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We give a self-contained treatment of set-theoretic subsolutions to
flow by mean curvature, or, more generally, to flow by mean cur-
vature plus an ambient vector field. The ambient space can be any
smooth Riemannian manifold. Most importantly, we show that if
two such set-theoretic subsolutions are initially disjoint, then they
remain disjoint provided one of the subsolutions is compact; pre-
viously, this was only known for Euclidean space (with no ambient
vectorfield). We also give a simple proof of a version of Ilmanen’s
interpolation theorem.
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1. Introduction

Under mean curvature flow, an initially smooth compact hypersurface in
Rn+1 must become singular in finite time. Singularities typically occur be-
fore the surface disappears, that is, before its area tends to zero. Thus it is
desirable to have weak notions of mean curvature flow that allow the flow
to extend past singularities.

Level set flow, introduced simultaneously in [3] and [5], is one such
notion. It is very natural and has proved to be very useful. Under mild
hypotheses on the ambient space, there is a unique level set flow starting
with any compact initial set; for a smoothly embedded initial surface, it
agrees with the classical solution as long as the classical solution exists (i.e.,
up until the first singular time). However, the definition has the unfortunate
feature that a limit of level set flows need not be a level set flow.

Partly to get around that feature, Ilmanen [8, 9] introduced a weaker
notion, that of a “set-theoretic subsolution to mean curvature flow” or (in the
terminology of [11]) a “weak set flow”. Roughly speaking, a one-parameter
family of closed subsets of a Riemannian manifold is a weak set flow provided
it does not bump into any smoothly embedded, closed hypersurface moving
by mean curvature flow.

A key feature of weak set flows is that not only do they not bump into
smooth mean curvature flows, they also cannot bump into other weak set
flows. More precisely, they satisfy the following avoidance principle: two ini-
tially disjoint weak set flows remain disjoint as long as at least one of them
remains compact. (Under the mild hypothesis that the ambient space is com-
plete with Ricci curvature bounded below, any initially compact weak set
flow remains compact.) Ilmanen gave a very elegant proof of the avoidance
principle in Euclidean space, but it strongly relied on invariance of mean
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curvature flow under spatial translations, and thus it did not seem to ex-
tend to other Riemannian manifolds. One of the main contributions of this
paper is modifying Ilmanen’s proof so that it works in arbitrary Riemannian
manifolds, and, more generally, for closed sets (in a Riemannian manifold)
moving by mean curvature plus an ambient vectorfield.

Weak set flows and level set flows are related by a containment theorem
(Theorem 22): the level set flow starting from a given set is a weak set flow,
and it contains every other weak set flow starting from that set. Ilmanen [8,
4H] proved that the containment theorem follows from the avoidance prin-
ciple. But since the avoidance principle was only known in Euclidean space,
likewise the containment theorem was only known in that case.

The organization of this paper as follows. Section 2 gives the basic defi-
nitions. We have found it convenient to use a definition of weak set flow that
differs from, but is equivalent to, Ilmanen’s original definition. In Section 3,
we derive some elementary properties of weak set flows. In Section 4, we
prove some technical results about modifying barriers to get barriers with
additional desirable properties. In Sections 5 and 6, the barrier modification
theorems are used to prove the avoidance principle. In Section 7, we show
that our definition of weak set flow (Definition 2) agrees with Ilmanen’s
original definition. In Section 8, we show that there is a biggest weak set
flow with any given initial set, and we prove (under mild hypotheses) that
this biggest flow coincides with the level set flow. In Sections 9 and 10, we
show that limits of weak set flows and boundaries of level set flows are weak
set flows. In Section 11, we explain how the discussion in this paper extends
to motion by mean curvature plus an ambient vectorfield. In Section 12, we
present the basic facts about surfaces that move in one direction under the
flow. In Section 13, we consider varifolds flowing by mean curvature plus an
ambient vectorfield, and we show that the support of such a varifold flow
is a weak set flow. In the appendix, we give a simple proof of a version of
Ilmanen’s interpolation theorem, a key tool in the proof of the avoidance
theorem.

2. Basic definitions

Definition 1. Let N be a smooth Riemannian manifold. A family t ∈
[a, b] 7→ K(t) of closed subsets of N is called a smooth barrier in N pro-
vided it is a smooth, one-parameter family of closed regions with smooth
boundary. Equivalently, it is a smooth barrier provided there exists a smooth
function f : N × [a, b] → R such that K(t) = {x : f(x, t) ≤ 0} and such that



✐

✐

“2-White” — 2023/9/15 — 15:08 — page 34 — #4
✐

✐

✐

✐

✐

✐

34 O. Hershkovits and B. White

∇f(x, t) is nonzero at all points of ∂K(t). We say that the barrier is com-
pact if ∪t∈[a,b]K(t) is a compact subset of N , or, equivalently, if

K := {(p, t) : t ∈ [a, b], p ∈ K(t)}

is a compact subset of N ×R.

If t ∈ [a, b] 7→ K(t) is a smooth barrier and if x ∈ ∂K(t), we let νK(x, t)
be the unit normal to ∂K(t) that points out from K(t), we let HK(x, t)
denote the dot product of νK(x, t) and the mean curvature vector of ∂K(t)
at x, and we let vK(x, t) denote the normal velocity of τ 7→ ∂K(τ) at (x, t)
in the direction of νK . In terms of a function f as in Definition 1,

(1)

νK =
∇f

|∇f |
,

HK = −Div

(
∇f

|∇f |

)
,

vK = −
1

|∇f |

∂f

∂t
.

Alternatively, we can describe vK as follows. Let I ⊂ R be an interval con-
taining t and γ : I → N be a smooth map such that γ(t) = x and such that
γ(τ) ∈ ∂K(τ) for all τ ∈ I. Then

vK(x, t) = γ′(t) · νK(x, t).

For x ∈ ∂K(t), we define ΦK = ΦK(x, t) by

ΦK = vK −HK .

Thus ΦK ≤ 0 everywhere if and only if t 7→ ∂K(t) is a subsolution of mean
curvature flow, and ΦK ≥ 0 if and only it is a supersolution.

For example, let λ > 0, and for t < 0, let

K(t) = {x ∈ Rm+1 : |x| ≥ (−λt)1/2}.

Thus ∂K(t) is the sphere of radius (−λt)1/2 centered at the origin. At a
point x ∈ ∂K(t), vK(x, t) = 1

2λ
1/2|t|−1/2 and HK(x, t) = m(λ|t|)−1/2. Con-

sequently, ΦK is positive, zero, or negative according to whether λ is greater
than, less than, or equal to (2m)1/2.
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Definition 2. Let Z be a closed subset of N × [T0,∞), and for each t ∈
[T0,∞), let

Z(t) := {x ∈ N : (x, t) ∈ Z}.

We say that Z is a weak set flow (for mean curvature flow) with starting
time T0 provided the following holds: if

t ∈ [a, b] 7→ K(t)

is a smooth compact barrier with a ≥ T0, if K(t) is disjoint from Z(t) for
all t ∈ [a, b), and if p is in the intersection of K(b) and Z(b), then p ∈ ∂K(b)
and

ΦK(p, b) ≥ 0.

If the starting time is not specified, we take it to be 0.
For example, consider a smooth barrier t ∈ [0, T ] 7→ K(t). Then K is a

weak set flow if and only if ΦK ≤ 0 at every (p, t) with p ∈ ∂K(t). Similarly,
consider a smooth one-parameter family t ∈ [0, T ] 7→M(t) of smooth, prop-
erly embedded hypersurfaces in N . Then t 7→M(t) is a weak set flow if and
only it is a classical mean curvature flow. (These facts follow easily from the
definition of weak set flow.)

Note that if Z is a weak set flow and a ∈ R, then

Z̃(t) :=

{
Z(t) if t ≤ a,

∅ if t > a

is also a weak set flow. Thus weak set flows are allowed to suddenly vanish
at any time.

Definition 2 differs from Ilmanen’s original definition, but we will show
that the two definitions are equivalent in Section 7.

3. Elementary properties of weak set flows

Theorem 3. Let m = dimN − 1 and c > 2m. Given p ∈ N , there exists
an ϵ > 0 with the following property.

(i) If 0 < δ ≤ ϵ and if 0 < τ < δ2/c, then

t ∈ [0, τ ] 7→ K(t) := {x : dist(x, p) ≤ (δ2 − ct)1/2}

is a smooth compact barrier, and ΦK(x, t) < 0 for all t ∈ [0, τ ] and
x ∈ ∂K(t).
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(ii) If Z : [T0,∞) 7→ Z(t) is a weak set flow in N , then

f(t)2 + ct

is a non-decreasing function of t ∈ [T0,∞), where

f(t) = min{ϵ, dist(Z(t), p)}.

