

sage: M = snappy.Manifold(’qvvLLLAAPQQkfjlhmkjnlmknpopopaaaa\

....: gocagggaaaaco_abdecBbbCaBbCBbBabaababBa’)

sage: M.verify_hyperbolicity()[0]

sage: MC = M.canonical_retriangulation(True)

sage: len(MC.isomorphisms_to(MC)) == M.symmetry_group().order()

sage: M.symmetry_group().isometries()

Here, we drew the link in SnapPy (see figure10c.lnk in the ancillary
files of the arxiv version of this paper) and then imported it into sage via
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s=0

+1

+1 +1

+1

+1

s=-1

0

s=-2

-1 -1

-1
-1

0 0

0 0
0

Figure 12: In each case s ∈ {0,−1,−2}, the link L ∪K of Figure 1 is first
shown with surgery coefficient 1 + s on C0. Then sequences of handleslides
of other components over C0 and isotopies transform the link into one with
an involution that is clearly strongly invertible on all components, except
in the case s = 0 where it is instead freely invertible on the component
corresponding to C1.
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its triangulation signature. From this computation, we see the symmetry
group of the original triangulation is the full symmetry group and there is
a unique non-trivial symmetry τ which fixes the cusp of the component K.
This symmetry is an involution that exchanges two cusps (indexed by ‘2’
and ‘3’ respectively in the associated triangulation M) and is a strong invo-
lution on the remaining cusps. It can be observed in Figure 11(c) as rotation
about a vertical axis. One then sees, using the standard meridian-longitude
parameterizations of surgery slopes for the exchanged cusps (formerly C0

and C1), that the involution τ exchanges the p/q slope of one with the p/q
slope of the other.

By choosing n, b, k ∈ Z of suitably large magnitude, we may ensure that
r − k and s also have suitably large magnitude to form a fully generic multi-
slope ϕk,r,s,b = (∗, r − k, 1 + s, 1 + 1/b,−1/k) in ΨCM

. Theorem 3.1 informs
us that for any multislope ψ ∈ ΨCM

, any element of Isom(M(ψ)) restricts to
an isometry ofM on the complement of the cores of the surgery solid tori. Yet
because 1 + (−4 + 1

n
) ̸= 1 + 1

b
and 1 + (−3 + 1

n
) ̸= 1 + 1

b
for any b, n ∈ Z,

the involution τ ∈ Isom(M) cannot be a restriction of a symmetry in
Isom(M(ϕk,r,s,b)). So ϕk,r,s,b is symmetry-breaking. Hence Isom(M(ϕk,r,s,b))
must be trivial. Thus Xk(−1, r, s, b) is asymmetric. □

Lemma 4.6. For b, k ∈ Z of suitably large magnitude and (r, s) ∈
{(−1,−4), (−2,−3)}, the manifolds Xk(−1, r, s, b) are hyperbolic and asym-
metric.

Proof. Continue with the notation and idea of the previous proof. Let N−4

be the manifoldM(∗, ∗,−3, ∗, ∗) and consider the multislope ϕk,b = (∗,−1−
k, 1 + 1/b,−1/k). Then N−4(ϕk,b) =M(ϕk,−1,−4,b) = Xk(−1,−1,−4, b).

SnapPy determines that N−4 is a hyperbolic manifold with canonical
triangulation given by

’rvLLLzLzQMQQcdgiijjklmknppooqqqoauaccvvtjlagggvvv_dacbaBbbaBbBaBbaBbBa’.

SnapPy also determines that this canonical triangulation (and hence,
Isom(N−4)) has just one non-trivial symmetry. However, that symmetry
exchanges the cusp corresponding to K with the cusp corresponding to
R. As before, choosing b, k ∈ Z of suitably large magnitude ensures that
ϕk,b ∈ ΨCN

−4
is fully generic and symmetry-breaking. Hence we conclude

that Isom(N−4(ϕk,b)) is trivial and Xk(−1,−1,−4, b) is asymmetric.

Now let N−3 be the manifold M(∗, ∗,−2, ∗, ∗) and consider the mul-
tislope ϕ′k,b = (∗,−2− k, 1 + 1/b,−1/k). Then N−3(ϕ

′
k,b) =M(ϕk,−2,−3,b) =

Xk(−1,−2,−3, b).
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’nvvLAPPMQkghfkjiljkljmmmmtadegrojrghqq_dcabBabbBbBcaBBbbabB’

then show that the isomorphisms of this triangulation are in fact the
whole group.

sage: M = snappy.Manifold(’qvvLLLAAPQQkfjlhmkjnlmknpopopaaaago\

....: cagggaaaaco_abcedBbbCaBbCBaaBbBbaaBba’)

sage: M.dehn_fill((-2,1),2)

sage: MF = snappy.Manifold(M.filled_triangulation())

sage: CF = MF.canonical_retriangulation(True)

sage: "CF a triangulation:", not CF.has_finite_vertices()

sage: M2 = snappy.Manifold(’nvvLAPPMQkghfkjiljkljmmmmtadegroj\

....: rghqq_dcabBabbBbBcaBBbbabB’)

sage: MF.verify_hyperbolicity()[0]

sage: print "isometry check:", MF.is_isometric_to(M2)

sage: print "symmetry group check:",

....: len(CF.isomorphisms_to(CF))

....: == len(M2.isomorphisms_to(M2))

sage: print "CF.isomorphisms_to(CF)", CF.isomorphisms_to(CF)

sage: print "len(isom(CF):", len(CF.isomorphisms_to(CF))

SnapPy also determines that this triangulation M2 (and hence
Isom(N−3)) has a single non-trivial symmetry that preserves the cusp cor-
responding to K. However, it is an orientation-reversing symmetry which
fixes all the cusps. Thus each cusp has a single slope preserved by this sym-
metry. Regardless, ϕ′k,b is not preserved by this symmetry so it must be
symmetry-breaking. Hence choosing b, k ∈ Z of suitably large magnitude to
ensure that ϕ′k,b ∈ ΨCN

−3
is fully generic ensures that Isom(N−3(ϕ

′
k,b)) is

trivial and Xk(−1,−2,−3, b) is asymmetric. □

We now check the following manifolds.

