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In this paper we consider the weak formulation of the in-
verse anisotropic mean curvature flow, in the spirit of Huisken-
Ilmanen [15]. By using approximation method involving Finsler-p-
Laplacian, we prove the existence and uniqueness of weak solutions.

1. Introduction

Let F ∈ C∞(Rn \ {0}) be a Minkowski norm in R
n, i.e.,

(i) F is a norm in R
n, i.e., F is a convex, even, 1-homogeneous function

satisfying F (ξ) > 0 when ξ ̸= 0;

(ii) F satisfies a uniformly elliptic condition: D2(12F
2) is positive definite

in R
n \ {0}.

Let X(·, t) : M × [0, T ) → R
n be a family of smooth embeddings from a

closed manifold M in R
n satisfying the evolution equation

(1)
∂

∂t
X(x, t) =

1

HF (x, t)
νF (x, t),

where HF (x, t) > 0 is the anisotropic mean curvature function of the hyper-
surface Nt = X(M, t) and νF (x, t) is the unit anisotropic outer normal.

The anisotropic type curvature flows have been used by Angenent and
Gurtin to modeling the motion of the interface with external force, see for ex-
ample [3, 4, 14] and the reference therein. Geometrically, they can be thought
of as curvature flows in Minkowski geometry. Different kind of anisotropic
type curvature flows have been studied, see for example [1, 2, 20]. For the
anisotropic mean curvature flow, there are works concerning with weak so-
lutions and their regularity issue, as well as its numerical analysis, see [8, 12]
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and the reference therein. For more references on anisotropic type curvature
flows we refer to [20] and the reference therein.

In this paper, we look at (1), the inverse anisotropic mean curvature flow
(IAMCF). When F is the Euclidean norm, νF and HF reduce to the unit
outer normal and the mean curvature respectively, and in turn (1) reduces
to the classical inverse mean curvature flow (IMCF).

Gerhardt [11] and Urbas [22] proved that the classical IMCF which initi-
ated from a star-shaped and strictly mean convex hypersurface exists for all
time and converge to a round sphere after rescaling. For general initial data,
the IMCF may develop singularity. Huisken-Ilmanen [15] has developed a
theory of weak solutions for the IMCF of hypersurfaces in Riemannian man-
ifolds by its level-set formulation and applied it to show the validity of the
Riemannian Penrose inequality.

For the anisotropic counterpart, recently the third author [20] has stud-
ied the IAMCF which initiated from a star-shaped and strictly F -mean
convex hypersurface and proved the long time existence and convergence re-
sult analogous to Gerhardt and Urbas’ result. As a direct application, he has
proved the anisotropic Minkowski inequality between the anisotropic mean
curvature integral and the anisotropic area for star-shaped and strictly F -
mean convex hypersurfaces. This anisotropic Minkowski inequality for con-
vex hypersurfaces is a classical result in the theory of convex geometry. One
asks naturally what happens if the initial hypersurface is no longer star-
shaped. Analogous to Huisken-Ilmanen [15], we are able to develop a theory
of weak solutions for the IAMCF by its level-set formulation. This is the
aim of this paper.

Suppose the evolving hypersurfaces Nt are given by level sets of a func-
tion u : Rn → R, that is

Et = {x ∈ R
n : u(x) < t}, Nt = ∂Et.

If u is smooth and ∇u ̸= 0, then (1) is equivalent to the degenerate elliptic
equation

(2) div (Fξ(∇u)) = F (∇u).

See Section 2. When F is Euclidean, it is clear (2) reduces to

(3) div

(

∇u

|∇u|

)

= |∇u|.
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As Huisken-Ilmanen [15], we define a weak solution of (2) by the follow-
ing minimization principle.

Definition 1. Let Ω ⊂ R
n be an open set. A function u ∈ C0,1

loc
(Ω) is called

a weak solution to (2) if

(4) JF,u(u) ≤ JF,u(ϕ)

for every precompact set K ⊂ Ω and for every test function ϕ ∈ C0,1
loc

(Ω) with
ϕ = u in Ω \K, and where

(5) JF,u(ϕ) :=

∫

K

[

F (∇ϕ) + ϕF (∇u)
]

dx.

Moreover, u is a proper solution if in addition

lim
|x|→+∞

u(x) = +∞.

Our main result of this paper is the following existence result.

Theorem 1.1. Let Ω ⊂ R
n be an open set with smooth boundary such

that Ωc = R
n \ Ω is bounded. There exists a unique proper weak solution

u ∈ C0,1
loc

(Ω) of (2), in the sense of Definition 1, such that u = 0 on ∂Ω.
Moreover, u satisfies

F (∇u(x)) ≤ sup
∂Ω

H+
F , x ∈ Ω,(6)

F (∇u(x)) ≤ H+
F (x), x ∈ ∂Ω,(7)

where H+
F (x) = max{HF (x), 0} and HF is the anisotropic mean curvature

of ∂Ω.

