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1. Introduction

Let (M, g) be a three dimensional Riemannian manifold and let Σ ⊂M be
a smooth, compact, two-sided, immersed surface. The Willmore energy of Σ
is defined as

W(Σ) =
1

4

∫

Σ
H2 dµ

whereH is the mean curvature of the immersion and dµ denotes the induced
surface measure on Σ. We consider surfaces Σ which are critical points of W
subject to the constraint of prescribed area |Σ|. These surfaces satisfy the
Euler-Lagrange equation

(1) ∆H +H|
◦

A|2 +H Ric(ν, ν) + λH = 0,

where λ ∈ R is the Lagrange parameter, ∆ is the Laplace-Beltrami operator
of the induced metric γ on Σ,

◦

A = A− 1
2Hγ is the trace free part of the

second fundamental form A, and ν denotes (one choice of) the normal vector
to Σ. Furthermore, Ric is the Ricci curvature of ambient metric g.

Concerning the existence of minimizers of the area constrained problem
in compact manifolds, we have

Theorem 1.1. Let (M, g) be a three dimensional Riemannian manifold.
Then there exists amin ∈ (0,∞) and for each a ∈ (0, amin) there exists a
smooth closed embedded surface Σmin

a such that

W(Σmin
a ) = inf{W(Σ) | Σ smooth closed immersion and |Σ| = a}

and |Σmin
a | = a.

This was shown by Chen and Li [1] in the class of W 2,2-conformal im-
mersions and by Lamm and the author [7] as well as by Mondino and Rivière
[11] with the additional assertion of smoothness of the minimizing surfaces.

Critical points for this minimization problem can be constructed by per-
turbing geodesic spheres centered at a non-degenerate point of the scalar cur-
vature. Independently Ikoma, Malchiodi, and Mondino [4] as well as Lamm,
Schulze and the author [9] have shown the following:

Theorem 1.2. Let (M, g) be a three dimensional Riemannian manifold and
let p ∈M be such that ∇ Sc(p) = 0 and such that ∇2 Sc(p) is non-degenerate.
Then there exist apert ∈ (0,∞), a neighborhood U of p, and for each a ∈
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(0, apert) a spherical surface Σpert
a which satisfies (1) for some λ ∈ R and

|Σa| = a. The Σa are mutually disjoint and
⋃

(0,apert)
Σa = U \ {p}.

The shape and position of critical points, that is solutions to equation (1)
was studied by Lamm and the author [6, 7] and with more general as-
sumptions by Laurain and Mondino [10]. The position estimates implied by
combining these three papers are the following:

Theorem 1.3. Let (M, g) be a three dimensional Riemannian manifold.
Then there exist a0 ∈ (0,∞) and constants C1, C2 ∈ (0,∞) with the fol-
lowing property. Let Σ ⊂M be a surface satisfying equation (1) for some
λ ∈ R such that |Σ| ≤ a0 and W(Σ) < 4π + a0. Then diam(Σ) ≤ C1|Σ|

1/2

and |∇ Sc | ≤ C2|Σ|
1/2 on Σ.

A consequence of this Theorem is that the surfaces Σmin
a concentrate

near critical points of the scalar curvature of M . From the expansion of
the Willmore functional in [6, Theorem 5.1] it follows in addition that the
minimizers Σmin

a concentrate near the points inM where the scalar curvature
is maximal as a→ 0.

The previously cited results were to a large extend based on the observa-
tion, that surfaces satisfying (1) with small area and Willmore energy close
to 4π behave like their Euclidean counterparts. The aim of this paper is to
provide a more precise description of the shape and position of solutions
to (1), that take into account the perturbations induced by the ambient
geometry.

As an application of the estimates we derive an improved position esti-
mate.

Theorem 1.4. Let (M, g) be a three dimensional Riemannian manifold
with CB-bounded geometry. Then there exists a0 ∈ (0,∞) and a constant
C ∈ (0,∞) with the following property. For every surface Σ ⊂M satisfying
equation (1) for some λ ∈ R with |Σ| ≤ a0 and W(Σ) < 4π + a0 there exists
a point p0 contained in the region enclosed by Σ such that for all p ∈ Σ we
have dist(p0, p) <

3
4 diam(Σ) and |∇ Sc(p0)| ≤ C|Σ|.

For the definition of CB-bounded geometry, refer to definition 2.1.
The main use for this improvement of Theorem 1.3 is to further narrow

down the position of the surfaces Σ as in the theorem. To this end assume
that the critical points of the scalar curvature of (M, g) are such that the
Hessian there is non-degenerate, in other words, that the scalar curvature
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on M is a Morse function. Let p̄ be a critical point for Sc and p some point
near p̄. By non-degeneracy |∇ Sc(p)| ≥ c dist(p, p̄) and Theorem 1.3 implies

c dist(p, p̄) ≤ CR(Σ).

From this it follows that for any neighborhood U of the critical points of Sc
there is a0 > 0 such that if |Σ| < a0 then Σ ⊂ U . However, it is not clear that
a critical point of Sc lies in the region enclosed by Σ. This can be derived as
a consequence of Theorem 1.4. The assertions of the following corollaries are
also included in the paper [4], as step 2 in the proof of their Theorem 1.1.

Corollary 1.5. Let (M, g) be a compact three dimensional Riemannian
manifold with CB bounded geometry. Let

Z := {x ∈M | ∇ Sc(x) = 0}

and assume that the Hessian Hess Sc(x) is non-degenerate for every x ∈ Z.
Then there exists an a0 ∈ (0,∞) depending only on (M, g) such that for

every surface Σ that satisfies the Euler-Lagrange equation (1) for some λ,
with |Σ| ≤ a0 and W(Σ) ≤ 4π + a0 the region enclosed by Σ intersects Z in
a single point.

Note that for the Σmin
a it is automatic that W(Σ) ≤ 4π +O(a) by com-

parison with geodesic spheres. Hence, Theorem 1.4 applies in particular to
these surfaces and we can be more precise:

Corollary 1.6. Let (M, g) be a compact three dimensional Riemannian
manifold. Let

Zmax := {x ∈M | Sc(x) = max
M

Sc}

and assume that the Hessian Hess Sc(x) is non-degenerate for every x ∈
Zmax.

Then there exists a0 ∈ (0,∞) with the following property. For every a ∈
(0, a0) the surface Σmin

a from Theorem 1.1 is such that it encloses a region
that intersects Zmax in a single point.

The paper is organized as follows. In section 2 we collect some estimates
from the literature and combine them to an L∞-estimate for

◦

A. In section 3
we introduce a geometric center of mass for small surfaces Σ ⊂M . We use
this to select the point p0 in the position estimate Theorem 1.4. In sections 4
and 5 we compute the top order contributions in the expansion of certain
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geometric quantities on a solution Σ of (1). Section 6 provides a calculation
of geometric identities necessary in section 7. Theorem 1.4 follows from a
slightly more precise version, Theorem 7.1, is carried out in section 7. Finally,
section 8 contains the proof of Corollary 1.5.

2. Preliminaries

Recall the Gauss equation relating the scalar curvature ΣSc of γ and the
scalar curvature Sc of g:

ΣSc = Sc−2Ric(ν, ν) + 1
2H

2 − |
◦

A|2.

Denote the genus of Σ by q(Σ). Integrating the Gauss equation and using
Gauss-Bonnet yields that

(2) W(Σ) = 4π(1− q(Σ)) +
1

2
U(Σ) + V(Σ)

where

(3) U(Σ) =

∫

Σ
|

◦

A|2 dµ and V(Σ) =

∫

Σ
Ric(ν, ν)− 1

2 Sc dµ.

Equation (2) implies that for bounded area |Σ| and bounded ambient cur-
vature |Ric |+ | Sc | ≤ CB a bound for U is equivalent to bounding W, re-
gardless of the topology of Σ:

(4) W(Σ) ≤ 4π + 1
2U(Σ) + CB|Σ|.

