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In this paper, we study the flow of closed, starshaped hypersurfaces
in R

n+1 with speed rασ
1/2
2 , where σ

1/2
2 is the normalized square

root of the scalar curvature, α ≥ 2, and r is the distance from
points on the hypersurface to the origin. We prove that the flow
exists for all time and the starshapedness is preserved. Moreover,
after normalization, we show that the flow converges exponentially
fast to a sphere centered at origin. When α < 2, a counterexample
is given for the above convergence.

1. Introduction

In this paper, we will consider the evolution of a compact, starshaped hy-
persurface Σ0 ⊂ Rn+1 by modified scalar curvature. Namely, we will study
the following geometric flow:

(1.1)







∂X

∂t
(x, t) = −rασ

1/2
2 (x, t)ν

X(x, 0) = X0(x),

where α ≥ 2, σ2 =
(

n
2

)−1
S2 =

(

n
2

)−1 ∑

1≤i1<i2≤n
κi1κi2 is the scalar curvature

of the hypersurface Σt, parametrized by X(·, t) : Sn → Rn+1, r = |X(x, t)|,
and ν(·, t) is the unit outer normal at X(·, t). Following [7], we make the
following definition:

Definition 1.1. A hypersurface Σ is called 2-convex, if for any p ∈ Σ, the
principal curvatures of Σ at p satisfy

κ[Σ(p)] = (κ1, · · · , κn) ∈ Γ2,

where Γ2 is the G̊arding cone:

Γ2 = {λ ∈ R
n|σ1(λ) > 0 and σ2(λ) > 0}.
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Flows of hypersurfaces in Euclidean space Rn+1 by functions of principal
curvatures have been extensively studied in the past four decades. The flow
generated by Gauss curvature was first introduced by Firey [11] as a model
for the changing shape of a tumbling stone, which is subject to collisions
from all directions with uniform frequency. Since then, the Gauss curvature
flow has been studied by many authors (see [2], [3], [5], [9], [16], [10], etc.).
In particular, Andrews [2] proved that the Gauss curvature flow deforms
a uniformly convex hypersuface into a round point when n = 2. In higher
dimensions, the corresponding result is obtained by combining the results in
[16] and [5]. Such properties are the generalizations of Huisken [19] for the
mean curvature flow.

As a natural extension, the study of different types of fully nonlinear
geometric flows, especially their asymptotic behaviors, have attracted lots
of attentions through the years (see [1], [6], [8], [12], [13], [24], [25], [26], etc.).
In a recent paper [22], Li, Sheng, and Wang studied a contracting flow with
speed frαK, where K is the Gauss curvature and f is a positive function.
They provided a parabolic proof for the classical Aleksandrov problem; they
also resolved the dual q- Minkowski problem for the case q < 0. Moreover,
in their follow-up paper [23], they studied the evolution of closed, convex
hypersufaces with speed rασk, where σk is the k-th elementary symmetric
polynomial of principal curvatures.

The flow problem (1.1) we study here is inspired by [22, 23]. Generally
speaking, it is more difficult to study fully nonlinear curvature flows and
their asymptotic behaviors for the following reasons. First, there is a lack of
monotonicity quantities; usually in order to study the asymptotic behavior
of curvature flows it is nice to have some monotonicity formulas (see [20]
and [16] for example). Second, there is a lack of convexity estimates in the
limit; unlike in [4, 6, 21], we do not know if the limit is convex. Lastly, the
admissible cone for general curvature flows can be very large, which makes
it hard to obtain curvature estimates.

Our motivations for considering geometric flows of this type are the fol-
lowing: (i) It is the first step in solving the Christoffel-Minkowski problem for
curvature measures using a flow approach. (ii) We introduce new techniques
to obtain the curvature estimates, and we expect these new techniques will
be useful for other geometry problems.

Let us state our main result as follows.
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Theorem 1.2. Let M0 be a smooth, closed, 2-convex, starshaped hyper-
surface in Rn+1. Then the flow (1.1) has a unique smooth starshaped so-
lution Mt with positive scalar curvature, for all time t > 0, which con-
verges to the origin. After a proper rescaling, X → φ−1(t)X, the hypersur-
face M̃t = φ−1(t)Mt converges exponentially fast to a sphere centered at the
origin in the C∞ topology.

Following [22], our choice of the rescaling factor φ(t) is motivated by the
calculations below. Assume

(1.2) X(·, t) = φ(t)X0(·)

evolves under the flow (1.1) with initial data φ0X0, where φ is a positive
function and φ0 = φ(0). By differentiating equation (1.2) with respect to t
and multiplying both sides by ν0 = ν(·, t), we get

(1.3) φ′(t) ⟨X0, ν0⟩ = −φα−1σ
1/2
2 (0)rα0 ,

where σ
1/2
2 (0) is the normalized scalar curvature of M0 = X(Sn), and r0 is

the radial function of M0. By (1.3) we have

φ′ = −λφα−1

for some constant λ > 0. We may assume λ = 1. Then

(1.4)
φ(t) = φ0e

−t, if α = 2,

φ(t) =
(

φ2−α
0 − (2− α)t

)
1

2−α , if α > 2.

The study of the asymptotic behavior of the flow (1.1) is equivalent to
the study of the long time behavior of the rescaled flow (1.5). Let

X̃(·, τ) = φ−1(t)X(·, t),

where τ = − lnφ. Then X̃(·, τ) satisfies the following equation

(1.5)







∂X

∂t
(x, t) = −σ

1/2
2 rαν +X,

X(·, 0) = X0.