Huisken-Ilmanen’s approach in the classical IMCF case to prove the
existence is studying an approximate equation of (3), known as elliptic reg-
ularization. One of the key feature of this elliptic regularization is that it cor-
responds to a family of translating graphs which solves the IMCF in R

n × R.
It seems that such elliptic regularization is not available in the anisotropic
case. This is due to the presence of the high nonlinearity F (∇u) in R

n, for
which it is not immediate to understand what is the correct AIMCF in a
higher dimension, preserving the correct equation in the limit.

Later, Moser [17] found another approximate equation of (3) involving
the p-Laplacian. It turns out that this approximate equation is also effective
to prove the existence of weak solutions for IAMCF.
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Inspired by Moser’s approach, we consider the approximate equation
of (2) involving the Finsler-p-Laplacian, that is,

(8)











div
(

F p−1(∇u)Fξ(∇u)
)

= F (∇u)p in Ω,

u = 0 in Ωc,
u→ ∞ as x→ ∞.

We have the following

Theorem 1.2. Let Ω ⊂ R
n be an open set with smooth boundary such that

Ωc = R
n \ Ω is bounded. For every p > 1, there exists a unique solution up ∈

C1,α
loc (Ω). Moreover, for every ε > 0, there exists p0 = p0(ε) > 1 such that if

up ∈ C1,α
loc (Ω) is the solution to (8) for 1 < p ≤ p0, then

F (∇up(x)) ≤ sup
∂Ω

H+
F + ε, x ∈ Ω(9)

F (∇up(x)) ≤ H+
F (x) + ε, x ∈ ∂Ω.(10)

Theorem 1.1 follows from Theorem 1.2 by approximation.
The rest of this paper is organized as follows. In Section 2, we recall some

fundamentals on anisotropic functions and anisotropic mean curvature. In
Section 3, we study Huisken-Ilmanen type weak formulation of IAMCF and
its properties. In Section 4, we study the approximate equation involving
the Finsler-p-Laplacian and show the gradient estimate and the existence of
weak solution of IAMCF.

2. Notation and preliminaries

2.1. Minkowski norm and Wulff shape

Let F be a Minkowski norm on R
n. The polar function F o : Rn →

[0,+∞[ of F , defined as

F o(x) = sup
ξ ̸=0

⟨ξ, x⟩

F (ξ)
,

is again a Minkowski norm on R
n. Furthermore,

F (ξ) = sup
x ̸=0

⟨ξ, x⟩

F o(x)
.



✐

✐

“4-Xia” — 2023/9/13 — 18:55 — page 101 — #5
✐

✐

✐

✐

✐

✐

Motion of level sets 101

Denote

W = {x ∈ R
n : F o(x) < 1}.

This is the so-called Wulff shape centered at the origin. More generally, we
denote by Wr(x0) the set rW + x0, that is the Wulff shape centered at x0
with radius r and Wr = Wr(0).

The following properties of F and F o hold true: for any x, ξ ∈ R
n \ {0},

⟨Fξ(ξ), ξ⟩ = F (ξ), ⟨F o
x (x), x⟩ = F o(x)

F (F o
x (x)) = F o(Fξ(ξ)) = 1,

F o(x)Fξ(F
o
x (x)) = x, F (ξ)F o

x (Fξ(ξ)) = ξ.

See e.g. [21], Chapter 2.

2.2. Anisotropic mean curvature and anisotropic area functional

LetN be a smooth closed hypersurface in R
n and ν be the unit Euclidean

outer normal of N . The anisotropic outer normal of N is defined by

νF = Fξ(ν).

The anisotropic mean curvature of N is defined by

HF = divN (νF ).

Here divN is the tangential divergence on N . See [20].
In this paper we are interested in the case when N is given by a level

set of a smooth function u, namely,

N = Nt = ∂Et, where Et = {x ∈ R
n : u(x) < t}.

When ∇u ̸= 0, it is clear that ν = ∇u
|∇u| and

νF = Fξ(∇u).(11)

It was proved that in [23] that

HF = div(Fξ(∇u)).(12)
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Here div is the standard divergence on R
n. If Nt satisfies the IAMCF, we

see that u(x(t)) = t and by taking derivative about t, we get

〈

∇u,
1

HF
νF

〉

= 1.