Proof. For r > 0, let B(r) = {x : dist(x, p) ≤ r}. Choose ϵ > 0 so that for
r ∈ (0, ϵ], the geodesic sphere ∂B(r) is smooth and compact, and

(2) H(B(r)) > −
c

2r
.

(This is possible since H(B(r)) = −(m/r) + o(r).) Assertion (i) follows im-
mediately.

Suppose Assertion (ii) is false. Then there exist T < T + τ such that
f(T )2 + cT is greater than f(T + τ)2 + c(T + τ). That is,

f(T )2 > f(T + τ)2 + cτ.

By relabeling, it suffices to consider the case T = 0:

f(0)2 > f(τ)2 + cτ.

Thus f(τ) < f(0) ≤ ϵ, so f(τ) = dist(Z(t), p). Choose δ with with f(0) >
δ > (f(τ)2 + cτ)1/2. Thus

(3) min{ϵ, dist(Z(0), p)} > δ >
(
dist(Z(τ), p)2 + cτ

)1/2
.

Define K(·) by

t ∈ [0, τ ] 7→ K(t) := B((δ2 − ct)1/2).

Note by (3) that the radius of the ballK(t) is strictly between 0 and δ < ϵ for
all t ∈ [0, τ ]. Thus K is a smooth compact barrier. By Assertion (i), ΦK < 0
at all points of ∂K(·). On the other hand, from (3) we see that K(t) and
Z(t) are disjoint at time 0 but not at time τ , a contradiction. □

Corollary 4. Suppose T > T0.

(i) If p ∈ Z(T ), then dist(Z(t), p)2 ≤ c(T − t) for t < T close to T .
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(ii) If u : N ×R → R is continuous, then

ũ(T ) ≥ lim sup
t↑T

ũ(t),

where ũ(t) := infx∈Z(t) u(x, t).

Proof. In the notation of Theorem 3, f(T ) = 0, so f(t)2 + ct ≤ CT for t ≤ T ,
and therefore

min{ϵ, dist(Z(t), p)}2 = f(t)2 ≤ c(T − t),

which proves Assertion (i).
To prove Assertion (ii), let p ∈ Z(T ). By Assertion (i), if t < T is suf-

ficiently close to T , then there exists a point p(t) ∈ Z(t) closest to p, and
p(t) → p as t→ T . Now ũ(t) ≤ u(p(t), t), so

lim sup
t↑T

ũ(t) ≤ lim sup
t↑T

u(p(t), t) = u(p, T ).

Assertion (ii) follows by taking the infimum over all p ∈ Z(T ). □

Theorem 5. For every r > 0, λ ∈ R, and positive integer n, there is a
constant h = h(r, λ, n) > 0 with the following property. Suppose that N is a
smooth Riemannian n-manifold, that R > r, that the geodesic ball B(p,R)
in N is compact, and that the Ricci curvature of N is ≥ λ on B(p,R). If
t ∈ [0, T ] 7→ Z(t) is a weak set flow in N and if dist(Z(0), p) > R, then

(*) dist(Z(t), p) > R− ht

for all t ∈ [0, T ] with t ≤ (R− r)/h.

Proof. Let H be a complete n-dimensional manifold that has the same di-
mension as N , that has constant sectional curvature, and that has Ricci
curvature equal to the minimum of 0 and λ. Let h > 0 be the mean curva-
ture of a sphere of radius r/2 in H.

Suppose, contrary to the theorem, that (15) fails for some time t ≤
(R− r)/h. Let τ be the first such time. By Corollary 4 (applied to ũ(t) :=
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dist(p, Z(t))),

dist(Z(τ), p) = R− hτ.

Since 0 < τ ≤ (R− r)/h,

r ≤ dist(Z(τ), p) < R.

Let q be a point in Z(τ) with dist(p, q) = dist(p, Z(τ)) = R−mτ . Let γ be
a unit-speed, shortest geodesic from p to q, prolonged to be a geodesic of
length R:

γ : [0, R] → N,

γ(0) = p,

γ(R− hτ) = q.

Let

K : t ∈ [0, τ ] 7→ K(t) := B(γ(R− ht− r/2), r/2).

Since γ is length minimizing on [0, R− hτ ], it follows that the function

(x, y) ∈ N ×N 7→ dist(x, y)

is smooth in a small neighborhood of (x, y) if x and y are points in γ((0, R−
hτ)).

Thus K is smooth in a spacetime neighborhood of (q, τ).
Note that K(t) is disjoint from Z(t) for t < τ and that K(τ) ∩ Z(τ) =

{q}.
Thus

ΦK(q, τ) := vK(q, τ)−HK(q, τ) ≥ 0,

so vK(q, τ) ≥ HK(q, τ).1 However, vq = −h, and HK(q, τ) > −h by mean
curvature comparison (see [10, Lemma 7.1.2] or [4, Theorem 1.2.2]). Thus
vK(q, τ) < HK(q, τ), a contradiction. □

Theorem 6 (Ilmanen [7], Theorem 6.4). Suppose that Z : [0,∞) 7→
Z(t) is a weak set flow in a complete Riemannian n-manifold with Ricci

1To conclude above that ΦK(q, τ) ≥ 0 using the definition of weak set flow, the
barrier K should be smooth everywhere. However, it suffices for K to be smooth
in a spacetime neighborhood of (q, τ). See Theorem 8.
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curvature bounded below by λ. Then

Y (t) ⊂ {x : dist(x, Y (0)) ≤ r + ht}

for all t > 0. Here r can be any positive number, and h = h(r, λ, n) is as in
Theorem 5.

In particular, if Z(0) is empty, then Z(t) is empty for all t, and if Z(0)
is compact, then ∪t≤TZ(t) is compact for T <∞.

Proof. If dist(p, Y (0)) > r + ht, then dist(p, Y (t)) ≥ r, and so p /∈ Y (t).
Thus if p ∈ Y (t), then dist(p, Y (0)) ≤ r + ht. □

The “in particular” assertions of Theorem 6 are false (in general) with-
out the lower bound on Ricci curvature. For example, let Σ be a compact
manifold with Riemannian metric σ, and let N = R× Σ with the com-
plete metric dx2 + (exp(−x− x3/3))2σ. Then t 7→M(t) := {tan t} × Σ is a
mean curvature flow with M(0) compact and ∪t∈[0,π/2]M(t) noncompact,
and t 7→M(t− π/2) is a mean curvature flow with M(t) empty for t = 0
but nonempty for t ∈ (0, π).

4. Barrier modification

Lemma 7. Suppose that U is an open subset of N , that t ∈ [a, b] 7→ K(t)
is a smooth barrier in U , and that p ∈ U ∈ ∂K(b). Then there is â ∈ [a, b)
and a smooth compact barrier

t ∈ [â, b] 7→ K̂(t)

in U such that

K̂(t) ⊂ interiorK(t) for t ∈ [â, b),

K̂(b) ∩ ∂K(b) = {p}, and

ΦK̂(p, b) = ΦK(p, b).

Proof. Let f : U × [a, b] → R be as in Definition 1. By postcomposing with
a smooth bounded function, we can assume that f is bounded. Let ϕ : U ×
[a, b] → R be a smooth proper function such that ϕ vanishes to infinite order
at (p, b) and such that ϕ > 0 at all other points. By Sard’s Theorem, almost
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every c is a non-critical value of

(x, t) ∈ (U × [a, b]) \ (p, b) 7→ −
f(x, b)

ϕ(x, b)
.

Choose such a c > 0, and let

f̂(q, t) := f(q, t) + cϕ(q, t).

Since f is bounded and ϕ is proper,

{(x, t) ∈ U × [a, b] : f̂(x, t) ≤ 0}

is compact. By choice of c, ∇f̂ does not vanish anywhere on {x ∈ U :
f̂(x, b) = 0}. Now choose â ∈ [a, b) sufficiently close to a that ∇f̂ does not
vanish anywhere on {(x, t) : t ∈ [â, b], f̂(x, t) = 0}. □

Theorem 8 (Noncompact, nonsmooth barriers). Suppose that f :
N × [a, b] → R is continuous, and let K(t) = {x : f(x, t) ≤ 0} for t ∈ [a, b].
Suppose that Z is a weak set flow in N with starting time T0 < b, that Z(t)
is disjoint from the interior of K(t) for all t < b, and that p ∈ Z(b) ∩ ∂K(b),

If f is smooth in a spacetime neighborhood of (p, b) and if ∇f(p, b) is
nonzero, then ΦK(p, b) ≥ 0.