A similar bound holds in the other direction for surfaces Σ with bounded
genus q(Σ) ≤ q0:

U(Σ) ≤ W(Σ) + 4π(q0 − 1) + CB|Σ|.

For the rest of the paper we will use these estimates for spherical surfaces.
As a consequence, an a priori bound on W (or U) and on |Σ| will yields an
a priori bound for the L2-norm of the second fundamental form ∥A∥2L2(Σ) =

U(Σ) + 2W(Σ).

2.1. A priori estimates for small surfaces of Willmore type

Here we quote some estimates from the papers [6, 7]. They require uniform
bounds on the geometry of (M, g) in the following sense.
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Definition 2.1 (cf. Definition 2.1 in [7]). Let (M, g) be a complete Rie-
mannian manifold and CB ∈ (0,∞). We say that (M, g) has CB-bounded
geometry if for every p ∈M we have inj(M, g, p) ≥ C−1

B and |Rm(p)|+
|∇Rm(p)| ≤ CB.

To phrase the estimates quoted below in a geometric way, we use the
area radius of a surface defined as

R(Σ) =

√

|Σ|

4π
.

The following lemma that if we assume small enough area and bounded
Willmore energy, then the area radius of a surface is comparable to its
diameter.

Lemma 2.2. Let (M, g) be of CB-bounded geometry as in Definition 2.1
and E0 ∈ (0,∞). Then there exist constants a0 ∈ (0,∞) and C depending
only on CB and E0 with the following property: If Σ ⊂M is a smooth closed
hypersurface with W(Σ) ≤ E0 and |Σ| ≤ a0 then

C−1 diam(Σ) ≤ R(Σ) ≤ C diam(Σ).

Proof. The right estimate follows from Lemma 2.2 in [6] whereas the left
estimate is a direct consequence of Lemma 2.5 in [7]. □

Theorem 2.3 (cf. Theorem 5.4 from [7]). Let (M, g) be of CB-bounded
geometry as in Definition 2.1. Then there exist constants a0 ∈ (0,∞) and
C depending only on CB such that for every surface Σ satisfying (1), with
|Σ| ≤ a0 and W(Σ) ≤ 4π + a0 we have the estimate

∫

Σ
|∇2H|2 +H2|∇A|2 +H4|

◦

A|2 dµ ≤ C.

Lemma 2.4 (cf. Corollary 5.5 from [7]). Under the assumptions of
theorem 2.3 we have that

∥
◦

A∥L2(Σ) ≤ CR(Σ)2 and
∥

∥

∥
H − 2

R(Σ)

∥

∥

∥

L∞(Σ)
≤ CR(Σ).

This lemma shows that for small enough area |Σ| the mean curvature H > 0
and thus the estimates from [6] hold under the assumptions of Theorem 2.3.
It also follows that ∥A∥L2(Σ) ≤ C.
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For r ∈ (0,∞), denote the intrinsic ball centered at p ∈M by

Br(p) = {q ∈M | distg(p, q) ≤ r}.

Proposition 2.5 (cf. Corollary 3.6 from [6]). Let (M, g) and Σ be as
in Theorem 2.3. Let p0 ∈M be a point with Σ ⊂ B2 diam(Σ)(p0), then

∣

∣λ+ 1
3 Sc(p0)

∣

∣ ≤ CR(Σ).

2.2. General inequalities

The Bochner identity for surfaces can be stated as follows.

Lemma 2.6. For all functions f ∈ C∞(Σ) we have that
∫

Σ
2|∇2f |2 + 1

2H
2|∇f |2 dµ ≤

∫

Σ
2|∆f |2 +

(

2Ric(ν, ν)− Sc+|
◦

A|2
)

|∇f |2 dµ.

Proof. The Bochner identity states that
∫

Σ
|∇2f |2 dµ =

∫

Σ
(∆f)2 − ΣRc(∇f,∇f) dµ.

Since Σ is a surface, its Ricci curvature satisfies ΣRc = 1
2
ΣScγ and the scalar

curvature ΣSc of Σ can be expressed via the the Gauss equation

ΣSc = Sc−Ric(ν, ν) + 1
2H

2 − |
◦

A|2.

□

Let C and a0 be the constants from lemma 2.2. Hence, if Σ is such that |Σ| ≤
a0 and p ∈M is some point such that there exists x ∈ Σ with dist(p, x) ≤
R(Σ), then Σ ⊂ B(C+1)R(Σ)(p). Hence, there exists a′0 ∈ (0, a0) such that if
|Σ| ≤ a′0 and ρ = (C + 1)R(Σ) then ρ ≤ inj(M, g, p). In this case there are
normal coordinates x : Bρ(p) → Bρ(0) ⊂ R3. The metric (x−1)∗g on Bρ(0)
has the expansion (x−1)∗g = δ + h with

sup
(

|x|−2|h|+ |x|−1|∂h|+ |∂2h|
)

≤ h0.

Here h0 is a constant depending only on CB and ∂ denotes partial derivatives
in the coordinate system given by x. In particular, we can apply the following
two estimates on surfaces Σ as in section 2.1 with uniform constants, that is
constants independent of Σ, provided |Σ| ≤ a0 for some constant a3 ∈ (0,∞)
depending only on CB.
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Lemma 2.7. Let g = gE + h on Bρ and C0 be given. Then there exists
ρ0 ∈ (0, ρ) and a constant C depending only on ρ, h0 and C0 such that for
all surfaces Σ ⊂ Bρ0 with ∥A∥L2(Σ) ≤ C0 and all f ∈ C∞(Σ) we have

(
∫

Σ
f2 dµ

)1/2

≤ C

∫

Σ
|∇f |+ |Hf | dµ.

In addition, for surfaces as in Theorem 2.3 we have a Poincaré inequality
of the following form:

Lemma 2.8. Let (M, g) be of CB-bounded geometry as in Definition 2.1.
Then there exist constants a0 ∈ (0,∞), ε ∈ (0,∞) and C depending only on
CB with the following property. If Σ ⊂M is a smooth closed hypersurface
with U(Σ) ≤ ε and |Σ| ≤ a0 then for all f ∈ C∞(Σ) we have

∫

Σ
|f − f̄ |2 dµ ≤ C|Σ|

∫

Σ
|∇f |2 dµ.

Here

f̄ = |Σ|−1

∫

Σ
f dµ

is the mean value of f .

Proof. This holds without assuming an upper bound for the area of Σ if
(M, g) is Euclidean space in view of the eigenvalue estimates of DeLellis and
Müller [3, Corollary 1.3] for nearly umbilical surfaces.

For general (M, g) we first use inequality (4) to bound W(Σ) in terms
of U(Σ) and |Σ|. Then by Lemma 2.2 we infer that small area |Σ| implies
small diameter. Using normal coordinates covering Σ implies that we are
in a nearly Euclidean setting. It is then straight forward to deduce the
desired Poincaré inequality on Σ with respect to the metric induced by g
from the one with respect to the Euclidean metric in the normal coordinate
system. □

The following estimate follows from the Michael-Simon-Sobolev inequality
from Lemma 2.7 and can be proved exactly as [5, Lemma 2.8]. This form
appears in [6, Lemma 3.7].

Lemma 2.9. Assume that the metric g = gE + h on Bρ is given. Then
there exist ρ0 ∈ (0, ρ) and a constant C <∞ such that for all surfaces Σ ⊂
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Br with r ∈ (0, ρ0) and for all smooth forms φ on Σ we have

∥φ∥4L∞(Σ) ≤ C∥φ∥2L2(Σ)

∫

Σ
|∇2φ|2 + |H|4|φ|2 dµ.

2.3. A L∞ estimate for
◦

A

For the later exposition we need two more estimates not present in [6, 7].

