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The moduli space of S!-type zero loci for
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Let M be a compact oriented 3-dimensional smooth manifold. In
this paper, we construct a moduli space consisting of pairs (X, )
where X is a C''-embedding simple closed curve in M, 1 is a Z/2-
harmonic spinor vanishing only on ¥, and [|¢[[2 # 0. We prove
that when X is C?2, a neighborhood of (¥,%) in the moduli space
can be parametrized by the space of Riemannian metrics on M
locally as the kernel of a Fredholm operator.

(1 __Introduction| 120

|2 Basic setting and results| 127

|13  Harmonic sections defined on the tubular neighborhood |

[__with the Fuclidean metric 134
|4 Variational formula and perturbation of curves 149
[ ¥ with a non-Euclidean neighborhood] 167
|6  Fredholm property| 178
[f__Proof of the main theorem: Part [l 207
8 Proof of the main theorem: Part 1]l 231
9  Appendix]| 236
[References| 240

119



120 Ryosuke Takahashi

1. Introduction
1.1. Main theorem and its background and motivations

Let M be a compact, oriented, three-dimensional smooth manifold without
boundary.

Definition 1.1.

X ={g | g is a Riemannian metric on M};
A={X C M | X is the image of a C' embedding S* — M}.

For each ¥ € A, let Hy, C H'(M \ ¥;7Z/2) consists of the elements with
Nnonzero monodromyﬂ around Y. As ¥ varies, the set Hy, varies continuously
to define a finite-sheeted covering space of A with the fibres isomorphic to
Hy.

Definition 1.2.

A ={(X,e) [ Z e Aec Hs};
y:XX.AH.

We also denote by p1 : Y — X the projection from ) to X.

Notice that once a topology on A is given, it will induce a topology on
Ap (Hs, being equipped with the discrete topology). By the same reason, a
topology defined on X x A will also induce a topology on ).

Here we define the topology on Y for later use. Fix (g,%,e) € Y and
r,C,C" € RT. Let N, be the tubular neighborhood of ¥ with radius r,

(1.1) h:S'x{zeClz| <r} = N,

!Real line bundles on M \ ¥ can be totally determined by the transition func-
tions {Uag, gap} with structure group Z/2, which are one-one corresponding to
the elements in the sheaf cohomology H'(M \ ;Z/2). In other words, an element
e € HY(M \ ;Z/2) has non-zero monodromy if and only if its corresponding real
line bundle cannot be extended to the whole manifold M.
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be a homeomorphism given by the exponential map with respect to the
metric g. We define

(1.2) Vo= {Im(ho (ids:,n)) [ n:S" = C,|Inllcisy < C, [n(t)] <r};
(13)  Ygro ={9€X | §—9gllczany < C's dist(S, supp(g — g)) > 7}

It is direct to see that this defines a unique topology on X x A with a basis
by the family of open sets

(1.4) {Yygrcr x Vorct (r,C,C" € R and X € A)

which induced the expected topology on ).

Each (¥,e) € Ag corresponds to a real line bundle Iy, on M \ X,
equipped with a Euclidean metric and a compatible flat connection. This
real line bundle is unique up to bundle isomorphisms. Since M is a com-
pact, oriented, three-dimensional smooth manifold, it is a spin manifold. So
each metric g € X has at least one E| corresponding spinor bundle S5 — M.
Denote by Sy 5. the bundle Sy ® Zy, .. This is a spinor bundle over M \ X,
which is called the Z/2-spinor bundle. For each S, 5 ., there exists a stan-
dard Dirac operator with respect to g and the metric defined on Zy ., de-
noted by D(9¥€). The precise definition of this Dirac operator will appear
in Section 2.1.

We define the vector bundle £ — Y of infinite rank as follows: For y =
(9,3, e) € Y, then the fiber &, over y is the infinite dimensional vector space
of all L?-sections over M \ X of the Z/2-spinor bundle 84,50 According to
the topology we define above, one can obtain the local trivialization of £ —
Y as a vector bundle on each connected component [°| Let DW = plg.Ze)
denote the Dirac operator defined on &, which induces a bounded, linear
map from &, to the space of square integrable sections of Sy 5 .

With the local trivialization property on £ and the topology defined on
YV, one can obtain the topology defined on £.

2The number of spinor bundles equals the number of elements in H(M;Zy)
(see [5]), which is finite. So we may simply fix one element in H'(M;Zsy) and
consider the corresponding spinor bundle in this paper.