Proof. Choose U and ϵ small enough that t ∈ [b− ϵ, b] 7→ K(t) ∩ U is a
smooth barrier in U . By Lemma 7, there is smooth compact barrier t ∈
[â, b] 7→ K̂(t) ⊂ U ∩K(t) such that p ∈ ∂K̂(b) and ΦK̂(p, b) = ΦK(p, b). By
definition of weak set flow, ΦK̂(p, b) ≥ 0. □

Theorem 9 (Barrier Modification Theorem). Suppose that t ∈
[a, b] 7→ K(t) is a smooth compact barrier in N , that p ∈ ∂K(b), and that

ΦK(p, b) := vK(p, b)−HK(p, b) < η.

Then there is an â ∈ [a, b) and a smooth compact barrier t ∈ [â, b] 7→ K̂(t)
with the following properties:

(1) K̂(t) is contained in K(t) for all t ∈ [â, b].

(2) p ∈ ∂K̂(b).

(3)

lim
x∈∂K(b), x→p

dist(x, K̂(b))

dist(x, p)2
> 0.
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(4) ΦK̂(x, t) := vK̂(x, t)−HK̂(x, t) < η for all (x, t) with t ∈ [â, b] and x ∈

∂K̂(t).

Proof. It suffices to consider the case [a, b] = [a, 0]. Let f : N × [a, 0] → R
be as in Definition 1. By multiplying f by a constant, we can assume that
|∇f(p, 0)| = 1. We can also assume that f is proper, i.e., that f(pi) → ∞
provided pi is a divergent sequence in N .

Let δ(·) be a smooth bounded function on N that is positive on N \ {p}
and that coincides with 1

2 dist(·, p)
2 in a neighborhood of p. Let

f̃ : N × [a, 0] → R,

f̃(x, t) = f(x, t) + c (δ(x)− t) ,

and let

K̃(t) = {(x, t) : f̃ ≤ 0},

where c is a positive constant that will be specified below.
Since 0 is a regular value of f(·, 0), there is an ϵ > 0 such that 0 is a regu-

lar value of f̃(·, 0) provided c ∈ [0, ϵ]. Fix a c ∈ (0, ϵ] such that ΦK̃(p, 0) < η.
(This is possible since ΦK̃(p, 0) depends continuously on c.)

Since f̃ ≥ f with strict inequality except at (p, 0), we see that

(4) K̃(t) ⊂ interior(K(t)) for t ∈ [a, 0)

and

K̃(0) \ interior(K(0)) = {p}.

Note also that

lim
x∈∂K̃(0), dist(x,p)→0

dist(x, ∂K(0))

dist(x, p)2
= c.

Let ψ : N → R be a smooth, bounded, nonnegative function such that
ψ vanishes on an open set U containing p and such that ψ > 0 at all points
of the set

Σ := {x ∈ ∂K̃(0) : ΦK̃(x, 0) ≥ η}.

Now let

f̂ : N × [a, 0] → R,

f̂(x, t) = f̃(x, t) + tΛψ(x),
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and

K̂(t) = {x : f̂(x, t) ≤ 0} (t ∈ [a, 0]),

where Λ is a positive constant that will be specified below.
Note that f̂(·, 0) = f̃(·, 0), so K̂(0) = K̃(0). Thus for x ∈ ∂K̂(0),

HK̂(x, 0) = HK̃(x, 0)

and

vK̂(x, 0) = vK̃(x, 0)− Λw(x)

(by (1)), where

w(x) =
ψ(x)

|∇f̂(x, 0)|
=

ψ(x)

|∇f̃(x, 0)|
.

Consequently,

ΦK̂(x, 0) = ΦK̃(x, 0)− Λw(x).

Thus if x /∈ Σ, then

ΦK̂(x, 0) ≤ ΦK̃(x, 0) < η,

and if x ∈ Σ, then

ΦK̂(x, 0) < (max
y∈Σ

ΦK̃(y, 0))− Λ(min
Σ
w).

Choose Λ > 0 large enough that this last expression is < η. Then

ΦK̂(x, 0) < η (x ∈ ∂K̂(0)).

Since

K̂(0) \ U ⊂ interior(K(0)),

there is an â ∈ [a, 0) such that

K̂(t) \ U ⊂ interior(K(t)) for all t ∈ [â, 0].

On the other hand, since ψ vanishes on U ,

K̂(t) ∩ U = K̃(t) ∩ U ⊂ interior(K(t)) for all t ∈ [â, 0)

by (4). Thus

K̂(t) ⊂ interiorK(t) for all t ∈ [â, 0).

Finally, since 0 is a regular value of f̂(·, 0) and since ΦK̂(·, 0) < η every-

where on ∂K̂(0), we can choose â close enough to 0 to guarantee that 0 is a
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regular value of f̂(·, t) for all t ∈ [â, 0] and that ΦK(·, t) < η everywhere on
∂K̂(t) for all t ∈ [â, 0]. □

5. Bounds on the distance function

Lemma 10. Suppose that N is a smooth Riemannian manifold, that Z(·)
is a weak set flow in N with starting time T0, and that

t ∈ [a, b] 7→ K(t)

is a smooth barrier with a ≥ T0. Suppose that λ ∈ R, that

t ∈ [a, b] 7→ e−λt dist(K(t), Z(t))

attains a positive minimum at time t = b, and that there is a geodesic

γ : [0, L] → N

parametrized by arclength such that

p := γ(0) ∈ K(b),

q := γ(L) ∈ Z(b), and

L = dist(K(b), Z(b)).

If Ric(γ′, γ′) > λ on [0, L], then

ΦK(p, b) > 0.

Proof. We may assume that b = 0. Unfortunately, the signed distance func-
tion to ∂K(0) need not be smooth at the point q = γ(L). (It is smooth in a
neighborhood of each γ(s) with s ∈ [0, L).) We will use the Barrier Modifi-
cation Theorem 9 to get around the lack of smoothness.

Let λ0 be the minimum of Ric(γ′, γ′) on [0, L]. Thus λ0 > λ. We will
prove the lemma by proving that

(5) ΦK(p, 0) ≥ (λ0 − λ)L.

Suppose that (5) does not hold. Then by the Barrier Modification Theo-
rem 9, there is a smooth, compact barrier

t ∈ [−ϵ, 0] 7→ K̂(t)
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such that:

(6)

K̂(t) ⊂ K(t) (t ∈ [−ϵ, 0]),

K̂(t) ⊂ interior(K(t)) (t < 0),

K̂(0) ∩ ∂K(0) = {p},

lim inf
x∈∂K(0), x→p

dist(x, K̂(0))

dist(x, p)2
> 0,

ΦK̂(p, 0) < (λ0 − λ)L.

Note that dist(·, K̂(0)) is smooth on an open set containing q, and thus

(t, x) 7→ dist(x, eλtK̂(t))

is smooth on an open spacetime set containing (q, 0). For t ∈ [−ϵ, 0], let

K̃(t) = {x ∈W : e−λt dist(x, ∂K̂(t)) ≤ L}.

By (6), Z(t) ∩W and K̃(t) are disjoint for t < 0 and Z(0) ∩ K̃(0) = {q}.
Thus

(7) ΦK̃(q, 0) ≥ 0

by Theorem 8.
A standard computation (cf. [13, Lemma 12.2]) shows that

(8)
HK̃(q, 0) ≥ HK̂(p, 0) +

∫ L

0
Ricγ(s)(γ

′(s), γ′(s)) ds

≥ HK̂(p, 0) + λ0L.

Note also that

(9) vK̃(q, 0) = vK̂(p, 0) + λL.

By (7), (8), and (9),

0 ≤ ΦK̃(q, 0)

= vK̃(q, 0)−HK̃(q, 0)

≤ vK̂(p, 0)−HK̂(p.0) + (λ− λ0)L

= ΦK̂(p, 0) + (λ− λ0)L,

contradicting (6). □
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Proposition 11. Suppose t ∈ [0, T ] 7→ K(t) is a compact smooth barrier
such that ΦK(p, t) ≤ 0 for all t ∈ [0, T ] and p ∈ ∂K(t). Suppose that η > 0,
that λ ∈ R, that the set

Q := {(p, t) : t ∈ [0, T ], dist(p,K(t)) ≤ eλtη}

is compact, and that λ is a strict lower bound for Ricci curvature on
∪t∈[0,T ]Q(t). If t ∈ [0, T ] 7→ Z(t) is a weak set flow and if

dist(Z(0),K(0)) > η,

then

dist(Z(t),K(t)) > eλtη

for all t ∈ [0, T ].

Proof. Suppose not. Then Q ∩ Z is a nonempty compact subset of space
time. Thus there is first time t such that Q(t) ∩ Z(t) is nonempty. By hy-
pothesis, t > 0. Let q ∈ Z(t) ∩Q(t):

dist(q,K(t)) ≤ eλtη.