Lemma 2.10. Let (M, g) be as in definition 2.1. Then there exist constants
a0 ∈ (0,∞) and C ∈ (0,∞) depending only on CB such that if Σ satisfies (1)
for some λ ∈ R with |Σ| ≤ a0 and W(Σ) ≤ 4π + a0 then

∥
◦

A∥L∞(Σ) ≤ CR(Σ)

and

∥H−1 −R(Σ)/2∥L∞(Σ) ≤ CR(Σ)2.

Proof. We assume that a0 is so small that the estimates from theorem 2.3
apply. Then the second estimate is an immediate consequence from the sec-
ond estimate in 2.4. To show the first estimate, proceed as in the proof of [8,

Lemma 15]. In view of the Bochner identity it suffices to estimate ∆
◦

A in
the L2-norm. The L∞ estimate then follows from lemma 2.9. To derive this
estimate, recall the Simons identity [13] in the form of [8, eq. (8)]

∆
◦

Aij = (∇2H)◦ij +H
◦

Aki
◦

Akj +
1
2H

2
◦

Aij − |
◦

A|2
◦

Aij −
1
2H|

◦

A|2γij

+
◦

Akj γlmRmlikm+
◦

Akl Rmikjl+2∇iωj − divωγij .
(5)

Here ω = Ric(ν, ·)T denotes the tangential 1-form obtained from project-
ing the 1-from Ric(ν, ·) to the tangent space of Σ. From the calculation in
section 4.2 we get that

|∇ω| ≤ |∇Ric |+ |A||Ric |.

This yields

∥∇ω∥2L2(Σ) ≤ C|Σ|+

∫

Σ
|A|2 dµ ≤ C.
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Together with equation (5) this gives

∥∆
◦

A∥L2(Σ) ≤ c
(

∥∇2H∥L2(Σ) + ∥H2
◦

A∥L2(Σ) + ∥
◦

A∥2L6

+ ∥A∥L2∥Rm ∥L∞(Σ) + ∥∇Ric ∥L2(Σ)

)

.

≤ C + c∥
◦

A∥2L∞(Σ)∥
◦

A∥L2(Σ).

Here c denotes a purely numerical constant, and we used the estimates from
section 2.1 in the second step.

From the Bochner identity 2.6 (more precisely a variant for two tensors)
we obtain that

∥∇2
◦

A∥L2(Σ) + ∥H∇
◦

A∥L2(Σ)

≤ c∥∆
◦

A∥L2(Σ) + C(1 + ∥
◦

A∥L∞(Σ))∥∇
◦

A∥L2(Σ)

≤ C + c∥
◦

A∥2L∞(Σ)∥
◦

A∥L2(Σ) + C(1 + ∥
◦

A∥L∞(Σ))∥∇
◦

A∥L2(Σ)

Note that the last term on the right hand side can be absorbed to the left,
if R is small enough.

This yields in view of lemma 2.9 that

∥
◦

A∥4L∞(Σ) ≤ C∥
◦

A∥2L2(Σ)

(

∥∇2
◦

A∥2L2(Σ) + ∥H2
◦

A∥L2(Σ)

)

≤ CR(Σ)4(C + C∥
◦

A∥4L∞(Σ)R(Σ)
2).

If R(Σ) is small enough, this gives

∥
◦

A∥L∞(Σ) ≤ CR(Σ).

Note that by choosing a0 small enough, we can ensure that R(Σ) is so small,
that the above steps apply to Σ as in the assumption. □

2.4. Approximately spherical surfaces

In this section we discuss the approximation of a given surface Σ ⊂ R3 by
spheres. The main tool here are the estimates from DeLellis and Müller [2,
3]. We quote their estimates in the form needed here from [6, Theorem
2.4]. These results are purely Euclidean. To distinguish geometric quantities
computed with respect to the Euclidean metric we use the superscript E .

Theorem 2.11. There exists a universal constant C with the follow-
ing properties. Assume that Σ ⊂ R3 is a surface with ∥

◦

AE∥2L2(Σ,γE) <
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8π. Let RE :=
√

|Σ|E/4π be the Euclidean area radius of Σ and aE :=
|Σ|−1

E

∫

Σ x dµ
E be the Euclidean center of gravity. Then there exists a con-

formal map F : S := SRE(aE) → Σ ⊂ R3 with the following properties. Let
γS be the standard metric on S, N the Euclidean normal vector field and
φ the conformal factor, that is F ∗γE = φ2γS. Then the following estimates
hold

∥HE − 2/RE∥L2(Σ,γE) ≤ C∥
◦

AE∥L2(Σ,γE)

∥F − idS ∥L∞(S) ≤ CRE∥
◦

AE∥L2(Σ,γE)

∥φ2 − 1∥L∞(S) ≤ C∥
◦

AE∥L2(Σ,γE)

∥N − νE ◦ F∥L2(S) ≤ CRE∥
◦

AE∥L2(Σ,γE).

These estimates can be applied in our situation by choosing appropriate
normal coordinates near a small surfaces as described in section 2.2 and com-
pare geometric quantities in the given metric to the Euclidean background.
In particular we have:

Lemma 2.12 (cf. [6, Lemma 2.5]). Let g = gE + h on Bρ be given. Then
there exists 0 < ρ0 < ρ and a constant C depending only on ρ and h0 such
that for all surfaces Σ ⊂ Br with r < ρ0 we have

∥
◦

AE∥2L2(Σ,γE) ≤ C∥
◦

A∥2L2(Σ,γ) + Cρ4∥H∥2L2(Σ,γ)

3. A geometric center of mass

The calculations in section 7 require that the normal coordinates in which
we look at our surfaces Σ are well adapted to Σ. In this section we propose
one way to assign a geometric center of mass to our surfaces. Centering the
normal coordinates there gives good control on the center of mass of the
image of the surface in the coordinate picture.

Let (M, g) be a Riemannian manifold and Σ ⊂M a closed smooth hy-
persurface with extrinsic diameter d = diam(Σ) = max{dist(x, y) | x, y ∈ Σ}
where dist denotes the distance function in (M, g). Assume that 2d <
inj(M, g). For p ∈M let dp(x) := dist(p, x) and set

w(p) :=

∫

Σ
dp(x)

2 dµ.
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Then w is a smooth, positive, proper function on M which attains its global
infimum on the compact set

K := {p ∈M | dist(p,Σ) ≤ d}.

This follows from comparing values of w outside of K with w(p) for some
p ∈ Σ. Let p0 ∈ K be a point where w attains its minimum. Since p0 ∈ K
we have that Σ ⊂ B2d(p0) and since 2d < inj(M, g) we find that Σ is com-
pletely contained in a normal coordinate neighborhood centered at p0. Let
ψ : Bρ(p0) → Bρ(0) ⊂ Rn be such normal coordinates where ρ > 2d denotes
the injectivity radius on (M, g) at p0. Let x ∈ Bρ(0) and p = ψ−1(x). Then

w̃(x) := w(p) =

∫

ψ(Σ)
distg(x, y)

2 dµg(y)

where distg is the distance function induced by the pull-back metric (ψ−1)∗g
to Bρ(0) and dµg denotes the induced surface measure.

Since w is critical at p0 also w̃ is critical at 0 and we compute

0 =
∂

∂xα
w̃(0) = 2

∫

ψ(Σ)
yα dµg

since in normal coordinates distg(x, y)
2 = |x− y|2 +O(|x|2).

We can also change the surface measure to the Euclidean one, recording
the error term:

∣

∣

∣

∣

∣

∫

ψ(Σ)
yα dµg −

∫

ψ(Σ)
yα dµE

∣

∣

∣

∣

∣

≤ Cd3|Σ|.