Lemma 4.7. For b, k ∈ Z of suitably large magnitude and (m, s) ∈
{(−1,−6), (−2,−4), (−3,−3)}, the manifolds Xk(m, 0, s, b) are hyperbolic
and asymmetric.

Proof. We begin by considering the case m = −1, which allows us to work
with the link in Figure 11(c) and its complement M as in the proof of
Lemma 4.5. We then set s = −6 to fill the cusp corresponding to C0. Let
N−6 be the manifold M(∗, ∗,−5, ∗, ∗) and consider the multislope ϕ′′k,b =
(∗,−k, 1 + 1/b,−1/k). (Note that r = 0 for this lemma.) Then N−6(ϕ

′′
k,b) =

M(ϕk,0,−6,b) = Xk(−1, 0,−6, b).
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A SnapPy computation similar to those above (see lemma4 7check.py
in the ancillary files) shows that N−1,−6 is hyperbolic and has a single non-
trivial symmetry. This symmetry is a strong inversion on the cusps corre-
sponding to R and C1 but exchanges the cusps corresponding to K and
L−. Hence the multislope ϕ′′k,b is not preserved by this symmetry. Hence
when b, k ∈ Z have suitably large magnitude to ensure ϕk,b ∈ ΨCN

−1,−6
is

fully generic and symmetry-breaking, we conclude that Isom(N−1,−6(ϕ
′′
k,b))

is trivial and Xk(−1, 0,−6, b) is an asymmetric hyperbolic manifold.

We next consider manifolds of the form Xk(m, 0, s, b), where (m, s) is
in {(−2,−4), (−3,−3)}. We first fill the seven-cusped manifold in Figure 1
along cusps C0, J and R to produce 4–cusped manifolds N−2,−4 and N−3,−3.
In both cases, the filled manifolds can be verified with a SnapPy computa-
tion as in the proof of Lemma 4.5 as hyperbolic and asymmetric. Finally
consider the remaining multislopes (∗, 1 + 1/b, 1/k,−1/k) filling Nm,s along
the cusps corresponding to C1, L+, and L− to produce Xk(m, 0, s, b). Then
for (m, s) ∈ {(−2,−4), (−3,−3)}, when b, k ∈ Z have suitably large magni-
tude to ensure that these slopes are in ΨCNm,s

and hence fully generic, the
manifold Xk(m, 0, s, b) is an asymmetric hyperbolic manifold. □

For the next lemma, we consider fillings that are fully generic in the
sense of §3.1. In particular, we fill along slopes with sufficiently high fillings
so that the symmetry group of the filled manifold injects into the symmetry
group of the unfilled manifold.

Lemma 4.8. For k ∈ Z of suitably large magnitude and (m, s, b) as in
Table 4, the manifolds Xk(m, 0, s, b) are hyperbolic. Furthermore they are
generically asymmetric except where noted in the table.

Proof. Each of these manifolds can be obtained from Figure 1 according to
the filling parameters indicated in Table 4. The code table4check.py run in
sage verifies all of the data in the table. □

4.4. Surgeries between cable spaces

Given a knot surgery between Seifert fibered manifolds with boundary, the
various fillings of the boundary components will induce families of surgeries
between closed (generalized) Seifert fibered manifolds. For example, Berge’s
knots in solid tori with solid torus surgeries [13] naturally generate families
of knots in lens spaces with lens spaces surgeries. At its core, the “seiferter”
theory of Deruelle-Miyazaki-Motegi [19] similarly uses knots in solid tori
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with surgeries to Seifert fibered spaces over the disk with two exceptional
fibers to create families of knots in S3 with surgeries to small Seifert fibered
spaces.

More generally, one might hope to find knots in T 2 × I with a non-trivial
surgery to T 2 × I. However, no such hyperbolic knot exists (see [15, Lemma
5.2] for example). Instead, we set out to find knots in cable spaces which
admit a non-trivial surgery to another cable space (including T 2 × I). To do
this, we begin with a focus on finding fibered jointly primitive knots in cable
spaces. Hence we first determine which cable spaces are twice-punctured
torus bundles.

Lemma 4.9. Up to homeomorphism, the manifolds A(2/1) and A(3/1)
are the only cable spaces which contain an essential twice-punctured torus.
Furthermore, any such twice-punctured torus is a fiber.

Proof. An essential orientable surface in an orientable Seifert fibered space
must be horizontal or vertical, i.e., isotopic either to be transverse to the
Seifert fibers or to be a union of Seifert fibers [29]. Since vertical surfaces
have χ = 0, an essential twice-punctured torus Σ in a cable space A(p/q)
must be horizontal. As a horizontal surface must meet all boundary com-
ponents of the Seifert fibered space containing it and cable spaces have two
boundary components, it follows that Σ must be non-separating in A(p/q).
Consequently the cable space A(p/q) may be viewed as a surface bundle
with Σ a fiber.

Because Σ is horizontal in A(p/q), it must cover the base orbifold.
Since the base orbifold for A(p/q) (an annulus with a cone point of or-
der p) has orbifold Euler characteristic 0− (1− 1/p), we must have χ(Σ) =
n(−1 + 1/p) for some positive integer n. As χ(Σ) = −2, we must have
(p, n) = (2, 4) or (3, 3). In particular, p = 2 or 3. Thus the cable space A(p/q)
is homeomorphic to A(2/1) or A(3/1). □

The next result employs notation introduced in Section 4.2.

Theorem 4.10. The manifolds M(−1,−1) and M(−1,−2) are the cable
spaces A(2/1) and A(3/1), respectively. For each k ∈ Z, the framed knots
Kk(−1,−1) and Kk(−1,−2) have fibered jointly primitive presentations in
these cable spaces and determine surgeries to cable spaces A([1, k + 1,−k])
and A([1, k + 1,−k − 1]), respectively.

