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We obtain an improved pseudolocality result for Ricci flows on two-
dimensional surfaces that are initially almost-hyperbolic on large
hyperbolic balls. We prove that, at the central point of the hy-
perbolic ball, the Gauss curvature remains close to the hyperbolic
value for a time that grows exponentially in the radius of the ball.
This two-dimensional result allows us to precisely conjecture how
the phenomenon should appear in the higher dimensional setting.
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1. Introduction

A Ricci flow solution g(t) on a smooth n-dimensional manifold M, defined
for all t ∈ [0, T ], is a one-parameter family of smooth Riemannian metrics
g(t), for t ∈ [0, T ], on M whose evolution is governed by the equation

(1.1)
∂g

∂t
(t) = −2Ricg(t)

with g(0) := g0 for some given initial metric g0 on M. The Ricci flow equa-
tion in (1.1) can be viewed as a non-linear heat equation.

The powerful pseudolocality theorem of Perelman, Theorem 10.1 in
[Per02], exhibits a property of complete Ricci flow solutions of bounded
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curvature which is false for solutions of the linear heat equation. Roughly
speaking this theorem asserts that if a local region looks almost Euclidean
then it cannot suddenly look highly non-trivial. There are numerous condi-
tions that can be used to provide a precise meaning of almost Euclidean;
see, for example, the conditions utilised in any of Theorems 10.1 and 10.3 in
[Per02] and Proposition 3.1 in [TW06] (though it is worth remarking that
recent work of Fabio Cavalletti and Andrea Mondino establishes that the
conditions assumed in Proposition 3.1 in [TW06] imply that the hypotheses
of Theorem 10.1 in [Per02] are satisfied on a strictly smaller initial region,
see [CM17]).

More recently, Miles Simon and Peter Topping obtain a pseudolocality-
type result in dimension three valid outside the almost Euclidean setting. In
particular, a consequence of Theorem 1.1 in [ST16] is that even when the
hypotheses of Proposition 3.1 in [TW06] are not close to their Euclidean
counterparts, one may still conclude C/t curvature decay for some C > 0.

A particularly interesting consequence of pseudolocality is that, under
complete flows with bounded curvature, initial curvature bounds propagate
forward for some definite period of time. This phenomenon is precisely cap-
tured by Theorem 10.3 in [Per02], whilst the following result of Chen in
[Che09] provides a similar example of the same phenomenon under weaker
assumptions in dimension 2.

Theorem 1.1 (Variant of Proposition 3.9 in [Che09]). Let g(t) be a
smooth Ricci flow on a smooth surface M2 defined for all t ∈ [0, T ]. Let x0 ∈
M and assume, for some r0 > 0, that Bg(t)(x0, r0) ⊂⊂ M for all t ∈ [0, T ].

For a given v0 > 0 suppose that
∣∣Kg(0)

∣∣ ≤ r−2
0 throughout Bg(0)(x0, r0), and

VolBg(0)(x0, r0) ≥ v0r
2
0. Then there exists a constant A = A(v0) > 0 such

that

∀(x, t) ∈ Bg(t)(x0, r0/2)×
[
0,min

{
T,Ar20

}]
we have

∣∣Kg(t)(x)
∣∣ ≤ 2r−2

0 .

An instructive simple setting for pseudolocality is when the initial metric is
locally Euclidean on some ball. In particular, suppose we have a complete,
smooth Ricci flow g(t) on a smooth surface M2, defined for all t ∈ [0, T ] for
some T > 0, with Bg(0)(x0, R) isometric to a Euclidean disc of radiusR. Then
Theorem 1.1 gives a universal A > 0 such that for 0 ≤ t ≤ min{T,AR2} we
have

∣∣Kg(t)(x0)
∣∣ ≤ 2R−2. Therefore the Gauss curvature Kg(t) at the point x0

remains close to 0 (the Euclidean Gauss curvature) for a time proportional
to the square of the radius R.
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In the hyperbolic setting, namely, when we have that Bg(0)(x0, R) is
isometric to a hyperbolic disc of radius R, Theorem 1.1 can again be applied.
However, the requirement that |Kg(0)| ≤ r−2

0 throughout Bg(0)(x0, r0) limits
us to considering only radii r0 ∈ (0, 1]. Therefore the Gauss curvature at x0
may only be controlled for some fixed order one time, irrespective of how
large R is.

Our first main result establishes that, provided a sufficiently large initial
ball is isometric to a hyperbolic disc of the same radius, the flow remains
almost hyperbolic (in a scaled sense) at the central point for a time that is
exponential in the radius.

Theorem 1.2 (Improved control time with equality on large ini-
tial ball). For any α ∈ (0, 1] there exist constants R = R(α) > 0 and
c = c(α) > 0 for which the following holds:

Let R ≥ R and assume that g(t) is a complete smooth Ricci flow on a
smooth surface M, defined for all t ∈ [0, T ] for some T > 0, and such that,
for some x ∈ M, we have that

(
Bg(0)(x,R), g(0)

)
is isometric to a hyperbolic

disc of radius R. Then at the point x we have

(1.2) −1− α ≤ K g(t)

1+2t

(x) ≤ −1 + α

for all times 0 ≤ t ≤ Tmax := min
{
T, ecR

}
.

Remark 1.3. Consider a smooth surface Σ and a complete metric gH of
constant Gauss curvature −1 on Σ. Then there is a unique complete Ricci
flow h(t) := (1 + 2t)gH, defined on Σ for all times t ∈ [0,∞), with h(0) ≡ gH.
The uniqueness, a consequence of Theorem 1.1 in [Top15], allows us to refer

to this flow as the hyperbolic Ricci flow on Σ. The rescaled flow h(t)
1+2t is

identically equal to gH for all times t ∈ [0,∞), and so its Gauss curvature
is identically −1 for all t ∈ [0,∞). This is true irrespective of the smooth
surface Σ, and so given an arbitrary Ricci flow G(t), we can measure how
hyperbolic the flow is by comparing the Gauss curvature of the rescaled flow
G(t)
1+2t with −1.

It is in this scaled sense that the Gauss curvature bounds in (1.2)
establish that the flow g(t) remains “α almost-hyperbolic” at x for all

0 ≤ t ≤ Tmax. That is, the Gauss curvature of the rescaled flow g(t)
1+2t re-

mains within α of −1, which is the value of the Gauss curvature of the
rescaled hyperbolic Ricci flow h(t)

1+2t , for all times 0 ≤ t ≤ Tmax. In terms of

the unscaled flow g(t), we have
∣∣Kg(t)(x)−Kh(t)

∣∣ =
∣∣∣Kg(t)(x) +

1
1+2t

∣∣∣ ≤ α
1+2t

for all times 0 ≤ t ≤ Tmax. Hence not only does Kg(t)(x) remain within α of
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− 1
1+2t , the value of the hyperbolic Ricci flows Gauss curvature Kh(t), it in

fact becomes closer to this value as t increases.

Remark 1.4. Since the hyperbolic volume of a hyperbolic disc is expo-
nential in the radius, by appealing to the well-developed two-dimensional
existence theory (see Theorem 1.3 in [GT11]), having

(
Bg(0)(x,R), g(0)

)
iso-

metric to a hyperbolic disc of radius R implies that the time T for which
the flow exists may be taken to be exponential in the radius R. Therefore
Tmax can be taken to be exponential in the radius R.

Remark 1.5. The completeness hypothesis can be weakened. The precise
condition may be found in Theorem 4.1. Roughly, it requires g(t) balls cen-
tred at points z ∈ Bg(0)(x,R) to remain compactly contained withinM, with
the radius of the ball depending on the g(0) distance of z from ∂Bg(0)(x,R).
Of course a complete flow will automatically satisfy this condition. Finally,
we do not require the flow g(t) to be of bounded curvature, which will later
be seen as a direct consequence of Theorem 1.1 being valid for flows of
unbounded curvature.

Since the pseudolocality result of Chen, Theorem 1.1, is applicable when the
Gauss curvature of the initial metric g(0) is only close to the Gauss curva-
ture of the hyperbolic metric it is natural to wonder if our result remains
valid under weakened almost-hyperbolic initial assumptions. The global sit-
uation suggests this should be the case. It is known that for Ricci flows
conformally equivalent to complete hyperbolic metrics, if the initial metric
is, in some sense, globally hyperbolic-like then the flow remains C l close to
the hyperbolic Ricci flow over its entire existence time. For example, see
Theorem 2.3 in [GT11], and the subsequent discussion illustrating that the
flows considered within this result may be extended to exist for all times
t ∈ [0,∞).

Naturally, without assuming the desired Gauss curvature closeness at
time t = 0, there must be some time delay before such an estimate becomes
valid. Therefore we are led to expecting the result of Theorem 1.2 to be
true, after an arbitrary short time delay, under weaker almost-hyperbolic
assumptions at time t = 0. Our second main result verifies this expectation.

Theorem 1.6 (Improved control time under almost-hyperbolic ini-
tial conditions). There is a universal ε > 0 such that for any α ∈ (0, 1]
and any δ ∈ (0, ε) there exist constants b = b(α, δ) ∈ (0, 1), c = c(α, δ) > 0
and R = R(α, δ) > 0 for which the following holds:
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Assume R ≥ R and that (M,H) is a smooth surface with BH(x,R) ⊂⊂
M for some x ∈ M and (BH(x,R),H) is isometric to a hyperbolic disc of
radius R. Suppose g(t) is a complete smooth Ricci flow on M, defined for
all t ∈ [0, T ] for some T > 0, with g(0) conformal to H and satisfying that

(1.3) (A) (1− b)H ≤ g(0) ≤ (1 + b)H and (B) |Kg(0)| ≤ 2

throughout BH(x,R). Then at the point x ∈ M we have

(1.4) −1− α ≤ K g(t)

1+2t

(x) ≤ −1 + α

for all times δ ≤ t ≤ Tmax := min
{
T, ecR

}
.