By virtue of (11) and (12), we arrive at (2).
The anisotropic area functional of N is defined as

σF (N) =

∫

N

F (ν) dHn−1,

where Hn−1 is the (n− 1)-dimensional Hausdorff measure.
It is well-known that a variational characterization of HF is given by the

first variational formula of σF , see for instance [6, 18, 20]. More precisely,
we have

Proposition 2.1 (Reilly [18], Bellettini-Novaga-Riey [6]).
Let N be a smooth closed hypersurface given by an embedding X0 :M →

R
n. Let Ns be a variation of N given by X(·, s) :M → R

n, s ∈ (−ε, ε), whose
variational vector field ∂

∂s
|s=0X(·, s) = V . Then

d

ds

∣

∣

∣

∣

s=0

σF (Ns) =

∫

N

divF,N (V )F (ν)dHn−1(13)

=

∫

N

HF (X0) ⟨V, ν⟩ dH
n−1,

where

divF,N (V ) := divV −

〈

∇νF
V,

ν

F (ν)

〉

.

Proof. We refer to [20] for the proof of the second equality. For completeness,
we prove the first equality here. We denote νs and dσs be the unit outer
normal and the area element of Ns respectively. It is well-known that

d

ds

∣

∣

∣

s=0
νs = −⟨ν,∇eiV ⟩ei,

where {ei} is an orthonormal basis of TN .

d

ds

∣

∣

∣

s=0
dσs = divN (V )dσ.
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Thus

d

ds

∣

∣

∣

s=0
F (νs)dσs = ⟨Fξ(ν),−⟨ν,∇eiV ⟩ei⟩dσ + F (ν) divN (V )dσ

= [−⟨ν,∇eiV ⟩⟨Fξ(ν), ei⟩+ (div V − ⟨∇νV, ν⟩)F (ν)] dσ

=

[

divV −

〈

∇νF
V,

ν

F (ν)

〉]

F (ν)dσ

The last line follows from

νF = Fξ(ν) = F (ν)ν + ⟨Fξ(ν), ei⟩ei.

□

3. IAMCF: a variational formulation

In this section, we review the weak formulation of IAMCF developed by
Huisken-Ilmanen [15] by using a minimizing principle. We follow closely
Huisken-Ilmanen’s strategy in [15], Section 1.

3.1. Weak formulation of IAMCF

Recall (Definition 1) that u is called a weak solution (subsolution, superso-
lution resp.) of (2) in Ω if u ∈ C0,1

loc (Ω) and JF,u(u) ≤ JF,u(ϕ) for every pre-

compact set K ⊂ Ω and for every test function ϕ ∈ C0,1
loc (Ω) (ϕ ≤ u, ϕ ≥ u

resp.) with ϕ = u in Ω \K, where JF,u is defined in (5).
The fact that

JF,u(min{ϕ, u}) + JF,u(max{ϕ, u}) = JF,u(ϕ) + JF,u(u)

whenever {u ̸= ϕ} is precompact implies u is a solution if and only if it is
both a weak supersolution and a weak subsolution.

There is an equivalent weak formulation by set functional. For K ⊆ Ω
and u ∈ C0,1

loc (Ω), define

JF,u(G) = JK
F,u(G) :=

∫

∂∗G∩K
F (ν)dHn−1 −

∫

G∩K
F (∇u)dx,

for a set G of locally finite perimeter, and ∂∗G denotes the reduced boundary
of G.
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Definition 2. We say that E minimizes JF,u in a set A (minimizes on the
outside, minimizes on the inside, resp.) if

JF,u(E) ≤ JF,u(G)

for any G such that E∆G ⊂⊂ A (G ⊇ E, G ⊆ E resp.) and any compact
set K containing E∆G. Here E∆G = (E \G) ∪ (G \ E).

The fact that

JF,u(E ∩G) + JF,u(E ∪G) ≤ JF,u(E) + JF,u(G)

whenever E∆G is precompact guarantees that E minimizes JF,u in Ω if and
only if E is minimizes JF,u both on the inside and on the outside in Ω.

The Definitions 1 and 2 are equivalent in the following sense.

Proposition 3.1. Let Ω be an open set and u ∈ C0,1
loc

(Ω), then u is a weak
solution of (2) in Ω if and only if for each t, Et = {x ∈ Ω: u < t} minimizes
JF,u in Ω.

Proof. By the co-area formula, we have for a choice of a < b such that a <
u < b and a < ϕ < b in K, that

JF,u(ϕ) =

∫

K

(F (∇ϕ) + ϕF (∇u))dx

=

∫ b

a

dt

∫

(∂∗{ϕ<t})∩K
F

(

∇ϕ

|∇ϕ|

)

+

∫

K

ϕF (∇u)dx(14)

=

∫ b

a

dt

∫

(∂∗{ϕ<t})∩K
F (ν) dσ −

∫

K

∫ b

a

χ{ϕ<t}F (∇u)dxdt

+ b

∫

K

F (∇u) dx

=

∫ b

a

JK
F,u({ϕ < t}) + b

∫

K

F (∇u) dx.