For convenience, we still use t instead of τ to denote the time variable, and
without causing confusions, we omit “tilde”.
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Theorem 1.2 is optimal in the following sense. If α < 2, we find that
the hypersurface evolving by (1.1) can reach the origin in finite time; hence,
the flow does not converge to a round sphere centered at the origin. More
precisely, we prove

Theorem 1.3. Suppose α < 2, then there exists a smooth, closed, uniformly
convex (automatically starshaped and 2-convex) M0, such that under the
flow (1.1),

R(X(·, t)) := maxSn r(·, t)
minSn r(·, t) → ∞, as t → T ,

for some finite T > 0.

The organization of the paper is as follows. In Section 2 we introduce
some basic notations and establish evolution equations for basic geometric

quantities. In Section 3 we derive C0 and C1 estimates. We show that σ
1/2
2

is bounded along the normalized flow (1.5) in Section 4. Section 5 is devoted
to the proof of our main a priori estimate, Theorem 5.1. This estimate shows
that the principal curvatures stay bounded under flow (1.5). We obtain the
convergence result in Section 6, which completes the proof of Theorem 1.2. In
Section 7 we give a counter example by showing that if α < 2, the flow (1.1)
may have unbounded ratio of radii. This proves Theorem 1.3.

Acknowledgements
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helpful comments. In particular, the author would like to thank the referee
for pointing out a mistake in the proof of Theorem 5.1.

2. Preliminaries

Let us first recall some basic properties of a starshaped hypersurface M in
Rn+1. Since M is starshaped, for a suitable diffeomorphism ξ(·) : Sn → Sn,
the position vector of M can be written as

X(x) = r(ξ(x))ξ(x),

where r(ξ(x)) = |X(x)| is the radial function. Next, we will give the ex-
pressions of the induced metric, second fundamental form, and Weingarten
curvatures of M in terms of the radial function.
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Let e1, · · · , en be a smooth local orthonormal frame on Sn, and let ∇̄ be
the covariant derivative on Sn. Then in term of r, we have

gij = r2δij + ∇̄ir∇̄jr,

gij = r−2

(

δij −
∇̄ir∇̄jr

r2 + |∇̄r|2
)

,

ν =
rξ − ∇̄r

√

r2 + |∇̄r|2
,

hij =
1

√

r2 + |∇̄r|2
(

r2δij + 2∇̄ir∇̄jr − r∇̄ijr
)

.

The principal curvatures of M are the eigenvalues of hij with respect to gij ,
namely the solutions of

0 = det(hij − κgij) = det(aij − κδij),

where aij =
(

g−
1

2

)il
hlm

(

g−
1

2

)mj
, and

(

g−
1

2

)ij
= r−1

[

δij −
∇̄ir∇̄jr

√

r2 + |∇̄r|2(r +
√

r2 + |∇̄r|2)

]

is the square root of gij . It is easy to see that if Mt is a family of starshaped
hypersurfaces satisfying (1.5), then the radial function r satisfies

(2.1)

{

rt = −rα−1wσ
1/2
2 + r,

r(·, 0) = r0,

where r0 is the radial function of M0, and w =
√

r2 + |∇̄r|2.
Next, we will derive some evolution equations for our normalized flow

(1.5). We will use ∇ to denote the covariant derivative with respect to the
metric on Mt. Let {τ1, · · · , τn} be a local orthonormal frame on TMt, and
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recall the following identities:

(2.2) Xij = −hijν (Gauss formula),

(2.3) νi = hliτl (Weingarten equation),

and

∇srhij = ∇ijhrs + hilh
l
jhrs − hirhsmhmj(2.4)

+ hsjh
n
i hnr − hijh

m
r hms (Ricci identity).

We now consider equation (1.5) on Mt. Let A be the vector space of
n× n matrices and

A2 = {A = {aij} ∈ A : λ(A) ∈ Γ2},

where λ(A) = (λ1, · · · , λn) denotes the eigenvalues of A. Let F be the func-

tion defined by F (A) = f(λ(A)) = σ
1/2
2 (λ(A)), A ∈ A2. In the rest of the

paper, we will use the following notations,

F ij =
∂F

∂aij
(A), F ij,kl =

∂2F

∂aij∂akl
(A).

Since F (A) depends only on the eigenvalues of A, if A is symmetric, so is
{F ij(A)}. Moreover, when A is diagonal, F ij(A) = ∂f

∂λi
δij = f iδij .

Lemma 2.1. Denote Φ = rασ
1/2
2 and F = σ

1/2
2 , then under the normalized

flow (1.5), we have

(2.5)
∂

∂t
gij = −2Φhij + 2gij ,

(2.6)
∂

∂t
ν = gklΦkτl,

and

(2.7)
∂

∂t
hji = Φj

i +Φhki h
j
k − hji .
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Proof. By the Weingarten equation, we have

∂

∂t
gij = ⟨(Xt)i, Xj⟩+ ⟨Xi, (Xt)j⟩

= 2
〈

−Φiν − Φhki τk + τi, τj

〉

= −2Φhij + 2gij .

This proves (2.5).
To derive (2.6) one observes that

∂t ⟨ν, τi⟩ = ⟨νt, τi⟩+ ⟨ν, (Xi)t⟩ = 0.

Therefore,

⟨νt, τi⟩ = −
〈

ν, (−Φ)iν − Φhki τk + τi

〉

= Φi,

which implies that

νt = gklΦkτl.

Next, we differentiate equation (2.6) with respect to τi and get

∂tνi =
(

gklΦkτl

)

i
= ∂t

(

hki τk

)

.

Thus,

(

∂th
k
i

)

τk + hki (−Φν +X)k

= gklΦkiτl − gklΦkhilν.