Remark 1.7. It may initially appear that, by choosing b sufficiently small,
we could use a combination of PDE regularity theory and interpolation to
combine (A) and (B) in (1.3) to yield C2-closeness between the metrics
g(0) and H throughout a smaller ball BH(x,R− γ) for some γ ∈ (0, 1), say.
Using interpolation and the good L∞-estimates provided by (A) to obtain
C2-estimate for g(0)−H would require, in particular, C2,α-estimates for
g(0). To avoid introducing dependence on the particular metric g(0) we
would need to establish these C2,α-estimates from the hypotheses in (1.3),
rather than directly appealing to the smoothness of g(0).

In terms of a conformal factor u for g(0) (cf. Section 2), the Gauss cur-
vature bound (B) in (1.3) provides estimates for ∆u, and one might expect
that combining these with elliptic regularity theory, and the L∞-estimates
provided by (A), will yield the desired C2,α-estimates. However, (B) only
gives the pointwise inequality that |∆u| ≤ 2e2u throughout BH(x,R).

Consequently, Hölder bounds and derivative bounds for u are not inher-
ited by ∆u (as they would be if we knew ∆u = F (u) for a suitably well-
behaved function F : R → R, say), and thus we cannot bootstrap standard
elliptic regularity theory or appeal to Schauder theory (see [GT98], for ex-
ample) to obtain the C2,α-estimates required for interpolation. Therefore
we cannot conclude any uniform arbitrarily small C2-closeness of g(0) to H,
and instead must expect there to be an arbitrarily short time delay before
the parabolic smoothing affect of the flow can provide such C2-control.

Remark 1.8. If T < δ then (1.4) is vacuous. However, the first estimate in
(1.3) coupled with the fact that the hyperbolic volume of a hyperbolic disc
is exponential in the radius yields that, for sufficiently large R, we have that
VolBg(0)(x,R) ≥ eaR for some universal a > 0. Therefore, as in Remark 1.4,
the time Tmax in can be taken to be exponential in the radius R.
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Remark 1.9. The Gauss curvature bound (1.4) yields that, after an arbi-
trarily small delay, the flow g(t) becomes “α almost-hyperbolic” at x, in the
scaled sense detailed in Remark 1.3, and remains so until time Tmax.

Remark 1.10. The time t = 0 Gauss curvature bound of |Kg(0)| ≤ 2 on
BH(0, R) could be weakened to being bounded by some K0 > 0. However,
the constant ε > 0 would now depend on K0, and we necessarily have to
allow all the constants b, c and R to additionally depend on K0.

Remark 1.11. We do not require the flow g(t) to have bounded curvature,
and the completeness hypothesis may once again be weakened as alluded to
in Remark 1.5.

Theorem 1.6 will be obtained via an iterative procedure that we now outline.
Lemma 3.1 is both the first step and the main novelty. It establishes that
the rescaled flow g(t)

1+2t satisfies the same barrier bounds as assumed in (A)

of (1.3) on a smaller closed ball BH(x,R− J) for a definite amount of time
ε > 0. It will be crucial that we are allowed to make J large; moving a
sufficiently large distance away from the original boundary is essential to
establishing the persistence of the barriers for the rescaled flow.

The second step makes use of the fact that in two-dimensions the Ricci
flow equation reduces to a quasilinear PDE for the conformal factor (cf. Sec-

tion 2). The new barriers for the rescaled flow g(t)
1+2t provide improved L∞-

bounds for the conformal factor over BH(x,R− J)× [0, ε]. Standard quasi-
linear PDE theory then gives, away from the parabolic boundary, derivative
bounds for the conformal factor. Interpolating between the good L∞-bounds
and the third order derivative bounds, for example, allows us to conclude
the desired Gauss curvature control on BH(x,R− J − 2)× [δ, ε] for arbitrary
δ ∈ (0, ε). These estimates could be obtained throughout BH(x,R− J − γ)
for any 0 < γ < R− J at the cost of introducing dependence on γ; our choice
of taking γ = 2 is only for convenience.

After replacing the original J by J + 2, we can combine these two steps
to establish that the rescaled flow g(t)

1+2t satisfies the barriers assumed in

(A) of (1.3) on BH(x,R− J)× [0, ε], whilst the Gauss curvature of g(t)
1+2t is

bounded between −1− α and −1 + α on BH(x,R− J)× [δ, ε]. In particular,

the metric g(ε)
1+2ε satisfies both (A) and (B) of (1.3). Thus, if we consider times

t ≥ ε and rescale the original flow g(t) to a flow that takes g(ε)
1+2ε as its initial

metric, we can repeat the above procedure for the rescaled flow.
We proceed by iterating this procedure as many times as possible, until

either the flows existence time is reached or the radius of the resulting ball
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becomes too small to support a further application. The explicit form of
Tmax is obtained by carefully tracking the number of iterations that can
be made and for how long the estimates are established in each iteration.
The rescaling involved ensures that each subsequent iteration establishes the
barriers for g(t)

1+2t over a longer time interval than the previous step did. It
is this successive increasing that leads to Tmax growing exponentially with
respect to the radius.

After iterating as many times as possible, the rescaled flow g(t)
1+2t satisfies

the barrier estimates of (A) in (1.3) up until time Tmax. An additional com-
bination of the barrier estimates and standard quasilinear PDE theory gives
the Gauss curvature estimates in (1.4). The time delay in Theorem 1.6 is a
consequence of the quasilinear PDE theory only being valid away from the
parabolic boundary. In Theorem 1.2, the equality at t = 0 gives us estimates
at t = 0 that allow us to invoke variants that do not require moving away
from the time t = 0 portion of the parabolic boundary, enabling us to avoid
any time-delay before controlling the Gauss curvature. This single additional
step is the only difference between the proofs of Theorems 1.2 and 1.6.

The techniques used to prove our main results exploit many advanta-
geous facts about Ricci flow specific to dimension 2 (cf. Section 2). Hence
they cannot generalise to higher dimensions. However, there are no obvi-
ous non-artificial obstructions to the higher dimensional analogues, and we
make the following conjecture that the same phenomenon is valid in higher
dimensions.

Conjecture 1.12 (Improved time control with equality on initial
ball). Let n ∈ N such that n ≥ 3. There are constants A = A(n) > 0, c =
c(n) > 0 and R = R(n) > 0 for which the following holds:

Let R ≥ R and suppose that g(t) is a smooth complete Ricci flow of
bounded curvature on a smooth n-dimensional manifold M, defined for
all t ∈ [0, T ] for some T > 0, and, for some x ∈ M, suppose we have that(
Bg(0)(x,R), g(0)

)
is isometric to a hyperbolic ball of radius R. Then at

x ∈ M we have that

|Rm|g(t)(x) ≤ A for all 0 ≤ t ≤ Tmax := min{T, ecR}.

We further expect that the hypotheses of the previous conjecture can be
weakened to almost-hyperbolic hypotheses in a similar spirit to the hypothe-
ses of Theorem 1.6. The remainder of the paper is structured as follows. In
Section 2 we collect together several well-known facts about two-dimensional
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Ricci flow and hyperbolic geometry. In Section 3 we prove several supplemen-
tary lemmata recording how (and in what sense) our local almost-hyperbolic
hypotheses are preserved under Ricci flow. Finally in Section 4 we provide
proof of both Theorem 1.2 and Theorem 1.6. In fact, both are consequences
of Theorem 4.1.

Acknowledgements: This work was supported by EPSRC doctoral fellowship
EP/M506679/1. The author would like to thank Peter Topping for numerous
discussions on this topic, and the anonymous referee whose comments and
suggestions have helped improve the quality of the paper.

2. Preliminary material

On a smooth two-dimensional surface we have that Ricg = Kg · g. Thus the
Ricci flow equation (1.1) becomes

(2.1)
∂

∂t
g(t) = −2Kg(t) · g(t).

Therefore the Ricci flow moves within a fixed conformal class. If we pick
a local isothermal complex coordinate z = x+ iy on U ⊂ M we can write
the metric (on U) as g = e2u|dz|2 for a scalar conformal factor u ∈ C∞(U).
A computation shows that, under Ricci flow, the metric’s conformal factor
satisfies

(2.2)
∂u

∂t
= e−2u∆u = −Kg(t)

where ∆ := ∂2

∂x2 + ∂2

∂y2 is defined with respect to the local coordinate z =
x+ iy.

Let h be the complete conformal metric of constant Gauss curvature
−1 on D := {z ∈ C : |z| < 1} which may be globally written as h = e2ϕ|dz|2
where ϕ(z) := log 2

1−|z|2 . Throughout we work on smooth surfaces (M,H)

that contain a point x ∈ M such that for some R > 0 the ball BH(x,R) ⊂⊂
M and we have that (BH(x,R),H) is isometric to a hyperbolic disc of ra-
dius R, i.e. to (Bh(0, R), h). Clearly any smooth Ricci flow g(t) defined on
BH(x,R) for all t ∈ [0, T ] may be viewed as a smooth Ricci flow defined on
Bh(0, R) for all t ∈ [0, T ].