3Notice that we don’t have the identification between fibers corresponding to
non-isotopic knots.
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Definition 1.3. With £ understood, the space M is defined as the set whose
elements are pairs (y,1) € € which obeys

e DWyp =0 on M\ 2.
e || extends across ¥ as a 0z function on M

with its zero locus containing 2.

[¥1(p)

eliminf ——————— >0 for all x € X.
P~ dist(p, )z

The set 2N inherits a topology from &£. Our goal is to find the Kuranishi
structure on 9. To start with, we need a stronger regularity condition for >:

Definition 1.4. Let (y = (¢9,%,€),%) €M and k € N. We call it C*-
reqular if and only if ¥ is a C*-curve.

When ¥ is a C''-curve determined by a Z/2-harmonic spinor, the higher
regularity for 3 is still an open question so far. Assuming all > determined
by Z/2—harmonic spinors are C2-regular. Then the following theorem proves
the existence of the Kuranishi structure for 9t:

Theorem 1.5. Given a C?-reqular element (y = (g,%,¢e),v) in M, there
are finite dimensional vector spaces Ko and Ky, a ball B C Ky centered at
the origin, a neighborhood N C € of y, and a map

f:pN) xB — Ky,

such that NN is homeomorphic to f~1(0). Here p1 : £ — X is the pro-
jection defined in Definition 1.2. Moreover, f is C in the sense of Fréchet

differentiation and the homeomorphism given by this theorem, Y : f~1(0) —
N NI, satisfies

Y(f70) N (B x {g})) =N nMmnp;'(g).

We will denote by B the set pi(N) in this paper. In fact, B = ¥, ¢ for
some 7, C" as the one we defined in ([1.3).

The vector spaces Ky and K; in Theorem 1.5 are the kernel and
cokernel of a Fredholm operator respectively. This theorem shows us several
facts. First, in order to stay in 991, the component > in 91 can only be
perturbed in finite dimensional directions. Second, when dim(K;) =0, I



The moduli space of S'-type zero loci 123

is homeomorphic to B x B near (y, ).

The operator that leads to Ky and Kg comes from a formal linearization
of the equations that are obtained by deforming the metric and the curve
and the spinor so as to stay in 9. This operator is novel and the fact that
it is Fredholm does not follow from the usual considerations. By the same
token, the proof of Theorem 1.4 is not a standard application of the implicit
function theorem as it requires a delicate iteration to “integrate” the formal
tangent space given by the kernel of df at (g,0) € B x B to obtain the given
parametrization of 9.

The study of Z/2-harmonic spinors started from the work of PSL(2,C)
compactness theorem proved by Clifford Taubes. In [I], he proves a gener-
alized version of Uhlenbeck’s compactness theorem [2]. When dim (M) = 3,
Uhlenbeck’s compactness theorem [3] can be stated in the following way:

Theorem 1.6. Let P be a principal G bundle over M for some compact
Lie group G and {A;} be a sequence of connections on P satisfying

(1.5) I1F (A2 < C

for some constant C' which is independent of i. Then there exists a subse-
quence of {A;} converging (up to gauge transformations) weakly in L? to an
L? connection.

To state the theorem proved in [I], we need to introduce some nota-
tion. First, Taubes uses the fact that s[(2,C) = su(2) @ isu(2) and P can
be regarded as one of its SO(3)-reductions associated with PSL(2,C). Fix
one such reduction @ and set P = Q X go(3) PSL(2,C). Therefore, he can
always decompose a connection A = A + ia where A is the connection one
form on the SO(3)—reduction of P and a is a su(2)-valued one form. Sec-
ond, if we denote the group of gauge transformations (the automorphism
group of P) by G, then the Lie algebra sl(2,C) does not have norms which
are invariant under the action of G. So we should refine the L2 boundedness
condition as follows:

Definition 1.7. Let

F(A)= inf |F(A) —aAal* + |daal® + |da * al?
A-+iaeGy

where Gy is the G-orbit of A.
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Now, the generalized Uhlenbeck’s compactness theorem proved in [I] can
be stated as follows:

Theorem 1.8. Let {A; = A; +ia;} be a sequence of connections defined
on Q xgso@3y PSL(2,C) such that {F(A;)} is bounded. If [|a;||1: — oo, then
there exists a closed subset X of Hausdorff dimension at most one and a
subsequence of {A; = A; + ia;} such that both {ﬁaz} and {A;} converge
weakly in the L%loc—sense on M\'Y up to automorphisms of Q.

Moreover, ¥ can be formulated as the zero locus of a Z/2-harmonic
spinor. In [I], Taubes shows the set 3 will always have a corresponding Z/2-
spinor 1 satisfying the Dirac equation D = 0 such that |¢| can be extended
Hoélder continuously to be zero on .