This gives us that

∂th
k
i gkj + hki ⟨−Φkν − Φhrkτr + τk, τj⟩ = gklΦkiglj ,

which implies,

∂th
j
i = Φj

i +Φhki h
j
k − hji .

□

3. C
0 and C

1 estimates

In this section, we will establish the C0 and C1 estimates. In particular,
we will show that the flow (1.5) preserves the starshapedness of the initial
hypersurface M0. We also want to point out that throughout this paper, if
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not further specified, we will denote by C and Ci for i ∈ N, some positive
constant, whose value may change from line to line.

3.1. C
0 estimates

In this subsection, we will establish the uniform upper and lower bounds for
the radial function r of the normalized flow (2.1).

Lemma 3.1. Let r(·, t) be a positive, 2-convex smooth solution to (2.1) on
Sn × [0, T ). If α ≥ 2, then there exists a positive constant C depending only
on maxSn r(·, 0) and minSn r(·, 0) such that

(3.1) 1/C ≤ r(·, t) ≤ C, ∀t ∈ [0, T ).

Proof. Let rmin(t) = min
Sn

r(·, t), ∀t ∈ (0, T ). Note that at the point where

rmin(t) is achieved, we have σ
1/2
2 ≤ 1

rmin(t)
. Then by equation (2.1) we get

d

dt
rmin ≥ rmin

(

1− rα−2
min

)

.

Therefore, when α = 2, we get

d

dt
rmin ≥ 0,

which yields r(·, t) ≥ min r(·, 0), ∀t ∈ (0, T ); when α > 2, we may assume
min r(·, t) < 1, otherwise we would be done. It follows that

d

dt
rmin ≥ 0.

This implies when α ≥ 2 we have

r(·, t) ≥ min{1,min
Sn

r(·, 0)}.

Similarly, we have

r(·, t) ≤ max{1,max
Sn

r(·, 0)}.

□
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3.2. C
1 estimates

In this subsection, we will apply the evolution equations derived in Section 2
to obtain the gradient estimate. This result yields that, if we start from a
starshaped hypersurface M0, then as long as the flow exists, Mt remains
starshaped.

Lemma 3.2. Let X(·, t) be a family of smooth, 2-convex hypersurfaces that
solves the normalized flow (1.5) on Sn × [0, T ). Denote u = ⟨X, ν⟩ , then
there exists a constant C depending on M0, |X|C0 , and n such that

(3.2) 1/C < u < C, t ∈ [0, T ).

Proof. The upper bound of u is a direct consequence of Lemma 3.1. There-
fore, in the following, we only need to show u is bounded from below. We
will follow [15] considering

P = γ(S)− log ⟨X, ν⟩ ,

where S = ⟨X,X⟩ , γ(S) = λ
S , and λ > 0 to be determined.

Assume P achieves its maximum at an interior point X0 ∈ Mt0 . In the
following, all calculations will be done at this point with respect to a local
orthonormal frame τ1, · · · , τn. We can see that at X0

Pi = γ′Si −
ui
u

= 0.

By a straightforward calculation we get,

Si = 2 ⟨X, τi⟩ ,

Sij = 2 ⟨τi, τj⟩ − 2 ⟨X,hijν⟩ = 2δij − 2hiju,

and

St = 2 ⟨X,Xt⟩ = 2 ⟨X,−Φν +X⟩ = −2Φu+ 2S.

Therefore,

(3.3)

LS = St − rαF ijSij

= −2Φu+ 2S − rαF ij (2δij − 2hiju)

= 2S − 2rα
∑

f i.
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Moreover,

ut = ⟨Xt, ν⟩+ ⟨X, νt⟩
= ⟨−Φν +X, ν⟩+ ⟨X,∇Φ⟩
= −Φ+ u+

〈

X,αrα−1F∇r + rα∇F
〉

,

ui = ⟨Xi, ν⟩+ ⟨X,hikτk⟩ = hik ⟨X, τk⟩ ,

and

uij = hij + ⟨X,hijkτk⟩ − hikhkju.

Therefore,

(3.4)

Lu = ut − rαF ijuij

= −Φ+ u+ αrα−1f ⟨X,∇r⟩+ rα ⟨X,∇f⟩
− rαf − rα ⟨X,∇f⟩+ rαu

∑

F ijhikhkj

= −2Φ + u+ αrα−1f ⟨X,∇r⟩+ rαu
∑

F ijhikhkj .

Since at X0 we have Pi = 0, it follows that

(3.5) 2γ′ ⟨X, τi⟩ =
hik ⟨X, τk⟩

u
.

If at this point, ⟨X, τi⟩ = 0 for all 1 ≤ i ≤ n, we would get ⟨X, ν⟩2 = |X|2,
then by Lemma 3.1 we are done. So we may assume ⟨X, ν⟩2 < |X|2 at X0.
We may also choose a smooth local orthonormal frame on Mt0 such that
at X0, ⟨X, τi⟩ = 0, i ≥ 2. Therefore at this point, we have h11 = 2γ′u and
h1i = 0 for i ≥ 2. We may also rotate {τ2, · · · , τn} such that hij = κiδij is
diagonal.

Next, we compute

Pt = γ′St −
ut
u
,

and

Pij = γ′Sij + γ′′SiSj −
uij
u

+
uiuj
u2

.

Therefore

(3.6)
LP = Pt − rαF ijPij

= γ′LS − 1

u
Lu− rαγ′′F ijSiSj − rαF ij uiuj

u2
.