Suppose that, for some w ∈ D and r > 0, we have a smooth Ricci flow
g(t) defined on Bh(w, r) for all t ∈ [0, T ]. By choosing a local isothermal
complex coordinate z, we can write g = e2u|dz|2 throughout Bh(w, r)× [0, T ]
for a smooth scalar function u : Bh(w, r)× [0, T ] → R. Choosing a different
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local isothermal complex coordinate will induce a different conformal factor,
however, the difference of two conformal factors is invariantly defined.

Given any w ∈ D we may choose a Möbius diffeomorphism Ψ (an isome-
try of D with respect to the hyperbolic metric h) mapping 0 to w. Consider
smooth metrics g1 = e2φ1 |dz|2 and g2 = e2φ2 |dz|2 on Bh(w, r) for some r > 0,
and assume that for A,B > 0 we have Ag1 ≤ g2 ≤ Bg1 throughout Bh(w, r).
Then the pullback metrics Ψ∗g1 and Ψ∗g2 are defined throughout Bh(0, r)
and satisfy that AΨ∗g1 ≤ Ψ∗g2 ≤ BΨ∗g1 throughout Bh(0, r).

In general, the new conformal factors φ̂1 and φ̂2, for the pullback met-
rics Ψ∗g1 and Ψ∗g2 respectively, will be different from φ1 and φ2. However,
we will have the same pointwise bounds for φ̂1 − φ̂2 throughout Bh(0, r)
as we had for φ1 − φ2 throughout Bh(w, r). That is, from Ag1 ≤ g2 ≤ Bg1
throughout Bh(w, r) we may conclude that logA+ 2φ1 ≤ 2φ2 ≤ logB + 2φ1
throughout Bh(w, r). As we still have that AΨ

∗g1 ≤ Ψ∗g2 ≤ BΨ∗g1 through-
out Bh(0, r) we can conclude that logA+ 2φ̂1 ≤ 2φ̂2 ≤ logB + 2φ̂1 through-
out Bh(0, r). This will frequently be exploited, in the special case that g1 ≡ h,
to reduce working near a point w ∈ D to working near the origin 0 ∈ D.

Frequently it will be convenient to switch between the hyperbolic dis-
tance from 0 and the Euclidean distance from 0 on D. For any z ∈ D we

have dh(0, z) = log
[
1+|z|
1−|z|

]
= 2 tanh−1(|z|) and hence Bh(0, R) = Dtanh(R/2).

Here we use the notation that Dρ := {z ∈ D : |z| < ρ} for 0 < ρ < 1. With a
view to later requiring lower bounds on certain radii, we record the following
elementary lower bound for tanh .

Lemma 2.1 (Elementary lower bound for tanh). For any x ∈ (0,∞)
we have the lower bound

(2.3) tanh(x) ≥ 1− 1

x
.

Proof of Lemma 2.1. Define F : (0,∞) → (0, 1) by F (x) := x tanh(x)− x+
1. It suffices to establish that F (x) ≥ 0 throughout (0,∞). Since tanh(x) > 0
on (0,∞) it is apparent that F (x) > 0 for every x ∈ (0, 1). For x ≥ 1 we
compute the derivative of F and observe

F ′(x) = tanh(x)− 1 + x sech2(x) =
(4x− 2)e2x − 2

(e2x + 1)2
≥ 0.

Thus, for x ≥ 1, we have that F (x) ≥ F (1) = tanh(1) > 0. Therefore F (x) >
0 for all x ∈ (0,∞). □
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Finally we recall the following elementary weak comparison principle, found
in [Gie12], for example.

Theorem 2.2 (Elementary comparison principle; Theorem 2.3.1
in [Gie12]). Let U ⊂ C be an open, bounded domain and, for some
T > 0, suppose w, v ∈ C∞(U × [0, T ]) are both solutions to ∂ψ

∂t = e−2ψ∆ψ
throughout U × [0, T ]. If v(z, 0) ≥ w(z, 0) throughout U and v(z, t) ≥ w(z, t)
throughout ∂U × [0, T ] then we may conclude that v(z, t) ≥ w(z, t) through-
out U × [0, T ].

3. Hyperbolic preservation lemmata

Throughout, when referring to metric balls we use the convention that those
denoted by B are taken to be open, whilst those denoted by B are taken to
be closed.

Here we obtain a few lemmata recording how, and in what sense, various
almost-hyperbolic conditions propagate forwards in time under Ricci flow.
The first result establishes that if a flow g(t) is initially locally almost-
hyperbolic, then by reducing to a controllably smaller spatial region, the
rescaled flow g(t)

1+2t must remain close to being hyperbolic in a continuous
sense. The precise result is the following.

Lemma 3.1 (Barriers for rescaled flow). There is a universal constant
ε > 0 such that given any b ∈

(
0, 12
]
there exists a constant J = J(b) > 0 for

which the following holds:
Assume that R ≥ J and that (M,H) is a smooth surface. Suppose that

for some x ∈ M we have both BH(x,R) ⊂⊂ M and that (BH(x,R),H) is
isometric to a hyperbolic disc of radius R. Suppose g(t) is a smooth Ricci
flow defined on M for all t ∈ [0, T ], for some T > 0, with g(0) confor-
mal to H, and satisfying that for any z ∈ BH(x,R) and t ∈ [0, T ] we have
Bg(t)(z, 1) ⊂⊂ M. Further suppose that

(3.1) (i) (1− b)H ≤ g(0) ≤ (1 + b)H and (ii)
∣∣Kg(0)

∣∣ ≤ 2

throughout BH(x,R). Let τ := min{ε, T} > 0. Then we may conclude that

(3.2) (1− b)H ≤ g(t)

1 + 2t
≤ (1 + b)H

throughout BH(x,R− J)× [0, τ ].
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Observe that H±(t) := (1± b+ 2t)H are both Ricci flows with initial met-
rics H+(0) = (1 + b)H and H−(0) = (1− b)H. For positive times t > 0 we

have (1− b)H < H±(t)
1+2t < (1 + b)H, thus it is reasonable to expect that on a

smaller spatial region g(t) should remain sandwiched as in (3.2) for a definite
amount of time.

As we will see in the proof, the Gauss curvature bound assumed in (ii)
of (3.1) means that Theorem 1.1 allows us to conclude that (1− b)e−8tH ≤
g(t) ≤ (1 + b)e8tH throughout BH(x,R− 2)× [0, ε] for a universal ε > 0. By
restricting ε to being sufficiently small, we see that this almost establishes
(3.2) in that we can deduce that g(t)

1+9t ≤ (1 + b)H and g(t)
1−9t ≥ (1− b)H. The

content of the lemma is to establish that we may replace 1 + 9t and 1− 9t
by the same function 1 + 2t and still preserve the barriers for a universal
time ε > 0.

Our strategy is to pullback our flow g(t) to D so that, if we still call the
pulled back flow g(t), we have the barriers (1− b)e−8εh ≤ g(t) ≤ (1 + b)e8εh
throughout Bh(0, R− 2)× [0, ε]. We can reduce to only needing to consider
the origin 0, instead of an arbitrary w ∈ Bh(0, R− J − 2), by considering a
suitable Möbius map D → D (cf. Section 2). Hence we need only prove that
having these barriers on Bh(0, J) allows us to establish the barriers in (3.2)
at the origin.

We use the barriers from above to choose dilations hα and hµ of h for
which (1− b)hµ ≤ (1− b)e−8εh on ∂Bh(0, J) and (1 + b)e8εh ≤ (1 + b)hα on
∂Bh(0, J). We will also ensure that hµ ≤ h ≤ hα so that (1− b)hµ ≤ g(0) ≤
(1 + b)hα throughout the entirety of Bh(0, J). These orderings will mean
that the Ricci flow taking (1 + b)hα as its initial metric remains an upper
barrier for g(t) throughout the parabolic boundary of Bh(0, J)× [0, ε], whilst
the Ricci flow taking (1− b)hµ as its initial metric is a lower barrier for
g(t) throughout the parabolic boundary of Bh(0, J)× [0, ε]. Consequently,
the comparison principle (Theorem 2.2) yields that these flows are in fact
barriers for g(t) throughout the entirety of Bh(0, J)× [0, ε]. The result then
follow from showing that, provided J is chosen sufficiently large, the dilations
hα and hµ can be chosen to provide the improved control at the origin

required to conclude the improved barriers for g(t)
1+2t claimed in (3.2).

Proof of Lemma 3.1. Let h denote the complete conformal hyperbolic met-
ric of constant Gauss curvature −1 on D. Observe that VolBh(z, r) ≥ πr2

for all points z ∈ D and any radius r ∈ (0, 1]. Let ε > 0 be the universal
constant arising from appealing to the pseudolocality result of Chen, Theo-
rem 1.1, with r0 and v0 there equal to 1√

2
and π

4 respectively. In particular,

this tells us that if (M2, g(t)) is a smooth Ricci flow defined for t ∈ [0, T ],
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where T > 0 is arbitrary, and if y ∈M such that Bg(t)

(
y, 1√

2

)
⊂⊂M for

all t ∈ [0, T ], |Kg(0)| ≤ 2 throughout Bg(0)

(
y, 1√

2

)
and VolBg(0)

(
y, 1√

2

)
≥ π

8 ,

then |Kg(t)(y)| ≤ 4 for all t ∈ [0, τ ], where τ := min{ε, T} > 0. We fix this
universal ε > 0 for the remainder of the proof.

Given b ∈
(
0, 12
]
we seek to specify a constant J = J(b) > 0 so that, on

a closed H ball of radius R− J, the barriers in (i) of (3.1) are valid for

positive times for the rescaled family g(t)
1+2t . With the benefit of hindsight, it

will suffice to take

(3.3) J(b) := 2 +
1

b
max

{
4e10ε, 12

}
> 2.