Proof. Observe that the closed 4–braid Bk(−1,−1) is the (4,−1)–torus knot
in the solid torus V and hence a fiber of a Seifert fibration of V . Hence its
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double branched cover M(−1,−1) is a Seifert fibered space and a twice-
punctured torus bundle. Since the braid has periodic monodromy of order
4, the bundle does too. As the annulus from Bk(−1,−1) to ∂V has a solid
torus complement, it lifts to an annulus separating M(−1,−1) into two
solid tori. Hence M(−1,−1) is a cable space and by Lemma 4.9, we identify
it as A(2/1). We note that this can alternatively be seen from a surgery
description of M(−1,−1) as the exterior of the two green components in
Figure 13(a). The transformations (b) and (c) preserve this manifold. Fol-
lowing Figure 3(b), this gives the cable space A(−2/1) which is orientation
preservingly homeomorphic to A(2/1).

The closed 4–braid Bk(−1,−2) is the (3,−1)–torus knot in V together
with the core of V as the fourth strand. As such, this braid is a union of
a regular fiber and an exceptional fiber in a Seifert fibration of V . Hence
its double branched cover M(−1,−2) is a Seifert fibered space and a twice-
punctured torus bundle. Since the braid has periodic monodromy of order
3, the bundle does too. As the annulus from Bk(−1,−2) to ∂V has a solid
torus complement, it lifts to an annulus separatingM(−1,−2) into two solid
tori. Hence M(−1,−2) is a cable space and by Lemma 4.9 we identify it as
A(3/1) up to homeomorphism.

Alternatively, we can determine the orientation of M(−1,−2) from its
surgery description as the exterior of the two green components in Fig-
ure 13(f). The transformations through (k) preserve this manifold. First
a twist along the left green component changes the linking brown compo-
nent’s surgery coefficient from 2/3 to −1/3. Then a handleslide of this −1/3
sloped component over the 0–framed component produces the linear five-
component chain link exterior with fillings −1/3, 0, and 2 on the second,
fourth, and fifth components. A slam dunk collapses the fifth into the fourth
producing a meridian of the third with surgery coefficient −1/2. Since the
third component is unfilled, this performing this −1/2 surgery doesn’t affect
the manifold. Following Figure 3(b), this gives the cable space A(3/1).

Lemma 4.1 shows that the framed knots Kk(−1,−1) and Kk(−1,−2)
have fibered jointly primitive presentations in the manifoldsM(−1,−1) and
M(−1,−2) respectively. The framed surgeries on these knots produce the
manifolds M∗

k (−1,−1) and M∗
k (−1,−2) which, by Lemma 4.2, are the cable

spaces A([1, k + 1,−k]) and A([1, k + 1,−k − 1]). □

Theorem 4.11. For b, n, k ∈ Z and (r, s) = (−1,−4 + 1
n
) or (−2,−3 + 1

n
),

the framed knots Kk(−1, r, s, b) are LJP knots in the lens spaces Y (−1, r, s, b)
and give surgeries to the lens spaces Y ∗

k (−1, r, s, b) as detailed in the first
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Table 2: The knots Kk(−1, r, s, b) with parameters below are obtained from
the framed knots Kk(−1,−1) and Kk(−1,−2). They give surgeries between
the manifolds Y (−1, r, s, b) and Y ∗

k (−1, r, s, b) which are lens spaces or con-
nected sums of lens spaces. Where marked with §, the knots Kk(−1, r, s, b)
are strongly invertible by Lemma 4.4.

Y (−1, r, s, b) Y ∗

k (−1, r, s, b) r s b

L[2,−n, 4,−b] L[−n,−4,−b− 1, k,−k] −1 −4 + 1

n
b

L[3, 1− n, 3,−b] L[−n,−3,−b− 1, k,−k − 1] −2 −3 + 1

n
b

L[2]#L[4,−b] L[−4,−b− 1, k,−k] −1 −4 b

L[3]#L[3,−b] L[−3,−b− 1, k,−k − 1] −2 −3 b

L[2, 1− n, 4] L[−n,−4]#L[k,−k] −1 −4 + 1

n
∞ §

L[3, 1− n, 3] L[−n,−3]#L[k,−k − 1] −2 −3 + 1

n
∞ §

L[2]#L[4] L[−4]#L[k,−k] −1 −4 ∞ §

L[3]#L[3] L[−3]#L[k,−k − 1] −2 −3 ∞ §

two rows of Table 2. Furthermore, the knots Kk(−1, r, s, b) are generically
hyperbolic and asymmetric.

Allowing n = ∞ or b = ∞, these framed knots extend to LJP knots or
MJP knots (according to whether b ∈ Z or b = ∞) in Y (−1, r, s, b) and give
surgeries to Y ∗

k (−1, r, s, b) as detailed in the rest of Table 2.

Proof of Theorem 4.11. Let us take e ∈ {0, 1} so that (r, s) = (−1,−4 + 1
n
)

or (−2,−3 + 1
n
) may be rewritten as (r, s) = (−1− e,−4 + e+ 1/n). Then

we may consider both families of knots together as Kk(−1,−1− e,−4 + e+
1
n
, b). Sincem, r ∈ Z and b ∈ Ẑ, Lemmas 4.1 and 4.3 imply thatKk(−1,−1−

e,−4 + e+ 1
n
, b) has a fibered jointly primitive presentation that is lon-

gitudinal if b ∈ Z and meridional if b = ∞. Kirby calculus demonstrates
that Y (−1,−1− e,−4 + e+ 1

n
, b) and Y ∗

k (−1,−1− e,−4 + e+ 1
n
, b) are the

stated manifolds that are given in Figures 13 and 14.
The claims of generic hyperbolicity and asymmetry of these knots for

b, n, k ∈ Z are established by Lemma 4.5. When b, k ∈ Z but n = ∞, the
generic hyperbolicity and asymmetry is established by Lemma 4.6. Finally,
when b = ∞, the knotsKk(−1, r, s,∞) are strongly invertible by Lemma 4.4.

