
✐

✐

“2-The” — 2023/9/19 — 16:36 — page 2231 — #1
✐

✐

✐

✐

✐

✐

Communications in

Analysis and Geometry

Volume 30, Number 10, 2231–2266, 2022

On C-class equations
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The concept of a C-class of differential equations goes back to
E. Cartan with the upshot that generic equations in a C-class can
be solved without integration. While Cartan’s definition was in
terms of differential invariants being first integrals, all results ex-
hibiting C-classes that we are aware of are based on the fact that
a canonical Cartan geometry associated to the equations in the
class descends to the space of solutions. For sufficiently low orders,
these geometries belong to the class of parabolic geometries and
the results follow from the general characterization of geometries
descending to a twistor space.

In this article, we answer the question of whether a canonical
Cartan geometry descends to the space of solutions in the remain-
ing cases of scalar ODE of order at least four and of systems of
ODE of order at least three. As in the lower order cases, this is
characterized by the vanishing of the generalized Wilczynski in-
variants, which are defined via the linearization at a solution. The
canonical Cartan geometries (which are not parabolic geometries)
are a slight variation of those available in the literature based on
a recent general construction. All the verifications needed to ap-
ply this construction for the classes of ODE we study are carried
out in the article, which thus also provides a complete alternative
proof for the existence of canonical Cartan connections associated
to higher order (systems of) ODE.
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1. Introduction

Consider a (system of) (n+ 1)-st order ODE E given by

u(n+1) = f(t,u,u′, ...,u(n)),(1.1)

where u(k) is the k-th derivative of u = (u1, ..., um) with respect to t. In a
short paper [8] in 1938, Élie Cartan defined the following notion: “A given
class of ODE (1.1) will be said to be a C-class if there exists an infinite group
(in the sense of Lie) G transforming equations of the class into equations
of the class and such that the differential invariants with respect to G of an
equation of the class be first integrals of the equation.” Here,G is a prescribed
(local) Lie transformation pseudogroup, e.g. contact transformations C or
point transformations P. (Recall that by Bäcklund’s theorem, C is identified
with P when m > 1, but these are distinct in the case of scalar equations.)

Cartan gave two examples of C-classes in the context of: (i) scalar 3rd
order ODE up to C; (ii) scalar 2nd order ODE up to P. These examples
were based on an equivalent description as “espaces généralisés”. In modern
language, one represents the equation as a submanifold E in an appropriate
jet space and endows it with a canonical Cartan geometry (G → E , ω) (see
§2.3). A canonical Cartan connection ω can be obtained using only linear
algebra or differentiation via, for example, Cartan’s method of equivalence.
In particular, integration is not needed. Since a Cartan connection provides
a distinguished coframing on a principal bundle G over the ODE E , differ-
ential invariants of the original ODE structure arise from the components
of its curvature (and its covariant derivatives). If one knows a priori that
all differential invariants are first integrals, and there are sufficiently many
functionally independent ones, then these can be used to solve the ODE.
Consequently, the utility of searching for C-classes becomes readily appar-
ent: generic C-class ODE can be solved without integration.

More recently, R. Bryant identified in [1] a C-class within 4th order
scalar ODE (up to C), and the concept of torsion-free path geometries (in
the sense of Fels–torsion, see [15]) from D. Grossman’s article [17] describes
a C-class for 2nd order systems (up to C ∼= P).

The foundations of the geometric study of systems of ODEs of higher or-
der via Cartan connections were developed by N. Tanaka and were published
recently as technical reports [27, 28]. In [27, Part I, Chapter VII], Tanaka
gives an interpretation of higher order systems of ODEs as G0 structures on
filtered manifolds (cf. Section 2 of this paper) and constructs a scalar product
to define the normalization conditions for the associated Cartan connection
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(cf. Section 3). The detailed exposition of this approach can be found in [11].
In [28], Tanaka also establishes the foundations for the integration of what
he calls “foliated” Cartan connections.

As shown in [11], both scalar ODE (of order at least 3) up to C and
systems of ODE (of order at least 2) up to C ∼= P admit an equivalent
description via a canonical Cartan geometry1 (G → E , ω) of type (G,P ) for
an appropriate Lie group G and closed subgroup P ⊂ G. (We remark that
the existence of canonical Cartan connections with respect to an arbitrary
pseudo–group G is not known.) In the geometric description of the ODE E ,
the solution space S corresponds to the space of integral curves in E of a
certain distinguished line field E ⊂ TE , i.e. S ∼= E/E. On the homogeneous
model G/P of the geometry, the space S is given as G/Q for a subgroup
Q ⊂ G containing P . Hence, a natural question arises: for the given ODE,
does the canonical Cartan geometry (G → E , ω) of type (G,P ) descend to
a Cartan geometry (G → S, ω) of type (G,Q)? If so, then all differential
invariants of ω will be well-defined functions on S, i.e. they will be constant
on solutions, hence they are necessarily first integrals. Thus, such ODE E
will define a C-class. On the other hand, this is a natural way to obtain
geometric structures on the solution space, which are an important topic in
the geometric theory of differential equations [13, 14, 16, 21, 24].

For the cases treated by Cartan and Grossman, the equivalent Cartan
geometry actually falls into the class of parabolic geometries. In this setting,
the solution space is a special instance of a twistor space of a parabolic
geometry and the fundamental question of whether a parabolic geometry
descends to a twistor space was studied in [3]. It turns out that this depends
only on the Cartan curvature, and, as observed in [5], this remains true for
arbitrary Cartan geometries. For parabolic geometries, there is a simpler
geometric object than the Cartan curvature, which still is a fundamental
invariant, namely the so–called harmonic curvature. Using the machinery of
Bernstein–Gelfand–Gelfand sequences (BGG sequences) from [6] and [2], it
was shown in [3] that descending of the geometry can be characterized in
terms of this harmonic curvature. In particular, this provides an alternative
proof for the results by Cartan and Grossman.

Our goal in this article is to extend the characterization of the possibil-
ity of descending the Cartan geometry to the solution space to higher order

1It is well known that all scalar 2nd order ODE are (locally) equivalent up to
C. Regarding them up to P also leads to a canonical Cartan geometry, but this
is exceptional from the point of view of our formulations, so will henceforth be
excluded in this article.
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cases (which also recovers Bryant’s result on C-class from [1]). There are
natural candidates for relative invariants whose vanishing should character-
ize this descent, namely the generalized Wilczynski invariants. These were
introduced in [10], where it was shown that their vanishing (i.e. Wilczynski–
flatness) implies existence of a certain geometric structure on the solution
space.

For concreteness, let us recall how the generalized Wilczynski invariants
are defined. Consider a linear ODE system:

u(n+1) = Pn(t)u
(n) + · · ·+ P0(t)u

up to transformations (t,u) 7→ (λ(t), µ(t)u), where µ(t) ∈ GL(m). Any such
system can be brought to the canonical Laguerre–Forsyth form defined by:
Pn = 0 and tr(Pn−1) = 0.

As proven by Wilczynski [29] for scalar ODE and generalized by Se-
ashi [26] to systems of ODE, the following expressions become fundamental
invariants for the class of linear equations (in Laguerre–Forsyth form) and
the above class of transformations:

Θr =

r−1∑

j=1

(−1)j
(2r − j − 1)!(n− r + j)!

(r − j)!(j − 1)!
P

(j−1)
n−r+j ,

for r = 2, . . . , n+ 1. (Observe that Θ2 is trace–free and thus vanishes for
scalar ODE.)

Definition 1.1. For (1.1), the generalized Wilczynski invariants Wr for
r = 2, . . . , n+ 1 are defined as the invariants Θr evaluated at the lineariza-
tion of the system. Formally, they are obtained by substituting each Pr(t)
with the matrix

(
∂f
∂u(r)

)
and replacing the usual derivative by the total deriva-

tive
d
dt

= ∂
∂t

+ u(1) ∂
∂u

+ ...+ u(n) ∂
∂u(n−1) + f ∂

∂u(n) .

Our main problem thus is to relate the Wilczynski invariants to the cur-
vature of the canonical Cartan geometry (which is not a parabolic geometry
for higher-order cases) and to prove that vanishing of these invariants im-
plies the necessary algebraic restrictions on this curvature. Now it has been
known that there is an analogue of harmonic curvature for the Cartan ge-
ometries constructed in [11], and the Wilczynski invariants were identified
as certain components of this harmonic curvature. However, without having
the machinery of BGG sequences at hand, it is very hard to systematically
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deduce restrictions on the curvature from restrictions on the harmonic cur-
vature. In the special case of scalar 7th order ODE, this was sorted out in
[13] using direct computations that were not reproduced in the article.

To be able to apply BGG–like arguments, we use a small variation of the
canonical Cartan connection from [11]. This is based on the recent general
construction of canonical Cartan connections associated to filtered geomet-
ric structures in [4]. This has the advantage of a simpler characterization
of the canonical Cartan connection and of stronger uniqueness results. All
verifications needed to apply this general theory to the case of (systems
of) ODE are carried out in our article, so we obtain a complete alternative
proof of existence of canonical Cartan connections associated to (systems
of) higher order ODE.

The proof of the main result of this paper (Theorem 4.2) is based on
arguments similar to the ones used in the recent versions of the BGG ma-
chinery, see §4.9 and §4.10 of [7]. Together with the results of Cartan [8] and
Grossman [17] (or the ones from [3]), we obtain:

Theorem 1.2. The following families of equations and pseudogroups form
C-classes:

• scalar ODE of order ≥ 3 (viewed up to contact transformations) with
vanishing generalized Wilczynski invariants;

• systems of ODE of order ≥ 2 (viewed up to point transformations) with
vanishing generalized Wilczynski invariants.

Let us briefly describe the structure of the paper. In §2, we show that
ODE can be described as filtered geometric structures and analyze the trivial
equation to obtain the Lie groups and Lie algebras needed for a description
as a Cartan geometry. We also discuss the space of solutions and the concept
of C-class in this setting (Definition 2.4). The verifications needed to apply
the constructions of canonical Cartan connections from [4] are carried out
in §3. These are purely algebraic, partly using finite–dimensional represen-
tation theory. In the end of the section, we give examples of homogeneous
C-class ODE. In §4, we relate the Wilczynski invariants to the curvature
of the canonical Cartan connection and prove our main result. It is worth
mentioning here that not all the filtered geometric structures of the type
we use are obtained from ODE (see Remark 2.3 and the example related to
G2 in §3.5). Our results continue to hold for these more general structures,
provided one uses the description of Wilczynski invariants in Theorem 4.1
as a definition in this more general setting.
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2. Invariants and C-class via Cartan connections

Our results are based on an equivalent description of (systems of) ODE
as Cartan geometries, which is a variant of the one in [11]. This in turn
is derived from an equivalent description as a filtered analogue of a G–
structure, which we discuss first.