After locally pulling back to the disc D, it will be convenient to work with the
Euclidean distance. Recall from Section 2 that a h ball of radius r centred at
0 ∈ D corresponds to a Euclidean ball of radius tanh(r/2) centred at 0. Later
in the proof we will end up working on a h ball of radius J − 2 centred at
the origin 0 ∈ D, which corresponds to Dj where j := tanh((J − 2)/2). For
use later we record that the bounds in (3.3) give that

(3.4) j := tanh

(
J − 2

2

)
≥ max

{
1− b

2
e−10ε, 1− b

6

}
> 0

via the inequality tanh(y) ≥ 1− 1
y for y > 0 (cf. Lemma 2.1).

With both ε > 0 and J > 0 specified, we let R ≥ J, T > 0 and define
τ := min{ε, T} > 0. Assume that g(t) is a smooth Ricci flow on M, defined
for all t ∈ [0, T ], with g(0) conformal to H, and satisfying that for every
z ∈ BH(x,R) and every t ∈ [0, T ] we have Bg(t)(z, 1) ⊂⊂ M. Further suppose
g(0) satisfies both estimates (i) and (ii) in (3.1) throughout BH(x,R).

Since R ≥ J > 2 we may consider z0 ∈ BH(x,R− 3/2) and note that
BH(z0, 1) ⊂⊂ BH(x,R). Moreover, the barrier estimates (i) of (3.1) ensure
that

BH

(
z0,

1

2

)
⊂ Bg(0)

(
z0,

√
3

2
√
2

)

⊂ Bg(0)

(
z0,

1√
2

)
(3.5)

⊂ BH(z0, 1) ⊂⊂ BH(x,R).

The inclusions of (3.5) allow us to simultaneously conclude that |Kg(0)| ≤ 2

throughout Bg(0)

(
z0,

1√
2

)
via (ii) of (3.1), and that VolBg(0)

(
z0,

1√
2

)
≥ π

8 .
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Recalling how ε > 0 was chosen, Theorem 1.1 tells us that |Kg(t)(z0)| ≤
4 for all t ∈ [0, τ ]. Repeating for all such points z0 allows us to conclude
that |Kg(t)| ≤ 4 throughout BH(x,R− 3/2)× [0, τ ]. Recalling (2.1), estimate
(i) in (3.1) and the Gauss curvature control allows us to conclude that
(1− b)e−8εH ≤ g(t) ≤ (1 + b)e8εH throughout BH(x,R− 3/2)× [0, τ ].

To establish that (1− b)H ≤ g(t)
1+2t ≤ (1 + b)H throughout BH(x,R−

J)× [0, τ ] we pull back to Bh(0, R) ⊂ D. That is, we pull back via the isome-
try F : (Bh(0, R), h) → (BH(x,R),H). After doing so we have a smooth Ricci
flow F ∗g(t) defined on Bh(0, R) for all t ∈ [0, T ], and in particular satisfying
that (1− b)h ≤ F ∗g(0) ≤ (1 + b)h throughout Bh(0, R) and (1− b)e−8εh ≤
F ∗g(t) ≤ (1 + b)e8εh throughout Bh(0, R− 3/2)× [0, τ ]. If we can establish

that (1− b)h ≤ F ∗g(t)
1+2t ≤ (1 + b)h throughout Bh(0, R− J)× [0, τ ] then the

isometry will allow us to conclude (3.2) as required.
Given any w ∈ Bh(0, R− J) ⊂ D we can choose a Möbius diffeomor-

phism D → D mapping the origin 0 to w. Recalling from Section 2 that the
pointwise difference between any metric and the hyperbolic metric h are
preserved under pulling back via Möbius diffeomorphisms, establishing the
following claim is sufficient to complete the proof.

Claim 3.2. Suppose g(t) is a smooth Ricci flow on Bh(0, J − 3/2), defined
for all t ∈ [0, τ ], and satisfying both (1− b)h ≤ g(0) ≤ (1 + b)h throughout
Bh(0, J − 3/2) and (1− b)e−8εh ≤ g(t) ≤ (1 + b)e8εh throughout Bh(0, J −
3/2)× [0, τ ]. Then at the origin 0 ∈ D we have (1− b)h ≤ g(t)

1+2t ≤ (1 + b)h
for all t ∈ [0, τ ].

Proof of Claim 3.2. Let j0 := tanh
(
J− 3

2

2

)
and recall that j = tanh

(
J−2
2

)

so that Bh(0, J − 2) = Dj ⊂⊂ Dj0 = Bh(0, J − 3/2). Let u : Dj0 × [0, τ ] → R

be the smooth scalar function for which g(t) = e2u|dz|2. In particular, we
have that u ∈ C∞ (Dj × [0, τ ]

)
. Recalling that h = e2ϕ|dz|2, where ϕ(z) =

log
[

2
1−|z|2

]
, the barriers (1− b)h ≤ g(0) ≤ (1 + b)h and (1− b)e−8εh ≤

g(t) ≤ (1 + b)e8εh become

(3.6)
1

2
log(1− b) ≤ u(z, 0)− ϕ(z) ≤ 1

2
log(1 + b)

for z ∈ Dj0 , and

(3.7)
1

2
log(1− b)− 4ε ≤ u(z, t)− ϕ(z) ≤ 1

2
log(1 + b) + 4ε

for (z, t) ∈ Dj0 × [0, τ ] respectively.
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We now define suitable Ricci flows between which our flow g(t) will re-
main sandwiched. The upper barrier will follow from considering a complete
Ricci flow hα(t) on the disc of radius α = α(j) ∈ (j, 1) with initial Gaussian

curvature −(1 + b)−1α−2 where α is taken to be α(j) :=
(

e4εj2

e4ε+j2−1

) 1

2

. By

observing that α(s) is strictly increasing as a function of s and that α(0) = 0
and α(1) = 1 we see that α(j) ∈ (0, 1). A simple computation verifies that
α(j) > j as required. The conformal factor of this flow may be written as

(3.8) Hα(z, t) := ϕα(z) +
1

2
log(1 + b) +

1

2
log

(
1 +

2t

(1 + b)α2

)

where ϕα(z) := ϕ
(
z
α

)
so that ϕ ≤ ϕα where both defined. In particular, one

can compute from the definition of α that if |z| = j then ϕα(z) = ϕ(z) + 4ε
(having ensured α > j means that ϕα is defined for |z| = j).

As a function, Hα ∈ C∞(Dα × [0,∞)) thus, in particular, smooth on
Dj × [0, τ ] since Dj ⊂⊂ Dα. Moreover, recalling (3.6), we see that (3.8) en-
sures that Hα(z, 0) ≥ u(z, 0) throughout Dj , whilst (3.7) tells us that for
(z, t) ∈ ∂Dj × [0, τ ] we have Hα(z, t) ≥ ϕα(z) +

1
2 log(1 + b) = ϕ(z) + 4ε+

1
2 log(1 + b) ≥ u(z, t), since z ∈ ∂Dj means |z| = j.

We are now in a position to apply the variant of the comparison principle
stated in Theorem 2.2 to deduce that Hα ≥ u throughout Dj × [0, τ ]. Since
at the origin 0 ∈ Dj we have ϕα(0) = ϕ(0), we see that at the origin Hα ≥ u
is equivalent to

(3.9) g(t) ≤
(
1 + b+

2t

α2

)
h.

The lower barrier is constructed in a similar fashion. This time we con-
sider a complete Ricci flow hµ(t) on the disc of radius µ = µ(j) > 1
with Gaussian curvature initially −(1− b)−1µ−2 where µ is taken to be

µ(j) := j
(
1− (1− j2) exp

[
5−4b
1−b ε

])− 1

2

. For this to make sense we require

1− (1− j2) exp
[
5−4b
1−b ε

]
> 0, which will be the case provided 1− e−10ε < j2.

From (3.4) we know that j ≥ 1− b
2e

−10ε and so, via Bernoulli’s inequality,
j2 > 1− be−10ε which is a little stronger than required. A straightforward
computation shows that µ(j) > 1 as claimed.

The restriction of this flow to Dj yields a (now incomplete) flow which
acts as a lower barrier for our flow g(t) on Dj . To see this observe that the



✐

✐

“4-McLeod” — 2023/9/15 — 17:07 — page 2299 — #15
✐

✐

✐

✐

✐

✐

Improved pseudolocality on large hyperbolic balls 2299

conformal factor of this flow can be written as

(3.10) Hµ(z, t) := ϕµ(z) +
1

2
log(1− b) +

1

2
log

(
1 +

2t

(1− b)µ2

)

where ϕµ(z) := ϕ
(
z
µ

)
so that ϕµ ≤ ϕ where both defined. As a func-

tion Hµ ∈ C∞(D× [0,∞)) and thus, in particular, smooth on Dj × [0, τ ].
Moreover, recalling (3.6), we see that (3.10) ensures that Hµ(z, 0) ≤ u(z, 0)
throughout Dj . Further, if z ∈ ∂Dj then |z| = j and so ϕµ(z) = ϕ(z)− 4ε−
ε

1−b . Therefore we may deduce that

ϕµ(z) +
1

2
log

(
1 +

2t

(1− b)µ2

)
≤ ϕµ(z) +

t

(1− b)µ2

≤ ϕµ(z) +
ε

(1− b)
(3.11)

≤ ϕ(z)− 4ε

for all (z, t) ∈ ∂Dj × [0, τ ] where we have used the inequality log x ≤ x− 1.
Together, (3.7) and (3.11) allow us to conclude that Hµ ≤ u throughout
∂Dj × [0, τ ].

