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Asymptotic convergence for modified
scalar curvature flow

LING XIAO

In this paper, we study the flow of closed, starshaped hypersurfaces
in R"™! with speed ro‘aé/ ?, where aé/ ? is the normalized square
root of the scalar curvature, o > 2, and r is the distance from
points on the hypersurface to the origin. We prove that the flow
exists for all time and the starshapedness is preserved. Moreover,
after normalization, we show that the flow converges exponentially
fast to a sphere centered at origin. When a < 2, a counterexample
is given for the above convergence.

1. Introduction

In this paper, we will consider the evolution of a compact, starshaped hy-
persurface X9 C R"*! by modified scalar curvature. Namely, we will study
the following geometric flow:
(1.1) E(aj’t) = —ro‘02/ (z,t)v

X(z,0) = Xo(z),

where o > 2, 09 = (g)‘152 = (g)_l > KK, 18 the scalar curvature
1<i; <iz<n

of the hypersurface ¥, parametrized by X (-,t) : S" — R**l r = | X(z,1)|,

and v(-,t) is the unit outer normal at X(-,t). Following [7], we make the

following definition:

Definition 1.1. A hypersurface X is called 2-convez, if for any p € X, the
principal curvatures of 3 at p satisfy

’{[E(p)] = (K'la T 7'%71) € FQa
where I'y is the Garding cone:
Iy = {/\ S Rn|0'1()\) > (0 and 02(/\) > 0}.
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Flows of hypersurfaces in Euclidean space R™*! by functions of principal
curvatures have been extensively studied in the past four decades. The flow
generated by Gauss curvature was first introduced by Firey [11] as a model
for the changing shape of a tumbling stone, which is subject to collisions
from all directions with uniform frequency. Since then, the Gauss curvature
flow has been studied by many authors (see [2], [3], [5], [9], [16], [10], etc.).
In particular, Andrews [2] proved that the Gauss curvature flow deforms
a uniformly convex hypersuface into a round point when n = 2. In higher
dimensions, the corresponding result is obtained by combining the results in
[16] and [5]. Such properties are the generalizations of Huisken [19] for the
mean curvature flow.

As a natural extension, the study of different types of fully nonlinear
geometric flows, especially their asymptotic behaviors, have attracted lots
of attentions through the years (see [1], [6], [8], [12], [13], [24], [25], [26], etc.).
In a recent paper [22], Li, Sheng, and Wang studied a contracting flow with
speed fr®K, where K is the Gauss curvature and f is a positive function.
They provided a parabolic proof for the classical Aleksandrov problem; they
also resolved the dual g- Minkowski problem for the case g < 0. Moreover,
in their follow-up paper [23], they studied the evolution of closed, convex
hypersufaces with speed r®oy, where oy is the k-th elementary symmetric
polynomial of principal curvatures.

The flow problem we study here is inspired by [22] 23]. Generally
speaking, it is more difficult to study fully nonlinear curvature flows and
their asymptotic behaviors for the following reasons. First, there is a lack of
monotonicity quantities; usually in order to study the asymptotic behavior
of curvature flows it is nice to have some monotonicity formulas (see [20]
and [16] for example). Second, there is a lack of convexity estimates in the
limit; unlike in [4} [6, 21], we do not know if the limit is convex. Lastly, the
admissible cone for general curvature flows can be very large, which makes
it hard to obtain curvature estimates.

Our motivations for considering geometric flows of this type are the fol-
lowing: (i) It is the first step in solving the Christoffel-Minkowski problem for
curvature measures using a flow approach. (ii) We introduce new techniques
to obtain the curvature estimates, and we expect these new techniques will
be useful for other geometry problems.

Let us state our main result as follows.
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Theorem 1.2. Let Mg be a smooth, closed, 2-convex, starshaped hyper-
surface in R" ™. Then the flow has a unique smooth starshaped so-
lution My with positive scalar curvature, for all time t > 0, which con-
verges to the origin. After a proper rescaling, X — ¢~ 1(t)X, the hypersur-
face My = ¢~ L(t) My converges exponentially fast to a sphere centered at the
origin in the C* topology.

Following [22], our choice of the rescaling factor ¢(t) is motivated by the
calculations below. Assume

(1.2) X (1) = ¢(t) Xo()

evolves under the flow (1.1) with initial data ¢9Xo, where ¢ is a positive
function and ¢g = ¢(0). By differentiating equation (|1.2)) with respect to ¢
and multiplying both sides by vy = v(-,t), we get

(1.3) ¢ (1) (Xo,v0) = —¢*Loy/* (0)r,

where O';/ 2(0) is the normalized scalar curvature of My = X (S"), and r¢ is
the radial function of Mj. By (|1.3)) we have

¢/ — _)\(;safl
for some constant A > 0. We may assume \ = 1. Then

¢(t) = gboe_ta if a = 2,

1.4 1
- ¢(t):((g)_a—(2—a)t)m,ifa>2.