□



✐

✐

“1-Hoffman” — 2023/9/28 — 0:50 — page 2214 — #40
✐

✐

✐

✐

✐

✐

2214 K. L. Baker, N. R. Hoffman, and J. E. Licata

Figure 13: The manifolds Y (−1,−1,−4 + 1/n, b) and Y (−1,−2,−3 +
1/n, b) are determined through surgery calculus, starting from the surgery
diagram of Y (m, r, s, b) of Figure 5: For Y (−1,−1,−4 + 1/n, b), we set
m = r = −1 and s = −4 + 1/n in (a). Then the two (−1)–framed unknots
are blown down to get (b). Rolfsen twists give (c) and a slam dunk gives (d)
which we may rewrite as (e). For Y (−1,−2,−3 + 1/n, b), we set m = −1,
r = −2, and s = −3 + 1/n in (f). A blow up on a clasp followed by a blow
down on the image of the (−2)–framed unknot produces (g). After an iso-
topy to (h), a blow up gives (i) and then a handleslide gives (j). A Rolfsen
twist produces (k) and then twists and slam dunks give (l) which we may
rewrite as (m).

4.5. LJP knots and the Whitehead link

Lemma 4.12. For r = 0 and s ∈ Z, the manifold Y (m, 0, s, b) is (m, s+
1/b)–surgery on the Whitehead link. Furthermore, if m ∈ Z, then for each
k ∈ Z it contains the fibered JP framed knot Kk(m, 0, s, b) on which surgery
produces the manifold Y ∗

k (m, 0, s, b) = L[−k,m, k − 1,−b− 1, s].

Proof. Through isotopies and Kirby calculus, Figure 15 shows how setting
r = 0 and s ∈ Z in the surgery description of Y (m, r, s, b) given in Figure 5
yields a description of Y (m, 0, s, b) as (m, s+ 1/b)–surgery on the White-
head link. If m ∈ Z, then by Lemma 4.1 the knot Kk(m, 0) is JP in the
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Figure 14: With m = −1, framed surgery on Kk(−1, r, s, b) produces
the manifold Y ∗

k (−1, r, s, b) = L[s,−b− 1, k, 1− k, 0, r]: Starting from the
surgery diagram of Kk(m, r, s, b) of Figure 1, setting m = −1 causes the
trivial surgery on J , so it is omitted in (a). Then for the framing of our
knot, the surgery coefficient +1 is also placed on K. Next, twist L+ into
R and blow down K to get (b). An isotopy gives (c). A Rolfsen twist of
the lower right component gives (d) in which two components are paral-
lel. Twisting along an annulus cobounded by these two parallel components
gives (e), in which continued fraction notation is now used on the central
component. With b ∈ Z, twist the righthand component into the central to
get (f). Our notation convention allows this to be rewritten as (g). If b = ∞
so that the righthand component in (e) has coefficient 0, a handleslide of
the lefthand component splits the link and a subsequent slam dunk yields
the two component unlink with surgery coefficients s and [k, 1,−k + r]. In
either case, Y ∗

k (−1, r, s, b) = L[s,−b− 1, k, 1− k, 0, r].

twice-punctured torus bundle M(m, 0). Hence Kk(m, 0, s, b) is fibered JP in
Y (m, 0, s, b).

Next, Figure 16 shows that when r = 0 and m, s ∈ Z, the result
of the framed surgery on Kk(m, 0, s, b) is the manifold Y ∗

k (m, 0, s, b) =
L[−k,m, k − 1,−b− 1, s]. □
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Figure 15: For s ∈ Z, the manifold Y (m, 0, s, b) is (m, s+ 1/b)–surgery on
the Whitehead link: Beginning with the surgery diagram of Y (m, r, s, b) of
Figure 5 and setting r = 0 in (a), an isotopy produces (b). A handleslide over
the 0–framed component gives (c) and a further isotopy gives (d). Assuming
s ∈ Z, two slam dunks then produce (e).

Theorem 4.13. For k, b ∈ Z and (m, s) ∈ {(−1,−6), (−2,−4), (−3,−3)},
the framed knot Kk(m, 0, s, b) is a fibered LJP knot in the lens space
Y (m, 0, s, b) and framed surgery produces the lens space Y ∗

k (m, 0, s, b) ac-
cording to Table 3.

Table 3: The lens spaces of Theorem 4.13.

Y (m, 0, s, b) Y ∗

k (m, 0, s, b) m s

L(6b− 1, 2b− 1) L[−k,−1, k − 1,−b− 1,−6] −1 −6

L(8b− 2, 2b− 1) L[−k,−2, k − 1,−b− 1,−4] −2 −4

L(9b− 3, 3b− 2) L[−k,−3, k − 1,−b− 1,−3] −3 −3

The knots Kk(−1, 0,−6, b), Kk(−2, 0,−4, b), and Kk(−3, 0,−3, b) are
generically hyperbolic and asymmetric.

Proof. From Lemma 4.12, Y (m, 0, s, b) is (m, s+ 1/b)–surgery on the White-
head link. This is a lens space if and only if (m, s+ 1/b) or (s+ 1/b,m) is
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Figure 16: With r = 0 and m, s ∈ Z, framed surgery on Kk(m, 0, s, b) pro-
duces the manifold Y ∗

k (m, 0, s, b) = L[−k,m, k − 1,−b− 1, s]: Starting from
the surgery diagram of Kk(m, r, s, b) of Figure 1 in (a), we set s = 0 and
place the +1 framing on K. Blowing down K produces (b). A Rolfsen twist
of J into L+ followed by a slam-dunk into R gives (c). A twist along C1 with
an isotopy gives (d) and absorbing the −1/k surgery on L− into the now
parallel component R gives (e). A Rolfsen twist (along with blowing down
the +1 in the continued fraction) and then a slam-dunk yields (f) and (g).

(−1,−6 + 1/n), (−2,−4 + 1/n), (−3,−3 + 1/n), or (p/q,∞) for some n ∈ Z

by [31, Table A.5] (see also [3]).
Assuming m ∈ Z, Lemma 4.12 also shows that Kk(m, 0, s, b) is (fibered)

JP in Y (m, 0, s, b). (This assumption further implies that m–filling on the
first component of the Whitehead link makes the exterior of the second com-
ponent into a once-punctured torus bundle, cf. [28, Propostion 3].) Finally,
for the knot to be LJP so that Y ∗

k (m, 0, s, b) is a lens space, Lemma 4.3
shows that we also need b ∈ Z. Thus if Y (m, 0, s, b) is to be a lens space for
any b ∈ Z, we must take (m, s) ∈ {(−1,−6), (−2,−4), (−3,−3)}.