✐

✐

“3-Xiao” — 2023/9/13 — 18:03 — page 79 — #11
✐

✐

✐

✐

✐

✐

Asymptotic convergence for modified scalar curvature flow 79

Substituting equations (3.3) and (3.4) into (3.6) and applying the maximum
principle we obtain at X0,

γ′
(

2S − 2rα
∑

f i
)

− 1

u

(

−2Φ + u+ αrα−1f ⟨X,∇r⟩+ rαu
∑

f iκ2i

)

− rαγ′′f iS2
i − rαf iu

2
i

u2
≥ 0.

Since r2 = S, we get 2rri = 2 ⟨X, τi⟩ , and

⟨X,∇r⟩ = ⟨X, τ1⟩2
r

=
S − u2

r
= r − u2

r
.

Hence, we get

(3.7)
2γ′S + 2

Φ

u
− αrα−1f

u

(

r − u2

r

)

≥ 2rαγ′
∑

f i + rα
∑

f iκ2i + 4rα
[(

γ′′ + (γ′)2
)

f1
(

S − u2
)]

+ 1,

where we used equation γ′Si =
ui

u . Substituting γ = λ
S into (3.7) we obtain

− 2λ

S
+ αrα−2fu+

(2− α)Φ

u
+ 4rα

(

2λ

S3
+

λ2

S4

)

f1u2

≥ 1− 2
rαλ

S2

∑

f i + rα
∑

f iκ2i + 4rα
(

2λ

S3
+

λ2

S4

)

f1S.

First, since α ≥ 2, we have (2−α)Φ
u ≤ 0. Moreover, differentiating

βf2 = βσ2 = S2, where β =
(

n
2

)

,

with respect to λi we get

2βff i = S1(κ|i) =
∑

j ̸=i

κj .

This together with h11 = −2 λ
S2u < 0 implies

2βf
∑

f i = (n− 1)S1(κ) < (n− 1)S1(κ|1) = 2(n− 1)βff1.

Therefore, we get

1 ≤
∑

f i < (n− 1)f1,
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where the first inequality comes from the concavity of f (see [14]). Moreover,
we can always choose λ > 0 large such that

−2rαλ

S2
(n− 1)f1 + 2rα

(

2λ

S3
+

λ2

S4

)

f1S > 0.

Thus we have

(3.8)

αrα−2fu+ 4rα
(

2λ

S3
+

λ2

S4

)

f1u2

≥ 1 +
2λ

S
+ rα

∑

f iκ2i + 2rα
(

2λ

S3
+

λ2

S4

)

f1S.

Since f is concave, we have

(3.9)
∑

f iκ2i ≥ f(κ21, · · · , κ2n) > c(n)f2.

Case 1. When αrα−2fu ≥ 1 + 2λ
S + rα

∑

f iκ2i ≥ 1 + 2λ
S + c(n)f2, we get

u ≥ C1

f
+ c(n)f > C2.

Case 2. When αrα−2fu < 1 + 2λ
S + rα

∑

f iκ2i , we get

4rα
(

2λ

S3
+

λ2

S4

)

f1u2 > 2rα
(

2λ

S3
+

λ2

S4

)

f1S.

This gives u2 > S
2 .

Combining case 1 and case 2 we conclude that u is bounded from below
at X0, which in turn implies that u is bounded from below everywhere.
Hence, we proved this lemma. □

For later usage, we want to point out that Lemma 3.2 implies that
|∇r(·, t)| < C, for t ∈ [0, T ).

4. Bound on F

In this section we will show that along the flow, F = σ
1/2
2 is bounded from

above and below.
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Lemma 4.1. Under the normalized flow (1.5), there exists a constant C
depending only on M0 and r,such that

(4.1) F >
1

C
.

Proof. Let Φ = rαF, recall the evolution equation (2.7) we have

(4.2) Ft = F ij
(

Φij +Φhki h
j
k − hji

)

.

Moreover, by (1.5) we get

rt =
⟨Xt, X⟩

r
= −Φu

r
+ r.

Therefore, choosing an orthonormal frame such that hji = κiδij we get

(4.3)

∂Φ

∂t
= αrα−1rtF + rαFt

=
αΦ

r

(

−Φu

r
+ r

)

+ rαF ij
(

Φij +Φhki h
j
k − hji

)

=
αΦ

r

(

−Φu

r
+ r

)

+ rαF iiΦii + rαΦ
∑

f iκ2i − Φ.

Let Φmin(t) = min
x∈Sn

Φ(x, t), then Φmin satisfies

d

dt
Φmin ≥ −αΦ2

minu

r
+ (α− 1)Φmin + rαΦmin

∑

f iκ2i .

Thus we have
d

dt
Φmin ≥ Φmin

[

(α− 1)− αu

r
Φmin

]

.

We can see that, when Φmin < r(α−1)
uα , then d

dtΦmin ≥ 0. Therefore, we con-
clude that

Φmin ≥ min

{

min
Sn

Φ(·, 0), min
Sn×[0,T )

r(α− 1)

uα

}

.

Together with Lemma 3.1 and Lemma 3.2 we get F is bounded from below.
□

Lemma 4.2. Under the normalized flow (1.5), there exists a constant C
depending on M0, u, and r such that

(4.4) F < C.
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Proof. Let L := ∂
∂t − rαF ij∇ij , by (4.3) we get

(4.5) LΦ = −αΦ2u

r2
+ αΦ+ Φrα

∑

f iκ2i − Φ.

We also recall that

(4.6) Lu = −2Φ + u+ αrα−1F ⟨X,∇r⟩+ rαu
∑

f iκ2i .