The study of the asymptotic behavior of the flow (1.1)) is equivalent to
the study of the long time behavior of the rescaled flow (1.5)). Let

where 7 = —In¢. Then X (-,7) satisfies the following equation

0X
0 Xt = ol x,
X(-,0) = Xo.

For convenience, we still use ¢ instead of 7 to denote the time variable, and
without causing confusions, we omit “tilde”.
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Theorem is optimal in the following sense. If a < 2, we find that
the hypersurface evolving by can reach the origin in finite time; hence,
the flow does not converge to a round sphere centered at the origin. More
precisely, we prove

Theorem 1.3. Suppose o < 2, then there exists a smooth, closed, uniformly
conver (automatically starshaped and 2-convex) My, such that under the
flow (L1)),

n . t
R(X (1)) := Mmaxs 1,5 r(t) — 00, ast — T,
ming. (-, t)

for some finite T > 0.

The organization of the paper is as follows. In Section [2] we introduce
some basic notations and establish evolution equations for basic geometric
quantities. In Section [3| we derive C? and C! estimates. We show that a;/ 2
is bounded along the normalized flow in Section {4} Section [5|is devoted
to the proof of our main a priori estimate, Theorem This estimate shows
that the principal curvatures stay bounded under flow . We obtain the
convergence result in Section[6, which completes the proof of Theorem[I.2] In
Section we give a counter example by showing that if o < 2, the flow

may have unbounded ratio of radii. This proves Theorem [I.3]
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2. Preliminaries

Let us first recall some basic properties of a starshaped hypersurface M in
R"*+1. Since M is starshaped, for a suitable diffeomorphism £(-) : S” — S,
the position vector of M can be written as

where r(§(z)) = | X (z)| is the radial function. Next, we will give the ex-
pressions of the induced metric, second fundamental form, and Weingarten
curvatures of M in terms of the radial function.
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Let eq,-- - , e, be a smooth local orthonormal frame on S, and let V be
the covariant derivative on S™. Then in term of r, we have

gij = ?“2(51'3‘ + ?irﬁjr,

y V¥
i 2 8o — v rJ
o= (b= )

rf—?r

. L _
hij =~ (r%0;5 + 2VirVr — V1) .

The principal curvatures of M are the eigenvalues of h;; with respect to g;;,
namely the solutions of

0= det(hij — /ﬁigi]’) = det(aij - /ﬁ(sij)a

1\ 4 1\
where a;; = (g_5> him, (g_5> , and

(72)" =" |0 - ViV
Y P2 VR P+ V)

is the square root of ¢g"/. It is easy to see that if M, is a family of starshaped
hypersurfaces satisfying (|1.5)), then the radial function r satisfies

_ a1 1/2
(2.1) re = —1" Twoy T+,
r(-,0) = ro,

where 7 is the radial function of My, and w = /72 + |Vr|2.

Next, we will derive some evolution equations for our normalized flow
(1.5). We will use V to denote the covariant derivative with respect to the
metric on M. Let {m1,--- ,7,} be a local orthonormal frame on T'M;, and
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recall the following identities:

(2.2) Xij = —hyjv (Gauss formula),
(2.3) v; = hir, (Weingarten equation),
and

(2.4) Vrhij = Vijhes + hihlhys — hiphsm B

+ hsjh?hmn — hwhz.nhms (RlCCl identity).

We now consider equation ((1.5)) on M;. Let A be the vector space of
n X n matrices and

Aoy = {A = {aij} ceA: /\(A) S F2}7

where A\(A) = (A1, , A\) denotes the eigenvalues of A. Let F' be the func-
tion defined by F(A) = f(A(A)) = 0;/2(/\(14)), A € Ay. In the rest of the
paper, we will use the following notations,

F9=_"_(A), F

Oaij N aaijﬁakl

Since F'(A) depends only on the eigenvalues of A, 1f A is symmetrlc S0 is

{F(A)}. Moreover, when A is diagonal, F¥(A) = 8)\ = fid;;.
Lemma 2.1. Denote & = TO‘U;/Z and F' = 05/2, then under the normalized

flow (1.5)), we have

0
(2.5) 779 = —2®h;; + 295,
0
(26) al/ = gleI)le,
and
9 J_ & kpj J
(2.7) ol = @ + ®hihy — ;.

ot
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Proof. By the Weingarten equation, we have

gtgij = (X1, X;) + (Xs, (X0);)

=2 <—<I>i1/ — OhlF7, + Ti,Tj>
= —2‘I>hij + Qgij.