The claims of hyperbolicity and asymmetry follow from Lemma 4.7. □



✐

✐

“1-Hoffman” — 2023/9/28 — 0:50 — page 2218 — #44
✐

✐

✐

✐

✐

✐

2218 K. L. Baker, N. R. Hoffman, and J. E. Licata

Addendum 4.14. For k ∈ Z and (m, s, b) as detailed in Table 4, the
framed knot Kk(m, 0, s, b) has a fibered longitudinal jointly primitive pre-
sentation in the lens space Y (m, 0, s, b) and framed surgery produces the
lens space Y ∗

k (m, 0, s, b) according to Table 4.

Table 4: The lens spaces of Addendum 4.14. Where marked with §, the
knots Kk(m, 0, s, b) are strongly invertible by Lemma 4.4 (and also by direct
computation). The remaining knots Kk(m, 0, s, b) are unmarked and are
asymmetric in the sense that for most large values of the free parameters we
can fill by fully-generic, symmetry-breaking multislopes as defined in §3.1.

Y (m, 0, s, b) Y ∗

k (m, 0, s, b) m s b

L(11, 3) L[−k + 1, k, 1,−5] −1 −5 −2

L(13, 5) L[−k + 1, k,−3,−7] −1 −7 2

L(14, 3) L[−k,−2, k − 1, 1,−3] −2 −3 −2

L(18, 5) L[−k,−2, k − 1,−3,−5] −2 −5 2

L(15, 4) L[−k,−3, k − 1, 1,−4] −3 −2 −2 §

L(21, 8) L[−k,−3, k − 1,−3,−2] −3 −4 2

Y (m, 0, s, b) Y ∗

k (m, 0, s, b) m s b

L(6, 1) L[−k,−2, k − 1, 0,−2] −2 −2 −1 §

L(6, 1) L[−k,−2, k − 1,−2,−4] −2 −4 1

L(12, 5) L[−k,−4, k − 1, 0,−2] −4 −2 −1 §

L(12, 5) L[−k,−4, k − 1,−2,−4] −4 −4 1

L(6, 1) L[−k,−3, k − 1, 0,−1] −3 −1 −1 §

L(6, 1) L[−k,−3, k − 1,−2,−3] −3 −3 1

L(10, 3) L[−k,−5, k − 1, 0,−1] −5 −1 −1 §

L(10, 3) L[−k,−5, k − 1,−2,−3] −5 −3 1

L(5, 1) L[−k,−5, k − 1, 0, 0] −5 0 −1 §

L(5, 1) L[−k,−5, k − 1,−2,−2] −5 −2 1 §

L(7, 3) L[−k,−7, k − 1, 0, 0] −7 0 −1 §

L(7, 3) L[−k,−7, k − 1,−2,−2] −7 −2 1 §

Proof. Continue from the proof of Theorem 4.13. Since s+ 1
±2

=

(s± 1) + 1
∓2

, it follows from the surgery description in Figure 15
that Y (m, 0, s,±2) = Y (m, 0, s± 1,∓2). Thus for each (m, s± 1) ∈
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{(−1,−6), (−2,−4), (−3,−3)} we obtain a fibered LJP knot in a lens space
for every k ∈ Z by setting b = ∓2. This gives 6 more families shown in Ta-
ble 4 (Top).

Furthermore, taking |b| = 1 and |n| = 1 we may also choose integers
m and s so that (s+ 1/b,m) ∈ {(−1,−6± 1), (−2,−4± 1), (−3,−3± 1)}.
Hence this gives 12 more families of fibered LJP knots in lens spaces. These
are shown in Table 4 (Bottom).

Lemma 4.4 shows that half of the families of Table 4 necessarily produce
strongly invertible knots. These are indicated with the symbol §. □

Remark 4.15. 1) Take b = ∞ so that s+ 1/b = s, and take (m, s) ∈
{(−1,−6 + 1/c), (−2,−4 + 1/c), (−3,−3 + 1/c)} for c ∈ Z. Then the
framed knot Kk(m, 0, s,∞) is a fibered MJP knot in the lens space
Y (m, 0, s,∞) and framed surgery produces the connected sum of lens
spaces Y ∗

k (m, 0, s,∞).

2) Taking s = b = ∞, then for any k,m ∈ Z, both Y (m, 0,∞,∞) and
Y ∗
k (m, 0,∞,∞) are lens spaces. In this situation C ′

0 becomes a genus
one fibered knot where the twice-punctured torus Σ caps off to a fiber.
Thus the knots Kk(m, 0,∞,∞) are doubly primitive knots.

Appendix A. Early examples

We observe that “natural” examples of one-cusped hyperbolic manifolds
with tunnel number 2 and two lens space fillings have been within reach for
several years.

Preceding [19], Mattman-Miyazaki-Motegi describe the first examples
of non-strongly invertible hyperbolic knots in S3 for which some surgery
produces a small Seifert fibered space [32]. Their two families of knots Kn

and K ′
n giving these examples are obtained through twisting the (−3, 3, 5)

pretzel knot K with its +1–surgery by −1/n–surgery on one of two unknots
t1 and t2, detailed in Figure A1(a) and (b). Later, Gainullin observes that
15/4–surgery on t1 (the slope of a regular fiber about t1 after the Seifert
fibered +1–surgery onK) instead produced a hyperbolic knot in a lens space
with a reducible surgery that did not fit previously known constructions [21].