Here and in the following we use y to refer to the position vector on ψ(Σ).
Summarizing, we arrive at the following:

Lemma 3.1. Let (M, g) be of CB-bounded geometry. Then there exists a
constant C depending only on CB with the following property: For every
closed smooth hypersurface Σ ⊂M with extrinsic diameter d = diam(Σ) =
max{dist(x, y) | x, y ∈ Σ} < 1

2 inj(M, g) there exists a point p0 ∈M such
that dist(p0,Σ) ≤ d such that in normal coordinates centered at p0 we have
that

∫

ψ(Σ)
yα dµg = 0 and

∣

∣

∣

∣

∣

∫

ψ(Σ)
yα dµE

∣

∣

∣

∣

∣

≤ Cd3|Σ|.
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Combined with theorem 2.11 and lemma 2.12 we obtain the following
estimate in the case where Σ is a surface in a 3-dimensional manifold:

Lemma 3.2. Let (M, g) be three dimensional and of CB-bounded geometry.
Then there exist constants C and a0 ∈ (0,∞) depending only on CB with
the following property: For every closed smooth surface Σ ⊂M with |Σ| ≤ a0
and U(Σ) ≤ a0 there exists a point p0 ∈M , normal coordinates ψ : Bρ(p0) →
Bρ(0) ⊂ R3 and in these coordinates we have that

(6) ∥ yR − ν∥L2(Σ) ≤ C
(

R3 +R∥
◦

A∥L2(Σ)

)

and

(7) ∥ dist(p0, ·)−R∥L∞(Σ) ≤ C
(

R3 +R∥
◦

A∥L2(Σ)

)

.

Here R = R(Σ) denotes the area radius of Σ.

Proof. We choose a0 ∈ (0, 1] in a moment. By (4) this gives the a pri-
ori bound W(Σ) ≤ 4π + 1

2 + CB. In view of the diameter bound from
Lemma 2.2 we can choose a0 ∈ (0, 1] so small that Lemma 3.1 holds for Σ
as in the assumption. Let ψ : Bρ(p0) → Bρ(0) denote the coordinates from
there. In view of the diameter estimate the quantities d = diam(Σ) from
Lemma 3.1 and R are comparable. Hence also maxp∈Σ dist(p, p0) ≤ CR so
that the estimate from Lemma 2.12 can be rephrased as

(8) ∥
◦

AE∥2L2(Σ,γE) ≤ C(U(Σ) +R4)

where we also used that the Willmore functional is a priori bounded.
To prove (6), it is thus sufficient to prove the Euclidean inequality

∥ yR − νE∥L2(Σ,γE) ≤ C
(

R3 +R∥
◦

AE∥L2(Σ,γE)

)

since in the previous coordinates we have that ν − νE = O(R2) and due to
equation (8). Compute

∇E y
R = R−1 Id and ∇EνE = HE

2 Id+
◦

AE .

Here we denote the tangential derivative along Σ by ∇E , Id denotes the
identity endomorphism field in the tangent bundle on Σ and we slightly
abuse notation by not distinguishing

◦

AE from its associated endomorphism.
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This gives the estimate

∥∇
( y
R − νE

)

∥L2(Σ,γE) ≤
1
2∥

2
R −HE∥L2(Σ,γE) + ∥

◦

AE∥L2(Σ,γE)

≤ C∥
◦

AE∥L2(Σ,γE).

The last inequality follows from Theorem 2.11 if a0 ∈ (0, 1] is chosen so small

that equation (8) implies ∥
◦

AE∥2L2(Σ,γE) ≤ 6π.

By choosing a0 ∈ (0, 1] even smaller, we can ensure that the Poincaré
inequality from Theorem 2.8 holds. This gives

∥ yR − νE −m∥L2(Σ,γE) ≤ CR∥
◦

AE∥L2(Σ,γE).

where

m = |Σ|−1

∫

ψ(Σ)
( yR − νE) dµE = |Σ|−1

∫

ψ(Σ)

y
R dµE .

By Lemma 3.1 we have |m| ≤ CR2 that is ∥m∥L2(Σ) ≤ CR3 and thus the
first of the claimed estimate follows.

To show equation (7) observe that the Euclidean center of gravity aΣ of
ψ(Σ) satisfies

|aE | = |Σ|−1
E

∣

∣

∣

∣

∣

∫

ψ(Σ)
y dµE

∣

∣

∣

∣

∣

≤ CR3.

Parameterizing ψ(Σ) with a map F : SRE(aE) → ψ(Σ) as in Theorem 2.11,
we get that for every y ∈ SRE(aE)

|y − aE | − |aE | − |F (y)− y| ≤ |F (y)| ≤ |y − aE |+ |aE |+ |F (y)− y|

so that

∣

∣|F (y)| −RE
∣

∣ ≤ |aE |+ |F (y)− y| ≤ CR3 + CRE∥
◦

AE∥L2(Σ,γE).

Since we are in normal coordinates around p0 we have that for all x ∈ Σ that
dist(x, p0) = |ψ(x)| = |F (F−1(ψ(x)))| and the second claim follows. □

Corollary 3.3. Let (M, g) and Σ satisfy the assumptions of Lemma 3.2
and let ψ be as there. Then for every k ∈ N ∪ {0} there is a constant Ck
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depending only on the constant C in Lemma 3.2 and on k such that
∣

∣

∣

∣

∣

∫

ψ(Σ)

2k+1
∏

l=1

ρl dµ

∣

∣

∣

∣

∣

≤ Ck
(

R3 +R∥
◦

A∥L2(Σ)

)

.

Here, for every l ∈ {1, . . . , 2k + 1} we can choose ρl freely from the functions
{να, y

α

R | α = 1, 2, 3}.

Proof. Note that if k = 0 then the claim directly follows from Lemma 3.1
if ρ1 =

yα

R and from the fact that
∫

ψ(Σ)(ν
E)α dµE = 0 if ρ1 = να for some

α = 1, 2, 3. For brevity, we indicate the proof only in the case k = 1 below.
Also note that it is sufficient to consider the Euclidean setting, that is with
ρl ∈ {(νE)α, y

α

R | α = 1, 2, 3} and with ∥
◦

A∥L2(Σ) replaced by ∥
◦

AE∥L2(Σ,γE)

using the same reduction as in the proof of Lemma 3.2.
We proceed in two steps: in the first step, we use Theorem 2.11 to prove

the case ρl ∈ {(νE)α | α = 1, 2, 3}, in the second step we use Lemma 3.2 to
conclude.

Step 1: Let ρl = (νE)αl for l = 1, 2, 3 and αl ∈ {1, 2, 3}. Let RE and aE

as in Theorem 3.2 and denote S := SRE(aE). Let F :→ Σ be the parameter-
ization from Theorem 3.2, N : S → S2 be the normal of S and ρ̃l := ρl ◦ F .
Then we can write

∫

ψ(Σ)
ρ1ρ2ρ3 dµ

E =

∫

S
ρ̃1ρ̃2ρ̃3φ

2 dµE

=

∫

S
Nα1Nα2Nα3 +Nα1Nα2Nα3(φ2 − 1) + (ρ̃1 −Nα1)Nα2Nα3φ2

+ ρ̃1(ρ̃2 −Nα2)Nα3φ2 + ρ̃1ρ̃2(ρ̃3 −Nα3)φ2 dµE .

Since S is a sphere
∫

S N
α1Nα2Nα3 dµE = 0 and thus, using Cauchy-Schwarz

in the first inequality and Theorem 2.11 in the last inequality we conclude
∣

∣

∣

∣

∣

∫

ψ(Σ)
ρ1ρ2ρ3 dµ

E

∣

∣

∣

∣

∣

≤ CR∥N − νE ◦R∥L2(S,γE) + CR2∥φ2 − 1∥L∞(S) ≤ CR2∥
◦

AE∥L2(Σ,γE).