This proves (2.5)).
To derive ([2.6)) one observes that

O <V7 Ti> = <Vta7_i> + <V, (Xz)t> =0.

Therefore,
(v, 1) = — <V, (—®);v — (I)h,’ka + Ti> =&,
which implies that
v = g™y,

Next, we differentiate equation (2.6 with respect to 7; and get
O = (gkl‘bm), =0 (hi‘ch) :
1
Thus,

(athf) T + hE (—dv + X)),
= g"®m — M@y

This gives us that
k. 1k r N Klg
Oihi gy + hi (=Ppv — PhyT + T, 7j) = 97 Prigiy,

which implies,
Oih] = &) + R, — 1.

3. C° and C" estimates

In this section, we will establish the C° and C! estimates. In particular,
we will show that the flow (1.5 preserves the starshapedness of the initial
hypersurface M. We also want to point out that throughout this paper, if
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not further specified, we will denote by C' and C; for i € N, some positive
constant, whose value may change from line to line.

3.1. C° estimates

In this subsection, we will establish the uniform upper and lower bounds for
the radial function r of the normalized flow ({2.1).

Lemma 3.1. Let r(-,t) be a positive, 2-convex smooth solution to (2.1) on
S™ x [0,T). If « > 2, then there exists a positive constant C depending only
on maxgn 7(+,0) and ming. r(-,0) such that

(3.1) 1/C <r(-t) < C, Yt e [0,T).

Proof. Let rmin(t) = IISlin r(-,t), YVt € (0,T). Note that at the point where

Tmin(t) is achieved, we have O‘;/ 2 < %(t) Then by equation (2.1)) we get
%Tmin > T'min (1 - T;;HQ) .

Therefore, when o = 2, we get

d
%Tmin >0,

which yields r(-,¢) > minr(-,0),Vt € (0,7); when « > 2, we may assume
minr(-,t) < 1, otherwise we would be done. It follows that

d
%Tmin > 0.

This implies when « > 2 we have
r(-,t) > min{l,nslinr(-,O)}.

Similarly, we have

r(-,t) < max{1, max r(-,0)}.
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3.2. C! estimates

In this subsection, we will apply the evolution equations derived in Section 2]
to obtain the gradient estimate. This result yields that, if we start from a
starshaped hypersurface My, then as long as the flow exists, M; remains
starshaped.

Lemma 3.2. Let X(-,t) be a family of smooth, 2-convex hypersurfaces that
solves the normalized flow (1.5) on S™ x [0,T). Denote u= (X,v), then
there exists a constant C depending on My, | X|co, and n such that

(3.2) 1/C<u<C, te]0,T).

Proof. The upper bound of u is a direct consequence of Lemma There-
fore, in the following, we only need to show u is bounded from below. We
will follow [15] considering

P:")/(S)—10g<X,V>,

where S = (X, X), v(S5) = %, and A > 0 to be determined.

Assume P achieves its maximum at an interior point Xy € M,,. In the
following, all calculations will be done at this point with respect to a local
orthonormal frame 71, -, 7,. We can see that at X

PZ:’}//Sz—&:O
U
By a straightforward calculation we get,

Si = 2<X,Ti>,

Sij = 2(1i, 1) — 2(X, hijv) = 20;; — 2h;ju,
and
Sy =2(X, X)) =2(X,-dv+ X) = —2du + 25.
Therefore,
LS =S, —r*FYS;;
(3.3) = —2Qu + 25 — r*F" (26;; — 2h;;u)
=25 —2r*> f.
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Moreover,
Uy = <Xt,l/> + <X, I/t>
=(—Pv+ X,v)+(X,VP)
=-®4u+ <X, ar® 1EVr + TO‘VF> ,
u; = (Xi, v) + (X, hiie) = b (X, 7h)
and
Uijj = hij + <X, hijk7k> — hikhkju.
Therefore,
Lu =y — r*Fu
= O+ utar® (X, Vr) +r*(X,Vf)
(3.4)

—rf =1 (X, V) 41y Fhighy;
=20+ u+ ar® 1 f (X, Vr) + ro‘uz Fijhikhkj.