Thus dist(q,K(t)) = eλtη by Corollary 4 (applied to the function u(x, τ) =
dist(x,K(τ))). Let p ∈ K(t) be a point closest to q. By Lemma 10,
ΦK(p, t) > 0, a contradiction. □

Corollary 12. In Proposition 11, if t 7→ Z(t) is a weak set flow in N such
that dist(Z(0),K(0)) ≥ η, then dist(Z(t),K(t)) ≥ eλtη for all t ∈ [0, T ].

Proof. By Proposition 11,

dist(Y (t), V (t)) > eλtδ (t ∈ [0, T ])

holds for all δ with 0 < δ < η. The result follows immediately. □

Remark 13. Proposition 11 and Corollary 12 remain true if t ∈ [0, T ] 7→
K(t) is a smooth mean curvature flow of closed hypersurfaces. The proofs
are the same except for minor changes of notation. Furthermore, in this case,
one sees from the proof that it is not necessary for the flow to be smooth
at the initial time: K can be any compact subset of N × [0, T ] such that
t ∈ (0, T ] 7→ K(t) is a smooth mean curvature flow.



✐

✐

“2-White” — 2023/9/15 — 15:08 — page 46 — #16
✐

✐

✐

✐

✐

✐

46 O. Hershkovits and B. White

Theorem 14. Suppose t ∈ [0, T ] 7→ Y (t) and t ∈ [0, T ] 7→ Z(t) are weak set
flows in a smooth Riemannian manifold N . Suppose η > 0 and λ are such
that the set

Y η
λ := ∪t∈[0,T ]{p : dist(p, Y (t)) ≤ eλtη}

is compact. Suppose also that λ is a lower bound for Ricci curvature of N
on the set Y η

λ . If

(10) dist(Z(t), Y (t)) ≥ eλtη

holds for t = 0, then it holds for all t ∈ [0, T ].

Proof. Case 1: λ is a strict lower bound for Ricci curvature on Y η
λ . Let T be

the set of times τ ∈ [0, T ] such that (10) holds for all t ∈ [0, τ ]. By hypothesis,
0 ∈ T . Thus T is either [0, b] or [0, b) where b = sup T . Let y ∈ Y (b) and
z ∈ Z(b). Then for t < b,

eλtη < dist(Y (t), Z(t))

≤ dist(Y (t), y) + dist(y, z) + dist(z, Z(t)).

Taking the limit as t ↑ b gives (see Corollary 4)

eλbη ≤ dist(y, z).

Taking the infimum over y ∈ Y (b) and z ∈ Z(b) gives eλbη ≤
dist(Y (b), Z(b)). Thus T = [0, b].

Hence it suffices to show that if τ < T is in T , then τ + ϵ ∈ T for some
ϵ > 0. Consider such a time τ . Let

J = {p ∈ N : dist(p, Y (τ)) ≥ eλτη}.

Since τ ∈ T , we see that Z(τ) ⊂ J . By Theorem A1, there exists a closed
C1 hypersurface M in N such that M separates Y (τ) and J and such that

dist(Y (τ),M) = dist(M,J) =
1

2
dist(Y (τ), J) =

1

2
eλτη.

Existence of such a hypersurface that is C1,1 was sketched in [8, Lemma 4G]
and proved in [1]. (See also [6].) Since existence of such an M that is merely
C1 suffices for our application and is simpler to prove, we provide an exis-
tence proof in the appendix.



✐

✐

“2-White” — 2023/9/15 — 15:08 — page 47 — #17
✐

✐

✐

✐

✐

✐

Avoidance for set-theoretic solutions 47

By the Local Regularity Theorem [12], there exists a smooth mean cur-
vature flow

t ∈ (τ, τ + ϵ] 7→M(t)

such that M(t) converges in C1 to M as t→ τ . Accordingly, we set
M(τ) =M .

Let

M̃ := ∪t∈[τ,τ+ϵ]{p : dist(p,M(t)) ≤
1

2
etη}.

By replacing ϵ by a smaller ϵ > 0, we can assume that [τ, τ + ϵ] ⊂ [0, T ], that

M̃ is compact, and that λ is a strict lower bound for Ricci curvature of N
on M̃ .

Consequently,

dist(Y (t),M(t)) ≥ eλ(t−τ) dist(Y (τ),M(τ))

= eλ(t−τ) 1

2
eλτη

=
1

2
eλtη

and

dist(Z(t),M(t)) ≥ eλ(t−τ) dist(Z(τ),M(τ))

≥ eλ(t−τ) dist(J,M)

= eλ(t−τ) 1

2
eλτη

=
1

2
eλtη.

for t ∈ [τ, τ + ϵ] by Corollary 12 and Remark 13, with the time interval
[τ, τ + ϵ] in place of [0, T ]. Since M(t) separates Y (t) and Z(t),

dist(Y (t), Z(t)) ≥ dist(Y (t),M(t)) + dist(M(t), Z(t))

≥ eλtη

for t ∈ [τ, τ + ϵ]. Thus [τ, τ + ϵ] ⊂ T . This proves the theorem in Case 1.
Case 2: λ is any lower bound for Ricci curvature on Y η

λ . Taking any
λ′ < λ, then Y η

λ′ ⊂ Y η
λ , and thus λ′ is a strict lower bound for Ricci curvature
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on Y η
λ′ . Thus by Case 1,

dist(Y (t), Z(t)) ≥ eλ
′tη

for all t ∈ [0, T ]. Since this inequality holds for every λ′ < λ, it also holds for
λ′ = λ. □

Theorem 15. Suppose N is a complete Riemannian manifold with Ricci
curvature bounded below by λ. Suppose t ∈ [0,∞) 7→ Y (t) and t ∈ [0,∞) 7→
Z(t) are weak set flows with Y (0) compact. Then

t ∈ [0, T ] 7→ e−λt dist(Y (t), Z(t))

is non-decreasing.

Proof. Let 0 < T <∞. By Theorem 6, ∪t≤TY (t) is a compact subset of
N × [0, T ]. By Theorem 14,

(11) dist(Y (t), Z(t)) ≥ eλt dist(Y (0), Z(0)).

for t ≤ T . (Note that the hypotheses of Theorem 14 are satisfied for every
η > 0.) Since T is arbitrary, (11) holds for all t ≥ 0. The same argument
shows that

dist(Y (τ + t), Z(τ + t)) ≥ eλt dist(Y (τ), Z(τ))

for 0 ≤ τ < t. □

6. The avoidance theorem

Theorem 16. Let t ∈ [0, T ] 7→ Y (t) and t ∈ [0, T ] 7→ Z(t) be weak set flows
in N such that C := ∪t∈[0,T ]Y (t) is compact. If Y (t) and Z(t) are disjoint
at time 0, then they are disjoint at every time t ∈ [0, T ].

Proof. Let U be an open set containing C with U compact. Let λ be a lower
bound for Ricci curvature on U , and choose η with 0 < η < dist(Y (0), Z(0))
sufficiently small that

∪t∈[0,T ]{x : dist(x, Y (t)) ≤ eλtη}

lies in U . Then dist(Y (t), Z(t)) ≥ eλtη for all t ∈ [0, T ] by Theorem 14. □
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7. Equivalent definitions of weak set flow

A strong mean-curvature-flow barrier, or strong barrier for short, is
a smooth compact barrier t ∈ [a, b] 7→ K(t) such that ΦK(x, t) < 0 for all
(x, t) with x ∈ ∂K(t) and t ∈ [a, b]. (Recall that the barrier K is said to be
compact if ∪tK(t) is compact, or, equivalently, if K is a compact subset of
N ×R.)

Theorem 17. Let Z be a closed subset of N × [T0,∞). The following are
equivalent:

(1) Z is a weak set flow (as in Definition 2) with starting time T0.

(2) If t ∈ [a, b] 7→ K(t) is a strong barrier with a ≥ T0 and if K(a) is disjoint
from Z(a), then K(t) is disjoint from Z(t) for all t ∈ [a, b].

(3) If t ∈ [a, b] 7→ K(t) is a strong barrier with a ≥ T0 and if K(a) is disjoint
from Z(a), then K(t) is disjoint from Z(t) for all t ∈ [a, b).

(4) If t ∈ [a, b] 7→M(t) is a smooth mean curvature flow of closed, embedded,
hypersurfaces with a ≥ T0, and if M(0) is disjoint from Z(0), then M(t)
is disjoint from Z(t) for all t ∈ [a, b].

Proof. Trivially (1) implies (2).
To see that (2) implies (1), suppose to the contrary that (2) holds but

that (1) fails. Then there is a smooth compact barrier [a, b] 7→ K(t) such
that Z(t) ∩K(t) is empty for t ∈ [a, b) and such that K(t) ∩ Z(t) contains
a point p such that

p ∈ interior(K(b)), or

p ∈ ∂K(b) and ΦK(b) < 0.