Note that this implies the claimed inequality.
Step 2: Assume that ρl = (νE)αl or ρl =

yαl

R for l = 1, 2, 3. We can use a
telescope sum as above and Cauchy-Schwarz to estimate
∣

∣

∣

∣

∣

∫

ψ(Σ)
ρ1ρ2ρ3 − (νE)α1(νE)α2(νE)α3 dµ

∣

∣

∣

∣

∣

≤ CR

3
∑

l=1

∥ρl − (νE)αl∥L2(Σ,γE).
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Note that the terms in the sum on the right either vanish or can be bounded
using Lemma 3.2. We thus arrive at the claimed inequality. □

Note that products of an even number of factors can be treated in a similar
fashion as above and equal the respective integrals on a centered round
sphere up to the same error term as above.

4. Geometric identities

Throughout this section we assume that (M, g) has CB-bounded geometry
and that Σ ⊂M is a closed, immersed, smooth surface such that

1) Σ satisfies equation (1).

2) |Σ| ≤ a0 and W(Σ) ≤ 4π + a0.

Here we assume that a0 is so small that the estimates from Theorem 2.3
and Lemmas 2.4 and 2.10 hold.

To shorten the exposition, we augment the big-O notation as follows. If
f is some quantity defined on a surface Σ as above, we say f = OLp(Rk) if

∫

Σ
fp dµ ≤ CRpk+2,

where R = R(Σ) refers to the area radius of Σ. We also use this for p = ∞,
that is f = OL∞(Rk) denotes

∥f∥L∞(Σ) ≤ CRk.

Using this notation, the a priori estimates from section 2 can be stated as
follows:

◦

A = OL∞(R), ∇A = OL2(1), and ∇2H = OL2(R−1).

Lemmas 2.4 and 2.10 imply that H = OL∞(R−1) and H−1 = OL∞(R).
The following computations are done in abstract index notation, where

Latin indices i, j, k, . . . ∈ {1, 2} refer to an local orthonormal frame {e1, e2}
on Σ and ν denotes a choice of normal to Σ ⊂M so that Aij := A(ei, ej) =
g(M∇eiν, ej) where

M∇ denotes the Levi-Civita connection on (M, g). Tan-
gential derivatives to Σ are denoted by ∇.
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4.1. The Hessian of Ric(ν, ν)

We begin by calculating the gradient

∇iRic(ν, ν) = (M∇ei Ric)(ν, ν) + 2Aik Ric(ek, ν)

= (M∇ei Ric)(ν, ν) +H Ric(ei, ν) + 2
◦

Aik Ric(ek, ν)

= Hωi +OL∞(1).

(9)

As before ω = Ric(ν, ·)T denotes the tangential projection of the 1-form
Ric(ν, ·) to Σ. In the second step we used the splitting

Aij =
◦

Aij +
1
2Hγij .

Differentiating further yields

∇2
i,j Ric(ν, ν) = (M∇2

i,j Ric)(ν, ν)− (M∇ν Ric)(ν, ν)Aij

+ 2(M∇ei Ric)(ek, ν)Ajk + 2(M∇ej Ric)(ek, ν)Aik

− 2Ric(ν, ν)AkjA
k
j + 2Ric(ek, el)A

k
iA

l
j

+ 2Ric(ek, ν)∇eiA
k
j

= −2Ric(ν, ν)AkiAkj + 2Ric(ek, el)A
k
iA

l
j +OL2(R−1)

= −1
2H

2Ric(ν, ν)γij +
1
2H

2Tij +OL2(R−1).

(10)

Here Tij = Ric(ei, ej) denotes the tangential projection of the Ricci-Tensor.

The last step uses Lemma 2.10 to discard the terms containing
◦

A into the
error term.

Taking the trace in equation (10) yields that

(11) ∆Ric(ν, ν) = −3
2H

2Ric(ν, ν) + 1
2H

2 Sc+OL2(R−1).

We thus infer that the trace free part of the Hessian of Ric(ν, ν) is given by

(

∇2Ric(ν, ν)
)

◦

ij
= ∇2

i,j Ric(ν, ν)−
1
2∆Ric(ν, ν)γij

= 1
2H

2
(

1
2 Ric(ν, ν)γij −

1
2 Sc γij + Tij

)

+O(R−1)

= 1
2H

2
◦

Tij +OL2(R−1).

(12)

Here we used that

◦

Tij = Tij −
1
2 trTγij = Tij +

1
2 Ric(ν, ν)γij −

1
2 Sc γij .



✐

✐

“5-Metzger” — 2023/9/8 — 15:42 — page 2332 — #18
✐

✐

✐

✐

✐

✐

2332 Jan Metzger

4.2. The covariant derivative of ω

In a calculation similar to equation (10), we derive

∇iωj = (M∇iRic)(ν, ej) +Aki Ric(ek, ej)−Aij Ric(ν, ν)

= 1
2H(Tij − Ric(ν, ν)γij) +OL∞(1).

(13)

Taking the trace yields

(14) divω = 1
2H Sc−3

2H Ric(ν, ν) +OL∞(1).

Later we will also use the following combination

2∇iωj − divωγij = H(Tij +
1
2 Ric(ν, ν)γij −

1
2 Sc γij) +OL∞(1)

= H
◦

Tij +OL∞(1).
(15)

4.3. The Laplacian of
◦

T

First calculate the Hessian of T . Neglecting the lower order terms yields

∇2
k,lTij =

1
4H

2
(

γkiγlj Ric(ν, ν) + γkjγliRic(ν, ν)

− γkiRic(el, ej)− γkj Ric(el, ei)
)

+OL2(R−1).

Taking the trace gives

∆Tij =
1
2H

2(Ric(ν, ν)γij − Tij) +OL2(R−1).

Thus we can calculate further

∆
◦

Tij = ∆Tij −
1
2∆

(

Sc−Ric(ν, ν)
)

γij .

In view of the fact that

∆Sc = M
∆Sc−M∇2

ν,ν Sc+Hg(
M∇ Sc, ν) = OL2(R−1),

and the expression for ∆Ric(ν, ν) in (11), we infer that

(16) ∆
◦

Tij = −1
2H

2
◦

Tij +OL2(R−1).

5. Expansion of the curvature

In this section we consider the crucial geometric quantities on Σ as in sec-
tion 4 and derive the top order deviations from their Euclidean value.
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5.1. Curvature corrections to H2

Combining equations (11) and (1) with the curvature estimates we infer that

∆
(

1
2H

2 − 2
3 Ric(ν, ν)

)

= H∆H + |∇H|2 − 2
3∆Ric(ν, ν)

= −H2Ric(ν, ν)−H2λ

− 2
3

(

− 3
2H

2Ric(ν, ν) + 1
2H

2 Sc
)

+O(R−1)

= −H2
(

λ+ Sc
)

+OL2(R−1)

= OL2(R−1).

(17)

This identity leads to the following estimate.

Proposition 5.1. Let (M, g) be of CB-bounded geometry. Then there ex-
ist constants a0 ∈ (0,∞) and C depending only on CB such that for every
surface Σ satisfying (1), with |Σ| ≤ a0 and W(Σ) ≤ 4π + a0 we have the
estimate

∥

∥

1
2H

2 − 8π|Σ|−1 − 2
3 Ric(ν, ν) +

5
9 Sc(0)

∥

∥

L∞
≤ CR(Σ).

Proof. Let w = 1
2H

2 − 2
3 Ric(ν, ν). The Bochner identity from Lemma 2.6

implies that

∫

Σ
2|∇2w|2 +H2|∇w|2 dµ ≤

∫

Σ
|∆w|2 +

(

Ric(ν, ν)− Sc+|
◦

A|2
)

|∇w|2 dµ.

Note that Ric and Sc are bounded by a constant, that ∥
◦

A∥L∞ ≤ CR(Σ)
by lemma 2.10, and that H ≥ C−1R(Σ)−1 if a0 is chosen small enough. If
necessary we can decrease a0 further so that the gradient term on the right
can be absorbed to the left. In view of equation (17), this yields

∥∇2w∥L2 ≤ C and ∥∇w∥L2 ≤ CR(Σ).