Since at Xy we have P; = 0, it follows that

hik (X
(3.5) 2/ (x,7) = M)
u
If at this point, (X, 7;) = 0 for all 1 <i < n, we would get (X, v)? = |X|?,
then by Lemma we are done. So we may assume (X, )% < |X|? at X.
We may also choose a smooth local orthonormal frame on M;, such that
at Xo, (X,7;) =0, i > 2. Therefore at this point, we have hy; = 27'u and

hi; =0 for i > 2. We may also rotate {72, --,7,} such that h;; = K;0;; is
diagonal.
Next, we compute
Pt = ’Y/St - E)
n
and
_Ja. no o, Wig | Uil

.PZ]—’}/SU‘F’}/ SZSJ 7"‘ u2.

Therefore
LP =P, —r"FIP;

(3.6) Ui

1 g .
=+'LS — aﬁu —rY"F98;8; — rF% 2
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Substituting equations (3.3) and (3.4]) into (3.6 and applying the maximum
principle we obtain at Xo,

(2S 2re Zf)—*( 20 +u+ ar® (X, Vr) + 7 qu’ 2)
— " 17 - “fiuzzo.

Since r?2 = S, we get 2rr; = 2(X, 7;), and

2 9 2
<X,V7”>:<X’Tl> :S Uu :T—u—.

r T r

Hence, we get

P a—1 2
sl o ()

> 2ra'y'Zfi +r Zfili? +4r* [(v" + (7/)2) fl (S - u2)] +1,

where we used equation 7/S; = “. Substituting v = % into (3.7) we obtain

2\ a2 2-)® L (2x N o
—§+ar fu—i—T—i—M (534—54 fru

PN P . 20 A2
21—2§Zf +r) iR A+ 4 <S3 S4>f15.

2—a)®

First, since a > 2, we have < 0. Moreover, differentiating

Bf* = Boy = S, where B = (}),

with respect to \; we get

2811 = Si(kli) =Y _ ;.
J#i

This together with hi; = —2%11 < 0 implies
% _ 1
26F ) f'=(n=1Si(k) < (n = D)Si(k[1) =2(n — 1)BFF".

Therefore, we get

1<) fi<(n=1)f
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where the first inequality comes from the concavity of f (see [I4]). Moreover,
we can always choose A > 0 large such that

2

22 A
(n — 1)f1 + 27"a <S3 + 54> fIS > 0.

—2r*\
52
Thus we have

22 A2
aro‘_2fu + 4r¢ (5’3 + S4> flu2

22 P o (22 A2\
21+S+T2N%H4r<¢+y>f5

(3.8)

Since f is concave, we have

(3'9) Zfl’%z? > f(/i%, ,H%) > C(n)fQ'

Case 1. When ar®2fu > 1+ % +rY fiRE > 1+ % +¢(n) f2, we get
C
u > 71—|—c(n)f>02.

Case 2. When ar® 2 fu < 1+ % + 7Y fik?, we get

20 A2 20 A2
4r© (Sg + S4> f1u2 > 2r¢ <S3 + S4> flS

This gives u? > %

Combining case 1 and case 2 we conclude that u is bounded from below
at Xg, which in turn implies that « is bounded from below everywhere.
Hence, we proved this lemma. O

For later usage, we want to point out that Lemma implies that
|Vr(-,t)| < C, for t € [0,T).

4. Bound on F
1/2

In this section we will show that along the flow, F' = o,
above and below.

is bounded from
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Lemma 4.1. Under the normalized flow (1.5)), there exists a constant C
depending only on Mgy and r,such that

1
4.1 F>—.
(1) > =

Proof. Let ® = r®F, recall the evolution equation (2.7)) we have
(4.2) Fy = FU (@ + Ohfn], — hl).

Moreover, by (1.5) we get
(X, X)

’]“tziz
r

+ 7.
Therefore, choosing an orthonormal frame such that h{ = K;0;; we get

oo
o = ar® e F 4+ r*F,
ad du . , )
(4.3) = 7 <_T + 7’) R (CI)Z']' + (I)hfhi — hi)
ad du g )
= 7 <_T + 7’) + "0 + D E flmlz — .