Then, if for any t, Et is a minimizer of the set functional JF,u, then

JF,u(ϕ) ≥ JF,u(u),

that gives the minimality of u.
The viceversa can be proved exactly as in the proof of Lemma 1.1 in

[15]. □
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Next we study the weak formulation of IAMCF with initial condition.

Definition 3. Let E0 be an open set with smooth boundary. Let {Et}t>0 be
a nested family of open sets in R

n.

(i) u is called a weak solution of (2) with initial condition E0 if u ∈
C0,1
loc (R

n), E0 = {u < 0} and u is a weak solution of (2) in R
n \ E0.

(ii) Define u by the characterization Et = {u < t}. {Et}t>0 is called a weak
solution of (1) with initial condition E0 if u ∈ C0,1

loc (R
n) and Et mini-

mizes JF,u in R
n \ E0 for each t > 0.

From Proposition 3.1, it is easy to see the above two definitions are also
equivalent.

Proposition 3.2. u is a weak solution of (2) with initial condition E0 if
and only if {u < t}t>0 is a weak solution of (1) with initial condition E0.

The weak solution is unique.

Proposition 3.3 (Uniqueness of the weak solutions).

(i) Let u and v be weak solutions to (2) in Ω in the sense of Definition 1,
and {v > u} ⊂⊂ Ω. Then v ≤ u in Ω;

(ii) if {Et}t>0 and {Ft}t>0 solve (1) in the sense of Definition 3, with
initial data E0, F0 respectively, and E0 ⊆ F0, then Et ⊆ Ft as long as
Et is precompact. In particular, for a given E0 there exists at most one
solution {Et}t>0 of (1) such that Et is precompact.

Proof. The proof runs exactly in the same way of the Euclidean case, con-
tained in Huisken-Ilmanen [15, Theorem 2.2], and the only modifications
have to be done in point (i), by replacing the Euclidean norm of ∇u with
F (∇u), and using the fact that F is a norm in R

n. In particular, the proof
of (i) consists in showing that if u is weak supersolution to (2), in the sense
that if w ≥ u is a Lipschitz function such that {w ̸= u} ⊂⊂ Ω, we have

∫

K

F (∇u) + uF (∇u) ≤

∫

K

F (∇w) + wF (∇u),

where the integration is performed over any compact set K containing
u ̸= w, it holds that v ≤ u. □
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3.2. Properties of weak IAMCF

Definition 4. Let Ω be an open set.

(i) A set E is called an F -minimizing hull in Ω if

(15) σF (∂
∗E ∩K) ≤ σF (∂

∗G ∩K)

for any G containing E such that G \ E ⊂⊂ Ω and any compact set K
containing G \ E.

(ii) A set E is called a strictly F -minimizing hull in Ω if it is an F -
minimizing hull in Ω and equality holds in (15) if and only if

G ∩ Ω = E ∩ Ω a.e.

(iii) Given a measurable set E, the set E′ is defined to be the intersection
of all the strictly F -minimizing hulls in Ω that contain E.

One has the following properties for weak solutions of IAMCF.

Proposition 3.4. Let u be a weak solution of (2) with initial condition
E0. Set

Et = {u < t}, E+
t = int{u ≤ t}.

Then

(i) For t > 0, Et is an F -minimizing hull in R
n;

(ii) Fot t ≥ 0, E+
t is a strictly F -minimizing hull in R

n and E′
t = E+

t if it
is precompact;

(iii) For t > 0, σF (∂Et) = σF (∂E
+
t ) provided E

+
t is precompact. This holds

true for t = 0 if E0 is an F -minimizing hull.

(iv) σF (∂Et) = etσF (∂E0) provided E0 is an F -minimizing hull.

Proof. (i)-(iii) runs exactly the same way of the Euclidean case, contained in
Huisken-Ilmanen [15, Property 1.4] . The equivalence of the two definitions
and the fact that F (∇u) = 0 a.e. on {u = t} are essentially used. One needs
just to use

∫

Et
F (∇u) and σF (∂

∗Et ∩K) instead of
∫

Et
|∇u| and |∂∗Et ∩K|.
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For (iv), the minimizing property implies that JF,u(Et) is independent
of t. By co-area formula, we get

JF,u(Et) = σF (∂Et)−

∫ t

0
σF (∂Es)ds = const.

which implies e−tσF (∂Et) is constant for t > 0. The assertion now follows
from (iii). □

Analogous to the classical case, we define the weak anisotropic mean
curvature by the first variational formula, Proposition 2.1.