We are now in a position to apply the variant of the comparison principle
stated in Theorem 2.2 to deduce that Hµ ≤ u throughout Dj × [0, τ ]. Since
at the origin 0 ∈ Dj we have ϕµ(0) = ϕ(0), we see that at the origin Hµ ≤ u
is equivalent to

(3.12)

(
1− b+

2t

µ2

)
h ≤ g(t).

Combining (3.9) and (3.12) yields that

(3.13) (1− b)

(
1 + 2t

(1−b)µ2

1 + 2t

)
h ≤ g(t)

1 + 2t
≤ (1 + b)

(
1 + 2t

(1+b)α2

1 + 2t

)
h

at the origin 0 ∈ D for all times t ∈ [0, τ ]. The estimates of (3.13) yield the
barriers required by the claim provided we have both

(3.14) (A) α2 ≥ 1

1 + b
and (B) µ2 ≤ 1

1− b
.

The estimate (A) in (3.14) is true provided

j2 ≥ e4ε − 1

e4ε − 1 + be4ε
= 1− b

1 + b− e−4ε
.
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From (3.4) we know that j ≥ 1− b
6 and thus j2 ≥ 1− b

3 via the Bernoulli
inequality. This is a little stronger than required and hence (A) in (3.14) is
true. The estimate (B) in (3.14) is true provided

j2 ≥
exp

[
5−4b
1−b ε

]
− 1

exp
[
5−4b
1−b ε

]
− 1 + b

= 1− b

exp
[
5−4b
1−b ε

]
− 1 + b

.

From (3.4) we know that j ≥ 1− b
2e

−10ε and thus j2 ≥ 1− be−10ε via the
Bernoulli inequality. This is stronger than required and hence (B) in (3.14)
is true. The estimates (A) and (B) in (3.14) combine with (3.13) to yield

that (1− b)h ≤ g(t)
1+2t ≤ (1 + b)h at the origin 0 ∈ D for all t ∈ [0, τ ], thus

completing the proof of the claim. □

Combined with suitable Möbius diffeomorphisms, the claim allows us to
establish the desired barriers for the pulled back flow F ∗g(t) on Bh(0, R−
J)× [0, τ ]. The barriers in (3.2) on BH(x,R− J)× [0, τ ] are then immediate
by pulling back via the diffeomorphism F−1. This completes the proof of
Lemma 3.1. □

It is well known that L∞-barriers give rise to uniform C l-estimates at strictly
positive times. The following result uses this to establish Gauss curvature
control away from time 0.

Lemma 3.3 (Barriers give curvature control). Let α ∈ (0, 1] and S >
0. Then for any δ ∈ (0, S) there exists a constant b = b(S, α, δ) > 0 for which
the following is true.

Assume that (M,H) is a smooth surface such that for some x ∈ M and
R ≥ 2 we have BH(x,R) ⊂⊂ M and that (BH(x,R),H) is isometric to a
hyperbolic disc of radius R. Suppose that g(t) is a smooth Ricci flow on M,
defined for all t ∈ [0, T ] for some T ∈ (0, S], with g(0) conformal to H, and
we have the barriers

(3.15) (1− b)H ≤ g(t)

1 + 2t
≤ (1 + b)H

throughout BH(x,R)× [0, T ]. Then we may conclude that we have the Gauss
curvature bounds

(3.16) −1− α ≤ K g(t)

1+2t

≤ −1 + α
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throughout BH(x,R− 2)× [δ, T ]. The estimates of (3.16) are vacuous if
T < δ.

Proof of Lemma 3.3 (sketch). Since the assumption (3.15) is preserved un-
der pullback by diffeomorphisms, we can pull back via an isometry (which
exists by assumption) F : (Bh(0, R), h) → (BH(x,R),H) to obtain a smooth
Ricci flow defined throughout Bh(0, R)× [0, T ], and satisfying the barriers in
(3.15) throughout this region of space-time, and, thanks to g(0) being con-
formal to H, is given by ωh throughout Bh(0, R)× [0, T ] for some smooth
function ω : Bh(0, R)× [0, T ] → R. Establishing the Gauss curvature esti-
mates required in (3.16) for the pulled back flow will allow us to instantly
deduce the required Gauss curvature estimates for the flow g(t) itself by
pulling back via F−1.

Thus we are reduced to needing to establish that if g(t) is a smooth
Ricci flow on Bh(0, R), defined for all t ∈ [0, T ], satisfying the barriers of
(3.15) throughout Bh(0, R)× [0, T ], and with g(t) = ωh for a smooth func-
tion w : Bh(0, R)× [0, T ] → R, then g(t) satisfies the Gauss curvature esti-
mates of (3.16) throughout Bh(0, R− 2)× [δ, T ]. By utilising Möbius diffeo-
morphisms mapping 0 to arbitrary w ∈ Bh(0, R− 2), we may further reduce
to only needing to establish the case R = 2. That is, having the barriers
in (3.15) throughout Bh(0, 2)× [0, T ] yields the estimates in (3.16) at the
origin 0 for all times t ∈ [δ, T ].

Whilst we have not yet specified our constant b > 0, we may impose that
we will require b ∈ (0, 1/2], say. Therefore, the barriers in (3.15) provide L∞-
estimates on the conformal factor u (for which g(t) = e2u|dz|2) throughout
Bh(0, 2)× [0, T ] depending only on S. Since g(t) is a Ricci flow, recalling
(2.2), the conformal factor u satisfies the quasilinear PDE ∂u

∂t = e−2u∆u.
A standard application of quasilinear PDE regularity theory (in particular,
Theorems V.I.I and IV.10.1 in [LSU68]) allows us to deduce C l-estimates,
with respect to the flat Euclidean metric |dz|2, over D1/4, for all times t ∈
[δ, T ], depending only on S, δ and l.

The required Gauss curvature control in (3.16) then follows via inter-
polation. That is, at any t ∈ [δ, T ] we have C l-estimates on the difference

of the conformal factors of g(t)
1+2t and h, with respect to the flat Euclidean

metric |dz|2, over D1/4. These bounds allows us to interpolate between the

C l-estimates and the assumed C0-estimates, using Lemma B.6 in [GT11],
for example. By doing so, we may obtain improved control on the Euclidean
derivatives, up to second order, of the difference of the conformal factors at
the origin. Lemma B.5 in [GT11] then allows us to control the hyperbolic
derivatives, up to second order, of the difference of the conformal factors
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at the origin. Directly computing the difference of the Gauss curvatures
with respect to the conformal factors allows us to convert these derivative
bounds into the required Gauss curvature estimates of (3.16), provided b is
sufficiently small, depending on S, α and δ only. The details of this outline
are standard arguments, and may be found in [McL18]. □

In the case that we assume g(0) ≡ H throughout M, we will require a minor
modification of Lemma 3.3 to avoid any time delay before achieving our
desired Gauss curvature control. The result will exploit the uniform initial
C l-bounds provided by the initial equality.

Lemma 3.4 (No time delay). Let α ∈ (0, 1] and S > 0. Then there exists
a constant b = b(S, α) > 0 for which the following is true.

Assume (M,H) is a smooth surface such that for some x ∈ M and R ≥
2 we have BH(x,R) ⊂⊂ M and (BH(x,R),H) is isometric to a hyperbolic
disc of radius R. Suppose g(t) is a smooth Ricci flow on M, defined for all
t ∈ [0, T ] for some T ∈ (0, S], with g(0) ≡ H throughout M, and we have the
barriers

(3.17) (1− b)H ≤ g(t)

1 + 2t
≤ (1 + b)H

throughout BH(x,R)× [0, T ]. Then we may deduce that we have the Gauss
curvature bounds

(3.18) −1− α ≤ K g(t)

1+2t

≤ −1 + α

throughout BH(x,R− 2)× [0, T ].

Proof of Lemma 3.4(sketch). The proof is almost identical to the proof of
Lemma 3.3. The exact same reasoning as in the proof of Lemma 3.3 allows
us to reduce to working on D, and only needing to show that having the
barriers in (3.17) throughout Bh(0, 2)× [0, T ] yields the estimates in (3.18)
at the origin 0. However, we now also have, after making the reduction to
this case, that g(0) ≡ h throughout Bh(0, 2). Having g(0) ≡ h throughout
Bh(0, 2) allows us to deduce uniform initial C l-estimates for the conformal
factor u (for which g(t) = e2u|dz|2) throughout Bh(0, 2), whilst the barriers
in (3.17) still provide L∞-bounds throughout Bh(0, 2)× [0, T ]. These addi-
tional time 0 uniform C l-estimates allow us to appeal to quasilinear PDE
regularity theory. Again we use Theorems V.I.I and IV.10.1 in [LSU68], but
now the variants that only require moving away from the spatial boundary,
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and hence yield C l-estimates, with respect to the flat Euclidean metric |dz|2,
over D1/4, for all times t ∈ [0, T ].With these estimates obtained, we proceed
verbatim as in the proof of Lemma 3.3. The details of this outline are again
standard arguments, and may be found in [McL18]. □

4. Improved time control

We are now ready to complete the proof of both Theorems 1.2 and 1.6. They
are both consequences of the following theorem.

Theorem 4.1. Let α ∈ (0, 1] be given. Then there is a universal constant
ε > 0 such that for any δ ∈ (0, ε) there exist constants b = b(α, δ) > 0 and
Λ = Λ(α, δ) > 0 for which the following is true.