By Corollary 4 (applied to the function u(x, t) = dist(x,N \K(t)))2 p must
be in ∂K(b), and so ΦK(b) < 0. By the Barrier Modification Theorem 9,
there is a strong barrier t ∈ [b− ϵ, b] 7→ K̂(t) such that K̂(t) ⊂ K(t) for all
t ∈ [b− ϵ, b] and such that p ∈ ∂K̂(b). But that violates (2).

Thus we have proved that (1) and (2) are equivalent.
Trivially (2) implies (3). The reverse implication holds because any

strong barrier t ∈ [a, b] 7→ K(t) can be prolonged to a strong barrier on a
slightly larger time interval [a, b+ ϵ].

2Corollary 4 was proved for weak set flows. But Corollary 4 is based on Theo-
rem 3, and the only barriers in the proof of that result were strong barriers. Thus
Theorem 3 and Corollary 4 also hold for flows having Property (2).
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The Avoidance Theorem 16 shows that (1) implies (4) (since any smooth
mean curvature flow is a weak set flow).

It remains only to show that (4) implies (2), or, equivalently, that failure
of (2) implies failure of (4). Thus suppose that (2) does not hold, i.e., that
that there is a strong barrier t ∈ [a, b] 7→ K(t) with a ≥ T0 such that K(a)
is disjoint from Z(a) but K(t) ∩ Z(t) is nonempty for some time t ∈ (a, b].
By relabeling, we may assume that b is the first such time.

By replacing a by an a′ < b sufficiently close to b, we may suppose that
the mean curvature flow starting from ∂K(a) remains smooth and compact
for time at least b− a. For t ∈ [a, b], letM(t) be the result of flowingM(0) =
∂K(a) for time t− a. Let K̂(t) be the closed region bounded by M(t) such
that

K(t) ⊂ K̂(t).

Since K(b) ∩ Z(b) is nonempty and since K(b) ⊂ K̂(b), we see that K̂(b) ∩
Z(b) is nonempty. By Lemma 18 below, the first contact of K̂(t) and Z(t)
occurs at a point in ∂K̂(t), that is, a point in M(t). Thus t ∈ [a, b] 7→M(t)
is a smooth mean curvature flow that is disjoint from Z at time a but not
at some later time, which violates (4). □

Lemma 18. Suppose that U is an open subset of N and that p ∈ U .

(1) For all sufficiently small ϵ > 0, there is a mean curvature flow

t ∈ [0, ϵ] 7→M(t)

of smoothly embedded, closed hypersurfaces in U such that p ∈M(ϵ).

(2) Suppose Z has Property (4) in Theorem 17. If T > 0 and if p ∈ Z(T ),
then Z(t) ∩ U is nonempty for all t ≤ T sufficiently close to T .

The second assertion implies that at the first time Z(·) bumps into a
smooth compact barrier, the contact occurs only at the boundary of the
barrier.

Proof. Let R > 0 be very small and let q be point with dist(p, q) = R. Choose
R sufficiently small that the geodesic spheres Sr := ∂B(q, r) with R/2 ≤ r ≤
2R are smooth and compact and lie in U . Let δ > 0 be such that, under mean
curvature flow, each of those spheres remains smooth and compact and in U
during the time interval [0, δ]. For t ∈ [0, δ], let Sr(t) be the result of flowing
Sr for time t. Choose ϵ ∈ (0, δ] sufficiently small that q lies in the region
between SR/2(ϵ) and S2R(ϵ). Thus there will be a unique r ∈ (R/2, 2R) such
that q ∈ Sr(ϵ). Now let M(t) = Sr(t) for t ∈ [0, ϵ]. This proves (1).
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To prove (2), let M(·) and ϵ by as in (1). Consider the mean curvature
flow

t ∈ [T − ϵ, T ] 7→ Σ(t) :=M(t− T ).

Since p ∈ Z(T ) ∩ Σ(T ), we see that Z(T − ϵ) ∩ Σ(T − ϵ) is nonempty since
Z has Property (4) in Theorem 17. Thus Z(T − ϵ) ∩ U is nonempty since
Σ(T − ϵ) ⊂ U . □

8. The biggest flow

Theorem 19. Let N be a smooth Riemannian manifold and let C be a
closed subset of N . There exists a weak set flow Y in N × [0,∞), called the
biggest flow generated by C, such that

1) Y (0) = C, and

2) If Z is a weak set flow in N × [0,∞) with Z(0) ⊂ C, then Z(t) ⊂ Y (t)
for all t ≥ 0.

Proof. Let

Z := {Z is a weak set flow with Z(0) ⊂ C}.

Let Y be the closure of
⋃

Z∈Z Z.
Note that C × {0} is an element of Z. Thus C ⊂ Y (0). Shrinking ball

barriers (see Theorem 3) imply that Y (0) ⊂ C. Thus Y (0) = C.
It remains to check that Y is indeed a weak set flow. By Theorem 17,

it suffices to check that if t ∈ [a, b] 7→ K(t) is a strong barrier with a ≥ 0
and with Y (a) ∩K(a) = ∅, then Y (t) ∩K(t) is empty for every t ∈ (a, b).
Choose 0 < ϵ < dist(Y (a),K(a)) sufficiently small that the spacetime set

(12) Kϵ := {(p, t) : t ∈ [a, b], dist(p,K(t)) ≤ ϵ}

is a strong barrier. Let Z ∈ Z. Then

dist(Z(a),K(a)) ≥ dist(Y (a),K(a)) > ϵ,

so Z(a) is disjoint from Kϵ(a). Consequently, Z(t) is disjoint from Kϵ(t) for
each t ∈ [a, b]. That is,

dist(Z(t),K(t)) > ϵ for all t ∈ [a, b].

Consequently,

dist(Y (t),K(t)) ≥ ϵ for all t ∈ (a, b).
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This completes the proof that Z is a weak set flow. □

Definition 20. If C is a closed subset of N and if t ≥ 0, we let

Ft(C) = Y (t)

where Y ⊂ N × [0,∞) is the biggest flow generated by C.

Proposition 21. Ft+s(C) = Ft(Fs(C)) for all s, t ≥ 0.

Proof. Suppose that t ∈ [0,∞) 7→ Y (t) is a weak set flow and that T > 0.
Then t ∈ [0,∞) 7→ Y (t− T ) is a weak set flow. Also, if t ∈ [0,∞) 7→ Z(t) is
a weak set flow and if Z(0) ⊂ Y (T ), then

t ∈ [0,∞) 7→

{
Y (t) if t ∈ [0, T ],

Z(t− T ) if t > T

is a weak set flow. (These facts follow easily from the definition of weak set
flow.) Theorem 21 is an immediate consequence. □

We end this section by a characterization of the biggest flow in terms of
solutions to the level set equation:

(13)
∂u

∂t
= |∇u|Div

(
∇u

|∇u|

)
.

Theorem 22. Let Y ⊂ N × [0, T ] be let U ⊂ N × [0, t] be an open set con-
taining Y . Suppose that there exists a continuous function u : U → R such
that u solves (13) in the viscosity sense, and such that Ya := u−1(a) are
compact for a ∈ (−ϵ, ϵ) and such that Y0 = Y . Then Y (t) = Ft(Y (0)) for
every t ∈ [0, T ].

Proof. Note that Y ⊂ Int(
⋃

a∈(−ϵ/4,ϵ/4) Ya). Letting χ : [−1, 1] → R be a
continuous function such that χ(x) = x for |x| ≤ ϵ/4 and χ(x) = 1 when
|x| ≥ ϵ/2, the relabeling lemma [7, 3.2] implies that v := χ(u) is a solution
of (13) on N × [0, T ]. Now, [7, 6.3] and Theorem 17 imply that for each
a ∈ (−ϵ/4, ϵ/4), Ya is a weak set flow. In particular, Y (t) ⊂ Ft(Y (0)).

Assuming that Y (t) ̸= Ft(Y (0)) for some t ∈ [0, T ], set t0 = inf{t ∈
[0, T ] | Y (t) ̸= Ft(Y (0))}. Note that Lemma 4 implies that Y (t0) =
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Ft0(Y (0)) and that if t > t0 is such that t− t0 is sufficiently small, then

Ft(Y (0)) ⊂ Int


 ⋃

|a|<ϵ/4

Ya(t)


 .

By the definition of t0, there exists some t > t0 and a ̸= 0 such that Ya(t) ∩
Ft(Y (0)) ̸= ∅. But as both Ya and Ft(Y (0)) are compact weak set flows with
Ft0(Y (0)) ∩ Ya(t0) = ∅, this contradicts Theorem 16. □

9. Limits of weak set flows

Definition 23. Suppose (Q, d) is a metric space. We say that a sequence
Zn ⊂ Q of closed subsets Kuratowski-converges to Z ⊂ Q if

Z = {x : lim sup
n

d(x, Zn) = 0} = {x : lim inf
n

d(x, Zn) = 0}.