Definition 5. Let N ⊂ R
n be a hypersurface of C1 or C1 with a small sin-

gular set and locally finite Hausdorff measure. A locally integrable function
HF on N is called weak anisotropic mean curvature provided it satisfies the
second equality in (13) for every V ∈ C∞

c (Rn).

For smooth IAMCF given by {u = t}, one sees HF = F (∇u). We show
next weak solutions of (2) still have this property.

Proposition 3.5. Let u be a weak solution of (2) with initial condition E0

and let Nt = ∂Et = ∂{u < t}. Then for a.e. t, the weak anisotropic mean
curvature HF of Nt satisfies

HF = F (∇u) a.e. x ∈ Nt.

Proof. Let V ∈ C∞
c (Rn) and Φs : Rn → R

n, s ∈ (−ε, ε), be the flow of dif-
feomorphisms generated by V and Φ0 = Id. Let W be any precompact open
set containing supp(V ).

Because u be a weak solution of (2) in R
n \ E0, we see JF,u(u ◦ Φs) ≤

JF,u(u). Thus
d
ds

∣

∣

∣

s=0
JF,u(u ◦ Φs) = 0. Next we derive d

ds

∣

∣

∣

s=0
JF,u(u ◦ Φs).

First, we assume u is smooth. Then

d

ds

∣

∣

∣

s=0

∫

K

F (∇(u ◦ Φs))dx

=

∫

W

Fξi(∇u)∇i(
d

ds

∣

∣

∣

s=0
(u ◦ Φs))dx

=

∫

W

Fξi(∇u)∇i(∇juV
j)dx

=

∫

W

Fξi(∇u)∇
2
jiuV

j + Fξi(∇u)∇ju∇iV
jdx
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=

∫

W

−Fξiξk(∇u)∇
2
kju∇iuV

j − Fξi(∇u)∇iu∇jV
j + Fξi(∇u)∇ju∇iV

jdx

=

∫

W

−F (∇u) div V + ⟨∇u,∇Fξ(∇u)V ⟩dx.

By co-area formula,

∫

W

−F (∇u) div V + ⟨∇u,∇Fξ(∇u)V ⟩dx

=

∫ ∞

−∞

∫

Nt∩W
− div V F (ν) + ⟨ν,∇νF

V ⟩dσtdt

=

∫ ∞

−∞

∫

Nt∩W
− divF,N V F (ν)dσtdt.

Thus

d

ds

∣

∣

∣

s=0

∫

K

F (∇(u ◦ Φs))dx =

∫ ∞

−∞

∫

Nt∩W
− divF,N V F (ν)dσtdt.(16)

By an approximation argument, we see that the formula (16) is still true for
u only locally Lipschitz.

On the other hand, it is easy to see

d

ds

∣

∣

∣

s=0

∫

K

(u ◦ Φs)F (∇u)dx =

∫

W

⟨∇u, V ⟩F (∇u)dx

=

∫ ∞

−∞

∫

Nt∩W
⟨ν, V ⟩F (∇u)dσtdt.(17)

Combining (16) and (17), we get

0 =
d

ds

∣

∣

∣

s=0
JF,u(u ◦ Φs)

=

∫ ∞

−∞

∫

Nt∩W
− divF,N V F (ν) + ⟨ν, V ⟩F (∇u)dσtdt.(18)

Finally, by the definition of the weak anisotropic mean curvature, we con-
clude from (18) that

HF = F (∇u) a.e. x ∈ Nt a.e. t.

□
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4. Existence of solutions and gradient estimates

For any p > 1, we will consider the following auxiliary problem

(19)











div
(

F p−1(∇v)Fξ(∇v)
)

= 0 in Ω,

v = 1 in Ωc.
v → 0 as x→ ∞.

Proposition 4.1. If 1 < p < n, then there exists a unique positive solution
vp ∈ C1,α

loc
(Ω) ∩ C∞(Ω \ {∇vp = 0}) of (19). If Wr(x0) ⊂ Ωc ⊂ Ws(y0), then

(20)

(

r

F o(x− x0)

)
n−p

p−1

≤ vp(x) ≤

(

s

F o(x− y0)

)
n−p

p−1

, ∀x ∈ Ω \ {y0};

Moreover, vp verifies

(21) lim
|x|→∞

F (∇vp)

vp
= 0.

Proof. The proof of existence, uniqueness, regularity, as well as (20), follow
by nowadays standard arguments; we refer the reader to [7, Theorem 3.3]
for the general anisotropic case we consider.