Let ®pin(t) = miSn O (x,t), then Py, satisfies
res”

d ad? . y )
%(I)min =z — an 4 (Oé - 1)(I)min + Taq)min z fZK?-
Thus we have
d au
%q)min > P |:(04 - 1) - T@min} .
We can see that, when &, < T(Z;D , then %(I)min > 0. Therefore, we con-

clude that

S x[0,T") uo
Together with Lemma [3.1] and Lemma [3.2] we get F' is bounded from below.
[l

—1
D in > min{ngin@(-,O), min r(a)} )

Lemma 4.2. Under the normalized flow (1.5), there exists a constant C
depending on My, u, and r such that

(4.4) F<C.
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Proof. Let L := % — rYFV,;, by ([@.3) we get

a<1>2 i 2
(4.5) LD = +a®+ ) fix
We also recall that
(4.6) Lu= =204 u+ar® 'F(X,Vr) 4+ Z [l
Considering M = log ® — log(u —a), where a = %S m[iOnT) u. At its maximum
[0,
point, by equations (4.5)) and (| . we have
LD Lu
LM =——
d uU—a
adu i 2¢
(4.7) =——g TN+ ) firi+——
)
-t X, o) w2 > 0.
u—a r(u—a)
Applying Lemmas [3.1] and [3.2] we get
(4.8) C1F —Cy» f'ki—C3>0.
Substituting (3.9) into (4.8]) we obtian
C1F — CyF* —C5 > 0.
Hence, F' is bounded from above. [l

5. C? estimates

In this section we will show that the principal curvatures of M; remain
bounded along the flow. Due to the complication of terms involving the
third derivatives of M;, we need to introduce new techniques to carefully
analyze them. These are the most difficult estimates in this paper. We prove

Theorem 5.1. Under the normalized flow (1.5)), there exists a constant C
depending on Mo, r,n,u and F,such that

1A < C.
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Proof. First, we note that H? — |A|> = 2S5 > 0. Therefore, in order to show
the principal curvatures are bounded, we only need to show H is bounded.
Let us consider

Q = log H — log(u — a), where a = § minwu.

If @ achieves its maximum at an interior point Xy € My, then at this point
we have

and

LH Lu
LQ=" -

We will choose a local orthonormal frame in the neighborhood of Xy such
that at Xo we have h;; = k;0;;. By (2.7) we obtain the evolution equation
for H,

> 0.
u—a

P .
o H = Pu + dhEn: — H
(5.1) = Vk(ara_lrkF +rFg) + <I>|A|2 - H
= [ar® ' F + ol — D)r* 2 riF + 200 ' By + r® Fry
+ ®|A)> - H.

Since hjjkr = hrri + hkkhi — hiihika we get
Fye = F' g, + FPC 5 B hse

(5.2) = F" (hyki; + hiehds — hihig) + FPY hypgpohy g,
= FHy + Hf'k? — |A]PF + FPT 5 by

Hence,
0 o' ni¥)
LH = &H —r*F H”
(5.3) = ar® r F + ala— 1)7““_27",%17 + 2ar* " lr By,

+r*H Z fz'%% + Tanqmshquhrsk —H.
By a straightforward calculation we have,

r? =8, 2rr; = 2(X,7;), and 2r? 4+ 2rry; = 2 — 2hu.
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Thus

1 — hju —r?
(54) Ty = 7”111 i .
r

Substituting (5.4]) into (5.3) and combining with (4.6 we obtain,

LQ = %[aro‘_2F(n — Hu — |Vr]?) 4+ a(a — 1)r* 2 F|Vr|?

(5.5) +20r iy By + 1 H > R — H + 1P hpgphy
1 ,
- —2 1P (X, V) + r® i 2) > 0.
u_a< +u+ar (X,Vr)+r UZfHZ >
By Lemma Lemma Lemma and Lemma equation (5.5))
implies

1
E (Cl + 2aTa71Tka + Tanq’rshquhrsk)

(5.6) g '
+Cy— —— > f'I >0
Now since
n
p<q
we have
20F" FP1 4 2B F FP9™8 = qu’rs.

Therefore

FPETSh o hpst = qu’rshqu’hrsk . 53
ParTrs 2B F F
Furthermore, for any A > 0 we have

/\raF,? a2ra*2r,%HF

2a0r* r B <
ar Tl > HF )\

Therefore, equation (5.6)) becomes
1 azro‘_2riH F
H A

Ar® SEPT Ry s, ar® i 9
Bt e S 20

A
+ re (1 — ) qu’rshquhrsk
(5.7) H

where we used % >F > %
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From now on, we assume that k1 > ko > --- > Kk, at Xo € My,. In order
to show H is bounded at Xy, we only need to show x; is bounded. We will
prove it in two steps. First, we will show |x;| is bounded for ¢ > 2. Then, we
will use this result to show that 1 is bounded.

Step 1. In this step, we will show that when x; > 0 large, we have ||
is bounded by C; = C4 (ryu, F,B) for i > 2.