Suppose that R ≥ Λ and that (M,H) is a smooth surface which satisfies
for some x ∈ M that the ball BH(x,R) ⊂⊂ M and (BH(x,R),H) is isomet-
ric to a hyperbolic disc of radius R. Assume g(t) is a smooth Ricci flow
defined on M for all t ∈ [0, T ] for some T > 0, with g(0) conformal to H,
and satisfying that for any l ∈ N0, if z ∈ BH(x,R− lΛ) and t ∈ [0, T ] then

Bg(t)

(
z, (1 + 2ε)

l

2

)
⊂⊂ M. Further suppose that

(4.1) (A) (1− b)H ≤ g(0) ≤ (1 + b)H and (B) |Kg(0)| ≤ 2

throughout BH(x,R). Then we have that

(4.2) −1− α ≤ K g(t)

1+2t

≤ −1 + α

throughout BH
(
x,R−

⌊
R
Λ

⌋
Λ
)
× [δ, Tmax] where

(4.3) Tmax = min

{
T,

exp
[⌊
R
Λ

⌋
log(1 + 2ε)

]
− 1

2

}
.

Moreover, if in place of the estimates in (4.1) we had that g(0) ≡ H through-
out M, then the estimates of (4.2) are in fact valid throughout the region
BH
(
x,R−

⌊
R
Λ

⌋
Λ
)
× [0, Tmax], where Tmax is as specified in (4.3).

To clarify, for z ∈ R we have ⌊z⌋ := max{m ∈ Z : m ≤ z}. Before starting
the proof we outline the strategy. First, we repeatedly apply Lemma 3.1 fol-
lowed by Lemma 3.3 to deduce that (1− b)H ≤ g(t)

1+2t ≤ (1 + b)H through-

out BH
(
x,R−

⌊
R
Λ

⌋
Λ + 2

)
× [0, Tmax], where Tmax is as specified in (4.3).

To elaborate, Lemma 3.1 establishes these barriers over some time interval
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[0, τ ] for τ > 0. Lemma 3.3 then provides Gauss curvature bounds at time
τ that allow us to apply Lemma 3.1 again, but this time using the metric
g(τ)
1+2τ as the initial metric. We repeatedly apply these lemmas, in this order,
as many times as possible.

Successively applying these lemmas requires considering suitable
rescaled versions of the original flow g(t). For example, to make the sec-
ond application from time τ onwards will require considering g(t) for times

t ≥ τ and rescaling so that, instead of g(τ), it takes g(τ)
1+2τ as its initial metric.

A consequence of the rescaling is that each application will obtain the barri-
ers for g(t)

1+2t over progressively longer time intervals. Together with keeping
track of the maximum number of times we can iterate this procedure, these
increases in the length of the successive time intervals lead to the explicit
form of Tmax in (4.3).

Having established the barriers, we will then be able to use Lemma 3.3 to
obtain the Gauss curvature control of (4.2) throughout BH

(
x,R−

⌊
R
Λ

⌋
Λ
)
×

[δ, Tmax]. Of course, our iterative procedure in the first step invoked
Lemma 3.3, and so provided these Gauss curvature bounds for certain times
already. However, each time Lemma 3.3 was used, there was an initial por-
tion of the time interval under consideration for which the Gauss curvature
bounds are not established. A convenient way of overcoming this problem
is to directly argue that the barriers established in the first step give the
Gauss curvature control of (4.2) for all times t ∈ [δ, Tmax].

To achieve this, fix s ∈ [δ, Tmax] and consider g(t) for t ∈ [s− δ, s]. We
may then use the barriers from the first step to apply Lemma 3.3 to a
suitably rescaled version of g(t) on this time interval. Consequently, after
rescaling back to the original flow, we have the Gauss curvature bounds
in (4.2) throughout BH

(
x,R−

⌊
R
Λ

⌋
Λ
)
at time t = s. Repeating for each

s ∈ [δ, Tmax] then yields the desired conclusion.
Finally, for the case that g(0) ≡ H we make one further step. Namely,

we additionally apply Lemma 3.4 to avoid any time delay before achieving
the Gauss curvature control of (4.2).

Proof of Theorem 4.1. Retrieve the universal constant ε > 0 from Lemma
3.1. Let α ∈ (0, 1] and δ ∈ (0, ε) both be given. Retrieve the constant
b1 = b1(α, δ) > 0 arising in Lemma 3.3 for the S, α and δ there equal
to ε, α and δ here respectively. With the aim of avoiding any time de-
lay before obtaining the estimates of (4.2) in the case g(0) ≡ H, retrieve
the constant b2 = b2(α) > 0 arising in Lemma 3.4 for the S and α there
given by ε and α here respectively. Take b := min{b1, b2} > 0 which de-
pends only on α and δ. By reducing b if required, but without additional



✐

✐

“4-McLeod” — 2023/9/15 — 17:07 — page 2305 — #21
✐

✐

✐

✐

✐

✐

Improved pseudolocality on large hyperbolic balls 2305

dependency, we may assume that b ∈ (0, 1/2]. This means we may define
Λ = Λ(α, δ) := J(b) + 2 > 0 where J(b) is the constant arising in Lemma 3.1.
We fix these quantities for the remainder of the proof.

We first deal with the case T ∈ (0, ε]. That is, assume we are in the
setting of the theorem with T ∈ (0, ε]. The estimates on g(0) in (4.1), to-
gether with the assumed compact inclusions for l = 0 and that g(0) is con-
formal toH, provide the required hypotheses to apply Lemma 3.1 to the flow
g(t). Doing so, and recalling that τ := min{T, ε} = T ≤ ε, yields the barriers

(1− b)H ≤ g(t)
1+2t ≤ (1 + b)H throughout BH(x,R− Λ + 2)× [0, T ], recalling

that Λ = J(b) + 2 > 0 where J(b) is the constant arising in Lemma 3.1.
In turn, these barriers are of the form required by Lemma 3.3. Recall-

ing how b was specified, we observe that we have the required hypothe-
sis to apply Lemma 3.3 to g(t) and deduce that −1− α ≤ K g(t)

1+2t

≤ −1 + α

throughout BH(x,R− Λ)× [δ, T ]. Of course, these Gauss curvature esti-
mates are vacuous if T < δ. Since R ≥ Λ we see that

⌊
R
Λ

⌋
≥ 1, and so we

have established the Gauss curvature estimates required in (4.2) throughout
BH
(
x,R−

⌊
R
Λ

⌋
Λ
)
× [δ, T ], which is for the time required in (4.3).

In the case that the estimates in (4.1) are replaced by the assump-
tion that g(0) ≡ H throughout M we may appeal to Lemma 3.4 in place
of Lemma 3.3. By doing so, we conclude that −1− α ≤ K g(t)

1+2t

≤ −1 + α

throughout BH(x,R− Λ)× [0, T ]. Again R ≥ Λ means that
⌊
R
Λ

⌋
≥ 1, and so

we have established the Gauss curvature estimates required in (4.2) through-
out BH

(
x,R−

⌊
R
Λ

⌋
Λ
)
× [0, T ], giving the required improvement.

For the remainder of the proof we assume that T > ε.We proceed under
the assumptions that g(0) satisfies both the estimates specified in (4.1), and
will only later make a single extra step to remove the time delay before we
obtain the estimates in (4.2) when we have the initial equality g(0) ≡ H. Our
first goal is to establish that the flow g(t) satisfies the barriers (1− b)H ≤
g(t)
1+2t ≤ (1 + b)H throughout BH

(
x,R−

⌊
R
Λ

⌋
Λ + 2

)
× [0, Tmax], where Tmax

is as specified in (4.3). To achieve this, we will inductively apply Lemma 3.1
followed by Lemma 3.3 to rescalings of g(t).

To illustrate, note we have the required hypotheses to appeal to
Lemma 3.1 and deduce, since min{T, ε} = ε now, that we have the barri-

ers (1− b)H ≤ g(t)
1+2t ≤ (1 + b)H throughout BH(x,R− Λ + 2)× [0, ε]. These

barriers allow us to apply Lemma 3.3 to the flow g(t) to obtain that −1−
α ≤ K g(t)

1+2t

≤ −1 + α throughout BH(x,R− Λ)× [δ, ε]. Since α ∈ (0, 1], these

Gauss curvature estimates tell us that
∣∣∣K g(ε)

1+2ε

∣∣∣ ≤ 2 throughout BH(x,R− Λ).
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Therefore the metric g(ε)
1+2ε satisfies the same barriers and Gauss curva-

ture bounds throughout BH(x,R− Λ) as those satisfied by g(0) throughout
BH(x,R). Hence it is natural to try to apply Lemma 3.1 to a rescaling of

the flow g(t) which takes g(ε)
1+2ε as its initial metric.

The rescaled Ricci flow g̃(s) given by g̃(s) := g(ε+(1+2ε)s)
1+2ε , defined on M

for all s ∈
[
0, T−ε1+2ε

]
, satisfies that g̃(0) = g(ε)

1+2ε as required. Thus it is to this

flow that we aim to apply first Lemma 3.1, and then Lemma 3.3. Modulo
checking that all of the required hypotheses are satisfied (which we will later
do rigorously), the relationship between ε and T−ε

1+2ε will determine whether
this subsequent application of Lemmas 3.1 and 3.3 establishes control up
until time T, or if the flow g̃(s) exists beyond s = ε, which itself corresponds
to having T > ε+ (1 + 2ε)ε.