Finally we prove (21). We argue as in [17]. Let η ∈ C∞
0 (Ω) be a suitable

cut-off function. Taking ψ = vpη
p as test function in the weak formulation

for (19) and using the Hölder inequality, it easily follows that:

∫

Ω
ηpF (∇vp)

pdx ≤ pp
∫

Ω
vppF (∇η)

pdx.

By Harnack inequality (see for instance [19]) we get

rp−n

∫

Br/4(x0)
F (∇vp)

pdx ≤ C(n, p) inf
Br/2(x0)

vpp,

where C(n, p) is a positive constant depending on n and p. By applying the
result contained in [10], we have

∥F (∇vp)∥L∞(Br/8(x0)) ≤
C(n, p)

r
inf

Br/2(x0)
vp,

which implies (21), and the proof is completed. □
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It is direct to see that

up = (1− p) log vp ∈ C1,α(Ω)

solves (8) (we refer the reader, e.g., also to [9] for problems involving equa-
tions as in (8)). Next we show the gradient estimate in Theorem 1.2, which
is based on the following Lemma.

Lemma 4.2. Let 1 < p < n and up ∈ C1,α
loc

(Ω) be a solution to (8), then

(22) sup
Ω̄

F (∇up) = sup
∂Ω

F (∇up).

Proof. We omit the subscript p in up in the proof. Let τ = sup∂Ω F (∇u).
We consider the following set

Ωβ = {x ∈ Ω: F (∇u) > β} ,

with β > τ ≥ 0. From (21) we see F (∇u) vanishes at infinity by (21), then
Ωβ is a bounded, open set such that Ωβ ∩ ∂Ω = ∅ and F (∇u) = β on ∂Ωβ .

In order to prove (22), we will prove that Ωβ = ∅.
Note that in Ωβ , ∇u ̸= 0 and hence u ∈ C∞(Ωβ). By writing

G(ξ) =
1

2
F 2(ξ),

the equation in (8) becomes

div
(

G
p

2
−1(∇u)Gξ(∇u)

)

= G
p

2 (∇u).(23)

Hereafter we will adopt the Einstein convention on the repeated indices, and
use the notations

G = G(∇u), Gi = Gξi(∇u), Gij = Gξiξj (∇u),

ui = uxi
, uij = uxixj

, · · ·

Differentiating (23) with respect to xi, we get

∂xk

(

∂xi
[G

p

2
−1Gk]

)

=
p

2
G

p

2
−1Gjuij ,

and

∂xk

(

Gi∂xi
[G

p

2
−1Gk]

)

=
p

2
G

p

2
−1GiGjuij +Gilulk∂xi

[G
p

2
−1Gk].
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Then

∂xk

([

p− 2

2
G

p

2
−2GjGk +G

p

2
−1Gkj

]

Giuij

)

=
p

2
G

p

2
−1GiGjuij +

[

p− 2

2
G

p

2
−2GjGk +G

p

2
−1Gkj

]

Gilulkuij ;

hence

∂xk

([

p− 2

2
G

p

2
−2GiGjGk +G

p

2
−1GiGkj

]

uij

)

(24)

=
p

2
G

p

2
−1GiGjuij +

[

p− 2

2
G

p

2
−2GjGkGilulkuij +G

p

2
−1GkjGilulkuij

]

=
p

2
G

p

2
−1GiGjuij +

p− 1

2
G

p

2
−2GjGkGilulkuij

+G
p

2
−2

[

−
1

2
GjGkGilulkuij +GGkjGilulkuij

]

.

The Kato type inequality (see [24, Lemma 2.2]) implies that

GGilGjkuijukl ≥
1

2
GilGjGkuijukl.

Hence, from (24) we get

∂xk

([

p− 2

2
G

p

2
−2GiGjGk +G

p

2
−1GiGkj

]

uij

)

≥
p

2
G

p

2
−1GiGjuij +

p− 1

2
G

p

2
−2GjGkGilulkuij .

The above inequality can be read as

div

[

G
p

2
−1

(

Gξξ∇xG+
p− 2

2

(Gξ · ∇xG)

G
Gξ

)]

−
p

2
G

p

2
−1(Gξ · ∇xG)

≥
p− 1

2
(Gξξ∇xG) · ∇xG,

that is

div
[

G
p

2
−1A∇xG

]

−
p

2
G

p

2
−1Gξ · ∇xG(25)

≥
p− 1

2
G

p

2
−2 (Gξξ∇xG) · ∇xG ≥ 0,
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where

A = Gξξ +
p− 2

2

Gξ ⊗Gξ

G
is a uniformly positive definite matrix. Hence, the functional in the left-hand
side of (25) can be seen as a linear elliptic operator acting on G(∇u), and
by the maximum principle we have that

sup
Ωβ

G(∇u) ≤ sup
∂Ωβ

G(∇u) =
β2

2
.