Note that,
Sgwshquhrsk = Z hppihaql — Z h’]2)qk
#q P#q
(5.8) P
= Hj; - Zhgpk N Z hqu‘
P P#q

By the virtue of earlier estimates, (5.7)) can be written as

C re A
(5.9) )\3+H<1_H) il
5.9
Ar® ar® .
—__H Ej k2 > 0.
T SH8F E+Ce— o ) fiwi 20

Moreover, since Q) = 0 at Xo € My, we have

Hy, g, Kk (X, )
5.10 — = = .
( ) H u—a uU—a

Let A = nf!, we may choose n = n(r,u, F, 3) > 0 small such that

nro‘f ke (X i) ar® i 9
2H25F Z a)2BF Q(u—a)z i
where we used f! < f2< ... < f” Notlce that f1 = 2ﬂ;1 < CH; so we can

also assume 7 > 0 so small that 7 < 2 By the concavity of F, (| . 5.9) becomes

C3 ar® i 9
(5.11) f1+02— (u—a);f K2 > 0.

Now, if nf! > 1 at Xy € M, then we have

- ¢
Cg—i—CgZCOZf’ ?:m—OFZ(H—m)/ﬁ%
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where S3 = > Ki, Kiykiz and co = co(r, u) is a positive constant. It
1§2’1<i2<i3§n
follows that when H > 0 large,

3¢ co

— > — — .
2,8FS3_ 2ﬁFS2H CQ Cg>0

By Lemma 3 in [I7], we conclude that || < %, for j > 2;s0if nft > 1
then step 1 would be done. Therefore, in the following, we will always assume
nf! < 1. In this case, (5.11]) can be written as

Cs ar® ;9
5.12 Sy 2— 'k > 0.
(512) A 2u—a) Z Jiri =
This yields

ar®

1pn, 2
mffﬂn§04'

Notice that

(H — k1)(H — kp)

1pen
= 1P F?

(5.13)
>C5(H2—I£1H)=C5 ZH?+52+S2(/1‘/€1) > Cg.

1>2

Here, the first inequality comes from the assumption that x, < 0, since if
Kn > 0, we can get (5.14]) from Lemma directly. The second inequality
in (5.13)) is trivial if So(k|k1) > 0. When So(k|k1) < 0, since

2

Zm :25?4—25’2(&\&1),

i>2 i>2

we have

ZFJ? + Sg(li‘/ﬂ) > 0,

1>2

and the second inequality still holds.



Asymptotic convergence for modified scalar curvature flow 87

Therefore, we get
Crks, < Cu,

which yields
(5.14) K2 < Cy.

Hence, at the point where @ achieves its interior maximum, |x,| is bounded
from above. In the following, we want to show that |x;| is bounded from
above for all ¢ > 2.

Now we assume at X,

K1 > Kg > > K> 02> Kpgg >0 >k > —1/Co,

then it is easy to see that when x; > 2nv/Cy we have

H — Kj
26f

Substituting (5.15)) into equation (5.12)) we get

(5.15) fi=

> Ckq, fori > 2.

C ar® & C ar®
=2

Note that
(H — /‘il)/ﬂ
28f

so by equation (5.13) we have flk; > c1, where ¢; only depends on 3 and
F. Therefore, (5.16]) implies

O3 > Cs(|Af® — w1),

fllil = > CH(H — Kl),

which gives || < Cy for i > 2.

Step 2. So far, we have proved that at the maximum point of @, if
K1 > 2n\/EO large, then for ¢ > 2 we have |k;| < C’l for some constant Cl
Ci(r, F,u, ). So, in this step, we will always assume |x;| is bounded for
i > 2. Let us go back to equation ([5.7)).

Without loss of generality, we may assume % < 1/2 and X\ < 1. (Later
we will see that in this step, we will choose A = n(f* )2/3 By step 1, we know

that |#;| is bounded for i > 2. Therefore, f! = 22;} is bounded from above,
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so we can always choose 1 > 0 small such that A < 1.) Then, equation (5.7))
implies
A Cs  ar®y. fik?

2H2Fﬁqu " hpgkhesk + ~ — ——="—+ >0,

1 —qursh hrs
(5.17) 2H pakitrak + A uU—a

By a well known algebraic Lemma (see Lemma 7 in [I8] for example),

we have
fr=f0
re Tshquhrsk < pz#;l Kop — Hq qu
fP—
<2ZH — K1 ppl 5F2hpp1
p>1 p>1
1
< *m(ﬁﬁ — hin)*.