We also need to consider how the spatial region is changing. Each time
we appeal to Lemma 3.1, followed by Lemma 3.3, we require being able
to move in to a spatial H ball, centred at x, of radius Λ less than the
original radius. Therefore we can only make this application of Lemma 3.1,
followed by Lemma 3.3, to the flow g̃(s) if we have that R− Λ ≥ Λ, i.e. if
R− 2Λ ≥ 0. If both T > ε+ (1 + 2ε)ε and R− 2Λ ≥ 0 are true, we could
apply the lemmas as specified above to control the Ricci flow g̃(s) up until
s = ε. The aim would then be to repeat this procedure by considering a
rescaling of g̃(s) taking g̃(ε)

1+2ε as its initial metric.
In order to implement this iterative process we introduce some notation.

We define q ∈ N0 to be the value

(4.4) q := max

{
l ∈ N0 :

l∑

k=0

ε(1 + 2ε)k ≤ T

}
,

which is possible since we are assuming T > ε. Let N := min
{
q,
⌊
R
Λ

⌋
− 1
}
.

We will later see that N + 1 corresponds to the maximum number of times
we may iteratively appeal first to Lemma 3.1, followed by Lemma 3.3, to
establish the required barriers over a time interval of size ε, and the Gauss
curvature control at the later time ε. For now, we observe that we necessarily
have that R− (N + 1)Λ ≥ 0, hence R− iΛ ≥ 0 for every i ∈ {1, . . . , N + 1}.

For notational convenience we set g0(t) := g(t) for t ∈ [0, ε]. Recall that

we have established the barriers (1− b)H ≤ g0(t)
1+2t ≤ (1 + b)H throughout

BH(x,R− Λ + 2)× [0, ε] and that
∣∣∣K g0(ε)

1+2ε

∣∣∣ ≤ 2 throughout BH(x,R− Λ).
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For i ∈ {1, . . . , N + 1} we define

(4.5) τi :=
T −

∑i−1
k=0 ε(1 + 2ε)k

(1 + 2ε)i

which will correspond to the (rescaled) remaining existence time for the flow
g(t) after having made i applications of Lemmas 3.1 and 3.3. Naturally this
means that τi > τi+1 when both are defined, and further we claim that τi ≥ ε
for every i ∈ {1, . . . , N}. To see this observe that q ≥ N, and hence from
(4.4) we know that T ≥

∑q
k=0 ε(1 + 2ε)k ≥

∑N
k=0 ε(1 + 2ε)k. Therefore, if

i ∈ {1, . . . , N}, we can compute, using (4.5), that

τi :=
T −

∑i−1
k=0 ε(1 + 2ε)k

(1 + 2ε)i
≥
∑N

k=0 ε(1 + 2ε)k −
∑N−1

k=0 ε(1 + 2ε)k

(1 + 2ε)N
= ε

as required. For i ∈ {1, . . . , N} we inductively define

(4.6) gi(t) :=
gi−1(ε+ (1 + 2ε)t)

1 + 2ε

which is a smooth Ricci flow defined on M for all t ∈ [0, τi]. Previously,
we have seen that g1(t) is defined on M for all t ∈ [0, τ1]. Then observe, for
i ∈ {1, . . . , N − 1}, that if gi(t) is defined on M for all [0, τi], then from (4.6)
we see that gi+1(t) is defined on M for all t ∈ [0, t∗] where t∗ satisfies that
ε+ (1 + 2ε)t∗ = τi. Hence t∗ =

τi−ε
1+2ε = τi+1 as required.

Our assumption that for any z ∈ BH(x,R− iΛ) and all t ∈ [0, T ] that

we have Bg(t)

(
z, (1 + 2ε)

i

2

)
⊂⊂ M tells us that for any z ∈ BH(x,R− iΛ)

and all t ∈ [0, τi] we have

(4.7) Bgi(t)(z, 1) = Bg(
∑

i−1
k=0 ε(1+2ε)k+(1+2ε)it)

(
z, (1 + 2ε)

i

2

)
⊂⊂ M.

Recall that we have established both that (1− b)H ≤ g0(ε)
1+2ε ≤ (1 + b)H and∣∣∣K g0(ε)

1+2ε

∣∣∣ ≤ 2 throughout BH(x,R− Λ). In terms of g1(t), these give that (1−
b)H ≤ g1(0) ≤ (1 + b)H and |Kg1(0)| ≤ 2 throughout BH(x,R− Λ). These
estimates, together with the compact inclusions in (4.7) (for i = 1), provide
the required hypotheses to apply Lemma 3.1 to the flow g1(t).

In fact, we may proceed inductively, with the following claim giving the
inductive step.
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Claim 4.2 (Inductive step). Suppose i ∈ {1, . . . , N} and we have both
(1− b)H ≤ gi(0) ≤ (1 + b)H and |Kgi(0)| ≤ 2 throughout BH(x,R− iΛ).
Then we have that

(4.8) (1− b)H ≤ gi(t)

1 + 2t
≤ (1 + b)H

throughout BH(x,R− (i+ 1)Λ + 2)× [0, ε], and

(4.9) −1− α ≤ K gi(t)

1+2t

≤ −1 + α

throughout BH(x,R− (i+ 1)Λ)× [δ, ε]. Since α ∈ (0, 1], a particular conse-

quence of (4.9) is that we have
∣∣∣K gi(ε)

1+2ε

∣∣∣ ≤ 2 throughout BH(x,R− (i+ 1)Λ).

Proof of claim 4.2. The assumptions in the claim, combined with the com-
pact inclusions of (4.7) for i, along with noting that gi(0) is conformal to H,
provide the required hypothesis to apply Lemma 3.1 to the flow gi(t). Since
τi ≥ ε we can deduce the barriers in (4.8) over BH(x,R− (i+ 1)Λ + 2)×
[0, ε] as required. The barriers in (4.8), along with noting that 0 < δ < ε ≤ τi
and R− (i+ 1)Λ + 2 ≥ 2, allow us to appeal to Lemma 3.3 to deduce the
Gauss curvature estimates (4.9) throughout BH(x,R− (i+ 1)Λ)× [δ, ε] as
claimed. □

By appealing to the inductive step in the claim a total of N times, ob-
serving that the conclusions of the claim for i ∈ {1, . . . , N − 1} provide the
required hypothesis in order to appeal to the claim for i+ 1, we can deduce
the barriers in (4.8) for every i ∈ {1, . . . , N}, along with already having es-
tablished such barriers for i = 0. Recalling (4.6), we can compute that for
i ∈ {1, . . . , N} and s ∈ [0, ε] we have

gi(s)

1 + 2s
=
g
(∑i−1

k=0 ε(1 + 2ε)k + (1 + 2ε)is
)

(1 + 2ε)i(1 + 2s)

=
g
(∑i−1

k=0 ε(1 + 2ε)k + (1 + 2ε)is
)

1 + 2
(∑i−1

k=0 ε(1 + 2ε)k + (1 + 2ε)is
)(4.10)

where we have used that 1 + 2ε
∑i−1

k=0(1 + 2ε)k = (1 + 2ε)i. Thus (4.8) tells
us that

(4.11) (1− b)H ≤ g(t)

1 + 2t
≤ (1 + b)H
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throughout BH(x,R− (i+ 1)Λ + 2)×
[∑i−1

k=0 ε(1 + 2ε)k,
∑i

k=0 ε(1 + 2ε)k
]
.

Combining (4.11) for each i ∈ {1, . . . , N}, and recalling that we al-

ready know that (1− b)H ≤ g(t)
1+2t ≤ (1 + b)H throughout BH(x,R− Λ +

2)× [0, ε], yields that

(4.12) (1 + b)H ≤ g(t)

1 + 2t
≤ (1 + b)H

throughout BH(x,R− (N + 1)Λ + 2)×
[
0,
∑N

k=0 ε(1 + 2ε)k
]
.

We must now split into two cases depending on the value taken by N. If
N =

⌊
R
Λ

⌋
− 1 then we do not have sufficient spatial room left to appeal to

the claim. In this case we can compute that

N∑

k=0

ε(1 + 2ε)k =
1

2
(exp [(N + 1) log(1 + 2ε)]− 1) ,

and since N =
⌊
R
Λ

⌋
− 1 we see that this gives the form of Tmax as claimed

in (4.3). Hence the barriers of (4.12) have been established throughout
BH
(
x,R−

⌊
R
Λ

⌋
Λ + 2

)
× [0, Tmax].

If N <
⌊
R
Λ

⌋
− 1 then we still have the spatial room required to appeal

to the claim. However, in this case we necessarily have that N = q and so
τN+1 < ε, hence we can only establish control up to time τN+1. Indeed,
consider the rescaled Ricci flow

(4.13) gN+1(t) :=
gN (ε+ (1 + 2ε)t)

1 + 2ε

defined on M for all t ∈ [0, τN+1], where gN (t) is as defined in (4.6) for
i = N.