ConsideringM = logΦ− log(u− a), where a = 1
2 min
Sn×[0,T )

u. At its maximum

point, by equations (4.5) and (4.6) we have

(4.7)

LM =
LΦ
Φ

− Lu
u− a

= −αΦu

r2
+ (α− 1) + rα

∑

f iκ2i +
2Φ

u− a

− u

u− a
− αΦ

r(u− a)
⟨X,∇r⟩ − rα

u

u− a

∑

f iκ2i ≥ 0.

Applying Lemmas 3.1 and 3.2 we get

(4.8) C1F − C2

∑

f iκ2i − C3 ≥ 0.

Substituting (3.9) into (4.8) we obtian

C1F − C2F
2 − C3 ≥ 0.

Hence, F is bounded from above. □

5. C
2 estimates

In this section we will show that the principal curvatures of Mt remain
bounded along the flow. Due to the complication of terms involving the
third derivatives of Mt, we need to introduce new techniques to carefully
analyze them. These are the most difficult estimates in this paper. We prove

Theorem 5.1. Under the normalized flow (1.5), there exists a constant C
depending on M0, r, n, u and F ,such that

|A| ≤ C.
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Proof. First, we note that H2 − |A|2 = 2S2 > 0. Therefore, in order to show
the principal curvatures are bounded, we only need to show H is bounded.
Let us consider

Q = logH − log(u− a), where a = 1
2 minu.

If Q achieves its maximum at an interior point X0 ∈ Mt0 , then at this point
we have

Hi

H
− ui

u− a
= 0,

and

LQ =
LH
H

− Lu
u− a

≥ 0.

We will choose a local orthonormal frame in the neighborhood of X0 such
that at X0 we have hij = κiδij . By (2.7) we obtain the evolution equation
for H,

(5.1)

∂

∂t
H = Φkk +Φhki h

i
k −H

= ∇k(αr
α−1rkF + rαFk) + Φ|A|2 −H

=
[

αrα−1rkkF + α(α− 1)rα−2r2kF + 2αrα−1rkFk + rαFkk

]

+Φ|A|2 −H.

Since hiikk = hkkii + hkkh
2
ii − hiih

2
kk, we get

(5.2)

Fkk = F iihiikk + F pq,rshpqkhrsk

= F ii
(

hkkii + hkkh
2
ii − hiih

2
kk

)

+ F pq,rshpqkhrsk

= F iiHii +Hf iκ2i − |A|2F + F pq,rshpqkhrsk.

Hence,

(5.3)

LH =
∂

∂t
H − rαF iiHii

= αrα−1rkkF + α(α− 1)rα−2r2kF + 2αrα−1rkFk

+ rαH
∑

f iκ2i + rαF pq,rshpqkhrsk −H.

By a straightforward calculation we have,

r2 = S, 2rri = 2 ⟨X, τi⟩ , and 2r2i + 2rrii = 2− 2hiiu.
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Thus

(5.4) rii =
1− hiiu− r2i

r
.

Substituting (5.4) into (5.3) and combining with (4.6) we obtain,

(5.5)

LQ =
1

H

[

αrα−2F (n−Hu− |∇r|2) + α(α− 1)rα−2F |∇r|2

+ 2αrα−1rkFk + rαH
∑

f iκ2i −H + rαF pq,rshpqkhrsk
]

− 1

u− a

(

−2Φ + u+ αrα−1F ⟨X,∇r⟩+ rαu
∑

f iκ2i

)

≥ 0.

By Lemma 3.1, Lemma 3.2, Lemma 4.1, and Lemma 4.2, equation (5.5)
implies

(5.6)

1

H

(

C1 + 2αrα−1rkFk + rαF pq,rshpqkhrsk
)

+ C2 −
rαa

u− a

∑

f iκ2i ≥ 0.

Now since

βF 2 = S2 =
∑

p<q

κpκq, β = S2(1, · · · , 1) =
(

n

2

)

,

we have

2βF rsF pq + 2βFF pq,rs = Spq,rs
2 .

Therefore

F pq,rshpqkhrsk =
Spq,rs
2 hpqkhrsk

2βF
− F 2

k

F
.

Furthermore, for any λ > 0 we have

2αrα−1rkFk ≤ λrαF 2
k

HF
+

α2rα−2r2kHF

λ
.

Therefore, equation (5.6) becomes

(5.7)

1

H

{

α2rα−2r2kHF

λ
+ rα

(

1− λ

H

)

F pq,rshpqkhrsk

+
λrα

H
· S

pq,rs
2 hpqkhrsk

2βF

}

+ C2 −
arα

u− a

∑

f iκ2i ≥ 0,

where we used H
n ≥ F ≥ 1

C .
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From now on, we assume that κ1 ≥ κ2 ≥ · · · ≥ κn at X0 ∈ Mt0 . In order
to show H is bounded at X0, we only need to show κ1 is bounded. We will
prove it in two steps. First, we will show |κi| is bounded for i ≥ 2. Then, we
will use this result to show that κ1 is bounded.

Step 1. In this step, we will show that when κ1 > 0 large, we have |κi|
is bounded by C̃1 = C̃1(r, u, F, β) for i ≥ 2.

Note that,

(5.8)

Spq,rs
2 hpqkhrsk =

∑

p ̸=q

hppkhqqk −
∑

p ̸=q

h2pqk

= H2
k −

∑

p

h2ppk −
∑

p ̸=q

h2pqk.

By the virtue of earlier estimates, (5.7) can be written as

(5.9)

C3

λ
+

rα

H

(

1− λ

H

)

F pq,rshpqkhrsk

+
λrα

2H2βF
H2

k + C2 −
arα

u− a

∑

f iκ2i ≥ 0.