Moreover, (5.8)) yields
S5 gl < Y HE =D o
k p,k

n
SH%—h%n"'ZHI% < CoH? + (Hf — hiyy)-
k=2

Here the last inequality comes from (5.10) and |x;| < Ch, i>2.
Combining with equation (5.17)) we get

re e\
S — 5 PR 2 H2
g ARG D) ) g O )
: o 7,.2
RERED oY s S
A U—a

Now, let @ =ny(f1)/3 and A = n(f')%/3. Here, we ﬁrst choose 71 > 0
such that a < 1, then we choose 1 > 0 such that ’7 < =5 We will divide
this into two cases.

Case 1. If at Xo € My,, |Hy — hi11| > |aH;|, since A < na—jl we have,
when H > 1

(Hy —h111)? A a’H? a’H?

———— 4+ —H{ < - <0.
n—1 +H = n—1+(n—1)H
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Therefore, equation ([5.18)) yields

C
74 > Chof'ri.

Multiplying by A on both sides we get
(F1/3k3 < Cyy.

Since f'k1 > ¢ we conclude that k1 < C’g.
Case 2. If at X9 € My, |Hy — h111| < |aH;|, then we have

|hi11] < (14 a)|Hy|.
Thus

|HY — hiyy| < 3aH7.
Substituting the above inequality into we get

3rixa o  Ci ar®y" fik?

= H > 0.
2H2Fj O =0

A u—a
By (5.10) we can choose n = n(r,u, F, 8) > 0 so small that

3r*Aa < a?"afllﬁi%
2H2FB 1 T 2u—a)

Hence, we get
Ca > (f1)°/k]

which yields 1 < Cs. This completes the proof of Theorem O

6. Converging to a sphere

Section 6 and 7 are small modifications of Section 4 and 5 of [23], for com-
pleteness, we will include them here.
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It is sometimes more convenient to study the equation for the quantity

p(&,t) = logr(¢, b).
By a straightforward calculation we have

—_ = —1/2 .
Q5 = € p(1+\V,0\2) / g5,

where
aij = Yit(6im + VipVmp — Vimp) Ymjs

and

VipV. _1\W
Yij = 0ij — PP = p(a 2) :

(L+ Vo)1 + (1 +[Vp|2)?2)
Therefore, p satisfies the following equation
r —
(6.1) pr = ?t = =N 1+ Vo203 (i) + 1
= —6p(a_2)(7%/2(6~lij) + 1.
In the rest of this section, we shall finish the proof of Theorem

Lemma 6.1. For a > 2, there exists C and v depending only on n, a, and
My, such that

(6.2) max V(s ol < Ce "™ ¥t > 0.
sn T('at)

Proof. Consider the auxiliary function
L& 2
G= i\Vp\ , where p = logr.
At the point where G attains its spatial maximum, we have

(6.3) 0=ViG=> pp

and

(6.4) 0> VG = pipiij + Zpliplj-
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Moreover,

(6.5) =Y o[- D0 — oy (ay) — eI Fay|
= _60(0_2) [(a — 2)0;/2(&”‘)’?[)’2 + Fijdijlpl} ,

;5 2a . . . .
where F¥ = 8028&7_('?”). At the point under consideration, since Y, pjp;; = 0,
.
we have

prvrdij = _/Yilprvrplm’ij'
By the Ricci identity, we have

vr,OZm = vmplr + 5lrpm - 5lmpr-
Thus by (6.4),
prﬁr&i]’ = _'Yilpr(?mplr + 6l'rpm - 5lmpr)7mj
> _'Yil(_prlprm + P1Pm — 5lm‘v,0‘2)’}’mj'

Substituting this into equation (6.5 we get

Gy < =" D (o = 2)03/(s5) |V |

66) +eflO 2 Y <—%mrmrm7mj + VPP Vmi = %z'yszVmQ)

l

< ere? <F“ Yipupmvmg — F7 Y %leWP|2) :
l

Now let A" = F~;~,,;, by Theorem we have maxk[A"™] —
ZAM" < —C, thus

kk
Gy < erle™?) (Almpmm —~ ZA'““W/)P) < -G,

for some positive constant -, this proves the Lemma. O

From and Lemma [3.1] we conclude that |[Vr| — 0 exponentially as
t — oo. Hence by Theorem [5.1]and interpolation inequality we conclude that
r converges exponentially to a constant in the C°° topology as t — oo. This
completes the proof of Theorem
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7. Counter examples

In this section, we show that if a < 2 the flow

0X .
- Gt = et
X(-,0) = Xo.