2.1. ODE as filtered G0–structures

Consider the jet spaces J ℓ = J ℓ(R,Rm), with projections πℓk : J
ℓ → Jk

(k < ℓ), and standard adapted coordinates (t,u0,u1, ...,uℓ), where uj =
(u1j , ..., u

m
j ) refers to the j–th derivative of u(t) = (u1(t), ..., um(t)). For

ℓ ≥ 1, the (rank m+ 1) contact subbundle is C ⊂ TJ ℓ, which is locally the
annihilator of (the components of)

θ0 = du0 − u1dt, θ1 = du1 − u2dt, ..., θℓ−1 = duℓ−1 − uℓdt.

Its weak derived flag yields a filtration by subbundles C =: C−1 ⊂ C−2 ⊂
... ⊂ C−ℓ−1 := TJ ℓ, with Ci having corank m in Ci−1, and

Ci = span{∂t + u1∂u0
+ ...+ uℓ+1+i∂uℓ+i

, ∂uℓ
, ..., ∂uℓ+1+i

}

for i = −1, ...,−ℓ. The Lie bracket satisfies [Γ(Ci),Γ(Cj)] ⊂ Γ(Ci+j),
and so (J ℓ, {Ci}) becomes a filtered manifold. In fact, [Γ(Ci),Γ(Cj)] ⊂
Γ(Cmin(i,j)−1), which is a stronger condition if i, j ≤ −2.

We will exclusively study ODE under contact transformations. These are
diffeomorphisms Φ : J ℓ → J ℓ such that Φ∗(C) = C. By Bäcklund’s theorem,
Φ is the prolongation of a contact transformation on J1. Moreover, if m >
1, the latter is the prolongation of a diffeomorphism on J0, i.e. a point
transformation.

Suppose n ≥ 2. The (n+ 1)-st order ODE (1.1) corresponds to a sub-
manifold E ⊂ Jn+1 transverse to πn+1

n , so E is locally diffeomorphic to Jn.
For ℓ = 1, ..., n, the contact subbundle on J ℓ is preserved by contact transfor-
mations, and its preimage under πn+1

ℓ |E yields a subbundle T ℓ−n−1E ⊂ TE .
The weak derived flag of D := T−1E also gives rise to these same filtration
components:

T−1E ⊂ T−2E ⊂ ... ⊂ T−nE ⊂ T−n−1E := TE .(2.1)
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As for jet-spaces, (E , {T iE}) is a filtered manifold with

[Γ(T iE),Γ(T jE)] ⊂ Γ(Tmin(i,j)−1E) ⊂ Γ(T i+jE).(2.2)

Further, there are distinguished subbundles E ⊂ D and F i ⊂ T iE :

• E = span{ d
dt

:= ∂t + u1∂u0
+ ...+ un∂un−1

+ f∂un
} is the annihilator

of the pullbacks of θ0, ..., θn on Jn+1 to E .

• F i = span{∂un
, ..., ∂un+1+i

} is the (involutive) vertical bundle for
πn+1
n+i |E . By Bäcklund’s theorem, F := F−1 ⊂ ... ⊂ F−(n−1) are distin-

guished; F−n is distinguished for m > 1. These give corresponding
splittings T iE = E ⊕ F i.

For x ∈ E , define mi(x) := T ixE/T
i+1
x E , and induce a tensorial (“Levi”)

bracket on m(x) =
⊕

i<0mi(x) from the Lie bracket of vector fields. This
nilpotent graded Lie algebra (NGLA) is the symbol algebra at x of (E , D),
and its NGLA isomorphism type is independent of x, so let m denote a fixed
NGLA with m ∼= m(x) for any x. Moreover, it is the same for all ODE (1.1),
and we describe it in §2.2 below.

All NGLA isomorphisms from m to some m(x) comprise the total space
of a natural frame bundle Fgr(E) → E . This has structure group Autgr(m),
which naturally injects into GL(m−1) ∼= GLm+1 since m−1 generates all of m,
reflecting the fact that D is “bracket-generating”. The splitting D = E ⊕ F
is encoded via reduction to a subbundle G0 → E with structure group G0 =
R
× ×GLm embedded as diagonal blocks in GLm+1.
Fixing m and G0 ⊂ Autgr(m) as above, a filtered G0-structure consists

of:

(i) a filtered manifold (M, {T iM}i<0) whose symbol algebras form a lo-
cally trivial bundle with model algebra m;

(ii) a reduction of structure group of Fgr(M) →M to a principal G0-
bundle G0 →M .

Note that (i) implies that T−1M is of constant rank and bracket-generating
in TM . As described above, any ODE E yields a filtered G0-structure. These
are not the most general instances of such structures, however, since the
splittings T iE = E ⊕ F i for i = −2, ...,−(n− 1) (and for i = −n if m > 1)
are an additional input. The following discussion in fact applies to all filtered
G0–structures, and not only to those defined by (systems of) ODE.
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2.2. The trivial ODE

We exclude the cases of scalar 3rd order ODE and of (systems of) 2nd order
ODE as these lead to parabolic geometries, which are structurally different.
So suppose that n ≥ 2 and m ≥ 1, with (n,m) ̸= (2, 1). Then the contact
symmetry algebra g of the trivial ODE u(n+1) = 0 consists entirely of the
(prolonged) point symmetries:

∂ua , t∂ua , ..., tn∂ua , ∂t, t∂t, ub∂ua , t2∂t + nt

m∑

c=1

uc∂uc ,(2.3)

where 1 ≤ a, b ≤ m. Abstractly, g = q⋉ a, where q = sl2 × glm acts on the
abelian ideal a = Vn ⊗W , with Vn = Sn(R2) as an sl2-module andW = R

m.
Take a basis {x, y} on R

2 and the standard sl2-basis

X = x∂y, H = x∂x − y∂y, Y = y∂x.

On Vn, use the basis vi = 1
i!x

n−iyi, where 0 ≤ i ≤ n. Let {ea} and {eab} be
the standard bases on R

m and glm, which satisfy eabec = δac eb.
The prolongation to Jn+1 of (2.3) shows that g is infinitesimally tran-

sitive on E ⊂ Jn+1, with isotropy subalgebra p ⊂ g at o = {t = 0,u0 = ... =
un = 0} ∈ E spanned by 2t∂t, u

b∂ua , t2∂t + nt
∑m

c=1 u
c∂uc . Abstractly, p is

spanned by H, glm,Y. The filtration (2.1) induces (p-invariant) filtrations on
g/p ∼= ToE and g:

g−n−1 = g ⊃ g−n · · · ⊃ g−1 ⊃ g0 = p ⊃ g1 ⊃ {0},

and we put gi = {0} for i ≥ 2, and gi = g for i ≤ −n− 1. In particular,
g−1/p ∼= Do = Eo ⊕ Fo, with Eo ∼= RX and Fo ∼= Ryn ⊗W (modulo p), while
g1 = RY is distinguished as those elements of p whose bracket with g−1 lies
in p. Viewed concretely, Eo, Fo, g

1 are respectively spanned by (the prolon-
gations of) ∂t, t

n∂ua , and t2∂t + nt
∑m

c=1 u
c∂uc .

The associated graded gr(g) =
⊕

i∈Z gri(g), defined by gri(g) := gi/gi+1,
is a graded Lie algebra with m := gr−(g) a NGLA. The symbol algebra (§2.1)
of (E , D) associated to any ODE (1.1) is isomorphic to m. On gr(g), the
induced p-action has g1 ⊂ p acting trivially, so gr0(g) = g0/g1 acts on gr(g)
by grading-preserving derivations.

It is convenient to introduce a grading directly on g, but since this is
not p-invariant, it should only be regarded as an auxilliary structure. Con-
sider Z = −H

2 − (1 + n
2 )idm. The eigenvalues of adZ introduce a Lie algebra
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grading g = g−n−1 ⊕ ...⊕ g0 ⊕ g1, so each gi is a g0-module. This satisfies
gi =

⊕
j≥i gj so that gri(g)

∼= gi. As vector spaces,

g1 ∼= RY

g0 ∼= RH⊕ glm

g−1
∼= RX⊕ (Rvn ⊗W )

gi ∼= Rvn+1+i ⊗W, i = −2, ...,−n− 1.

(2.4)

(We remark that X ∈ g−1 has usual sl2-weight +2.)
To pass to the group level, consider the natural action of GL2 ×GLm on

Vn ⊗W with kernel T = {λ id2 × λ−n idm : λ ∈ R
×}, and LT2 ⊂ GL2 (resp.

LT+
2 ) the lower triangular (resp. strictly lower triangular) matrices. Define

G = (GL2 ×GLm)/T ⋉ (Vn ⊗W ),

P = (LT2×GLm)/T,

P+ = LT+
2 /T.

(2.5)

Then P+ ⊂ P ⊂ G are closed subgroups in G corresponding to g1 ⊂ g0 ⊂ g,
with P+ normal in P . The adjoint action of G restricts to a filtration-
preserving P -action on g, and P+ consists exactly of those elements for
which the induced action on the associated graded gr(g) is trivial. Thus we
obtain a natural induced action of G0 := P/P+ on gr(g). It is a familiar fact
about parabolic subgroups that the quotient projection P → G0 splits. In-
deed, G0 can be identified with the subgroup of those elements of P whose
adjoint action preserves the grading on g, and (g,X) 7→ g exp(X) defines
a diffeomorphism G0 × g1 → P . In this picture, G0 ⊂ P is the direct prod-
uct of diagonal 2× 2 matrices and GLm (modulo T ). This Lie group G0 is
isomorphic to that used in §2.1, with R

×-factor there corresponding to ele-
ments diag(λ, 1)× idm (modulo T ). The Lie algebra of G0 is g0. Collecting
the results of this section, we in particular easily get:

Proposition 2.1. For the Lie algebra g and the group P defined above,
(g, P ) is an admissible pair in the sense of Definition 2.5 of [4]. Moreover,
the group P is of split exponential type in the sense of Definition 4.11 of
that reference.