Noting that the slopes (15j + 4)/(4j + 1) have distance 1 from 15/4 for
any j ∈ Z, doing (15j + 4)/(4j + 1)–surgery on t1 sends K to a knot in a
lens space with a (second) lens space surgery. Appealing to the computations
in [32], the symmetry group of the hyperbolic complement of K ∪ t1 is not
strongly invertible on the cusp of K. Therefore it follows from Thurston’s
Hyperbolic Dehn Surgery Theorem and Theorem 3.1 that for all but finitely
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Figure A1: In (a) and (b) are copies of the (−3, 3, 5) pretzel knot K linked
with unknots t1 and t2 respectively. See [32, Figures 1 & 9]. Performing
−1/n–surgeries on the unknots t1 and t2 produces the two families of non-
strongly invertible genus one knots Kn and K ′

n of Mattman, Miyazaki, and
Motegi for which +1–surgery yields a small Seifert fiber space surgery. Ob-
serve that with respect to the genus 1 Heegaard tori defined by t1 and t2,
these knots are all (1, 2)–knots. In (c) we combine (a) and (b) so that t1 ∪ t2
is a (2, 6)–torus link. One then finds that +1–surgery on K in the cable
space exterior of t1 ∪ t2 is again a cable space.

many j ∈ Z, the result of the (15j + 4)/(4j + 1)–filling on the t1 cusp of
the complement of K ∪ t1 is a one-cusped hyperbolic manifold that is not
strongly invertible. Therefore it has tunnel number at least 2. Moreover it
has two lens space fillings, and so neither core of these lens space fillings can
be a (1, 1)–knot. In fact, as one observes from Figure A1(a) that the image
of K is at worst a (1, 2)–knot in any lens space obtained by surgery on t1,
it must be a (1, 2)–knot (with tunnel number exactly 2) in this situation.
A similar discussion applies for the images of K upon (12j + 5)/(5j + 2)–
surgery on t2.

Figure A1(c) unifies (a) and (b) into a three-component hyperbolic link
K ∪ t1 ∪ t2. (Snappy identifies the complement of this link as the census
manifold o944012, which is also the complement of the exterior of the link
L11n366.) The 1/0 and +1–fillings on the cusp of K each produce ca-
ble spaces homeomorphic to A(3/1), but with opposite orientations. As
M(−1,−2) = A(3/1) and Lemma 4.2 shows that M∗

−2(−1,−2) = A(3/2),
one checks and confirms that the complement of K ∪ t1 ∪ t2 is also our man-
ifold M−2(−1,−2).

One identifies the family of surgeries between lens space induced
by (15j + 4)/(4j + 1)–surgery on t1 in Figure A1(a) as the family
K−2(−1,−2,−5/2, j). Similarly, the family of surgeries between lens space
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induced by (12j + 5)/(5j + 2)–surgery on t2 in Figure A1(b) may be iden-
tified as the family K−2(−1,−2,−4, j).

Appendix B. LJP knots and the Magic Manifold

This appendix contains the data for vastly many more exceptional fillings
of Kk(m, r, s, b) than described in the main body of the paper. Indeed, as
one may observe, the exterior of the sublink C0 ∪ C1 ∪R ⊂ L in Figure 1
is the homeomorphic to the “Magic Manifold” N of Martelli and Petronio
[31]. In particular, our manifolds Y (−1, r, s, b) are fillings of N : that is,
Y (−1, r, s, b) = N(α, β, γ), where (α, β, γ) is some permutation of (r, 1 +
s, 1 + 1/b).

Table B1 identifies the fillings of N which are lens spaces or connected
sums of lens spaces according to [31]. (Note that these lens spaces and lens
space summands are only given up to homeomorphism.)

Table B2 adds further information about the manifolds of Table B1.
Specifically, Table B2 specifies the various choices of (r, s, b) which allow the
previously listed manifolds to be realized as Y (−1, r, s, b), subject to the
restriction that b ∈ Z or b = ∞, so that Y ∗

k (−1, r, s, b) will be a lens space or
a connected sum of lens spaces. (Only N(−3

2
,−5

2
,−2) and N(−3

2
,−5

2
,−1)

cannot be realized in this manner.) The resulting manifolds Y ∗
k (−1, r, s, b)

are also given, with the proof following from the Kirby calculus of Figure 13).
Tables B3, B4, B5, and B6 then separate the information of Table B2

into according to whether Y (−1, r, s, b) and Y ∗
k (−1, r, s, b) are lens spaces or

connected sums of lens spaces as shown in the chart below. In Table B3, the
two sets of parameters that produce the knots of Theorem 4.11 are noted.

Y (−1, r, s, b) Y ∗
k (−1, r, s, b) Table

Lens Lens B3

Lens Lens # Lens B5

Lens # Lens Lens B4

Lens # Lens Lens # Lens B6

Remark B.1. Every lens space Y (−1, r, s, b) appearing in Table B2 may
be described with one of the two following forms for some x, y ∈ Z:

L[3, x, 3, y] = L(3x(1− 3y) + 6y − 1, x(1− 3y) + y)

L[2, x, 4, y] = L(2x(1− 4y) + 6y − 1, x(1− 4y) + y)
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Consequently, we see that some of the knots Kk(m, 0, s, b) of Table 3 with
m ̸= −1 are not obtained in this appendix. For example, observe from
Table 3 that Y (−2, 0,−4,−1) = L(6, 1) and Y ∗

k (−2, 0,−4,−1) = L(14k2 −
6k + 3,−14k − 1). Since the order of L[3, x, 3, y] mod 3 and the order of
L[2, x, 4, y] mod 2 are both −1, neither can be Y (−2, 0,−4,−1). Simi-
larly choosing k ≡ 0 mod 3, Y ∗

k (−2, 0,−4,−1) cannot be L[3, x, 3, y]. Then,
as one may check, there are no integers x, y such that either lens space
Y ∗
3 (−2, 0,−4,−1) = L(111, 68) or Y ∗

6 (−2, 0,−4,−1) = L(471, 386) is home-
omorphic to the lens space L[2, x, 4, y].