may have unbounded ratio of radii, namely

axsgn -t
(7.2) R(X (1)) = m,LT(’) — o0 as t — T, for some T > 0.
ming» 7(+, t)
Let X (-, t) be a convex solution to ([7.1]), then its support function u satisfies
the equation

@(x t) = —r® Sp—2(Viju + ud;j) 1/2
(7.3) ot (2) S (Vi + udij)
’U,(-, 0) = Up-

By a translation of time, we show below that there is a sub-solution Y (-, ¢) for
t € (—1,0) such that (7.2)) holds as ¢ — 0. More precisely, we will construct
a convex sub-solution Y (-, ) such that its support function w satisfies

_ 1/2
Ow Sn—2(Vijw + wijj)
7(17’ t) Z e B * J J
(7.4) ot (5) Sn(Vijw + wdij)
w(+,0) = wo.

Moreover, we will show that ming» w(-,t) — 0 while maxg» w(-,t) remains
positive as t — 0.

Lemma 7.1. There is a sub-solution Y (-, t), where t € (—1,0), to equation

_ 1/2
au Sn_g(Viju + Uéz])
—(z,t) = —ar® | —
(7.5) ot (Q)Sn(viju + U(Sij)
u(+,0) = ug

for a sufficiently large constant a >0, such that ming. w(-,t) — 0 but
maxg- w(-,t) remains positive as t — 0.
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Proof. Let M, be the graph of the function

L U R

(7.6)  d(p,t) = o 1—0 o 2
— |t t +0o) < 140 ft9< <1
7~ 20 2 i < <,
where z € R", p = ||, 0:L qg=2-aq, and9> is a constant.

When 0 < p < |t]%, by a Stralght forward calculatlon we have

¢ = 2|t|% Vg,

oi; = 2|t)" Vs,

and
2[t/*C 14y

ij = \/1+4|t|29(a—1)p2
The principal curvatures of the graph ¢ are

2‘t’9(071) q
Kl =Ko =+ = Kp_1 = an K, —
! 2 nl \/1 +4|t|29(0—1)p2 n

2|t‘9(a—1)

(Vi 2)

Therefore,
o 1/2 C|t|a0 |t|0(a—1
2 = 1+ 4[t[200—1)p2 =
and ‘%Y(p, t)’ < 20|t~ where p = (z, ¢(|z|,t)) is a point on the graph of
¢.

C|t|0 1

When |t|? < p < 1, we obtain

and
2p0—1 P
Kl=Ky=+=Fkp=——-—and Kk, = 2L —.
/1 +4p2a (\/1+4p2“)

Therefore, we have
r / >Coz+01 Cp 9>C‘t‘01

and ‘%Y(p,t)‘ < 20|t|%~1. Hence, the graph of ¢ is a sub-solution to (7.5)),
provided a is sufficiently large.
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Next, we extend the graph of ¢ to a closed convex hypersurface Mt,
such that it is C™! smooth, uniformly convex, rotationally symmetric, and
depends smoothly on t. Moreover, we may assume that the ball By(z) is
contained in the interior of M, for all t € (—1,0), where z= (0 ,0,10) is
a point on the x,11- axis. Then M, is a subsolution to 7.5)) for sufﬁcrently
large a. O

We are in a position to prove Theorem For a given 7€ (—1,0),
let M_; be a smooth, closed, uniformly convex hypersurface inside M,
and enclosing Bj(z). Let M; be the solution to the flow with initial
data M_;. By Lemma [7.I and the classic comparison principle we have M,
touches the origin at ¢t = ¢g, for some ¢y € (7,0). We choose 7 to be very
close to 0 so that |to| is sufficiently small.

On the other hand, let X(-,t) be the solution to

0X /

— = —bafaa; %y

with initial condition X (-, 7) = 8B (z), where b = 2% ‘sup{|p|* :p € My, 7 <
t <to} and 7 = |X — 2| is the distance from z to X. We can choose T so
close to 0 such that B /5(2) is contained in X(-,t) for all t € (,t). By the
comparison principle, we see that the ball B; /2(2') is contained in the interior
of My, for all t € (7,tp). Therefore, as t — tg, we have minr(-,¢) — 0 and
r(-,t) > |z| = 10. This proves for M. s

So far, we have proved Theorern . when r¢ Ty “o 1/ 2

is replaced by ar

for a large constant a > 0. Making the rescahng M, =a 7= M,, one easﬂy
verifies that M, solves the flow equation (7.1) and Theorem E is proved.
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