2.3. Canonical Cartan connections

The equivalent description of (systems of) ODE as filtered G0–structures
that we have derived so far in particular includes a principal G0–bundle
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G0 → E . A particularly nice way to obtain invariants in such a situation is
to construct a canonical Cartan geometry out of the filtered G0–structure.
In the language of [4], we are looking for a Cartan geometry of type (g, P )
(where g and P are as in §2.2 above), which makes sense on smooth manifolds
M of dimension dim(g/p). Such a Cartan geometry then consists of a (right)
principal P–bundle G →M and a Cartan connection ω ∈ Ω1(G, g). This
means that ω satisfies

1) For any u ∈ G, ωu : TuG → g is a linear isomorphism;

2) ω is P -equivariant, i.e. R∗
gω = Adg−1 ◦ ω for any g ∈ P ;

3) ω reproduces the generators of the fundamental vector fields ζA, i.e.
we have ω(ζA) = A for any A ∈ p.

The fundamental invariant available in this setting then is the curvature
K ∈ Ω2(G, g) of ω, which is defined by K(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)]. The
two–form K is P -equivariant and horizontal, and can be equivalently en-
coded as the curvature function κ : G →

∧2
g∗ ⊗ g, defined by κ(A,B) =

K(ω−1(A), ω−1(B)) for A,B ∈ g. The Cartan connection ω is regular if
κ(gi, gj) ⊂ gi+j+1 for all i, j.

As detailed in Theorem 2.9 of [4], any regular Cartan geometry of type
(g, P ) on a smooth manifold M gives rise to an underlying filtered G0–
structure. The filtration {T iM} on TM is obtained by projecting down the
subbundles T iG := ω−1(gi) ⊂ TG. Regularity of ω implies that the symbol
algebra gr(TM) is everywhere NGLA-isomorphic to gr−(g). The reduction
of structure group is then defined by the G0-bundle G0 := G/P+.

Constructing a canonical Cartan connection means reversing this pro-
cess. Given a filtered G0–structure on M , one tries to extend the principal
G0–bundle G0 →M to a principal P–bundle G →M , and endow that bun-
dle with a natural Cartan connection. Such a construction was first obtained
in [11] for (systems of) ODE based on the general theory developed in [23].
Here we follow the recent general construction in [4], which provides a more
explicit characterization of the canonical Cartan connection via its curvature
and stronger uniqueness results.

In view of Proposition 2.1, two more ingredients are needed to apply the
general results of [4]. On the one hand, we have to verify that the associated
graded gr(g) from §2.2 is the full prolongation of its non–positive part (see
Definition 2.10 of [4]). On the other hand, we have to construct an appropri-
ate normalization condition to be imposed on the curvature of the canonical
Cartan connection. Both these steps are purely algebraic and we will carry
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them out in §3 below. Using the results of Propositions 3.3 and 3.5 from
there, we can apply Theorem 4.12 of [4] to obtain the following result.

Theorem 2.2. Fix g and P as in §2.2. Then there is an equivalence of cate-
gories between filtered G0–structures and regular, normal Cartan geometries
of type (g, P ).

Remark 2.3. As described in §2.1, ODE (considered up to contact trans-
formations) define filtered G0–structures, but not every filtered G0–structure
is of that form. This can be easily seen from the curvature of the canonical
Cartan connection. We claim that for structures induced by ODE, we get a
stronger version of regularity. Indeed, in this case κ(gi, gj) ⊂ gmin(i,j)−1 for
all i, j < 0 and this is a proper subspace of gi+j+1 if i, j < −1.

By definition of the curvature, we get

κ(ω(ξ), ω(η)) = ξ · ω(η)− η · ω(ξ)− ω([ξ, η]) + [ω(ξ), ω(η)],(2.6)

and if ω(ξ) has values in gi and ω(η) has values in gj , then the first two
summands on the right hand side have values in gmin(i,j)−1. Next, because
of the large abelian ideal a, the Lie bracket on g has the property that
[gi, gj ] ⊂ gmin(i,j)−1 for all i, j < 0, which handles the last term on the right
hand side. Hence, it remains to show that for structures coming from ODE,
we also have ω([ξ, η]) taking values in gmin(i,j)−1.

For such structures, we have the decomposition T iE = E ⊕ F i for all
i < 0 with E ⊂ T−1E and F i involutive. Given a vector field ξ on G such
that ω(ξ) has values in gi for i < 0, we can correspondingly decompose
ξ1 + ξ2, where ξ1 is a lift of a section of E → E and ξ2 lifts a section of
F i → E . Similarly decompose η = η1 + η2 for η ∈ X(G) such that ω(η) has
values in gj . Using that a Lie bracket of lifts is a lift of the Lie bracket of the
underlying fields, one easily verifies that all the brackets [ξi, ηj ] are lifts of
sections of Tmin(i,j)−1E (or of smaller filtration components). Thus ω([ξ, η])
has values in gmin(i,j)−1, which completes the argument.

All the further developments in this article make sense for arbitrary
filtered G0–structures and not only for the ones coming from ODE provided
that one uses the description of Wilczynski invariants in Theorem 4.1 as a
definition in the more general setting.

2.4. The space of solutions and C-class

In the description of §2.1, it is clear how to obtain the space of all solutions
of (1.1). The solutions are the integral curves of the line bundle E ⊂ TE
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spanned by d
dt
. Hence locally the space of solutions is the space of leaves of

the foliation defined by E. In the case of the trivial equation u(n+1) = 0, we
obtain the solutions u =

∑n
i=0 ait

i, where ai ∈W = R
m are constant. Hence

we obtain a global space S of solutions in this case and viewing E as G/P , we
see that S = G/Q, where Q = (GL2 ×GLm)/T ⊂ G. This means that S is
the homogeneous model for Cartan geometries of type (G,Q). In particular,
the tangent bundle of S is the homogeneous vector bundle G×Q (g/q), and
as a Q–module, we get g/q ∼= a = Vn ⊗W .

This tensor decomposition of g/q gives rise to a geometric structure on
S that can be described by the corresponding decomposition of the tangent
bundle TS into a tensor product. A simpler description is provided by the
distinguished variety in P(a) given as

P
1 × P

m−1 → P(a), ([b0 : b1], [w]) 7→ [(b0x+ b1y)
n ⊗ w].(2.7)

Translating by G, one obtains a canonical isomorphic copy of this variety in
each tangent space of S. The resulting geometric structure is called a Segré
structure (modelled on (2.7)). When m = 1, these structures are commonly
called GL2-structures, but we will use the term Segré structure for all cases.
Notice that this is a standard first order structure corresponding to Q ⊂
GL(a), without any additional filtration on the tangent bundle.

Now one may ask the question whether similar things happen for more
general ODE, both on the level of Cartan geometries and on the level of
Segré structures. On the latter level, this is studied intensively in the liter-
ature in many special cases, see e.g. [13, 14, 16, 21, 24]. For our purposes,
the results of [10] are particularly relevant. In that article, it is shown in
general that vanishing of the generalized Wilczynski invariants from Def-
inition 1.1 implies existence of a natural Segré structure on the space of
solutions. The pullback of TS to E is naturally isomorphic to TE/E. This
is modelled on a, so on that level a decomposition as a tensor product is
available. The Wilczynski invariants can be interpreted as obstructions to
this decomposition descending to a decomposition of TS, which is crucial
for the developments in [10], compare also to the proof of Theorem 4.1.

On the level of Cartan geometries, the question of descending is closely
related to the concept of C-class. The technical aspects of this descend-
ing process are worked out in the case of parabolic geometries in [3]. As
shown in §1.5.13 and 1.5.14 of [5], the proofs in that article apply to general
groups. Consider an equation E and a (local) space of solutions S, i.e. a
local leaf space for E ⊂ TE . Descending of the Cartan geometry (G → E , ω)
first requires that the principal right action of P on G extends to a smooth
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action of Q ⊃ P , which has the fields ω−1(A) ∈ X(G) for A ∈ q as funda-
mental vector fields. If such an extension exists, then, possibly shrinking S,
one obtains a projection G → S, which is a Q–principal bundle. Next, one
has to ask whether (the restriction of) ω can be interpreted as a Cartan
connection on that principal Q–bundle, which boils down to the question
of Q–equivariance. Surprisingly, it turns out that the whole question of de-
scending of the Cartan geometry is equivalent to the fact that all values
of the curvature function κ of ω vanish upon insertion of any element of
q/p ⊂ g/p, see Theorem 1.5.14 of [5].

But now the fact that the canonical Cartan geometry on E descends
to the space S implies that the Cartan curvature and hence all invariants
derived from it in an equivariant fashion descend to S and thus are first
integrals. This is the technical definition of C-class that we use in this article:

Definition 2.4. An ODE (1.1) is of C-class if its corresponding regular,
normal Cartan geometry (G → E , ω) descends to sufficiently small spaces of
solutions or, equivalently, if its curvature function satisfies iXκ = 0, where
X ∈ g−1 was defined in §2.2.

3. Codifferentials and normalization conditions

3.1. Filtrations and gradings

We will use the general results from [4] to obtain canonical Cartan connec-
tions. In addition to the properties of the pair (g, P ) that we have already
verified, the main ingredient needed to apply this method is a choice of nor-
malization condition. We do this via a codifferential in the sense of Definition
3.9 of [4].

Such a codifferential consists of P–equivariant maps acting between
spaces of the form L(

∧k(g/p), g) of alternating multilinear maps. An im-
portant role in [4] is played by the natural P–invariant filtration on these
spaces and the associated graded spaces. For our purposes, it will be useful
to view these as subspaces of the chain spaces Ck(g, g) = L(

∧k
g, g). Hence

we will first collect the necessary information on filtrations and associated
graded spaces in this setting. Observe that each of the spaces Ck(g, g) nat-
urally is a representation of g and of P , and we can identify L(

∧k(g/p), g)
with the subspace

Ckhor(g, g) = {ϕ ∈ Ck(g, g) : izϕ = 0, ∀z ∈ p}
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of horizontal k–chains, which is immediately seen to be P–invariant.
As we have seen in §2.2, the Lie algebra g carries a P–invariant filtra-

tion {gi}1i=−n−1 such that p = g0. Moreover, we noticed that this filtration
is actually induced by a grading g = g−n−1 ⊕ · · · ⊕ g1 of g in the sense that
gi = ⊕j≥igj . The grading is not P–invariant, however, so it has to be viewed
as an auxilliary object. In particular, this implies that one can identify the
filtered Lie algebra g with its associated graded Lie algebra gr(g). The fil-
tration and the grading on g induce a filtration and a grading on each of
the chain spaces Ck(g, g), which can be conveniently described in terms of
homogeneity. Moreover, it follows readily that each of the spaces Ck(g, g)
can be naturally identified with its associated graded.