Consequently, the Poincaré inequality implies the estimate

∥w − w̄∥L2 ≤ CR(Σ)2.

Plugging this into the estimate from lemma 2.9, we infer that

(18) ∥w − w̄∥L∞ ≤ CR(Σ).
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It remains to calculate w̄. To this end recall [6, Theorem 5.1]. This implies
that

∣

∣

∣

∣

∫

Σ

1
2H

2 dµ− 8π +
|Σ|

3
Sc(0)

∣

∣

∣

∣

≤ CR(Σ)3.

From [6, Lemma 3.3] it follows that in addition

∣

∣

∣

∣

∫

Σ
Ric(ν, ν) dµ−

|Σ|

3
Sc(0)

∣

∣

∣

∣

≤ CR(Σ)3.

In combination, this implies that for w̄ = |Σ|−1
∫

Σw dµ we have.

∣

∣w̄ − 8π + 5
9 Sc(0)

∣

∣ ≤ CR.

In view of (18) this yields the claim. □

Remark 5.2. Note that this is not the expansion ofH2 on geodesic spheres,
which can be found in [12, Lemma 2.4] for example. This is due to the fact
that geodesic spheres do not satisfy (1) on the order on which we do these
calculations. In other words, if a surface satisfies (1), then its shape differs
from that of a geodesic sphere in a way visible in the lower order correction
terms of the mean curvature.

5.2. Curvature corrections for H and its derivatives

By a slight variation of terms, one can also derive estimates for H instead
of 1

2H
2. Alternatively one can proceed as follows. Recall that for functions

f, g ∈ C∞(Σ) with g ̸= 0 we have the identity

∇2
i,j
u
v = − 1

v2

(

∇iv∇ju+∇iu∇jv
)

+ 1
v∇

2
i,ju− u

v2∇
2
i,jv + 2 u

v3u∇iv∇jv.

Using the a priori estimates for H, ∇H and ∇2H as before, we find that

∇2
i,j

(

H−1Ric(ν, ν)
)

= H−1∇2
i,j Ric(ν, ν) +OL2(1),

so that equation (10) yields

∇2
i,j

(

H−1Ric(ν, ν)
)

= −1
2H Ric(ν, ν)γij +

1
2HTij +OL2(1).

Splitting into trace part and trace-free part we get

(19) ∆
(

H−1Ric(ν, ν)
)

= −3
2H Ric(ν, ν) + 1

2H Sc+OL2(1)
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and

(20)
[

∇2
(

H−1Ric(ν, ν)
)]

◦

ij
= 1

2H
◦

Tij +OL2(1).

Let v := H − 2
3H

−1Ric(ν, ν). Combining equations (19) and (1), with the
estimate from theorem 2.5 as in section 5.1 we find that

∆v = OL2(1).

Arguing as before, the Bochner identity implies:

(21) ∥∇2v∥L2 ≤ CR and ∥∇v∥L2 ≤ CR2.

These considerations imply the following estimate.

Proposition 5.3. Assume that (M, g) and Σ are as in Proposition 5.1.
Then

∥(∇2H)◦ − 1
3H

◦

T∥L2 ≤ CR(Σ) and ∥∇H − 2
3ω∥L2 ≤ CR(Σ)2.

Proof. The proof follows directly from the estimates (21) in combination
with formulas (9) and (12). □

5.3. Curvature corrections for
◦

A

To estimate the corrections of the curvature to
◦

A recall the Simons-Identity
on Σ as in equation (5). In view of the a priori estimates from theorem 2.3
and the conventions in in section 4, on surfaces as in theorem 2.3 this yields

(22) ∆
◦

Aij = (∇2H)0ij +
1
2H

2
◦

Aij + 2∇iωj − divωγij +OL∞(R).

In view of proposition 5.3 and equation (15) we thus infer

∆
◦

Aij =
4
3H

◦

Tij +
1
2H

2
◦

Aij +OL2(1).

In view of the a priori estimates and equation (16) we find that

∆(H−1
◦

T )ij = −1
2H

◦

Tij +OL2(1),

so that the tensor

Sij :=
◦

Aij +
4

3
H−1

◦

Tij



✐

✐

“5-Metzger” — 2023/9/8 — 15:42 — page 2336 — #22
✐

✐

✐

✐

✐

✐

2336 Jan Metzger

satisfies

(23) ∆Sij =
1
2H

2Sij +OL2(1).

Multiplying (23) by Sij and integrating by parts implies

∫

Σ
|∇S|2 + 1

2H
2|S|2 dµ ≤

∫

Σ
|S| dµ ≤

1

4

∫

Σ
H2|S|2 dµ+

∫

Σ
H−2 dµ.

Absorbing the first term on the right to the left yields the following estimate.

Proposition 5.4. Assume that (M, g) and Σ are as in Proposition 5.1.
Then

∥
◦

A+ 4
3H

−1
◦

T∥L2 ≤ CR(Σ)3 and ∥∇
◦

A+ 4
3H

−1∇
◦

T∥L2 ≤ CR(Σ)2.

6. Expansion of the metric

It is well known1 that the metric in normal coordinates has the expansion

gαβ(y) = δαβ +
1
3 Rmαµβν y

µyν +O(|y|2).

Here we denote Rmαµβν = Rmαµβν(0) and all other curvature quantities are
evaluated at 0 as well. From this we calculate that

gαβ,µν(0) =
1
3(Rmαµβν +Rmανβµ).

The Christoffel symbols thus satisfy

Γναβ,γ(0)

= 1
2δ
νµ
(

gαµ,βγ + gβµ,αγ − gαβ,µγ)

= 1
6δ
νµ(Rmαβµγ +Rmαγµβ +Rmβαµγ +Rmβγµα−Rmαµβγ −Rmαγβµ)

= 1
3δ
νµ(Rmαγµβ +Rmβγµα)

= −1
3δ
νµ(Rmαγβµ+Rmβγαµ) = −1

3(Rm
ν
αγβ +Rmν

βγα).

From this we get that in normal coordinates

Γναβ(y) = Γναβ(0) + Γναβ,γ(0)y
γ +O(|y|2)

= −1
3(Rm

ν
αγβ +Rmν

βγα)y
γ +O(|y|2).

1We use the convention for the curvature tensor from [8, Section 2] that is
Rmαβγν = ⟨(∇α∇β −∇β∇α)∂γ , ∂ν⟩ and Rmν

αβγ = gνµ Rmαβγµ.
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This implies that for a constant vector field b = bν∂ν ∈ R3 we have

(24) ∇αb
ν = ∂αb

ν + Γναβb
β = −1

3(Rm
ν
αγβ(0) + Rmν

βγα(0))y
γbβ +O(|y|2)

and

(25) div b = ∇αb
α = −1

3 Ricβγ(0)y
γbβ +O(|y|2).

Terms like these will show up in the position estimates. Here we explicitly
included the point at which to evaluate the curvature for later reference.

7. The position estimates revisited

The basic idea of the position estimates for small area constrained Willmore
surfaces in [6] is to test the Euler-Lagrange-Equation

(26) δfW(Σ) = λ

∫

Σ
fH dµ

with the function f = H−1g(b, ν). The main result of [6] is the estimate

(27) |∇ Sc(p)| ≤ CR(Σ)

where p is a point with dist(p,Σ) ≤ diam(Σ) and C is a constant depending
only on CB. With this choice of point, we have that r(x) = dist(p, x) for
x ∈ Σ is comparable to the area radius R(Σ).