Moreover, since Qk = 0 at X0 ∈ Mt0 , we have

(5.10)
Hk

H
=

uk
u− a

=
κk ⟨X, τk⟩
u− a

.

Let λ = ηf1, we may choose η = η(r, u, F, β) > 0 small such that

λrα

2H2βF
H2

k =
∑

k

ηrαf1κ2k ⟨X, τk⟩2
2(u− a)2βF

<
arα

2(u− a)

∑

f iκ2i ,

where we used f1 ≤ f2 ≤ · · · ≤ fn. Notice that f1 = H−κ1

2βF < CH; so we can

also assume η > 0 so small that λ
H < 1

2 . By the concavity of F, (5.9) becomes

(5.11)
C3

ηf1
+ C2 −

arα

2(u− a)

∑

i

f iκ2i ≥ 0.

Now, if ηf1 ≥ 1 at X0 ∈ Mt0 , then we have

C2 + C3 ≥ c0
∑

i

f iκ2i =
c0

2βF

∑

i

(H − κi)κ
2
i

=
c0

2βF
(S2H − 3S3),
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where S3 =
∑

1≤i1<i2<i3≤n
κi1κi2κi3 and c0 = c0(r, u) is a positive constant. It

follows that when H > 0 large,

3c0
2βF

S3 ≥
c0

2βF
S2H − C2 − C3 > 0.

By Lemma 3 in [17], we conclude that |κj | ≤ 7(n−1)S2

5κ1
, for j ≥ 2; so if ηf1 ≥ 1

then step 1 would be done. Therefore, in the following, we will always assume
ηf1 < 1. In this case, (5.11) can be written as

(5.12)
C3

λ
− arα

2(u− a)

∑

f iκ2i ≥ 0.

This yields

arα

2(u− a)
f1fnκ2n ≤ C4.

Notice that

(5.13)

f1fn =
(H − κ1)(H − κn)

4β2F 2

> C5(H
2 − κ1H) = C5





∑

i≥2

κ2i + S2 + S2(κ|κ1)



 ≥ C6.

Here, the first inequality comes from the assumption that κn < 0, since if
κn ≥ 0, we can get (5.14) from Lemma 4.2 directly. The second inequality
in (5.13) is trivial if S2(κ|κ1) ≥ 0. When S2(κ|κ1) < 0, since





∑

i≥2

κi





2

=
∑

i≥2

κ2i + 2S2(κ|κ1),

we have
∑

i≥2

κ2i + S2(κ|κ1) > 0,

and the second inequality still holds.
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Therefore, we get

C7κ
2
n ≤ C4,

which yields

(5.14) κ2n ≤ C̃0.

Hence, at the point where Q achieves its interior maximum, |κn| is bounded
from above. In the following, we want to show that |κi| is bounded from
above for all i ≥ 2.

Now we assume at X0,

κ1 ≥ κ2 ≥ · · · ≥ κk > 0 ≥ κk+1 ≥ · · · ≥ κn ≥ −
√

C̃0,

then it is easy to see that when κ1 > 2n
√

C̃0 we have

(5.15) f i =
H − κi
2βf

> Cκ1, for i ≥ 2.

Substituting (5.15) into equation (5.12) we get

(5.16) 0 ≤ C3

ηf1
− arα

2(u− a)

n
∑

i=2

f iκ2i ≤
C3

ηf1
− arα

2(u− a)
Cκ1(|A|2 − κ21).

Note that

f1κ1 =
(H − κ1)κ1

2βf
> CH(H − κ1),

so by equation (5.13) we have f1κ1 > c1, where c1 only depends on β and
F. Therefore, (5.16) implies

C3 > C8(|A|2 − κ21),

which gives |κi| < C̃1 for i ≥ 2.
Step 2. So far, we have proved that at the maximum point of Q, if

κ1 > 2n
√

C̃0 large, then for i ≥ 2 we have |κi| < C̃1 for some constant C̃1 =
C̃1(r, F, u, β). So, in this step, we will always assume |κi| is bounded for
i ≥ 2. Let us go back to equation (5.7).

Without loss of generality, we may assume λ
H < 1/2 and λ < 1. (Later

we will see that in this step, we will choose λ = η(f1)2/3. By step 1, we know

that |κi| is bounded for i ≥ 2. Therefore, f1 =
∑

i≥2 κi

2βF is bounded from above,
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so we can always choose η > 0 small such that λ < 1.) Then, equation (5.7)
implies

(5.17)
rα

2H
F pq,rshpqkhrsk +

rαλ

2H2Fβ
Spq,rs
2 hpqkhrsk +

C3

λ
− arα

∑

f iκ2i
u− a

≥ 0,

By a well known algebraic Lemma (see Lemma 7 in [18] for example),
we have

F pq,rshpqkhrsk ≤
∑

p ̸=q

fp − f q

κp − κq
h2pqk

≤ 2
∑

p>1

fp − f1

κp − κ1
h2pp1 = − 1

βF

∑

p>1

h2pp1

≤ − 1

βF (n− 1)
(H1 − h111)

2.

Moreover, (5.8) yields

Spq,rs
2 hpqkhrsk ≤

∑

k

H2
k −

∑

p,k

h2ppk

≤ H2
1 − h2111 +

n
∑

k=2

H2
k ≤ C9H

2 + (H2
1 − h2111).

Here the last inequality comes from (5.10) and |κi| < C̃1, i ≥ 2.
Combining with equation (5.17) we get

(5.18)

− rα

2HβF (n− 1)
(H1 − h111)

2 +
rαλ

2H2Fβ
[C9H

2 + (H2
1 − h2111)]

+
C3

λ
− arα

∑

f iκ2i
u− a

≥ 0.