The notion of homogeneity is more familiar in the setting of gradings:
We say that φ ∈ Ck(g, g) is homogeneous of degree ℓ if, for all i1, . . . , ik ∈
{−n− 1, . . . , 1}, it maps gi1 × · · · × gik to gi1+···+ik+ℓ. In our simple situa-
tion, homogeneity of degree ≥ ℓ (in the filtration sense) then simply means
that gi1 × · · · × gik is always mapped to gi1+···+ik+ℓ. For the passage to the
associated graded, it suffices to consider spaces of the form L(

∧k(g/p), g). As
proved in Lemma 3.1 of [4], identifying g with gr(g), the associated graded
to this filtered space can be identified with Ck(g−, g) (with its natural grad-
ing). For a map φ ∈ L(

∧k(g/p), g) which is homogeneous of degree ≥ ℓ, the
projection grℓ(φ) ∈ Ck(g−, g)ℓ is obtained by applying φ to (the classes of)
elements of g− and taking the homogeneous component of degree ℓ. Here we
denote by Ck(g−, g)ℓ the homogeneity ℓ component of Ck(g−, g).

The spaces Ck(g−, g) are the chain spaces in the standard complex com-
puting the Lie algebra cohomology H∗(g−, g) of the Lie algebra g− with co-
efficients in the module g. Correspondingly, there is a standard differential in
this complex, which we denote by ∂g

−

. This differential plays an important
role in the definitions of normalization conditions and of codifferentials.

3.2. Scalar product and codifferential

As in §3.1, we identify L(
∧k(g/p), g) with Ckhor(g, g). Define an inner product

⟨ , ⟩ on g by declaring X, H, Y, vib := vi ⊗ eb, e
a
b to be an orthogonal basis

with

⟨X,X⟩ = ⟨Y,Y⟩ = 1, ⟨H,H⟩ = 2, ⟨eab , e
a
b ⟩ = 1, ⟨vib, v

i
b⟩ =

(n− i)!

i!
.

Then ∀A,B ∈ q and ∀u, v ∈ a, this satisfies:

⟨A,B⟩ = tr(A⊤B), ⟨Au, v⟩ = ⟨u,A⊤v⟩.(3.1)
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Extend ⟨ , ⟩ to an inner product on C∗(g, g). The spaces Ck(g, g) are the
chain spaces in the standard complex computing the Lie algebra cohomology
H∗(g, g), and we denote by ∂g the standard differentials in that complex.
From the explicit formula for these differentials (which only uses the Lie
bracket in g), it follows readily that these maps are g–equivariant and Q–
equivariant.

Definition 3.1. For each k, we define the codifferential ∂∗ : Ck(g, g) →
Ck−1(g, g) as the adjoint (with respect to the inner products we have just
defined) of the Lie algebra cohomology differential ∂g. Explicitly, we have
the relation ⟨∂gϕ, ψ⟩ = ⟨ϕ, ∂∗ψ⟩ for all ϕ ∈ Ck−1(g, g) and ψ ∈ Ck(g, g).

Lemma 3.2. The codifferential restricts to a P–equivariant map ∂∗ :
L(
∧k(g/p), g) → L(

∧k−1(g/p), g). This map preserves homogeneity and thus
is compatible with the filtrations on both spaces. Moreover, it is image–
homogeneous in the sense of Definition 3.7 of [4].

Proof. We have already noted that ∂g is g-equivariant. Now for any A ∈ q,
we have

⟨ϕ,A∂∗ψ⟩ = ⟨A⊤ϕ, ∂∗ψ⟩ = ⟨∂g(A
⊤ϕ), ψ⟩ = ⟨A⊤∂gϕ, ψ⟩

= ⟨∂gϕ,Aψ⟩ = ⟨ϕ, ∂∗(Aψ)⟩,

so ∂∗ is q-equivariant on the full cochain spaces. Since the grading element Z
lies in z(g0) ⊂ q, we see that ∂∗ commutes with the action of Z. This means
that it preserves homogeneity in the graded–sense and thus also in the sense
of filtrations.

Let ⊕⊥ denote orthogonal direct sum. Then g = g− ⊕⊥ p induces
g∗ = ann(g−)⊕⊥ ann(p). Letting

∧i,j :=
∧i

ann(g−)⊗
∧j

ann(p), we have∧k
g∗ ∼=

⊕⊥
i+j=k

∧i,j . Now by definition, the subspace L(
∧k(g/p), g) of

Ck(g, g) coincides with
∧0,k⊗g. Thus, its orthocomplement is given by⊕⊥

i>0

∧i,k−i⊗g, and this space can be written as

{φ ∈ Ck(g, g) : φ(v1, ..., vk) = 0, ∀vi ∈ g−}.

Since g− is a subalgebra of g, the definition of the differential implies that
∂g maps L(

∧k−1(g/p), g)⊥ to L(
∧k(g/p), g)⊥. Now for ψ ∈ L(

∧k(g/p), g),

we can verify that ∂∗ψ ∈ L(
∧k−1(g/p), g) by showing that for all ϕ ∈

L(
∧k−1(g/p), g)⊥, we get 0 = ⟨ϕ, ∂∗ψ⟩. But this follows directly from the

definition as an adjoint. Since L(
∧k(g/p), g) is a P–invariant subspace of
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Ck(g, g) for each k, Q–equivariance of ∂∗ on Ck(g, g) readily implies P–
equivariance of the restriction.

Image-homogeneity as defined in [4] requires the following. If we have
an element in the image of ∂∗, which is homogeneous of degree ≥ ℓ in the
filtration sense, then it should be possible to write it as the image under ∂∗

of an element which itself is homogeneous of degree ≥ ℓ. But in our case,
the filtration is derived from a grading that is preserved by ∂∗ . Thus, if all
non–zero homogeneous components of ∂∗ψ lie in degrees ≥ ℓ, it follows that
all homogeneous components of degree < ℓ of ψ must be contained in the
kernel of ∂∗. (Otherwise, their images would be of the same homogeneity.)
Hence the homogeneous components of degree < ℓ can be left out without
changing the image, and image-homogeneity follows. □

To prove that ∂∗ can be used to obtain a normalization condition, we
have to consider the induced maps between the associated graded spaces.
As in §3.1, we view the associated graded of L(

∧k(g/p), g) as Ck(g−, g).
Observe further that Ck(g−, g) is exactly the subspace

∧0,k⊗g ⊂ Ck(g, g),
as introduced in the proof of Lemma 3.2. Having made these observations, we
can now verify the remaining properties of the codifferential needed in order
to apply the general results on existence of canonical Cartan connections.

Proposition 3.3. The maps ∂∗ from Definition 3.1 define a codifferen-
tial in the sense of Definition 3.9 of [4]. Hence, in the terminology of
that reference, ker(∂∗) ⊂ L(

∧2(g/p), g) is a normalization condition and
im(∂∗) ⊂ ker(∂∗) is a maximally negligible submodule.

Proof. In view of Lemma 3.2, it remains to verify the second condition in
Definition 3.9 of [4]. This says that the maps ∂∗ : Ck(g−, g) → Ck−1(g−, g)
induced by ∂∗ are disjoint to ∂g

−

. As above, we can identify Ck(g−, g) with

the subspace
∧0,k⊗g ⊂ Ck(g, g), which endows it with an inner product.

Since g− is a subalgebra in g, it easily follows from the definition of the
Lie algebra cohomology differential that for ψ ∈ Ck(g−, g) ⊂ Ck(g, g) we get
∂gψ ∈

∧1,k⊗g⊕
∧0,k+1⊗g. Moreover, the component of ∂gψ in

∧0,k+1⊗g

coincides with ∂g
−

ψ.
Now taking φ ∈ Ck(g−, g) that is homogeneous of some fixed degree

ℓ, we get ∂∗φ by interpreting ∂∗φ as an element of Ck−1(g−, g). For ψ ∈
Ck−1(g, g), we thus can have ⟨∂∗φ, ψ⟩ ≠ 0 only if ψ is homogeneous of the
same degree ℓ and contained in

∧0,k−1⊗g. By definition, we get ⟨∂∗φ, ψ⟩ =
⟨φ, ∂gψ⟩. Since φ ∈

∧0,k⊗g, we may replace ∂gψ by its component in that
subspace and hence by ∂g

−

ψ. This shows that ∂∗ is adjoint to ∂g
−

, which
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implies the required disjointness. All remaining claims now follow directly
from Proposition 3.10 of [4]. □

As noted in §2.3, the curvature of a Cartan geometry is encoded in the
curvature function κ, which has values in L(

∧2(g/p), g). Normality of the
Cartan geometry then exactly means that the values of κ actually lie in the
subspace ker(∂∗).

3.3. Lie algebra cohomology and Tanaka prolongation

To obtain a more explicit description of the codifferential ∂∗, we next study
the Lie algebra cohomology differential ∂g

−

. This will also allow us to verify
that gr(g) ∼= g is the full prolongation of its non–positive part, which is the
last ingredient needed to prove Theorem 2.2. This can be expressed in terms
of the Lie algebra cohomology H∗(g−, g).

Recall that g = q⋉ a, with the abelian ideal a = Vn ⊗ R
m and the re-

ductive subalgebra q = sl2 × glm. Moreover, p ⊂ q and g− = RX⊕ a. Now
proceeding similarly as above, we view L(

∧k(g/q), g) as the subspace of
Ck(g, g) consisting of those maps which vanish upon insertion of one ele-
ment of q. This can then be identified with the chain space Ck(a, g), where
we view g as an a–module via the adjoint action. This identification is even
q–equivariant, since g = q⊕ a as a q–module.

On the chain spaces C∗(a, g), we again have a Lie algebra cohomology
differential, which we denote by ∂a. Explicitly, this differential is given by

∂aφ(X0, . . . , Xk) =
∑

i(−1)i[Xi, φ(X0, . . . , X̂i, . . . , Xk)].