To improve this estimate further we have to carefully choose the center
point p of the above coordinates. The main result of the paper in this section
is:

Theorem 7.1. Let (M, g) be a 3-manifold with CB-bounded geometry.
Then there exist constants a0 ∈ (0,∞) and C ∈ (0,∞) depending only on
CB with the following property. Let Σ ⊂M be a surface satisfying the Euler-
Lagrange equation (1) for some λ ∈ R, with |Σ| ≤ a0, and W(Σ) ≤ 4π + a0.
Then there exists a point p0 ∈M such that

i) | dist(p0, x)−R(Σ)| ≤ CR(Σ)3 for all x ∈ Σ,

ii) with respect to normal coordinates ψ : Bρ(p0) → Bρ(0) ⊂ R3 centered at
p0 we have

∫

ψ(Σ)
yα dµg(y) = 0,



✐

✐

“5-Metzger” — 2023/9/8 — 15:42 — page 2338 — #24
✐

✐

✐

✐

✐

✐

2338 Jan Metzger

iii) and |∇ Sc(p0)| ≤ CR(Σ)2.

Remark 7.2. Note that appealing to theorem 2.11, lemma 2.12 and esti-
mate 2.3, we automatically have that Σ is W 2,2-close to the geodesic sphere
of radius R around p0 in the following sense. Denote by hR : R3 → R3 :
y 7→ y

R the scaling vector field. Let ΣR := hR(ψ(Σ) ⊂ B ρ

R
(0). Then there is

a map F : S2 → ΣR, conformal with respect to metric on ΣR induced by the
Euclidean metric such that

∥F∥W 2,2(S2) ≤ CR(Σ)2.

For the proof of Theorem 7.1 assume that Σ is as in the statement of
Theorem 7.1 and that a0 is chosen so small that all the estimates from
sections 2 to section 6 are applicable. In particular, Lemma 3.1 gives a
point p0 ∈M such that | dist(p0, x)−R(Σ)| ≤ CR(Σ)3 for all x ∈ Σ and
such that if ψ : Bρ(p0) → Bρ(0) ⊂ R3 are normal coordinates at p0 then
∫

ψ(Σ) y dµg = 0. Then the first two assertions of the Theorem directly follow.

The estimate for |∇ Sc(p0)| follows from the calculations in the remainder
of this section. All these calculations are done in the normal coordinates
centered at p0.

Recall the splitting

(28) δfW(Σ) = δfU(Σ) + δfV(Σ)

that was used with (26) for the test function f = H−1g(b, ν). Here b ∈ R3 is
a constant vector in the normal coordinate neighborhood. The computations
below use the same f and the same splitting.

7.1. The right hand side

For f = H−1g(b, ν) we have that

∫

Σ
fH dµ =

∫

Σ
g(b, ν) dµ =

∫

Ω
div b dV

where Ω is the region enclosed by Σ. In the integral on the right, we replace
the volume form of g by the Euclidean volume form of the normal coordinates
at p0 and obtain an error of the form

∣

∣

∣

∣

∫

Ω
div b dV −

∫

Ω
div b dV E

∣

∣

∣

∣

≤ Vol(Ω) sup
Ω

|∇b|R2 ≤ C|Σ|3
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since |∇b| = O(R), | dV − dV E | = O(R2) dV E and Vol(Ω) = O(R3) by [6,
Eq. (4.7)]. As usual we abbreviate R = R(Σ). At this point we do not care
about errors of the order O(R5) but want to compute the top order term
which is O(R4). In section 6 we computed that

div b = −1
3 Ricαβ y

αbβ +O(R2).

Note that the volume integral of the error term is O(R5), and that Ric here
is evaluated at p0, the origin of the normal coordinates y. We thus get

∫

Ω
div b dµ = −1

3 Ricαβ b
β

∫

Ω
yα dµE +O(R5)

= −1
6 Ricαβ b

β

∫

Σ
|y|2(νE)α dµE +O(R5).

Here νE denotes the normal to Σ with respect to the Euclidean metric in our
coordinates. From Corollary 3.3 with k = 1, ρ1 = ρ2 =

yβ

R and ρ3 = (νE)α it
follows that

∫

Σ
(yβ)2(νE)α dµE ≤ CR5

and after summation over β we arrive at
∣

∣

∣

∣

∫

Ω
div b dµ

∣

∣

∣

∣

≤ CR5

or, in combination with the estimates above, with (26) and using Theo-
rem 2.5 this gives

(29) |δfW(Σ)| ≤ CR5.

Note that this improves the estimate from [6] by one power of R.

7.2. The variation of U(Σ)

From [6] we have

(30) δfU(Σ) = −

∫

Σ
2⟨

◦

A,∇2f⟩+ 2f⟨
◦

A,
◦

T ⟩+ fH|
◦

A|2 dµ

and that for our choice f = H−1g(b, ν) we have

∇2
ijf = −AkiAjkf +H−1g(∇ib, ek)A

kj −H−2∇iHg(b, ek)A
k
j

+∇i

(

H−1g(∇jb, ν)−H−2∇jHg(b, ν)
)



✐

✐

“5-Metzger” — 2023/9/8 — 15:42 — page 2340 — #26
✐

✐

✐

✐

✐

✐

2340 Jan Metzger

Since

AkiAjk =
◦

Aki
◦

Ajk +H
◦

Aij +
1
4H

2gij

and since the first and the last term give zero when contracted with
◦

A we
get that

∫

Σ
⟨∇2f,

◦

A⟩ dµ =

∫

Σ
div

◦

Aj
(

H−2∇jHg(b, ν)−H−1g(∇jb, ν)
)

+ fH|
◦

A|2

−H−2∇iHg(b, ek)A
k
j

◦

Aij +H−1g(∇ib, ek)A
k
j

◦

Aij dµ.

Plugging into (30) we get that

δfU(Σ) = 2

∫

Σ
div

◦

Aj
(

H−1g(∇jb, ν)−H−2∇jHg(b, ν)
)

− 3
2fH|

◦

A|2

+H−2∇iHg(b, ek)A
k
j

◦

Aij −H−1g(∇ib, ek)A
k
j

◦

Aij − f⟨
◦

A,
◦

T ⟩ dµ.

We shall only keep the top order parts of the first two terms in the second
line. In view of the L∞ estimates for

◦

A, H−1 and the L2-estimates for ∇H,
we have that

δfU(Σ) =

∫

Σ
2 div

◦

Aj
(

H−1g(∇jb, ν)−H−2∇jHg(b, ν)
)

− 3fH|
◦

A|2

+H−1∇iHg(b, ej)
◦

Aij − g(∇ib, ej)
◦

Aij − 2f⟨
◦

A,
◦

T ⟩ dµ+O(R5).

(31)

In view of the estimates in section 5 all the above terms can be replaced
with their highest order parts. The error terms are then of order O(R5) or
better. To be specific, we recall that to top order

H−1 ≈ R
2 ,

◦

A ≈ −4
3H

−1
◦

T, ∇H ≈ 2
3ω, and div

◦

A = 4
3ω.

This yields that

δfU(Σ) =
2

3

∫

Σ
2Rωjg(∇jb, ν)−

2
3R

2|ω|2g(b, ν)−R2g(b, ν)|
◦

T |2

− 1
3R

2ωig(b, ej)
◦

T ij +Rg(∇ib, ej)
◦

T ij dµ+O(R5)

(32)

Note that all the previous terms can be expanded into integrals that can
individually be estimated using Corollary 3.3. Consider for example the first
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term on the right of (32):

4R

3

∫

Σ

2
∑

j=1

ω(ej)g(∇ejb, ν) dµ

=
4R

3

∫

Σ

3
∑

β=1

(Ricαβ ν
αgηµ∇βb

ηνµ)− Ricαβ ν
ανβgηµ∇κb

ηνµνκ dµ.