Note that Kuratowski-convergence Zn → Z is equivalent to: every point
in Z is a limit of a sequence of points pn ∈ Zn, and no point in Q \ Z is
a subsequential limit of such points. Thus two metrics on Q that give the
same topology also give the same notion of Kuratowski-convergence.

If Q is separable and if Zn is a sequence of closed subsets of Q, then, after
passing to a subsequence, dist(·, Zn) converges locally uniformly to a limit
function δ(·) : Q→ [0,∞] (by Arzela-Ascoli), and thus the Zn Kuratowski-
converge to {x : δ(x) = 0}. If Q is complete, then δ(·) = dist(·, Z).

Theorem 24. Let gn be a sequence of Riemannian metrics on N that
converge smoothly to a Riemannian metric g. For n = 1, 2, . . . , let Zn ⊂
N × [0,∞) be a weak set flow (for the metric gn) such that the sequence Zn

Kuratowski-converges to Z. Then Z is a weak set flow for the metric g.

Here the metric space is N × [0,∞) with the spacetime metric

d((x1, t1), (x2, t2)) = max{distg(x1, x2), |t1 − t2|
1/2}.

Note in Theorem 24 that Zn → Z does not imply that Zn(t) → Z(t) for each
t. For example, if Tn ↑ 1, then the shrinking circles

Zn := {(p, t) ∈ R2 × [0, Tn] :
1

2
|p|2 = Tn − t}
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converge to the shrinking circle

Z := {(p, t) ∈ R2 × [0, 1] :
1

2
|p|2 = 1− t}

But Zn(1) = ∅ does not converge to Z(1) = {0}.

Proof of Theorem 24. Let a ≥ 0 and let t : [a, b] 7→ K(t) be a strong barrier
with K(a) disjoint from Z(a). By Theorem 17, it suffices to show that K(t)
and Z(t) are disjoint for each t ∈ (a, b).

Fix a very small ϵ > 0, and let

Kϵ : t ∈ [a, b] 7→ {x ∈ N : distg(x,K(t)) ≤ ϵ}.

In particular, we choose ϵ > 0 small enough so that Kϵ is a strong barrier
(with respect to g) and such that Kϵ(a) is disjoint from Z(a).

For all sufficiently large n, Kϵ is a strong barrier with respect to gn
and Kϵ(a) is disjoint from Zn(a). Thus by Theorem 17, Kϵ(t) is dis-
joint from Zn(t) for all t ∈ [a, b], so lim inf distgn(K(t), Zn(t)) ≥ ϵ. Hence
distg(K(t), Z(t)) ≥ ϵ for all t ∈ (a, b). In particular, K(t) is disjoint from
Z(t) for all t ∈ (a, b). □

Remark 25. The Kuratowski limsup of a sequence of closed sets Zn in
Q is defined to be {x : lim infn dist(x, Zn) = 0}. In Theorem 24, if we do not
assume that the sequence Zn Kuratowski-converges, the Kuratowski limsup
is a weak set flow. The proof is exactly the same.

10. Boundaries

Theorem 26. Suppose C is a closed subset of a Riemannian manifold N .
Let

C := {(x, t) : t ≥ 0, x ∈ Ft(C)}

be the biggest flow generated by C, and let

M = ∂C

Then M is a weak set flow and M(0) = ∂C.

In this section, for a subset Q of N × [0,∞), terms like “interior” and
“boundary” refer to the relative topology in N × [0,∞). Thus interior(Q)
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is the largest subset of Q that is relatively open in N × [0,∞). Correspond-
ingly,

∂Q = Q \ interior(Q).

For example, the interior of N × [0,∞) is (in this context) all of N × [0,∞)
and therefore the boundary is the empty set. Since the C in Theorem 26 is
closed, C = C, and thus ∂C = C \ interior(C).

Proof. Let F be the family of all strong barriers K : t ∈ [a, b] 7→ K(t) such
thatK(a)× {a} lies in the interior of C. LetW = ∪K∈FK. Since eachK ∈ F
is a weak set flow, K ⊂ C (by definition of biggest set flow) and therefore
W ⊂ C.

Also, W is a relatively open subset of N × [0,∞). This follows easily
from the facts that if t ∈ [a, b] 7→ K(t) is a strong barrier, then

(i) K can be prolonged to a strong barrier on a slighty longer time interval
[a, b+ ϵ], and

(ii) t ∈ [a, b] 7→ Kϵ(t) is a strong barrier for all sufficiently small ϵ > 0,
where Kϵ is given by (12).

Using strong barriers consisting of small shrinking balls (as in Theo-
rem 3), one sees that

(14) (interior(C))× {0} ⊂W,

and that

interior(C) ⊂W.

We have shown that W is an open subset of C that contains interior(C).
Thus

W = interior(C).

By (14), M(0) = ∂C.
It remains to show that ∂C is a weak set flow. Let t ∈ [a, b] 7→ K(t) be a

strong barrier with a ≥ 0 such thatK(a) is disjoint fromM(a), i.e., such that
K(a)× {a} is disjoint from ∂C. We may assume that K is connected. Thus
either K(a)× {a} is disjoint from C or K(a)× {a} lies in interior(C) =W .
In the first case, K is disjoint from C since C is a weak set flow. In the
second case, K lies in W = interior(C) by definition of W . In either case, K
is disjoint from ∂C. Thus ∂C is a weak set flow by Theorem 17. □
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11. Mean curvature flow with a transport term

Let N be a smooth Riemannian manifold and let X be a smooth vectorfield
on N . A smooth one-parameter family of hypersurfaces in N is said to be
an X-mean-curvature flow provided the normal component of velocity is
everywhere equal to the mean curvature plus the normal component of X.
If t ∈ [a, b] 7→ K(t) is a smooth barrier and if x ∈ ∂K(t), we let

HX
K(x, t) = HK(x, t) +X · νK(x, t),

ΦX
K(x, t) = vK(x, t)−HX

K(x, t),

and if v is a tangent vector to N , we let

RicX(v, v) = Ric(v, v) + v · ∇vX.

We define a weak set flow for X-mean-curvature flow (or weak
X-flow for short) by replacing ΦK by ΦX

K in Definition 2. With three ex-
ceptions, all the theorems and proofs in this paper remain true provided we
make the following changes:

1) Mean curvature flow, HK , and ΦK are replaced by X-mean curvature
flow, HX

K , and ΦX
K .

2) Lower bounds of the form Ric > λ (or Ric ≥ λ) are replaced by RicX >
λ (or RicX ≥ λ).

3) All of the global theorems in this paper assume that N is complete
with Ricci curvature bounded below. In the case of X-flows, we add
the assumption that |∇X| is bounded.

The extra hypothesis (3) ensures that compact surfaces remain compact
under the flow, and that the empty surface remains empty under the flow.
See Theorem 29 below.

The three exceptions (in which there is something new in the statement
and/or the proof) are Theorems 5, 6, and 15. However, with very slight
modification, those results continue to hold for X-mean-curvature flow:

Theorem 27 (X-flow version of Theorem 5). For every r > 0, λ ∈
R, and positive integer n, there is a constant h = h(r, λ, n) > 0 with the
following property. Suppose that N is a smooth Riemannian n-manifold,
that R > r, that the geodesic ball B(p,R) in N is compact, and that the
Ricci curvature of N is ≥ λ on B(p,R). If t ∈ [0,∞) 7→ Z(t) is a weak set
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flow in N and if dist(Z(0), p) > R, then

(15) dist(Z(t), p) > R− (h+ χ)t for all t ∈ [0, (R− r)/(h+ χ)],

provided |X| ≤ χ on B(p,R).

The proof is almost identical to the proof of Theorem 5.

Corollary 28. If r ≤ δ ≤ R, then

dist(p, Z(t)) > δ for all t ∈ [0, (R− δ)/(h+ χ)].

Theorem 29 (X-flow version of Theorem 6). Suppose that N is a
complete Riemannian manifold with Ricci curvature bounded below, that X
is a smooth vectorfield on N with |∇X| bounded, and that t ∈ [0,∞) 7→ Z(t)
is a weak X-flow in N .

1) If Z(0) is empty, then Z(t) is empty for every t.

2) If Z(0) is compact, then ∪t≤TZ(t) is compact for every T <∞.

Proof of Theorem 29. It suffices to consider the case that N is connected.
Let x0 be a point in N . Since |∇X| is bounded,

c := sup
|X(·)|

max{1, dist(·, x0)}
<∞.