Now define ωX ∈ g−∗ to be the functional sending X to 1 and vanishing
on a ⊂ g−. Given ϕ ∈ Ck(g−, g), we have ϕ = ωX ∧ ϕ1 + ϕ2, for elements
ϕ1 ∈ Ck−1(a, g) and ϕ2 ∈ Ck(a, g). Explicitly, we have ϕ1 = iXϕ and ϕ2 =

ϕ− ωX ∧ ϕ1. We express this by writing ϕ =
(
ϕ1

ϕ2

)
.

Lemma 3.4. In terms of the notation just introduced, the Lie algebra co-
homology differential ∂g

−

is given by

(3.2) ∂g
−

(
ϕ1
ϕ2

)
=

(
−∂aϕ1 + X · ϕ2

∂aϕ2

)
.

Proof. Take ϕ1, ϕ2 ∈ C∗(a, g) of degrees k − 1 and k, respectively. Evaluating
on
∧k+1

a, we clearly have ∂g
−

(ωX ∧ ϕ1) = 0 and ∂g
−

ϕ2 = ∂aϕ2. Next, simple
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direct computations show that for elements vi ∈ a, we obtain

∂g
−

(ωX ∧ ϕ1)(X, v1, ..., vk) = −∂aϕ1(v1, . . . , vk),

while (∂g
−

ϕ2)(X, v1, ..., vk) equals

X · (ϕ2(v1, ..., vk)) +
∑k

j=1(−1)jϕ2([X, vj ], v1, ..., v̂j , ..., vk)

= (X · ϕ2)(v1, ..., vk).
□

The q–equivariant decomposition g = q⊕ a also induces a decomposition
of Ck(a, g) according to the values of multilinear maps. While the first factor
is not a space of cochains, we still denote this decomposition by Ck(a, g) =
Ck(a, q)⊕ Ck(a, a). Observe that from the definition of ∂a, it follows readily
that Ck(a, a) ⊂ ker(∂a) and that im(∂a) ⊂ Ck+1(a, a). Using this, we can
now formulate the result on the full prolongation.

Proposition 3.5 (Tanaka prolongation). Let n ≥ 2, m ≥ 1, with
(n,m) ̸= (2, 1). Then the graded Lie algebra gr(g) ∼= g is the full prolongation
of its non–positive part.

Proof. It is well known that the statement is equivalent to the fact that
H1(g−, g) is concentrated in non–positive homogeneities, compare with
Proposition 2.12 of [4]. In the vector notation introduced above, an element
of C1(g−, g) can be written as

(
A
ϕ

)
for A ∈ g = C0(a, g) and ϕ ∈ C1(a, g).

Now as indicated above, we can decompose ϕ = ϕa + ϕq according to the

values. By Lemma 3.4, 0 = ∂g
−

(
A
ϕ

)
=
(

−∂a(A)+X·ϕ
∂aϕ

)
implies 0 = ∂aϕ = ∂aϕq.

But now by definition, the restriction C1(a, q) → C2(a, a) of ∂a is exactly
the Spencer differential associated to q ⊂ a∗ ⊗ a.

We note that q acts irreducibly on a, and is not in the list of infinite-
type algebras in [19]. Given the assumptions on m and n, a∗ ⊕ q⊕ a is not a
|1|-graded semisimple Lie algebra. (The list of these algebras is well-known
– see §3.2.3 in [5].) Thus, by the main result of [18] by Kobayashi and
Nagano, q ⊂ a∗ ⊗ a has trivial first prolongation, so this Spencer differential
is injective. Hence, we conclude that ϕq = 0.

We have already seen that X · ϕ = ∂a(A). Now we can decompose the rep-
resentation a∗ ⊗ a of q into irreducible components. Writing this as q⊕⊕jUj ,
we can accordingly decompose ϕ = B +

∑
j ϕj and this decomposition is

preserved by the action of X ∈ q. But on the other hand, ∂a : g → a∗ ⊗ a

vanishes on a ⊂ g and coincides with the inclusion on q ⊂ g. Thus we con-
clude that X · ϕj = 0 for all j, which means that these ϕj actually have to be
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contained in highest weight spaces for the action of sl2. These are all repre-
sented by positive powers of X and thus contained in negative homogeneity.

The upshot of this discussion is that if
(
A
ϕ

)
lies in the kernel of ∂g

−

and

has positive homogeneity, then ϕ = ϕa ∈ C1(a, a) must satisfy ϕ = λ adY|a,
and hence X · ϕ = λ adH|a. By the homogeneity assumption, A has to be
homogeneous of non-negative degree, hence lies in q, so ∂a(A) = X · ϕ implies
A = −λH. But then one immediately verifies that

(
A
ϕ

)
= ∂g

−

(−λY), which
completes the proof. □

As we have observed in §2.3 already, this completes the proof of The-
orem 2.2, so we have an equivalence of categories between filtered G0–
structures and regular normal Cartan geometries.

3.4. A codifferential formula

To proceed towards a more explicit description of the codifferential ∂∗, we
continue identifying Ck(a, g) with the subspace of Ck(g, g) of those cochains
that vanish under insertion of an element of q. Doing this, we can restrict
the inner product from §3.2 to the subspace Ck(a, g) and define a map ∂∗a
as the adjoint of the Lie algebra cohomology differential ∂a. We further
observe that the decomposition Ck(a, g) = Ck(a, q)⊕ Ck(a, a) is orthogonal
with respect to our inner product. The basic properties of ∂∗a are as follows.

Lemma 3.6.

1) The map ∂∗a is q–equivariant.

2) For each k, we have im(∂∗a) ⊂ Ck(a, q) ⊂ ker(∂∗a).

3) For k = 1, we get im(∂∗a) = C1(a, q) and ker(∂∗a) is the direct sum of
C1(a, q) and the orthocomplement of q ⊂ a∗ ⊗ a = C1(a, a) included
via the natural action of q on a.

Proof. (1) is proved in exactly the same way as equivariance of the codiffer-
ential in Lemma 3.2.

(2) In §3.3 we have observed that Ck(a, a) ⊂ ker(∂a) and im(∂a) ⊂
Ck(a, a) for each k. By the definition as an adjoint, we see that ker(∂∗a) =
im(∂a)

⊥ and im(∂∗a) = ker(∂a)
⊥. Thus (2) follows from the fact that

Ck(a, q) = Ck(a, a)⊥ for each k.
(3) We have already observed in the proof of Proposition 3.5 that

∂a : g → C1(a, g) vanishes on a and restricts to the representation q → a∗ ⊗ a
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on q. Thus im(∂a) = q ⊂ C1(a, a) ⊂ C1(a, g), which together with the argu-
ments from (2) implies the claimed description of ker(∂∗a).

On the other hand, ∂a : C1(a, g) → C2(a, g), vanishes on C1(a, a) while
in the proof of Proposition 3.5 we have seen that it restricts to an injection
on C1(a, q). Thus ker(∂a) = C1(a, a), and the description of im(∂∗a) in degree
one follows. □

As above, we view Ck(a, g) as the subspace of L(
∧k(g/p), g) consisting

of those elements which vanish under insertion of the element X. Given the
basis {Y,H, eab ,X, v

i
b} of g, let {ηY, ηH, ηba, ω

X, ωbi} be the dual basis.

Proposition 3.7. In terms of the notation from §3.3, the codifferential ∂∗

(on horizontal k-forms) is given by

(3.3) ∂∗
(
ϕ1
ϕ2

)
=

(
−∂∗aϕ1

∂∗aϕ2 + Y · ϕ1

)
,

where ϕ1 ∈ Ck−1(a, g) and ϕ2 ∈ Ck(a, g).

Proof. Take ψ1 ∈ Ck−2(a, g) and ψ2 ∈ Ck−1(a, g) and put ψ = ωX ∧ ψ1 +
ψ2 ∈ Ck−1(g−, g). In the proof of Proposition 3.3, we have seen that ∂gψ

and ∂g
−

ψ differ only by elements of
∧1,k−1⊗g. Using Lemma 3.4 we thus

conclude that, up to terms involving elements of {ηY, ηH, ηba}, we get

∂g(ω
X ∧ ψ1 + ψ2) ≡ ωX ∧ (−∂aψ1 + X · ψ2) + ∂aψ2.

Since {ηY, ηH, ηba} is orthogonal to the horizontal forms {ωX, ωbi}, the
formula for ∂∗ (on horizontal forms) follows from:

⟨∂∗(ωX ∧ ϕ1), ω
X ∧ ψ1⟩ = ⟨ωX ∧ ϕ1, ∂g(ω

X ∧ ψ1)⟩ = ⟨ωX ∧ ϕ1,−ω
X ∧ ∂aψ1⟩

= −⟨ωX, ωX⟩⟨ϕ1, ∂aψ1⟩ = −⟨ωX, ωX⟩⟨∂∗aϕ1, ψ1⟩

= ⟨−ωX ∧ ∂∗aϕ1, ω
X ∧ ψ1⟩

⟨∂∗(ωX ∧ ϕ1), ψ2⟩ = ⟨ωX ∧ ϕ1, ∂gψ2⟩ = ⟨ωX ∧ ϕ1, ω
X ∧ X · ψ2⟩

= ⟨ϕ1,X · ψ2⟩ = ⟨Y · ϕ1, ψ2⟩

⟨∂∗ϕ2, ω
X ∧ ψ1⟩ = ⟨ϕ2, ∂g(ω

X ∧ ψ1)⟩ = 0

⟨∂∗ϕ2, ψ2⟩ = ⟨ϕ2, ∂gψ2⟩ = ⟨ϕ2, ∂aψ2⟩ = ⟨∂∗aϕ2, ψ2⟩
□

Corollary 3.8. Consider im(∂∗) ⊂ ker(∂∗) ⊂ L(
∧k(g/p), g). Then the nat-

ural representation of P on ker(∂∗)/im(∂∗) is completely reducible, i.e. g1

acts trivially.
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Proof. Let ϕ ∈ ker(∂∗). From (3.3), ∂∗aϕ1 = 0 and ∂∗aϕ2 + Y · ϕ1 = 0. Since
Y · ωX = −ωX ◦ adY = 0, then Y · ϕ = ωX ∧ (Y · ϕ1) + Y · ϕ2, so

Y · ϕ =

(
Y · ϕ1
Y · ϕ2

)
=

(
−∂∗aϕ2
Y · ϕ2

)
= ∂∗

(
ϕ2
0

)
∈ im(∂∗).