Table B1: The lens space and reducible fillings of the magic manifold N
except when one filling coefficient is ∞; obtained from [31, Theorem 1.3 and
Tables 2,3,4]. Here, n,m, t, u ∈ Z and t, u are coprime. Note that the lens
spaces and lens space summands were determined there only up to homeo-
morphism, see [31, Section 1.1, Lens spaces]. We identified N(−1,−3 + 1

n
, t
u
)

as being listed with the opposite orientation, and have corrected it below.
However there may still be others listed with the opposite orientation.

filling of magic manifold resulting manifold

N(−3,−1, t
u
) L(2, 1)#L(t+ 3u, u)

N(−3,−2, t
u
) L(5t+ 7u, 2t+ 3u)

N(−3,−1 + 1
n
,−1 + 1

m
) L((2n+ 1)(2m+ 1)− 4, (2n+ 1)m− 2)

N(−2,−2, t
u
) L(3, 1)#L(t+ 2u, u)

N(−2,−2 + 1
n
, t
u
) L(3n(t+ 2u)− 2t− u, n(t+ 2u)− t− u)

N(−1,−3 + 1
n
, t
u
) L(2n(t+ 3u)− t− u, n(t+ 3u)− t− 2u)

N(0, n,−4− n) L(2, 1)#L(3, 1)

N(0, n,−4− n+ 1
m
) L(6m− 1, 2m− 1)

N(−3
2
,−5

2
,−2) L(2, 1)

N(−3
2
,−5

2
,−1) L(13, 5)

N(−4,−1
2
,−1) L(11, 3)

N(−4,−1
2
, 0) L(13, 5)
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Table B2: The lens space and reducible fillings of the magic manifold N
that may be obtained as Y (−1, r, s, b). The underlined terms correspond to
those filled with 1 + 1/b for some b ∈ Ẑ. The corresponding possibilities of
parameters (r, s, b) and the filled manifolds Y (−1, r, s, b) and Y ∗

k (−1, r, s, b)

are given. Here n ∈ Z, and b ∈ Ẑ. (The parameter m has been replaced with
n since now only one appears at a time.) Where marked with §, the knots
Kk(−1, r, s, b) are strongly invertible by Lemma 4.4.

magic manifold filling (r, s, b) Y (−1, r, s, b) Y ∗
k (−1, r, s, b)

N(−3,−1, 1 + 1
b
) (−3,−2, b) L[2]#L[4,−b] L[−k − 2, k,−b− 1,−2] §

(−1,−4, b) L[2]#L[4,−b] L[−k, k,−b− 1,−4]

N(−3,−2, 1 + 1
b
) (−3,−3, b) L[2,−2, 2,−b] L[−k − 2, k,−b− 1,−3]

(−2,−4, b) L[2,−2, 2,−b] L[−k − 1, k,−b− 1,−4]

N(−3,−1 + 1
n
, 0) (−3,−2 + 1

n
,−1) L[3, 1− n, 2] L[−k − 2, k − 2,−n] §

(−1 + 1
n
,−4,−1) L[3, 1− n, 2] L[−n,−k, k − 4] §

N(−2,−2, 1 + 1
b
) (−2,−3, b) L[3]#L[3,−b] L[−k − 1, k,−b− 1,−3]

(−2,−3, b) L[3]#L[3,−b] L[−k − 1, k,−b− 1,−3]

N(−2,−2 + 1
n
, 1 + 1

b
) (−2,−3 + 1

n
, b) L[3, 1− n, 3,−b] L[−k − 1, k,−b− 1,−3,−n]

(−2 + 1
n
,−3, b) L[3, 1− n, 3,−b] L[−n,−k − 1, k,−b− 1,−3]

N(−1,−3 + 1
n
, 1 + 1

b
) (−1,−4 + 1

n
, b) L[2, n,−4, b] L[−k, k,−b− 1,−4,−n]

(−3 + 1
n
,−2, b) L[2, n,−4, b] L[−n,−k − 2, k,−b− 1,−2] §

N(0, n,−4− n) (n,−5− n,−1) L[2]#L[3] L[−k + n+ 1, k − n− 5] §

(−4− n, n− 1,−1) L[2]#L[3] L[−k − n− 3, k − 1] §

N(0, 0,−4) (0,−5,−1) L[2]#L[3] L[−k + 1, k − 1] §

(−4,−1,−1) L[2]#L[3] L[−k − 3, k − 1] §

N(0, 1,−3) (0,−4,∞) L[2]#L[3] L[−k + 1, k]#L[−4] §

(−3,−1,∞) L[2]#L[3] L[−k − 2, k] §

N(0, 2,−2) (0,−3, 1) L[2]#L[3] L[−k + 1, k,−2,−3]

(−2,−1, 1) L[2]#L[3] L[−k − 1, k + 1] §

N(0, 0,−4 + 1
n
) (0,−5 + 1

n
,−1) L[3, 1− n, 2] L[−k + 1, k − 5,−n] §

(−4 + 1
n
,−1,−1) L[3, 1− n, 2] L[−n,−k − 3, k − 1] §

N(0, 1,−3 + 1
n
) (0,−4 + 1

n
,∞) L[3, 1− n, 2] L[−k + 1, k]#L[−4,−n] §

(−3 + 1
n
,−1,∞) L[3, 1− n, 2] L[−n,−k − 2, k] §

N(0, 2,−2 + 1
n
) (0,−3 + 1

n
, 1) L[3, 1− n, 2] L[−k + 1, k,−2,−3,−n]

(−2 + 1
n
,−1, 1) L[3, 1− n, 2] L[−n,−k − 1, k + 1] §

N(0,−4, 1
2
) (0,−5,−2) L[3,−1, 2] L[−k + 1, k, 1,−5]

(−4,−1,−2) L[3,−1, 2] L[−k − 3, k, 2] §

N(0,−5, 1 + 1
b
) (0,−6, b) L[3, 1− b, 2] L[−k + 1, k,−b− 1,−6]

(−5,−1, b) L[3, 1− b, 2] L[−k − 4, k,−b] §

N(0,−6, 3
2
) (0,−7, 2) L[3, 3, 2] L[−k + 1, k,−3,−7]

(−6,−1, 2) L[3, 3, 2] L[−k − 5, k,−2] §

N(−4,−1
2
, 0) (−4,−3/2,−1) L[3, 3, 2] L[−k − 3, k − 2,−2] §

(−1
2
,−5,−1) L[3, 3, 2] L[2,−k + 1, k − 1] §
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Table B3: With the parameters (r, s, b) as given, the filled manifolds
Y (−1, r, s, b) and Y ∗

k (−1, r, s, b) are the lens spaces indicated for any k, n, b ∈
Z. In the 5th and 7th rows, the asterisk on the parameters indicates that
they correspond to the surgeries of Theorem 4.11. For generic k, n, b ∈ Z,
the knots Kk(−1, r, s, b) are hyperbolic. Where marked with §, the knots
Kk(−1, r, s, b) are strongly invertible by Lemma 4.4.