Now, let ã = η1(f
1)1/3 and λ = η(f1)2/3. Here, we first choose η1 > 0

such that ã < 1, then we choose η > 0 such that η
η2
1
≤ 1

n−1 . We will divide
this into two cases.

Case 1. If at X0 ∈ Mt0 , |H1 − h111| ≥ |ãH1|, since λ ≤ ã2

n−1 we have,
when H > 1

−(H1 − h111)
2

n− 1
+

λ

H
H2

1 ≤ − ã2H2
1

n− 1
+

ã2H2
1

(n− 1)H
< 0.
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Therefore, equation (5.18) yields

C4

λ
≥ C10f

1κ21.

Multiplying by λ on both sides we get

(f1)5/3κ21 ≤ C11.

Since f1κ1 ≥ c1 we conclude that κ1 ≤ C̃2.
Case 2. If at X0 ∈ Mt0 , |H1 − h111| < |ãH1|, then we have

|h111| < (1 + ã)|H1|.

Thus

|H2
1 − h2111| < 3ãH2

1 .

Substituting the above inequality into (5.18) we get

3rαλã

2H2Fβ
H2

1 +
C4

λ
− arα

∑

f iκ2i
u− a

≥ 0.

By (5.10) we can choose η = η(r, u, F, β) > 0 so small that

3rαλã

2H2Fβ
H2

1 <
arαf1κ21
2(u− a)

.

Hence, we get

C12 > (f1)5/3κ21

which yields κ1 ≤ C̃2. This completes the proof of Theorem 5.1. □

6. Converging to a sphere

Section 6 and 7 are small modifications of Section 4 and 5 of [23], for com-
pleteness, we will include them here.
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It is sometimes more convenient to study the equation for the quantity

ρ(ξ, t) = log r(ξ, t).

By a straightforward calculation we have

aij = e−ρ
(

1 + |∇̄ρ|2
)−1/2

ãij ,

where

ãij = γil(δlm + ∇̄lρ∇̄mρ− ∇̄lmρ)γmj ,

and

γij = δij −
∇̄iρ∇̄jρ

(1 + |∇̄ρ|2)1/2(1 + (1 + |∇̄ρ|2)1/2) = eρ
(

g−
1

2

)ij
.

Therefore, ρ satisfies the following equation

(6.1)
ρt =

rt
r

= −rα−1
√

1 + |∇̄ρ|2σ1/2
2 (aij) + 1

= −eρ(α−2)σ
1/2
2 (ãij) + 1.

In the rest of this section, we shall finish the proof of Theorem 1.2.

Lemma 6.1. For α ≥ 2, there exists C and γ depending only on n, α, and
M0, such that

(6.2) max
Sn

|∇̄r(·, t)|
r(·, t) ≤ Ce−γt, ∀t > 0.

Proof. Consider the auxiliary function

G =
1

2
|∇̄ρ|2, where ρ = log r.

At the point where G attains its spatial maximum, we have

(6.3) 0 = ∇̄iG =
∑

ρlρli

and

(6.4) 0 ≥ ∇̄ijG = ρlρlij +
∑

ρliρlj .



✐

✐

“3-Xiao” — 2023/9/13 — 18:03 — page 91 — #23
✐

✐

✐

✐

✐

✐

Asymptotic convergence for modified scalar curvature flow 91

Moreover,

(6.5)

Gt =
∑

ρlρlt

=
∑

ρl

[

−eρ(α−2)(α− 2)ρlσ
1/2
2 (ãij)− eρ(α−2)F ij ãijl

]

= −eρ(α−2)
[

(α− 2)σ
1/2
2 (ãij)|∇̄ρ|2 + F ij ãijlρl

]

,

where F ij = ∂σ
1/2
2 (ãij)
∂ãij

. At the point under consideration, since
∑

l ρlρli = 0,
we have

ρr∇̄rãij = −γilρr∇̄rρlmγmj .

By the Ricci identity, we have

∇̄rρlm = ∇̄mρlr + δlrρm − δlmρr.

Thus by (6.4),

ρr∇̄rãij = −γilρr(∇̄mρlr + δlrρm − δlmρr)γmj

≥ −γil(−ρrlρrm + ρlρm − δlm|∇̄ρ|2)γmj .

Substituting this into equation (6.5) we get

(6.6)

Gt ≤ −eρ(α−2)(α− 2)σ
1/2
2 (ãij)|∇̄ρ|2

+ eρ(α−2)F ij

(

−γilρrlρrmγmj + γilρlρmγmj −
∑

l

γilγlj |∇̄ρ|2
)

≤ eρ(α−2)

(

F ijγilρlρmγmj − F ij
∑

l

γilγlj |∇̄ρ|2
)

.

Now let Alm = F ijγilγmj , by Theorem 5.1 we have maxκ[Alm]−
∑

Akk ≤ −C, thus

Gt ≤ eρ(α−2)

(

Almρlρm −
kk
∑

Akk|∇̄ρ|2
)

≤ −γG,

for some positive constant γ, this proves the Lemma. □

From (6.2) and Lemma 3.1 we conclude that |∇̄r| → 0 exponentially as
t → ∞. Hence by Theorem 5.1 and interpolation inequality we conclude that
r converges exponentially to a constant in the C∞ topology as t → ∞. This
completes the proof of Theorem 1.2.
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7. Counter examples

In this section, we show that if α < 2 the flow

(7.1)







∂X

∂t
(x, t) = −σ

1/2
2 rαν,

X(·, 0) = X0.

may have unbounded ratio of radii, namely

(7.2) R(X(·, t)) = maxSn r(·, t)
minSn r(·, t) → ∞ as t → T , for some T > 0.