Hence, g1 acts trivially on ker(∂∗)/im(∂∗). □

3.5. Homogeneous examples of C-class ODE

It is well-known that the submaximal (contact) symmetry dimension for
scalar ODE of order ≥ 4 is two less than that of the (maximally symmetric)
trivial equation, except for orders 5 and 7 where it is only one less [25]. For
these cases, explicit submaximally symmetric models are well-known:

9(u′′)2u(5) − 45u′′u′′′u′′′′ + 40(u′′′)3 = 0;(3.4)

10(u′′′)3u(7) − 70(u′′′)2u(4)u(6) − 49(u′′′)2(u(5))2(3.5)

+280u′′′(u(4))2u(5) − 175(u(4))4 = 0.

These have A2
∼= sl3 and C2

∼= sp4 symmetry, respectively.
Doubrov [10] showed that (3.4) and (3.5) are Wilczynski-flat. We will

describe their Cartan curvatures, observe the vanishing under X-insertions,
and hence confirm that they are of C-class.

The symmetry algebra s ∼= sl3 of E given by (3.4) is spanned by:

∂t, ∂u, t∂t, u∂t, t∂u, u∂u, t2∂t + tu∂u, tu∂t + u2∂u.

This is a homogeneous structure and (the restriction of the prolongation of)
s is infinitesimally transitive on E . Fixing the point o = {t = u = u1 = u2 =
u3 = u4 = 0, u2 = 1} ∈ E , let us define an alternative basis:

X = ∂t + t∂u, H = −2(t∂t + 2u∂u), Y = 2(u− t2)∂t − 2tu∂u,

T4 =
1

2
∂u, T2 = −∂t + t∂u, T0 = −3t∂t,

T−2 = −2(t2 + u)∂t − 2tu∂u, T−4 = −2tu∂t − 2u2∂u,

This basis is adapted to o:

• the isotropy is s0 = span{H,Y }.

• the line field E = span{∂t + u1∂u + ...+ u4∂u3
+ u5∂u4

} on E has
E|o = span{X|o}. Moreover, {X,H, Y } is a standard sl2-triple.
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• the line field F = span{∂u4
} on E has F |o = span{T−4|o}.

• The elements X and T−4 have filtration degree −1 and this induces a
filtration on ToE .

(Again, we are referring to the restrictions of prolongations of the vector
fields above.) The element H was used to decompose s into weight spaces.
Here, T2i has H-weight 2i, and these span an sl2-irrep isomorphic to V4.
Alternatively, we can view this in terms of 3× 3 trace-free matrices. The
map sending a2X + a0H + a−2Y +

∑2
i=−2 b2iT2i to

(
2a0

√
2a2 0√

2a
−2 0

√
2a2

0
√
2a

−2 −2a0

)
+

(
b0 −

√
2 b2 b4√

2 b
−2 −2b0

√
2 b2

b
−4 −

√
2 b

−2 b0

)
.(3.6)

is a Lie algebra isomorphism s → sl3. In summary, we have s ∼= sl2 ⊕ V4 as
sl2-modules, and this is equipped with the filtration induced from above,

e.g.
(

0 1 0
0 0 1
0 0 0

)
and

(
0 0 0
0 0 0
1 0 0

)
mod s0 have filtration degree −1.

The decomposition sl3 ∼= sl2 ⊕ V4 is in fact induced by a principal sl2
subalgebra (all of which are conjugate in s). Similar decompositions exist
for C2

∼= sp4 (arising from the symmetries of (3.5)) and G2, so it will be
useful to formulate this in a uniform way. Let s be a rank two complex
simple Lie algebra. Fix a Cartan subalgebra h, root system ∆, and a simple
root system α1, α2 ∈ h∗. Let {hi, ei, fi}2i=1 be standard Chevalley generators,
where ei and fi are root vectors for αi and −αi respectively. Let Z1, Z2 ∈ h

be the dual basis to α1, α2. We use the Bourbaki ordering, so that the Cartan
matrices cij = ⟨αi, α

∨
j ⟩ for A2, C2, G2 are:

(
2 −1
−1 2

)
,
(

2 −1
−2 2

)
,
(

2 −1
−3 2

)
.

Define a principal sl2-subalgebra via the standard sl2-triple:

H = 2(Z1 + Z2), X = e1 + e2, Y =





2
3f1 +

1
3f2, s = A2;

f1 + f2, s = C2;

2f1 + 3f2, s = G2.

The element H decomposes s into weight spaces, e.g. the root space with
root kα1 + ℓα2 has weight 2(k + ℓ). We apply the raising operator X to
the lowest root space to get the irreducible summand Vn. Indeed, the H-
weight of the lowest (or highest) roots and dimension counting yields the
sl2-decomposition s = sl2 ⊕ Vn, where n = 4 for A2, n = 6 for C2, and n = 10
for G2. Note that the sum of root spaces s−α1

⊕ s−α2
has H-weight +2, and
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is decomposed into a line lying in the sl2 and a line lying in Vn. Filtration
degrees are indicated in Figure 1 for the G2 case. (The A2 and C2 cases are
similar.)

Figure 1: Filtration degrees associated with the G2-model.

We now use all of this to describe the curvature of the associated canon-
ical Cartan geometry. Recall from §1.5.15 and 1.5.16 of [5] that a homoge-
neous Cartan geometry (G → E , ω) of type (G,P ) over a homogeneous base
manifold E ∼= S/S0 is completely determined by a linear map α : s → g that:
(i) restricts to the derivative of the natural inclusion ι : S0 → P on s0, (ii) is
S0-equivariant, i.e. Adι(s) ◦ α = α ◦Ads for s ∈ S0, and (iii) induces a vec-
tor space isomorphism s/s0 ∼= g/p. Letting κ̃(x, y) = α[x, y]− [α(x), α(y)],
the curvature corresponds to κ ∈

∧2(g/p)∗ ⊗ g given by

κ(u, v) = κ̃(α−1(u), α−1(v)).(3.7)

Given the sl2-decomposition s = sl2 ⊕ Vn, define α : s →֒ g = gl2 ⊕ Vn =
q⊕ a via the natural inclusion. This satisfies the required conditions above,
but is moreover sl2-equivariant. This immediately implies that κ given in
(3.7) vanishes upon insertion of X mod p, i.e. it is of the form

(
0
κ2

)
.

We first check that κ is normal. Since α is sl2-equivariant, then κ can
be viewed as an sl2-invariant element of the sl2-module

∧2(g/q)∗ ⊗ g ∼=
C2(a, g). From (3.3), it suffices to examine ∂∗a on this space. From Lemma
3.6, C2(a, q) ⊂ ker(∂∗a) and im(∂∗a) ⊂ C1(a, q). As sl2-modules, C1(a, q) ∼=
Vn ⊗ (V2 ⊕ V0) ∼= Vn+2 ⊕ 2Vn ⊕ Vn−2, which contains no trivial summands
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for n ≥ 3. By sl2-equivariance of ∂∗a, we conclude that ∂∗κ = 0, i.e. κ is
normal.

A simple check using root diagrams shows that for all three cases κ is
regular and satisfies the stronger regularity condition from Remark 2.3 in
the A2 and C2 cases. Thus, in these cases we have constructed the curvature
of the canonical Cartan connection of an ODE, so these ODE are indeed
of C-class. Note that in the A2 case, there is a unique trivial summand
appearing in

∧2 V4 ⊗ V4, so κ necessarily lies here. In the C2 case, there are
two trivial summands: one occurs in

∧2 V6 ⊗ V6 and the other occurs inside∧2 V6 ⊗ sl2. A direct computation shows that κ lies in their sum, but not
entirely in one summand or the other.

In the G2 case, κ is not strongly regular. The root spaces sα1+α2
and

s2α1+α2
have filtration degrees −8 and −9 respectively, but these insert into

κ̃ to produce a nontrivial element of s3α1+2α2
, which has degree −11. Conse-

quently, no corresponding G2-invariant 11th order ODE exists. We have con-
structed a non-ODE G2-invariant filtered G0-structure (with symbol algebra
m). Passing to the leaf space of the foliation by E, we obtain a G2-invariant
GL2-structure on an 11-manifold.

4. Wilczynski–flatness and the main result

As we have observed in the end of §3.3, we can associate a canonical normal
Cartan geometry to any scalar ODE of order at least 4 and each system
of ODE of order at least 3. Using the facts on the normalization condition
derived in §3, we can now express the Wilczynski invariants in terms of the
curvature κ of this Cartan geometry. We can then prove our main result that
in the case of vanishing Wilczynski invariants, the normal Cartan geometry
descends to the space of solutions, thus exhibiting Wilczynski–flat equations
as forming a C-class.

4.1. Wilczynski invariants

Normality implies that κ takes values in the subspace ker(∂∗) ⊂
L(
∧2(g/p), g). The element X ∈ g− spans a one–dimensional P–invariant

subspace in g/p. From Definition 2.4, the C-class property is confirmed if κ
takes values in the P -submodule

E := {ϕ ∈ ker(∂∗) ⊂ C2
hor(g, g) : iXϕ = 0}.(4.1)



✐

✐

“2-The” — 2023/9/19 — 16:36 — page 2255 — #25
✐

✐

✐

✐

✐

✐

On C-class equations 2255

In terms of the vector notation introduced in §3.3, this corresponds to vectors
with vanishing top component.

Composing the natural surjection ker(∂∗) → ker(∂∗)/im(∂∗) with κ, we
obtain the essential curvature κe of the geometry, which is shown to be a
fundamental invariant in Proposition 4.6 of [4]. From Corollary 3.8, we know
that this quotient representation is completely reducible, which shows that
κe is a much simpler geometric object than κ.

To describe the relation to the generalized Wilczynski invariants, we need
some preparation. Inserting the vector X into the curvature function κ, we
obtain a function with values in L(g/p, g). By skew symmetry of κ, the values
vanish upon insertion of X and thus descend to L(g/q, g) and one can further
project to L(g/q, g/q). Now g = q⊕ a and decomposing L(g, g) accordingly,
the result of that projection can be identified with the component of κ(X, )
in L(a, a).

Now a is a representation of q, so we get q ⊂ L(a, a). In particular
Y and, more generally, (Y, A) for any A ∈ glm, can be viewed as an el-
ement of L(a, a). Forming powers of the map induced by Y, we also get
(Yk, A) ∈ L(a, a) for k = 2, . . . , n and A ∈ glm. The maps Yk for k = 1, . . . , n
are linearly independent, and we will show that the component of κ(X, ) in
L(a, a) actually has values in the subspace spanned by q and the maps
(Yk, A). Hence for each k = 1, . . . , n, we get a well defined component of the
curvature function determined by ωX ⊗ Yk with values in glm. We will also
show that the relevant components survive the projection to ker(∂∗)/im(∂∗)
so they are also components of the essential curvature function.