This implies that Ωβ =
{

x ∈ Ω: G(∇u) > β2

2

}

is empty, and the proof is

completed. □

Proof of Theorem 1.2. We are remained to prove the boundary gradient
estimate (10). The global gradient estimate (9) follows from Lemma 4.2
and (10).

Let x ∈ ∂Ω such that Wr(x0) ⊂ Ωc. Since up = 0 on ∂Ω, hence if

∇up(x) ̸= 0, then νF (x) = Fξ(∇up(x)) and F (∇up(x)) =
∂up

∂νF
(x). On the

other hand, since Wr(x0) and ∂Ω are tangent at x, we see x− x0 = rνF (x).
It follows that

F (∇up(x)) =
∂up
∂νF

(x) = lim
t→0

up(x+ tνF )

t

≤ (n− p) lim
t→0

logF 0(x+ tνF − x0)− log r

t

=
n− p

r
.

Thus if we define

(26) R := sup{r > 0: ∀x ∈ ∂Ω, ∃Wr(x0) ⊂ Ωc such that x ∈ ∂Wr(x0)}.

then

∥F (∇up)∥L∞(∂Ω) ≤
n− p

R
.

It follows from Lemma 4.2 that

(27) ∥F (∇up)∥L∞(Ω) ≤
n− p

R
.

Next prove the estimate (10). We argue as in [15, 16]. Let ε > 0. Choose
w̄ ∈ C∞(Ω) such that

i) w̄ = 0 on ∂Ω and w̄ > 0 in Ω;
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ii) H+
F < F (∇w̄) ≤ H+

F + ε on ∂Ω.

Denote

(28) Qp[ϕ] := div
(

F p−1(∇ϕ)Fξ(∇ϕ)
)

− F (∇ϕ)p.

Since F (∇w̄) > 0 and w̄ = 0 on ∂Ω, the anisotropic mean curvature of
∂Ω is given by

HF (x) = div (Fξ(∇w̄)) .

Thus

Q1[w̄](x) = HF (x)− F (∇w̄(x)) < 0 for x ∈ ∂Ω.

Let δ > 0 and denote by Uδ the components of the set {0 ≤ w̄ < δ} con-
taining ∂Ω. If we choose δ > 0 small enough, we may have F (∇w̄) > 0 and
Q1[w̄] < 0 in Uδ.

Define w ∈ C∞(Uδ) by

w =
w̄

1− w̄
δ

.

Then

∇w =
∇w̄

(1− w̄
δ
)2
.

A simple computation gives

Q1[w] = Q1[w̄] +

(

1−
1

(

1− w̄
δ

)2

)

F (∇w̄) < 0 on Uδ.

By (27), there exists a constant C = C(δ) > 0, such that up ≤ C in Uδ.
Denote by ŨC+1 the component of the set {0 ≤ w ≤ C + 1} in Uδ. Since
up = w = 0 on ∂Ω, we see

(29) up ≤ w on ∂ŨC+1.

In order to compare up and w in ŨC+1, we compute

Qp[w] = F p−1(∇w)

(

Q1[w] + (p− 1)
wikFξi(∇w)Fξk(∇w)

F (∇w)

)

in ŨC+1.

Since Q1[w] < 0 in ŨC+1, one may choose p− 1 small enough, depending on
∥w̄∥C2(ŨC+1)

, infŨC+1
F (∇w̄) and C, such that

Qp[w] < 0 in ŨC+1.
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Then since Qp[up] = 0 > Qp[w] in ŨC+1 and (29), by the comparison prin-
ciple, we have

up ≤ w on ŨC+1.

It follows that

F (∇up) =
∂up
∂νF

≤
∂w

∂νF
=

∂w̄

∂νF
= F (∇w̄) ≤ H+

F + ε on ∂Ω.

The proof of Theorem 1.2 is completed. □

Now we are ready to prove Theorem 1.1.

Proof of the Theorem 1.1. Let up be the solution of (8) in Theorem 1.2.
Then for any precompact set K ⊂ Ω, up is also a minimizer of the functional

(30) Jp
w(ϕ) =

∫

K

[

1

p
F (∇ϕ)p + ϕF (∇w)p

]

dx,

in the sense that

(31) Jp
up
(up) ≤ Jp

up
(ϕ), ∀ϕ ∈W 1,p

loc (Ω) such that ϕ = up in Ω \K.