If Q is a closed subset of N , let t ∈ [0,∞) 7→ FX
t (Q) denote the biggest weak

X-flow with FX
0 (Q) = Q.

Let h = h(1, λ, n) be as in Theorem 27, where λ is a lower bound for
Ricci curvature on N .

Let R ≥ 2. On the ball B(x0, 2R), |X| is bounded by 2Rc. Since
dist(x0, ∅) = ∞ > 2R,

dist(x0, Ft(∅)) > R for all t ≥ 0 with t ≤
R

h+ 2Rc
.

by Corollary 28 (with r = 1 and δ = R). Since R ≥ 1,

R

h+ 2Rc
=

1

(h/R) + 2c
≥

1

h+ 2c
.

Thus if we let τ = 1/(h+ 2c),

dist(x0, Ft(∅)) > R for all t ≤ τ .
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Since this holds for every R ≥ 1, we see that FX
t (∅) = ∅ for all t ∈ [0, τ ]. By

iteration, FX
t (∅) = ∅ for all t ≥ 0.

We now prove (2). For r ≥ 0, let Br = B(x0, r) = {x : dist(x, x0) ≤ r}.
Suppose a ≥ 1 and dist(p, x0) ≥ 4a. We now derive a lower bound on the
first time t (if there is one) such that p ∈ FX

t (Ba).
Define R by dist(p, x0) = a+ 3R. Thus R ≥ a ≥ 1.
Now

B(p, 2R) ⊂ B(x0, dist(x0, p) + 2R)) = B(x0, a+ 5R) ⊂ B(x0, 6R).

Thus |X| is bounded above by 6Rc on B(p, 2R).
Now Ba is disjoint from B(p, 2R), so by Corollary 28,

dist(p, FX
t (Ba)) > R for t ≤

R

h+ 6Rc
.

Now
R

h+ 6Rc
=

1

(h/R) + 6c
≥

1

h+ 6c

since R ≥ 1. Thus if T := 1/(h+ 6c), then

p /∈ ∪t∈[0,T ]F
X
t (Ba).

Since this holds for all p with dist(p, x0) ≥ 4a,

∪t∈[0,T ]F
X
t (Ba) ⊂ B4a.

By iteration,

∪t∈[0,kT ]F
X
t (Ba) ⊂ B4ka.

□

Theorem 30 (X-flow version of Theorem 15). Suppose that N is a
complete, smooth Riemannian manifold with Ricci curvature bounded below,
and that X is a smooth vectorfield with |∇X| bounded. If Y, Z ⊂ N × [0,∞)
are weak X flows with Y (0) compact, then for every t <∞,

dist(Y (t), Z(t)) ≥ eλt dist(Y (0), Z(0)),

where λ is a lower bound for RicX .

(Note that RicX is bounded below because RicX and Ric differ at each
point by at most |∇X|.)
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Proof. Given Theorem 29, the proof of Theorem 30 is just like the proof of
Theorem 15. □

Theorem 31. Suppose that N is a complete Riemannian manifold with
Ricci curvature bounded below and that X is a smooth vectorfield with |∇X|
bounded. Suppose that M is a smooth, closed, embedded hypersurface in N ,
and that t ∈ [0, T ] 7→M(t) is a smooth X-mean curvature flow with M(0) =
M and ∪t∈[0,T ]M(t) compact. Then

FX
t (M) =M(t)

for t ∈ [0, T ], where FX
t (·) is biggest X-flow.

If M bounds a closed region Q, then FX
t (Q) is the corresponding closed

region bounded by M(t).

Proof. Trivially, t 7→M(t) is a weakX-flow, soM(t) ⊂ FX
t (M) for all t ≤ T .

Thus it suffices to show that FX
t (M) ⊂M(t).

For s > 0, let Ms = {x ∈ N : dist(x,M) = x}. Let ϵ > 0 be sufficiently
small that for all s ∈ [0, ϵ], there is a smooth X-mean-curvature-flow

t ∈ [0, T ] 7→Ms(t)

with Ms(0) =Ms. Let s ∈ (0, ϵ]. For each t ∈ [0, T ], let Ks(t) be the union
of Ms(t) and the connected components of N \Ms(t) that do not contained
M(t). Then t ∈ [0, T ] 7→ Ks(t) is a weak X-flow, so FX

t (M) and Ks(t) are
disjoint for all t ∈ [0, T ] by Theorem 30. Since this holds for all x ∈ (0, T ],
we see that FX

t (M) ⊂M(t) for all t ∈ [0, T ]. This completes the proof that
FX
t (M) =M(t).

To prove the assertion about Q, let Ks = {x ∈ N : dist(x,Q) ≥ s}.
Choose ϵ > 0 sufficiently small that there a smooth, compact X-mean
curvature flow on the time interval [0, T ] with initial surface ∂Ks. Let
t ∈ [0, T ] 7→ Ks(t) be the corresponding flow of regions.

By Theorem 30, FX
t (Q) and ∂Ks(t) are disjoint for all t ∈ [0, T ]. It

follows that t ∈ [0, T ] 7→ FX
t (Q) ∩Ks is a weak X-flow that is empty at

time 0. Thus it is empty for all t ∈ [0, T ] by Theorem 29. Since this holds
for all s ∈ (0, ϵ], we see that FX

t (Q) ⊂ Q(t) for all t ∈ [0, T ]. The reverse
inclusion holds trivially (since t 7→ Q(t) is a weak X-flow.) □
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12. X-mean-convex flows

Theorem 32. Suppose that N is a complete Riemannian manifold with
Ricci curvature bounded below, and that X is a smooth vectorfield with |∇X|
bounded. Suppose that Q is a closed region in N bounded by a compact
hypersurface M , and suppose that Q is strictly X-mean-convex, i.e., that
−→
H +X⊥ is nonzero and points into Q at each point of M .

Then there is a continuous time-of-arrival function u : Q→ [0,∞] such
that for each t ∈ [0,∞),

FX
t (M) = {x : u(x) = t},

FX
t (Q) = {x : u(x) ≥ t},

∂FX
t (Q) =M(t),

∪τ≤tM(τ) is compact,

where FX
t (·) denotes biggest X-flow.

Proof. Since M is smooth and compact, there is an ϵ > 0 and a smooth
X-mean curvature flow

t ∈ [0, ϵ] 7→M(t)

with M(0) =M . For t ∈ [0, ϵ], let Q(t) be the closed region (corresponding
to Q) in N bounded by M(t). Note that

(16) Q(t) ⊂ Q and Q(t) ∩M = ∅ for 0 < t ≤ ϵ

by the smooth maximum principle. By Theorem 31,

(17) FX
t (M) =M(t) and FX

t (Q) = Q(t) for all t ∈ [0, ϵ].

By (16) and (17), FX
t (Q) ⊂ Q for t ∈ [0, ϵ] and thus (since FX

τ preserves
inclusion)

FX
τ+t(Q) ⊂ FX

τ (Q) for all t ∈ [0, ϵ] and τ ≥ 0.

By transitivity of inclusion, this implies

(18) FX
T (Q) ⊂ FX

t (Q) for all T ≥ t ≥ 0.

By Theorem 29, ∪t∈[0,T ]F
X
t (M) is compact for all T <∞, and by (16)

and by avoidance (e.g., Theorem 30),

FX
τ+t(Q) ∩ FX

τ (M) = ∅ for all t ∈ (0, ϵ] and τ ≥ 0.



✐

✐

“2-White” — 2023/9/15 — 15:08 — page 61 — #31
✐

✐

✐

✐

✐

✐

Avoidance for set-theoretic solutions 61

Hence by (18),

(19) FX
τ (Q) ∩ FX

t (M) = ∅ for all τ > t ≥ 0.

In particular,

(20) FX
τ (M) ∩ FX

t (M) = ∅ for all τ > t ≥ 0

since FX
t (M) ⊂ FX

t (Q) for all t.
Now define u : Q→ [0,∞] by

u(x) =

{
t if x ∈ FX

t (M),

∞ if x ∈ Q \ ∪tF
X
t (M).

(This is well-defined since the FX
t (M) are disjoint.)

Since the FX
t (M) trace out a closed subset of spacetime, u : Q→ [0,∞]

is continuous.
Now suppose that x ∈ Q \ FX

T (Q). Then the spacetime set

(*) {(x, t) : x ∈ FX
t (Q), t ≥ 0},

contains the point (x, 0) but not the point (x, T ). Thus there is a t ∈ [0, T )
such that (x, t) lies in the boundary B (relative to N × [0,∞)) of the set (*).
By Theorem 26, B is a weak X-flow starting from M . Thus B lies in the
biggest such weak X-flow, so

(x, t) ∈ B ⊂ {(y, τ) : y ∈ FX
τ (M), τ ≥ 0},

and therefore x ∈M(t). Hence we have shown

x ∈ Q \ FX
T (Q) =⇒ u(x) < T.