Theorem 4.1. For a scalar ODE of order at least 4 and systems of ODEs
of order at least 3, the generalized Wilczynski invariants from Definition
1.1 are equivalently encoded as the following components of the essential
curvature function of the associated canonical Cartan geometry:

• ωX ⊗ Yk for k = 2, . . . , n in case of a scalar ODE or systems of ODEs
of order n+ 1;

• additionally, the trace-free part of the component corresponding to
ωX ⊗ Y in case of a system of ODEs.

Vanishing of all generalized Wilczynski invariants is equivalent to the
fact that the curvature function κ has values in the sum E+ im(∂∗)1, where
the superscript means (filtration) homogeneity ≥ 1.

Proof. The key ingredient for this result is the description of Wilczynski in-
variants in terms of a partial connection form from [10]. Given the manifold
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E describing the equation and the subbundle E ⊂ TE from §2.1, we can form
the quotient bundle N := TE/E. Given sections ξ of E and s of N , we can
choose η ∈ X(E) that projects onto s, and project the Lie bracket [ξ, η] to
N . One immediately verifies that this gives rise to a well defined bilinear op-
eration D : Γ(E)× Γ(N) → Γ(N) which defines a partial connection, i.e. it
is linear over smooth functions in the first variable and satisfies a Leibniz
rule in the second variable. Hence, we write it as (ξ, s) 7→ Dξs.

Now the canonical Cartan geometry gives rise to a specific description
of this operation. Denoting by p : G → E the Cartan bundle and by ω the
Cartan connection, we get TE = G ×P (g/p), with E ⊂ TE corresponding
to the submodule in g/p spanned by X+ p. This module is q/p, so N =
G ×P (g/q). Otherwise put, the bundle G → E defines a reduction to the
structure group P of the (frame bundle of the) vector bundle N → E , and
we can describe the partial connection in terms of this reduction.

First, given a section s ∈ Γ(N) and a lift η ∈ X(E) as above, we can
further lift η to a P–invariant vector field η̃ ∈ X(G). Then by construction,
the P–equivariant function G → g/q corresponding to s is given by ω(η̃) + q.
To describe the partial connection, take ξ ∈ Γ(E) and choose a P–invariant
lift ξ̃ ∈ X(G). Then the Lie bracket [ξ̃, η̃] is a P–invariant lift of [ξ, η], so
ω([ξ̃, η̃]) + q is the P–equivariant function corresponding to the projection
of [ξ, η] and thus to Dξs.

Since ω(ξ̃) is q-valued, then by (2.6), we have

(4.2) ω([ξ̃, η̃]) + q = −κ(ω(ξ̃), ω(η̃)) + ξ̃ · ω(η̃) + [ω(ξ̃), ω(η̃)] + q.

Let us write f := ω(η̃) + q for the function corresponding to s. The expres-
sion

(4.3) τ(ξ̃)(A+ q) = −κ(ω(ξ̃), A) + [ω(ξ̃), A] + q

is well-defined since ω(ξ̃) has values in q. Thus we get a partially-defined
one–form on G with values in L(g/q, g/q) (which is only defined on tangent
vectors projecting to E ⊂ TE). In terms of this form, the right hand side
of (4.2) reads as ξ̃ · f + τ(ξ̃)(f), so τ is exactly the (partial) connection form
for D on G.

Now an interpretation of the Wilczynski invariants from [10] is based on
a proof that structure group of N can be reduced to P in such a way that one
obtains a connection form forD that satisfies a normalization condition. This
condition is that its values lie in the linear subspace of L(g/q, g/q) ∼= a∗ ⊗ a

spanned by q and the maps of the form (Y2, A2), . . . , (Y
n, An) with Ai ∈ glm.
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It is then shown in [10] that the components as listed in the Theorem exactly
encode the Wilczynski invariants.

To see that τ satisfies this normalization condition, observe first that
ω(ξ̃) has values in RX ⊂ q, so it suffices to deal with the case that ω(ξ̃) = X.
Also, the bracket–term in (4.3) gives a contribution in q ⊂ a∗ ⊗ a. Using the
vector notation

(
κ1

κ2

)
from §3.4 for (the values of) κ, we get κ(X, ) = κ1.

The values of κ1 lie in C1(a, g), which as we know admits a q–invariant
decomposition as C1(a, q)⊕ C1(a, a). Since in (4.3) we work modulo q, the
component of κ showing up there is a multiple of the component κa1 of
κ1 in C1(a, a). But by Proposition 3.7, normality of κ implies that κ1 has
values in ker(∂∗a), while Y · κ1 has values in im(∂∗a). By Lemma 3.6, this
means that κa1 ∈ q⊥ ⊂ a∗ ⊗ a and that Y · κa1 = 0. This exactly means that
the values of κa1 lie in the sum of all those lowest weight spaces of the sl2–
representation a∗ ⊗ a, which are perpendicular to the submodule q. These
lowest weight spaces are spanned by the maps (Y, A1), (Y

2, A2), . . . , (Y
n, An)

with A1 ∈ slm and Ak ∈ glm for k = 2, . . . , n.
Thus we conclude that τ satisfies the normalization condition and that

the Wilczynski invariants are equivalently encoded by the class of κ(X, )
modulo C1(a, q). In particular, this class and thus κa1 vanishes identically in
the Wilczynski–flat case.

Having all that in hand, the claims in the theorem now follow from two
simple observations. On the one hand, Proposition 3.7 and Lemma 3.6 show
that the restriction of the P–equivariant map ϕ =

(
ϕ1

ϕ2

)
7→ ϕa1 to ker(∂∗) ⊂

C2
hor(g, g) vanishes on the subspace im(∂∗). Thus it factorizes to the quotient

ker(∂∗)/im(∂∗), which shows that κa1 and thus the components encoding the
Wilczynski invariants are components of the essential curvature function κe.
This also shows that if κ has values in E+ im(∂∗)1, then κe vanishes upon
insertion of X and hence all Wilczynski invariants vanish.

On the other hand, suppose that we start from a Wilczynski–flat
equation, so κ =

(
κ1

κ2

)
∈ ker(∂∗) has the property that κa1 = 0. Then by

Lemma 3.6, κ1 = κq1 ∈ im(∂∗a), so we can take an element ψ1 ∈ C2(a, g)
such that ∂∗aψ1 = −κ1. Compatibility with homogeneities shows that we
may assume that ψ1 is homogeneous of degree ≥ 0. But then by Propo-
sition 3.7,

(
κ1

κ2

)
− ∂∗

(
ψ1

0

)
has vanishing top–component and thus lies in E.

Hence,
(
κ1

κ2

)
∈ E+ im(∂∗)1, which completes the proof. □
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4.2. The covariant exterior derivative

Let (G →M,ω) be a regular Cartan geometry of type (g, P ). Following [4],
we consider the operator dω : Ωk(G, g) → Ωk+1(G, g) defined by

(dωφ)(ξ0, ..., ξk) = dφ(ξ0, ..., ξk) +
∑k

i=0(−1)i[ω(ξi), φ(ξ0, ..., ξ̂i, ..., ξk)],

where ξj ∈ X(G) for all j. By Proposition 4.2 of [4], if φ is horizontal and
P–equivariant, then so is dωφ. Moreover, dω is compatible with the natural
notion of homogeneity for g–valued differential forms, and the curvature K
of ω satisfies the Bianchi identity dωK = 0.

4.3. Wilczynski-flat ODE are of C-class

Now we are ready to prove our main result.

Theorem 4.2. Any Wilczynski-flat ODE (1.1) with m = 1, n ≥ 3 or m ≥
2, n ≥ 2 is of C-class.

Proof. Let (G → E , ω) be the regular, normal Cartan geometry of type (g, P )
associated to (1.1) as in Theorem 2.2. We have to show that for a Wilczynski–
flat ODE, the curvature function κ has values in the module E defined in
(4.1). Generalizing the relation between the curvature K and the curvature
function κ, horizontal g–valued k–forms on G can be naturally identified with
smooth functions G → L(

∧k(g/p), g). The natural notions of P–equivariance
in the two pictures correspond to each other, see Theorem 4.4 of [4]. For
the current proof, it will be helpful to switch between forms and equivariant
functions freely, so we will express the fact that κ has values in E as “K lies in
E”. In these terms, composing functions with ∂∗ defines a tensorial operator
Ωkhor(G, g) → Ωk−1

hor (G, g) for each k, and we also denote this operator by ∂∗.
By construction, ∂∗ maps P–equivariant forms to P–equivariant forms. In
this language, normality can be simply expressed as ∂∗K = 0.

By Theorem 4.1, Wilczynski–flatness implies that K has values in E+
im(∂∗)1. Passing to equivariant functions, applying Lemma 4.7 of [4], and
passing back to differential forms, we conclude that K = K1 +K2 for P–
equivariant forms K1,K2 ∈ Ω2

hor(G, g) such that K1 has values in E and K2

has values in im(∂∗)1. Now we prove the theorem in a recursive way by
showing that for any ℓ ≥ 1, from a decomposition K = K1 +K2 such that
K1 has values in E and K2 has values in im(∂∗)ℓ, we can always obtain a
decomposition K = K̃1 + K̃2, for which K̃1 again has values in E, but K̃2
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has values in im(∂∗)ℓ+1. Since im(∂∗)r = {0} for sufficiently large r, this
implies the result.

So let us assume that K = K1 +K2 as above with K2 having values
in im(∂∗)ℓ for some ℓ ≥ 1. We first claim that for a P–equivariant form
φ ∈ Ω2

hor(G, g), which has values in E, also ∂∗dωφ has values in E. In terms
of the description of ∂∗ from Proposition 3.7, lying in E means that the top
component of the right hand side of (3.3) has to vanish. Denoting by X̂ ∈
X(G) the vector field characterized by ω(X̂) = X, we thus have to show that
(the equivariant function corresponding to) i

X̂
dωφ has values in ker(∂∗a) ⊂

C2(a, g).
The assumption on φ implies i

X̂
φ = 0, so for vector fields ξ, η ∈ X(G),

we get

(4.4) (i
X̂
dωφ)(ξ, η) = dφ(X̂, ξ, η) + [X,φ(ξ, η)].