Indeed, being up − ϕ = 0 outside K, and using it a as test function for (8),
we get that

∫

K

F p(∇up)(up − ϕ)dx =

∫

K

F p−1(∇up)Fξ(∇up) · ∇(ϕ− up)dx

≤
1

p

∫

K

(F (∇ϕ)p − F (∇up)
p)dx.

The inequality above follows from the convexity of F (ξ)p.
On the other hand, from (20), we know up has uniform upper bound on

any compact set in Ω. Since we also have uniform global gradient estimate (9)
for ∇up, by Arzela-Ascoli’s theorem, we get that, there exists a subsequence
pk → 1+ and u ∈ C0,1

loc (Ω) such that

(32) upk
→ u uniformly in any compact sets of Ω.

If we can show u is a weak solution of (2), then since the weak solution
of (2) is unique, we will get up → u uniformly convergence in any compact
sets of Ω as p→ 1.
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Next we show that u is a proper weak solution to problem (2), in the
sense of Definition 1. To this aim, we need to prove that

(33) |∇upk
|pk → |∇u| in L1

loc(Ω) for a subsequence pk → 1+.

Indeed from (32) and (33) we can pass to the limit in (30) obtaining that

JK
upk

(ϕ, pk) → JK
u (ϕ) and JK

upk
(upk

, pk) → JK
u (u)

In order to prove (33), we argue as in [15, 17]. Let K ⊂ Ω be a precompact
set and consider the following test function ψ in (31)

ψ = ηϕ+ (1− η)up,

where η ∈ C∞(Ω) is a cut-off function such that 0 ≤ η ≤ 1, η ≡ 1 in K, and
ϕ ∈ C0,1

loc (Ω). Then we get

∫

supp η

(

F p(∇up)

p
+ η (up − ϕ)F p(∇up)

)

dx

≤
1

p

∫

supp η

F p (∇(ηϕ+ (1− η)up)) dx

≤
1

p

∫

supp η

[(ϕ− up)F (∇η) + ηF (∇ϕ) + (1− η)F (∇up)]
p dx

≤
3p−1

p

∫

supp η

[|ϕ− up|
pF p(∇η) + ηpF p(∇ϕ) + (1− η)pF p(∇up)] dx.

Choosing ϕ = u, and letting pk → 1+, we obtain

lim sup
pk→1+

∫

Ω
ηF (∇upk

)pkdx ≤

∫

Ω
ηF (∇u) dx,

which together with Fatou’s Lemma gives (33).
The properness of u follows directly from (20). The estimate follows from

that in Theorem 1.2. The proof of Theorem 1.1 is completed. □

References

[1] B. Andrews, Motion of hypersurface by Gauss curvature, Pacific
J. Math. 195 (2000), 1–34.

[2] B. Andrews, Volume-preserving anisotropic mean curvature flow. Indi-
ana Univ. Math. J. 50 (2001), no. 2, 783–827.



✐

✐

“4-Xia” — 2023/9/13 — 18:55 — page 116 — #20
✐

✐

✐

✐

✐

✐

116 F. Della Pietra, N. Gavitone, and C. Xia

[3] S. Angenent and M. E. Gurtin, Multiphase thermomechanics with inter-
facial structure. II. Evolution of an isothermal interface. Arch. Rational
Mech. Anal. 108 (1989), no. 4, 323–391.

[4] S. Angenent and M. E. Gurtin, Anisotropic motion of a phase interface.
Well-posedness of the initial value problem and qualitative properties
of the interface. J. Reine Angew. Math. 446 (1994), 1–47.

[5] G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in
the context of Finsler geometry. Hokkaido Math. J. 25 (1996), 537–566.

[6] G. Bellettini, M. Novaga and G. Riey, First variation of anisotropic
energies and crystalline mean curvature for partitions. Interfaces Free
Bound. 5 (2003), 331–356.

[7] C. Bianchini and G. Ciraolo, Wulff shape characterizations in overdeter-
mined anisotropic elliptic problems, Comm. PDE 43 (2018), 790–820.

[8] Y. G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity
solutions of generalized mean curvature flow equations. J. Differential
Geom. 33 (1991), no. 3, 749–786.

[9] F. Della Pietra and N. Gavitone, Sharp estimates and existence for
anisotropic elliptic problems with general growth in the gradient,
Zeitschrift für Analysis und ihre Anwendungen (ZAA) 35 (2016), 61–80.

[10] E. DiBenedetto, C1+α local regularity of weak solutions of degenerate
elliptic equations, Nonlinear Anal. TMA 7 (1983), no. 8, 827–850.

[11] C. Gerhardt, Flow of nonconvex hypersurfaces into spheres. J. Differ-
ential Geom. 32 (1990), no. 1, 299–314.

[12] Y. Giga, Surface evolution equations. A level set approach. Monographs
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