After replacing ∇b using the expansion (24), along with

gηµ = δηµ +O(R2), and Ric = Ric(p0) +O(R),

and noting that the resulting error terms are of order O(R5) we can use
Corollary 3.3 to see that the whole term is O(R5). Inspecting the other terms
of (32) shows that they can be treated similarly. Indeed all the tangential
contractions in these terms can be resolved as above and the remaining terms
are products of an odd number of factors ν or y/R. To show the pattern
note that

|ω|2 = |Ric(ν, ·)T |2 = |Ric(ν, ·)|2 − Ric(ν, ν)2

=

3
∑

β=1

gβκRicαβ Ric ηκν
ανη − (Ricαβ ν

ανβ)2

Both terms on the right have an even number of factors ν so that multiplied
with g(b, ν) in the second term on the right of (32) yields an odd number.
The third term can be treated by computing with τ = trT = Sc−Ric(ν, ν)
that

|
◦

T |2 = |T |2 − 1
2τ

2

= |Ric |2 − 2|ω|2 − Ric(ν, ν)2 − 1
2 Sc

2− ScRic(ν, ν)− 1
2 Ric(ν, ν)

2.

Note that all terms on the right contain an even number of factors ν, so
the third term in (32) is also done. The remaining two terms have a similar
structure. We infer the estimate

(33) |δfU(Σ)| ≤ CR5

for the particular choice of f above.
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7.3. The variation of V(Σ)

From [6, Section 4.3] we get that for the given choice of f we have

δfV(Σ) =

∫

Σ
−G(b, ν)− 1

2g(b, ν) Sc+2f⟨
◦

A,GT ⟩

− 2ω(ei)
(

H−1g(∇eib, ν) +H−1
◦

Ajig(b, ej)

−H−2∇Hg(b, ν)
)

dµ.

(34)

As in section 7.2 we can estimate
∣

∣

∣

∣

∫

Σ
2f⟨

◦

A,GT ⟩ − 2ω(ei)H
−2

(

Hg(∇eib, ν) +H
◦

Ajig(b, ej)−∇Hg(b, ν)
)

dµ

∣

∣

∣

∣

≤ CR5.

To see this, use ∇H = 2
3ω +OL2(R) and

◦

A = −4
3H

−1
◦

T +OL2(R2) from
Propositions 5.3 and 5.4. The estimate then follows by inspection as in
section 7.2.

Furthermore, as in [6, Section 4.3] let X be the vector field on
Bρ(p0)M such that g(X,Y ) = G(b, Y ) for all vector fields Y on Bρ(p0). Then
divM X = ⟨G,∇b⟩ since G is divergence free. Let Ω ⊂ Bρ(p0) enclosed by Σ
and recall from [6, Section 4.3] that Vol(Ω) ≤ CR3. Compute

∫

Σ
G(b, ν) dµ =

∫

Ω
divM X dV =

∫

Ω
⟨G,∇b⟩ dV =

∫

Ω
Gαβ∇κb

αgβκ dV

= −1
3Gαβ(p0)δ

βκ(Rmα
κηµ(p0) + Rmα

µηκ(p0))b
µ

∫

Ω
yκ dV E +O(R5).

Here we used equation (24) in the last step and replaced all curvature quan-
tities by their values at p0. Also the integration is now with respect to the
Euclidean volume form dV E . The value of the constant in front of the inte-
gral is not important for the following. For κ ∈ {1, 2, 3} consider the vector
field Y := 1

4y
κy. Then divE Y = yκ and thus using Stokes in the first equality

and Corollary 3.3 in the estimate.

(35)

∫

Ω
yκ dV E =

∫

Σ
yκ⟨y, νE⟩E dµE = O(R5).

To treat the remaining term, we consider the vector field X = Sc b as in [6,
Section 4.3]. Then

∫

Σ
g(b, ν) Sc dµ =

∫

Ω
divM X dV =

∫

Ω
g(b,∇ Sc) + Sc divM b dV
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with Ω as above. Using g = gE +O(R2), Sc = Sc(p0) +O(R),

∇β Sc = ∇β Sc(0) +∇2
β,κ Sc(0)y

κ +O(R2),

and equation (25) for the expansion of div b, we get

∫

Σ
g(b, ν) Sc dµ =

∫

Ω
gE(b,∇ Sc(p0)) dV

E

+
(

bα∇2
ακ Sc−

1
3 Sc(p0)Ricβκ(p0)b

β
)

∫

Ω
yκ dV E +O(R5).

In view of (35) this gives

∫

Σ
g(b, ν) Sc dµ = Vol(Ω)g(b,∇ Sc(p0)) +O(R5).

In combination with the above, we arrive at the estimate

(36)
∣

∣δfV(Σ) +
1
2 Vol(Ω)g(b,∇ Sc(p0))

∣

∣ ≤ CR(Σ)5.

7.4. The conclusion

From the splitting (28), estimates (29), (33), and (36) we arrive at

Vol(Ω)|g(b,∇ Sc(p0))| ≤ CR(Σ)5.

Since b ∈ R3 is arbitrary and since Vol(Ω) ≥ C−1R(Σ)3 by [6, Eq. (4.7)] this
gives the claimed estimate:

|∇ Sc(p0)| ≤ CR(Σ)2.

This concludes the proof of Theorem 7.1.

8. The proof of Corollary 1.5

Corollary 8.1. Let (M, g) be a compact three dimensional Riemannian
manifold with CB bounded geometry. Let

Z := {x ∈M | ∇ Sc(x) = 0}

and assume that the Hessian Hess Sc(x) is non-degenerate for every x ∈ Z.
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Then there exists an a0 depending only on (M, g) such that for every
surface Σ that satisfies the Euler-Lagrange equation (1) for some λ, with
|Σ| ≤ a0 and W(Σ) ≤ 4π + a0 the region enclosed by Σ intersects Z in a
single point.

Proof. Since M is compact and all critical points of Sc are non-degenerate,
the set Z is discrete. Let

ρ0 :=
1

2
min{dist(x, y) | x ̸= y ∈ Z}.

For ρ ∈ (0, ρ0) let

Zρ := {x ∈M | dist(x, Z) < ρ}.

For r ∈ (0,∞) let

Gr := {x ∈M | |∇ Sc(x)| ≤ r}.

By the compactness of M and since Sc is a Morse function, there exist
r0 ∈ (0,∞) and c ∈ (0,∞) such that for every r ∈ (0, r0) we have Gr ⊂ Zcr.

Let a0 and C be the constants from Theorem 7.1 applied to (M, g). By
decreasing a0, we can assume that in addition to the assertion of Theo-
rem 7.1, we also have that CR(Σ)2 ≤ r0 and that diam(Σ) < ρ0 whenever
Σ satisfies the assumption of this Lemma with the chosen a0.

Let Σ be such a surface and let R = R(Σ). Denote by Ω the open region
enclosed by Σ. For s ∈ (0,∞) denote

Ωs := {x ∈ Ω | dist(x,Σ) > s}.

Then Ωs is an open subset of Ω.
Let p0 be the point from Theorem 7.1. Then | dist(p0, x)−R| ≤ CR3 for

all x ∈ Σ and |∇ Sc(p0)| ≤ CR2. The first estimate shows that p0 ∈ Ω, in
fact p0 ∈ Ω 3

4
R if we choose a0 sufficiently small.

Let σ := |∇ Sc(p0)|. Then σ ≤ CR2 so that p0 ∈ Gσ ⊂ Zcσ. This implies
that there exists a point p1 ∈ Z such that p1 ∈ Ω 3

4
R−cσ ⊂ Ω 3

4
R−CR2 . By

choosing a0 and thus R smaller again, we can ensure that 3
4R− CR2 ≥ R

2 , so
that Z ∩ ΩR

2

̸= ∅. Since diam(Σ) < ρ0 we know that ΩR

2

⊂ Ω ⊂ Bρ0(p0) and

by the choice of ρ0 the ball Bρ0(p0) can intersect Z in at most one point. □

From the expansion of the Willmore energy in [7, Corollary 5.6] we know
that the minimizers Σmin

a from Theorem 1.1 concentrate near the maxima of
the scalar curvature ofM . Thus a slight variant of the proof of Corollary 8.1
yields the proof of Corollary 1.6.
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