Since we were able to apply the inductive step, as stated in the pre-
vious claim, to the flow gN (t), we know that we have both (1− b)H ≤
gN (ε)
1+2ε ≤ (1 + b)H and

∣∣∣K gN (ε)

1+2ε

∣∣∣ ≤ 2 throughout BH(x,R− (N + 1)Λ). There-

fore, from (4.13) we see that these estimates tell us that we have both
(1− b)H ≤ gN+1(0) ≤ (1 + b)H and

∣∣KgN+1(0)

∣∣ ≤ 2 throughout BH(x,R−
(N + 1)Λ). Hence the compact inclusions in (4.7) for i = N + 1, and the
fact that gN+1(0) is conformal to H, combine with the above estimates to
provide the required hypotheses to apply Lemma 3.1 to the flow gN+1(t).
Doing so yields, recalling that τN+1 < ε, that

(4.14) (1− b)H ≤ gN+1(t)

1 + 2t
≤ (1 + b)H
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throughout BH(x,R− (N + 2)Λ + 2)× [0, τN+1]. Repeating the computa-
tions in (4.10) and (4.11) for i = N + 1 we see that (4.14) yields that

(4.15) (1− b)H ≤ g(t)

1 + 2t
≤ (1 + b)H

throughout BH(x,R− (N + 2)Λ + 2) for all times
∑N

k=0 ε(1 + 2ε)k ≤ t ≤∑N
k=0 ε(1 + 2ε)k + (1 + 2ε)N+1τN+1. From (4.5) we can compute that

N∑

k=0

ε(1 + 2ε)k + (1 + 2ε)N+1τN+1 = T,

and sinceN <
⌊
R
Λ

⌋
− 1 we must have thatR− (N + 2)Λ + 2 ≥ R−

⌊
R
Λ

⌋
Λ +

2. These observations allow us to combine (4.12) with (4.15) to deduce that

(1− b)H ≤ g(t)
1+2t ≤ (1 + b)H throughout BH

(
x,R−

⌊
R
Λ

⌋
Λ + 2

)
× [0, T ]. As

Tmax ≤ T, we have these barriers for all times t ∈ [0, Tmax].
In either case we have established that

(4.16) (1− b)H ≤ g(t)

1 + 2t
≤ (1 + b)H

throughout BH
(
x,R−

⌊
R
Λ

⌋
Λ + 2

)
× [0, Tmax]. We will now use these barri-

ers and Lemma 3.3 to establish the Gauss curvature estimates required in
(4.2) throughout BH

(
x,R−

⌊
R
Λ

⌋
Λ
)
× [δ, Tmax]. Consider any s ∈ [δ, Tmax]

and define γs :=
s−δ
1+2δ ∈ [0, s). Consider the Ricci flow gs(t) :=

g(γs+(1+2γs)t)
1+2γs

on M, defined for all times t ∈
[
0, Tmax−γs

1+2γs

]
, and with gs(0) conformal to H.

Observe that

Tmax − γs
1 + 2γs

− δ =
Tmax − γs − δ − 2γsδ

1 + 2γs

=
(1 + 2δ)Tmax − (s− δ)− (1 + 2δ)δ − 2(s− δ)δ

(1 + 2γs)(1 + 2δ)

=
1 + 2δ

1 + 2s
(Tmax − s) ≥ 0

where we have used that 1 + 2γs =
1+2s
1+2δ . Hence the flow gs(t) is defined,

at least, up to time δ, and we restrict to only considering gs(t) for times
t ∈ [0, δ]. A computation yields that for t ∈ [0, δ]

(4.17)
gs(t)

1 + 2t
=
g(γs + (1 + 2γs)t)

(1 + 2t)(1 + 2γs)
=

g(γs + (1 + 2γs)t)

1 + 2(γs + (1 + 2γs)t)
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where γs + (1 + 2γs)t ≤ γs + (1 + 2γs)δ = s ≤ Tmax. Therefore (4.16) yields

that (1− b)H ≤ gs(t)
1+2t ≤ (1 + b)H throughout BH

(
x,R−

⌊
R
Λ

⌋
Λ + 2

)
× [0, δ].

Further, BH
(
x,R−

⌊
R
Λ

⌋
Λ + 2

)
⊂ BH(x,R) ⊂⊂ M by assumption. Clearly

R−
⌊
R
Λ

⌋
Λ + 2 ≥ 2 and hence, recalling how b was specified at the start of

the proof, we may apply Lemma 3.3 to the flow gs(t) to obtain that −1−
α ≤ K gs(δ)

1+2δ

≤ −1 + α throughout BH
(
x,R−

⌊
R
Λ

⌋
Λ
)
. Using (4.17) for t = δ

yields that gs(δ)
1+2δ = g(s)

1+2s , and so the Gauss curvature control for gs(δ)
1+2δ tells us

that −1− α ≤ K g(s)

1+2s

≤ −1 + α throughout BH
(
x,R−

⌊
R
Λ

⌋
Λ
)
. Repeating

for all s ∈ [δ, Tmax] allows us to conclude that −1− α ≤ K g(s)

1+2s

≤ −1 + α

throughout BH
(
x,R−

⌊
R
Λ

⌋
Λ
)
× [δ, Tmax], as required in(4.2).

If we are only assuming both the estimates in (4.1) for g(0) throughout
BH(x,R) we stop here and are done. If instead we are assuming g(0) ≡ H
throughout M, we make a final additional step to avoid any time delay be-
fore obtaining the Gauss curvature control claimed in (4.2). Indeed, we have

that (1− b)H ≤ g(t)
1+2t ≤ (1 + b)H throughout BH

(
x,R−

⌊
R
Λ

⌋
Λ + 2

)
× [0, ε],

and additionally we have g(0) ≡ H throughout M by assumption. Re-
calling how b was specified at the start of the proof, and noting that
R−

⌊
R
Λ

⌋
Λ + 2 ≥ 2, we may appeal to Lemma 3.4 to conclude that −1− α ≤

K g(t)

1+2t

≤ −1 + α throughout BH
(
x,R−

⌊
R
Λ

⌋
Λ
)
× [0, ε]. Combined with our

previous Gauss curvature estimates, we obtain the Gauss curvature esti-
mates in (4.2) for all times t ∈ [0, Tmax], i.e. we have removed the time delay
as required. This completes the proof of Theorem 4.1. □

Proof of Theorem 1.6. Retrieve the universal constant ε > 0 arising in Theo-
rem 4.1. Let α ∈ (0, 1] and δ ∈ (0, ε). Take Λ = Λ(α, δ) > 0 and b = b(α, δ) >
0 to be the respective constants arising in Theorem 4.1. We may now define

(4.18) c = c(α, δ) :=
1

4Λ
log(1 + 2ε) > 0

and

(4.19) R = R(α, δ) := max

{
1 +

2

log(1 + 2ε)
, 4

log(2
√
1 + 2ε)

log(1 + 2ε)

}
Λ > 0.

Now assume that R ≥ R and (M,H) is a smooth surface which satisfies that,
for some x ∈ M, the ball BH(x,R) ⊂⊂ M and (BH(x,R),H) is isometric to
a hyperbolic disc of radius R. Suppose g(t) is a complete smooth Ricci flow
on M, defined for all t ∈ [0, T ] for some T > 0, with g(0) conformal to H,
and satisfying that (1− b)H ≤ g(0) ≤ (1 + b)H and |Kg(0)| ≤ 2 throughout
BH(x,R). From (4.19) we have that R ≥ R ≥ Λ. Therefore we may appeal
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to Theorem 4.1 to obtain, recalling (4.2) and (4.3), that at the point x ∈ M
we have −1− α ≤ K g(t)

1+2t

(x) ≤ −1 + α for all times δ ≤ t ≤ T̃max where

(4.20) T̃max := min

{
T,

exp
[⌊
R
Λ

⌋
log(1 + 2ε)

]
− 1

2

}
.

Observe that (4.19) gives that R ≥ R ≥
(
1 + 2

log(1+2ε)

)
Λ. In particular, this

means that
(
R
Λ − 1

)
log(1 + 2ε) ≥ 2 and thus

(4.21) exp

[⌊
R

Λ

⌋
log(1 + 2ε)

]
− 1 ≥ exp

[
1

2

(
R

Λ
− 1

)
log(1 + 2ε)

]

since ⌊a⌋ ≥ a− 1 for any a ∈ R and ex − 1 ≥ e
x

2 for x ≥ 2.
For x, y > 0 we have 1

xe
y ≥ e

y

2 provided y ≥ 2 log(x). Observe that R ≥
R ≥ 4Λ log(2

√
1+2ε)

log(1+2ε) from (4.19), and so R
2Λ log(1 + 2ε) ≥ 2 log(2

√
1 + 2ε).

Thus, using the above inequality with x := 2
√
1 + 2ε and y := R

2Λ log(1 +
2ε), we deduce that

(4.22)
1

2
√
1 + 2ε

exp

[
R

2Λ
log(1 + 2ε)

]
≥ exp

[
R

4Λ
log(1 + 2ε)

]
= ecR,

recalling the definition of c > 0 in (4.18). Finally we can compute that

T̃max
(4.20)
= min

{
T,

exp
[⌊
R
Λ

⌋
log(1 + 2ε)

]
− 1

2

}

(4.21)

≥ min

{
T,

1

2
exp

[
1

2

(
R

Λ
− 1

)
log(1 + 2ε)

]}

= min

{
T,

1

2
√
1 + 2ε

exp

[
R

2Λ
log(1 + 2ε)

]}

(4.22)

≥ min
{
T, ecR

}
=: Tmax

as claimed in (1.4) in Theorem 1.6. □

Proof of Theorem 1.2. Retrieve the universal constant ε > 0 arising in The-
orem 4.1. Let α ∈ (0, 1] be given and take δ := ε

2 ∈ (0, ε). For this choice of δ
we can retrieve constants Λ = Λ(α) > 0 and b = b(α) > 0 from Theorem 4.1.
Using these constants, we can define c > 0 and R > 0 exactly as they are
defined in (4.18) and (4.19) respectively, now both depending only on α as
required. Repeat the proof of Theorem 1.6, observing that, in the notation
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of Theorem 4.1, we now assume that g(0) ≡ H throughout M, and so we
may now use the version of Theorem 4.1 that avoids any time delay before
achieving the desired Gauss curvature control. Proceeding verbatim as in
the proof of Theorem 1.6 above establishes the Gauss curvature estimates
claimed in (1.2) at x ∈ M for the time required in Theorem 1.2. □
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