Let X(·, t) be a convex solution to (7.1), then its support function u satisfies
the equation

(7.3)















∂u

∂t
(x, t) = −rα

[

Sn−2(∇̄iju+ uδij)
(

n
2

)

Sn(∇̄iju+ uδij)

]1/2

u(·, 0) = u0.

By a translation of time, we show below that there is a sub-solution Y (·, t) for
t ∈ (−1, 0) such that (7.2) holds as t → 0. More precisely, we will construct
a convex sub-solution Y (·, t) such that its support function ω satisfies

(7.4)















∂ω

∂t
(x, t) ≥ −rα

[

Sn−2(∇̄ijω + ωδij)
(

n
2

)

Sn(∇̄ijω + ωδij)

]1/2

ω(·, 0) = ω0.

Moreover, we will show that minSn ω(·, t) → 0 while maxSn ω(·, t) remains
positive as t → 0.

Lemma 7.1. There is a sub-solution Y (·, t), where t ∈ (−1, 0), to equation

(7.5)















∂u

∂t
(x, t) = −arα

[

Sn−2(∇̄iju+ uδij)
(

n
2

)

Sn(∇̄iju+ uδij)

]1/2

u(·, 0) = u0

for a sufficiently large constant a > 0, such that minSn ω(·, t) → 0 but
maxSn ω(·, t) remains positive as t → 0.
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Proof. Let M̂t be the graph of the function

(7.6) φ(ρ, t) =







− |t|θ + |t|−θ+σθρ2, if ρ < |t|θ

− |t|θ − 1− σ

1 + σ
|t|θ(1+σ) +

2

1 + σ
ρ1+σ, if |t|θ ≤ ρ ≤ 1,

where x ∈ Rn, ρ = |x|, σ = qθ−1
θ, q = 2− α, and θ > 1

q is a constant.

When 0 ≤ ρ ≤ |t|θ, by a straight forward calculation we have

φi = 2|t|θ(σ−1)xi,

φij = 2|t|θ(σ−1)δij ,

and

hij =
2|t|θ(σ−1)δij

√

1 + 4|t|2θ(σ−1)ρ2
.

The principal curvatures of the graph φ are

κ1 = κ2 = · · · = κn−1 =
2|t|θ(σ−1)

√

1 + 4|t|2θ(σ−1)ρ2
and κn = 2|t|θ(σ−1)

(√
1+4|t|2θ(σ−1)ρ2

)3 .

Therefore,

rασ
1/2
2 ≥ C|t|αθ · |t|θ(σ−1)

1 + 4|t|2θ(σ−1)ρ2
≥ C|t|θ−1

and
∣

∣

∂
∂tY (p, t)

∣

∣ ≤ 2θ|t|θ−1, where p = (x, φ(|x|, t)) is a point on the graph of
φ.

When |t|θ ≤ ρ ≤ 1, we obtain

φi = 2ρσ−1xi,

φij = 2(σ − 1)ρσ−3xixj + 2ρσ−1δij ,

and

κ1 = κ2 = · · · = κn−1 =
2ρσ−1

√

1 + 4ρ2σ
and κn = 2σρσ−1

(
√
1+4ρ2σ)

3 .

Therefore, we have

rασ
1/2
2 > Cρα+σ−1 = Cρ1−

1

θ ≥ C|t|θ−1

and
∣

∣

∂
∂tY (p, t)

∣

∣ ≤ 2θ|t|θ−1. Hence, the graph of φ is a sub-solution to (7.5),
provided a is sufficiently large.
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Next, we extend the graph of φ to a closed convex hypersurface M̂t,
such that it is C1,1 smooth, uniformly convex, rotationally symmetric, and
depends smoothly on t. Moreover, we may assume that the ball B1(z) is
contained in the interior of M̂t, for all t ∈ (−1, 0), where z = (0, · · · , 0, 10) is
a point on the xn+1- axis. Then M̂t is a subsolution to (7.5) for sufficiently
large a. □

We are in a position to prove Theorem 1.3. For a given τ ∈ (−1, 0),
let M−1 be a smooth, closed, uniformly convex hypersurface inside M̂τ

and enclosing B1(z). Let Mt be the solution to the flow (7.5) with initial
data M−1. By Lemma 7.1 and the classic comparison principle we have Mt

touches the origin at t = t0, for some t0 ∈ (τ, 0). We choose τ to be very
close to 0 so that |t0| is sufficiently small.

On the other hand, let X̃(·, t) be the solution to

∂X̃

∂t
= −bar̃ασ

1/2
2 ν

with initial condition X̃(·, τ) = ∂B1(z), where b = 2α sup{|p|α : p ∈ Mt, τ <
t < t0} and r̃ = |X̃ − z| is the distance from z to X̃. We can choose τ so
close to 0 such that B1/2(z) is contained in X̃(·, t) for all t ∈ (τ, t0). By the
comparison principle, we see that the ball B1/2(z) is contained in the interior
of Mt, for all t ∈ (τ, t0). Therefore, as t → t0, we have min r(·, t) → 0 and
r(·, t) > |z| = 10. This proves (7.2) for Mt.

So far, we have proved Theorem 1.3 when rασ
1/2
2 is replaced by arασ

1/2
2

for a large constant a > 0. Making the rescaling M̃t = a−
1

2−αMt, one easily
verifies that M̃t solves the flow equation (7.1) and Theorem 1.3 is proved.
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