(r, s, b) Y (−1, r, s, b) Y ∗
k (−1, r, s, b)

(−3,−3, b) L[2,−2, 2,−b] L[−k − 2, k,−b− 1,−3]

(−2,−4, b) L[2,−2, 2,−b] L[−k − 1, k,−b− 1,−4]

(−3,−2 + 1
n
,−1) L[3, 1− n, 2] L[−k − 2, k − 2,−n] §

(−1 + 1
n
,−4,−1) L[3, 1− n, 2] L[−n,−k, k − 4] §

(−2,−3 + 1
n
, b)∗ L[3, 1− n, 3,−b] L[−k − 1, k,−b− 1,−3,−n]

(−2 + 1
n
,−3, b) L[3, 1− n, 3,−b] L[−n,−k − 1, k,−b− 1,−3]

(−1,−4 + 1
n
, b)∗ L[2, n,−4, b] L[−k, k,−b− 1,−4,−n]

(−3 + 1
n
,−2, b) L[2, n,−4, b] L[−n,−k − 2, k,−b− 1,−2] §

(0,−5 + 1
n
,−1) L[3, 1− n, 2] L[−k + 1, k − 5,−n] §

(−4 + 1
n
,−1,−1) L[3, 1− n, 2] L[−n,−k − 3, k − 1] §

(−3 + 1
n
,−1,∞) L[3, 1− n, 2] L[−n,−k − 2, k] §

(0,−3 + 1
n
, 1) L[3, 1− n, 2] L[−k + 1, k,−2,−3,−n]

(−2 + 1
n
,−1, 1) L[3, 1− n, 2] L[−n, ,−k − 1, k + 1] §

(0,−5,−2) L[3,−1, 2] L[−k + 1, k, 1,−5]

(−4,−1,−2) L[3,−1, 2] L[−k − 3, k, 2] §

(0,−6, b) L[3, 1− b, 2] L[−k + 1, k,−b− 1,−6]

(−5,−1, b) L[3, 1− b, 2] L[−k − 4, k,−b] §

(0,−7, 2) L[3, 3, 2] L[−k + 1, k,−3,−7]

(−6,−1, 2) L[3, 3, 2] L[−k − 5, k,−2] §

(−4,−3/2,−1) L[3, 3, 2] L[−k − 3, k − 2,−2] §

(−1
2
,−5,−1) L[3, 3, 2] L[2,−k + 1, k − 1] §
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Table B4: With the parameters (r, s, b) as given, the filled manifolds
Y (−1, r, s,∞) and Y ∗

k (−1, r, s,∞) are the lens spaces and connected sums
of lens spaces indicated respectively for any k, n ∈ Z. For generic k, n ∈ Z,
the knots Kk(−1, r, s,∞) are hyperbolic and strongly invertible. The strong
invertibility (still marked with §) is given by Lemma 4.4.

(r, s, b) Y (−1, r, s, b) Y ∗
k (−1, r, s, b)

(−3,−3,∞) L[2,−2, 2] L[−k − 2, k]#L[−3] §

(−2,−4,∞) L[2,−2, 2] L[−k − 1, k]#L[−4] §

(−2,−3 + 1
n
,∞) L[3, 1− n, 3] L[−k − 1, k]#L[−3,−n] §

(−2 + 1
n
,−3,∞) L[3, 1− n, 3] L[−n,−k − 1, k]#L[−3] §

(−1,−4 + 1
n
,∞) L[2, n,−4] L[−k, k]#L[−4,−n] §

(−3 + 1
n
,−2,∞) L[2, n,−4] L[−n,−k − 2, k]#L[−2] §

(0,−4 + 1
n
,∞) L[3, 1− n, 2] L[−k + 1, k]#L[−4,−n] §

Table B5: With the parameters (r, s, b) as given, the filled manifolds
Y (−1, r, s,∞) and Y ∗

k (−1, r, s,∞) are the connected sums of lens spaces and
lens spaces indicated respectively for any k, n, b ∈ Z. For generic k, n, b ∈ Z,
the knots Kk(−1, r, s, b) are hyperbolic. Where marked with §, the knots
Kk(−1, r, s, b) are strongly invertible by Lemma 4.4.

(r, s, b) Y (−1, r, s, b) Y ∗
k (−1, r, s, b)

(−3,−2, b) L[2]#L[4,−b] L[−k − 2, k,−b− 1,−2] §

(−1,−4, b) L[2]#L[4,−b] L[−k, k,−b− 1,−4]

(−2,−3, b) L[3]#L[3,−b] L[−k − 1, k,−b− 1,−3]

(n,−5− n,−1) L[2]#L[3] L[−k + n+ 1, k − n− 5] §

(−4− n, n− 1,−1) L[2]#L[3] L[−k − n− 3, k − 1] §

(0,−5,−1) L[2]#L[3] L[−k + 1, k − 1] §

(−4,−1,−1) L[2]#L[3] L[−k − 3, k − 1] §

(−3,−1,∞) L[2]#L[3] L[−k − 2, k] §

(0,−3, 1) L[2]#L[3] L[−k + 1, k,−2,−3]

(−2,−1, 1) L[2]#L[3] L[−k − 1, k + 1] §

(−5,−1,∞) L[3]#L[2] L[−k − 4, k] §
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Table B6: With the parameters (r, s, b) as given, the filled manifolds
Y (−1, r, s,∞) and Y ∗

k (−1, r, s,∞) are connected sums of lens spaces for
any k ∈ Z. For generic k ∈ Z, the knots Kk(−1, r, s,∞) are hyperbolic and
strongly invertible. The strong invertibility (still marked with §) is given by
Lemma 4.4.

(r, s, b) Y (−1, r, s, b) Y ∗
k (−1, r, s, b)

(−3,−2,∞) L[2]#L[4] L[−k − 2, k]#L[−2] §

(−1,−4,∞) L[2]#L[4] L[−k, k]#L[−4] §

(0,−4,∞) L[2]#L[3] L[−k + 1, k]#L[−4] §

(−2,−3,∞) L[3]#L[3] L[−k − 1, k]#L[−3] §

(0,−6,∞) L[3]#L[2] L[−k + 1, k]#L[−6] §
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