Using i
X̂
φ = 0 once more, we get

(4.5)
dφ(X̂, ξ, η) = X̂ · φ(ξ, η)− φ([X̂, ξ], η)− φ(ξ, [X̂, η]) =

X̂ · f(ω(ξ), ω(η))− f(ω([X̂, ξ]), ω(η))− f(ω(ξ), ω([X̂, η])).

Here f denotes the equivariant function corresponding to φ, which takes
values in E ⊂ ker(∂∗). By Proposition 3.7, f in fact has values in ker(∂∗a) ⊂
C2(a, g). Since ω(X̂) is constant, then by (2.6),

(4.6) ω([X̂, ξ]) = −K(X̂, ξ) + [X,ω(ξ)] + X̂ · ω(ξ),

and likewise for ω([X̂, η]).
Now by assumption K = K1 +K2 and i

X̂
K1 = 0, so K(X̂, ξ) =

κ2(X, ω(ξ)) and κ2 has values in im(∂∗). By Proposition 3.7, this means
that κ2(X, ) has values in im(∂∗a), which by part (3) of Lemma 3.6 is con-
tained in q. In particular, terms of the form K(X̂, ξ) insert trivially into
f , so these do not contribute. On the other hand, the contribution to (4.5)
resulting from the last term in (4.6) is

−f(X̂ · ω(ξ), ω(η))− f(ω(ξ), X̂ · ω(η)).

This adds up with the first term in the right hand side of (4.5) to
(X̂ · f)(ω(ξ), ω(η)). Since f has values in E, the derivative X̂ · f has the
same property. Now inserting the last remaining term in the right hand side
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of (4.6) into the right hand side of (4.5), we obtain

−f([X,ω(ξ)], ω(η))− f(ω(ξ), [X,ω(η)]).

Viewing f as a function with values in ker(∂∗a) ⊂ C2(a, g) as above, we can
write the sum of these terms with the last term in the right hand side of
(4.4) as (ρX ◦ f)(ω(ξ), ω(η)). Here ρX denotes the natural action of X ∈ q on
C2(a, g). But then q–equivariance of ∂∗a as proved in part (1) of Lemma 3.6
shows that also this function has values in ker(∂∗a), which completes the
proof of the claim.

Returning to our decomposition K = K1 +K2, we now use the Bianchi
identity dωK = 0 to get ∂∗dωK2 = −∂∗dωK1, so by the claim, this has
values in E. Now consider the maps ∂g

−

and ∂∗ defined on the spaces
Ck(g−, g) as in the proof of Proposition 3.3, and the algebraic Laplacian
□ := ∂g

−

◦ ∂∗ + ∂∗ ◦ ∂g
−

, which preserves degrees and homogeneity. This
clearly can be restricted to an endomorphism of im(∂∗) ⊂ C2(g−, g)ℓ (on
which it coincides with ∂∗ ◦ ∂g

−

), and in the proof of Proposition 3.10 of [4] it
is shown that this restriction is bijective. By the Cayley–Hamilton theorem,
there is a polynomial pℓ ∈ R[x] such that pℓ(□) is inverse to □ on im(∂∗)ℓ.
Now pℓ(∂

∗dω) is a well-defined operator on the space of P–equivariant forms
in Ω2

hor(G, g), which preserves homogeneities.
Applying our claim once more, we see that pℓ(∂

∗dω)∂∗dωK2 has values
in E and by construction is still homogeneous of degree ≥ ℓ. Thus, K̃1 =
K1 + pℓ(∂

∗dω)∂∗dωK2 has values in E, while K̃2 := K2 − pℓ(∂
∗dω)∂∗dωK2

has values in im(∂∗) and is homogeneous of degree ≥ ℓ. To verify that
K = K̃1 + K̃2 is the desired decomposition, it suffices to show that the ho-
mogeneous component of degree ℓ of (the equivariant function corresponding
to) K̃2 vanishes identically.

By part (3) of Theorem 4.4 of [4], for a P–equivariant form φ ∈ Ω2(G, g)
which is homogeneous of degree ≥ ℓ and corresponds to the equivariant func-
tion f , the homogeneous component of degree ℓ of the equivariant function
corresponding to ∂∗dωφ is given by ∂∗ ◦ ∂g

−

◦ grℓ ◦ f . Applying this itera-
tively starting with the function κ2 corresponding to K2, we remain in the
realm of functions having values in im(∂∗)ℓ. Thus we iteratively conclude
that the homogeneous component of degree ℓ of the function correspond-
ing to pℓ(∂

∗dω)∂∗dωK2 coincides with pℓ(□) ◦□ ◦ grℓ ◦ κ2 = grℓ ◦ κ2, which
shows that K̃2 has vanishing homogeneous component of degree ℓ. □
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Example 4.3. Let u = (u1, ..., um). The equations for circles in an (m+
1)-dimensional Euclidean space are given by

u′′′ = 3u′′ ⟨u′,u′′⟩

1 + ⟨u′,u′⟩
.

This ODE system is conformally invariant, and it has been verified that the
Wilczynski invariants vanish [22, Prop.2]. By our Theorem 4.2, the system
is of C-class. For m = 1, the equation is (contact) trivializable, but for m ≥ 2
the system is not (point) trivializable.

Since the Wilczynski invariants for linear equations are invariants, it fol-
lows that an ODE with trivializable linearizations is Wilczynski–flat. Hence
we obtain

Corollary 4.4. Let n ≥ 2, m ≥ 1, with (n,m) ̸= (2, 1). Any ODE (1.1) for
which the linearization around any solution is trivializable, is of C-class.

Example 4.5. The ODE u(n+1) − n+1
n

(u(n))2

u(n−1) = 0, for n ≥ 3, is submaxi-
mally symmetric [25, p.206] except when n = 4 and 6. At a fixed solution u,
its linearization is the ODE for v given by

ℓu[v] := v(n+1) −
2(n+ 1)

n
av(n) −

n+ 1

n
a2v(n−1) = 0,(4.7)

where a := u(n)

u(n−1) . We have a′ = a2

n
and hence ( 1

a
)′ = − 1

n
, ( 1

a2 )′ = − 2
na

and

( 1
a2 )′′ =

2
n2 . Defining ṽ = v

a2 , we have ṽ(n+1) = 1
a2 ℓu[v] = 0, so (4.7) is triv-

ializable, and the given ODE is of C-class by Corollary 4.4. This example
is included into a larger family of Wilczynski-flat (hence C-class) equations
given in [10, Example 2].

Example 4.6. Let m ≥ 2 and n ≥ 2. Given u = (u1, ..., um), consider

u(n+1) = f , where fi =

{
0, i ̸= m;

((u1)(n))2, i = m.

Its linearization is easily seen to be trivializable, so it is of C-class. It is not
trivializable since a fundamental invariant does not vanish on it, namely I2
in [12]. A similar 2nd order example was given in [20, (5.6a)], which was
known to be of C-class since it is torsion-free [17].
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4.4. Remark: A potential alternative line of argument

To conclude the article, let us briefly outline how the theory we have de-
veloped could be used to obtain an alternative proof of our main result.
This line of argument is based on correspondence spaces, which are familiar
in the case of parabolic geometries. It depends crucially on the existence
of a natural Segré structure on the space of solutions of a Wilczynski-flat
ODE from [10], compare with §2.4. As mentioned there, Segré structures
are classical first order structures corresponding to Q ⊂ GL(a). Hence such
a structure on a space S comes with a Q–principal bundle G → S. The clas-
sical way to study such structures is via the Spencer differential. As we have
noted in the proof of Proposition 3.5, this coincides with the restriction of
∂a to a map C1(a, q) → C2(a, a) and is injective. Choosing a Q–invariant
complement N ⊂ C2(a, a) to the image of the Spencer differential, there is
a canonical principal connection form τ on G characterized by the fact that
its torsion lies in G ×Q N ⊂

∧2 T ∗S ⊗ TS.
Usually, not too much emphasis is put on the actual choice of N , but in

the case of Segré structures, this is a surprisingly subtle issue. Analyzing ∂a :
a∗ ⊗ q →

∧2
a∗ ⊗ a in terms of representations of q, one easily deduces that

there always exist Q–invariant complements, but aside from the (m,n) =
(1, 3) case, there is always a freedom of choice. The larger m and n get, the
bigger this freedom becomes, and while there are always only finitely many
free parameters involved, their number gets arbitrarily high.

Now it turns out that the construction from §3.2 can also be used to
construct uniform normalization conditions for Segré structures. Indeed, we
can view L(

∧2(g/q), g) as the subspace in C2(g, g) consisting of all cochains
vanishing upon insertion of one element of q. Similarly as in Lemma 3.2 one
shows that this subspace is preserved by ∂∗ and that the restriction of ∂∗ to
it is Q–equivariant. Using a similar adjointness result as in Proposition 3.3,
one shows that N := ker(∂∗a) ⊂ C2(a, a) is a Q–invariant complement to the
image of the Spencer differential.

Now the alternative approach for proving that Wilczynski–flat ODE
form a C-class goes as follows. Starting with such an ODE E , form a lo-
cal space S of solutions. As proved in [10], this space of solutions inherits
a natural Segré structure. This gives rise to a principal Q–bundle G → S,
which we may endow with the canonical principal connection τ ∈ Ω1(G, q)
for the choice N := ker(∂∗a) of normalization condition. Taking the canonical
soldering form θ on G, which can be viewed as having values in a, we can
form θ ⊕ τ , and this defines a Cartan connection ω of type (g, Q) on G.
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The restriction of the principal action of Q defines a free right action of
P ⊂ Q on G, and we can form the correspondence space, i.e. the space CS :=
G/P of orbits. This can be identified with the total space of the associated
bundle G ×Q (Q/P ). Of course, G → CS is a principal P–bundle and it is
easy to verify that ω also is a Cartan connection of type (g, P ) on G → CS.

Guided by what happens for parabolic geometries, we expect that it is
possible to show that CS is locally isomorphic to E , so (G, ω) can be locally
viewed as a Cartan geometry of type (g, P ) over E . This isomorphism is
expected to have the property that the underlying filtered G0–structure
of this Cartan geometry is the given structure on E . From our choice of
normalization conditions, it follows that ω is also normal (in the sense used
in this article) as a Cartan connection of type (g, P ). Uniqueness of the
normal Cartan geometry implies that (G, ω) is locally isomorphic to the
canonical Cartan geometry on E and by construction it descends to the
local space S of solutions, which would complete the argument.
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