On the other hand

u(x) < T =⇒ x ∈Mu(x) =⇒ x /∈ FX
T (Q)

by (19). Thus FX
T (Q) = {u ≥ T}.

Finally, if t > 0, then every point in {u = t} is a limit of points in {u < t}
by Corollary 4), so {u = t} has no interior. Hence {u = t} is the boundary
of {u ≥ t}. □
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Remark 33. Theorem 32 remains true (with the same proof) for any closed
set Q and for M = ∂Q (not necessarily smooth) such that

FX
t (Q) ⊂ Q \M

for all t is some small time interval (0, ϵ].

13. Varifold flows

An m-dimensional integral Brakke X-flow in a Riemannian manifold N
is a one-parameter family t ∈ [0,∞) 7→M(t) of Radon measures on N such
that for almost every t, M(t) is the radon measure associated to an m-
dimensional integral varifold in N , and such that for every C2, nonnegative,
compactly supported function ϕ on N × [0,∞),

(21) Dt

∫
ϕ dM(t) ≤

∫ (
∂ϕ

∂t
+∇ϕ⊥ · (X +H)− ϕH · (H +X⊥)

)
dM(t),

where D̄tf(t) := lim suph→0(f(t+ h)− f(t))/h. As in the case of Brakke
flow, the inequality (21) follows from the special case when ϕ is independent
of time; see [9, §6] or [2, 3.5]. Also, as for Brakke flow, the right side of (21)
should be interpreted as −∞ if any terms in the the expression do not make
sense at time t; see the discussion in [9, §6].

For integral varifolds, H = H⊥, so we can rewrite (21) as

(22)

Dt

∫
ϕ dM(t)

≤

∫ (
∂ϕ

∂t
+∇ϕ⊥ ·X +∇ϕ ·H − ϕH ·X − ϕ|H|2

)
dM(t)

=

∫ (
∂ϕ

∂t
+∇ϕ⊥ ·X −DivM ∇ϕ+DivM (ϕX)− ϕ|H|2

)
dM(t)

=

∫ (
∂ϕ

∂t
+∇ϕ⊥ ·X −DivM ∇ϕ

+ (∇ϕ)tan ·X + ϕDivM X − ϕ|H|2
)
dM(t)

=

∫ (
∂ϕ

∂t
+∇ϕ ·X −DivM ∇ϕ+ ϕDivM X − ϕ|H|2

)
dM(t).

Theorem 34. Let t ∈ [0,∞) 7→M(t) be an m-dimensional integral X-
Brakke flow in a smooth (m+ 1)-dimensional Riemannian manifold N . Let
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Z ⊂ N × [0,∞) be the spacetime support of the flow (i.e., the closure in
N ×R of ∪t(sptM(t))× {t})). Then Z is a weak X-flow.

Theorem 34 was proved in [9, 10.5] for Brakke flows in Rn+1 (with
X = 0).

Proof of Theorem 34. Let

t ∈ [a, b] ⊂ [0,∞) 7→ K(t)

be a strong barrier (as in §7) such thatK(t) is disjoint from Z(t) for t ∈ [a, b).
By Theorem 17, it suffices to show that Z(b) is disjoint from K(b).

Let r(·, t) be the signed distance to ∂K(t) such that r is positive in the
complement of K(t). Then for x ∈ ∂K(t),

0 > ΦK = vK −HX
K = −

∂r

∂t
+∆r −X · ∇r

by (1) with r in place of f . Consequently, we can choose δ > 0 sufficiently
small and k > 0 so that wherever |r| ≤ δ, the function r is smooth and

(23)
∂r

∂t
−∆r +X · ∇r ≥ k.

We also choose δ to be less that dist(Z(a),K(a)).
By (22),

(24) Dt

∫
ϕ dM(t) ≤

∫ (
∂ϕ

∂t
+∇ϕ ·X −DivM ∇ϕ+ Cϕ

)
dM(t),

where C is m times the maximum of |∇X| on a compact set containing the
support of ϕ.

Now let ϕ = ((δ − r)+)3. Note that this function is C2 on the points of
N × [a, b] in the support of the flow. Letting s = (δ − r)+, we have

∂ϕ

∂t
= −3s2

∂r

∂t
,

∇ϕ = −3s2∇r

∇2ϕ = −3s2∇2r + 6s∇r ⊗∇r,

DivM (∇ϕ) = −3s2DivM ∇r + 6s|(∇r)tan|2

= −3s2(∆r −∇2r(n,n)) + 6s(1− |n · ∇r|2),
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where n(x, t) is a unit normal to the approximate tangent plane to M(t) at
x. Thus by (24) and (23),

Dt

∫
ϕ dM(t)

≤

∫ (
−3s2

(
∂r

∂t
−∆r +∇r ·X +∇2r(n,n)

)

− 6s(1− |n · ∇r|2) + Cs3
)
dM(t)

≤

∫ (
−3s2k + 3s2|∇2r(n,n)| − 6s(1− |n · ∇r|2) + Cδs2

)
dM(t)

≤

∫ (
3s2|∇2r(n,n)| − 6s(1− |n · ∇r|2)

)
dM(t)

provided we choose δ < 3k/C. Now∇2r(·, ·) is a quadratic form that vanishes
on ∇r, so

|∇2r(n,n)| ≤ c(1− (n · ∇r)2)

for some constant c. Thus

Dt

∫
ϕ dM(t) ≤

∫
(3s2c− 6s)(1− |n · ∇r|2) dM(t)

≤

∫
3s(δc− 2)(1− |n · ∇r|2) dM(t),

which is ≤ 0 provided we chose δ < 2/c.
Since

∫
ϕ dM(t) is nonnegative, zero at the initial time a, and decreasing,

it is zero for all t ∈ [a, b]. Thus dist(Z(t),K(t)) ≥ δ for all t ∈ [a, b]. □

Appendix A.

Theorem A1. Suppose that X and Y are closed subsets of N such that

r :=
1

2
dist(X,Y ) > 0

and such that

{p : dist(p,X) = r}

is compact. Then there is a compact, C1 embedded hypersurface surface M
separating X and Y such that

dist(X,M) = dist(Y,M) = r.
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Proof. Note that there is a δ ∈ (0, r) such that

(A.1) {p : r − δ ≤ dist(p,X) ≤ r + δ}

is compact. By replacing δ be a smaller δ, we can assume that geodesic balls
with centers in (A.1) and with radii ≤ ρ have smooth boundaries.

Let

X ′ = {p : dist(p,X) ≤ r − δ},

Y ′ = {p : dist(p,X) ≥ r + δ},

and let

A = {p : dist(p,X) ≤ r} = {p : dist(p,X ′) ≤ δ},

B = {p : dist(p, Y ′) ≤ δ},

Z = A ∩B,

U = N \ (A ∪B).

Note that U is compact.
Consider a point z ∈ Z. Let Cz

1 and Cz
2 be shortest geodesics joining z

to X ′ and to Y ′. Then Cz
1 ∪ Cz

2 is a shortest curve joining X ′ to Y ′, and thus
is a geodesic. Consequently, Cz

1 and Cz
2 are unique and depend continuously

on z ∈ Z. Therefore

z ∈ Z 7→ v(z)

is continuous, where v(z) is the unit tangent vector to Cz
1 ∪ Cz

2 at z that
points out of Cz

1 and into Cz
2 .

Let h : U → R be the function that minimizes
∫
|Dh|2 subject to

h = −1 on (∂A) \B and

h = 1 on (∂B) \A.

Then h is harmonic (and therefore smooth) on U and continuous on U \ Z.
(The continuity holds because if p ∈ ∂U and if q is a point in X ′ ∪ Y ′

closest to p, then B(q, δ) ⊂ U c and p ∈ ∂B(q, δ).)
Let c ∈ (−1, 1) be a regular value of h, and let

M = h−1(c) ∪ Z.
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To prove that M is C1, it suffices to show that if pi ∈M ∩ U converges to
p ∈ Z, then

∇h(pi)

|∇h(pi)|
→ v(p).

Let B(qi, ri) be the largest ball in U that contains pi. We work in normal
coordinates at the point p. Let

Ui = (U − qi)/ri

and

hi : Ui → R,

hi(x) = h(ri(qi + x)).

Note that Ui converges to the slab

{x ∈ Rn+1 : 0 < x · v(p) < 1}.

Therefore hi converges smoothly to the harmonic function

x · v(p)

and pi converges (perhaps after passing to a subsequence) to a point p′ such
that p′ · v(p) = c. The result follows immediately. □
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