The PSL(2,C) compactness theorem suggests that data sets consisting
of pairs (X,v) with ¥ a closed set of Hausdorff dimension 1 set and ¢ a
7 /2-harmonic spinor with norm zero on ¥ should play a role to play in
three-dimensional differential topology. So a natural question we can ask is
the following: Can we find a way to parametrize the data (X,1)?

Meanwhile, in [2], Taubes shows that ¥ is a C''-curve on an open dense
subset of ¥. After this work, Zhang [16] shows that 3 is always a rectifiable
curve. All these results indicate the conjecture that 3 is a C' curve for the
metric g which is suitably generic. This conjecture is also mentioned in [10].
So it is natural to take ¥ a 1-dimensional submanifold in this paper.

1.2. The outline of the proof and the structure of this paper

In the first part of this paper, we shall study model solutions of Dirac equa-
tion with X fixed. Let

(1.6) N ={p€ M | dist(p,X) < R}
be a tubular neighborhood of . We parametrize N by
(1.7) (t,z) € [0,27] x {z € C||z| < R}.

Then, we show that any Z/2-harmonic spinor 1 which vanishes along ¥ is
in ker(D|rz2(s,  .)) and vice versa. For any vy € ker(D|zz2(s, , .)), it can be
written locally as

(1.8) o = ( nggé > + higher order term
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on Np. Here the “higher order term” is a smooth section defined on
M\ 'S with order O(|z|P) for some p > % as |z| — 0. In addition, by the
Lichnerowicz-Weitzenbéck formula, we will see dim(ker(D|rzs, , .))) < oo.
All these basic analysis results for L}—harmonic spinors will be shown in
Section 2 and 3. Also, the analysis of L?-harmonic spinors will be derived
in Section 2 and 3 for later use.

According to these observations, one can consider the linear pertur-
bation for any given p = (go, X0, %0) € M. (Note that the element e € H
will be omitted in the rest of the paper because this discrete data will not
change in any local perturbation.) This perturbation can be written as
(go + 88,35, 1s) for small s € R, where

e ) € ¥ := {4 is a smooth symmetric(2,0)-tensor with supp(§) N Xy = 0};
o X, = {h(t,—sn(t))} for some n € C1(S*;C)(Recall the topology defined
on Y in Section 1.1 and the definition of h in (L.1));

o y(t,z) = Yo(t,z — sn(t)) + sd(t, z — sn(t)) for some ¢ € L3(Sy, %, )-

Let us denote by D) the Dirac operator with respect to gy + s and
define the operator

L1 ¥V x CY(8YC) x Li(Sy,z,) = L (Sgom0);

(1.9 (5.m.0) > (D)oo,

By ([1.9) and some basic analysis results derived in Section 4, we prove that
there exists a map

(1.10) OV — LSy, 5,)
such that
(1.11) £p(6,1,¢) — (9) € range(D| 12, »,))

for any n € C1(S1;C) and ¢ € L?(S,, »,) (see Remark 6.4 for the definition
of ®). In particular, we have ®(0) = 0. Therefore, we define Ky and K; to be
the kernel and cokernel of £p|5=0. By and the fact ®(0) = 0, any ele-
ment in ker(£,|s=0) corresponds to an element in ker(D|rz(s, . ))- By ,
and some straight-forward computation (which will be showed in the
first two pages in Section 6.2), the corresponding element in ker(D|rz(s, - ))
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has the form

a* ()n(t)
(1.12) ( a—Q(?,)/g(t) ) + higher order term.
2Vz
Here the “higher order term” is a smooth section defined on M \
¥ with order O(|z|P) for some p> —3. Notice that the inequality
liminf, ,, —12l® > 0 for all 2 € $ in Definition 1.3 implies |a*|2(t) +

T dist(p,z0)?
la=|2(t) > 0 for all ¢ € [0,27]. The pair (a*,a™) is called the leading term
for 1)y, which plays an important role in this paper.
Now, since dim(ker(D| Lz(‘ggo%))) = 00 in general, one cannot show
directly that Ky is finite dimensional. To deal with this problem, we
prove in Section 6.1 that there exists a dense subspace ker(D|rz( Sgo,zo))o C

0 .
ker(D|rz(s,, ,,)) such that any u € ker(D|rz2(s, . ))° can be written as
ut
(1.13) u= < 21)@ > + higher order term
2Vz

with & — u™ being a Fredholm operator from ker(D|r: (s, .. )" to L*(S*; C).
We call (ut,u~) € L?(S';C?) the leading term of u. So the vector space
of leading terms determined by elements in ker(D|r2( 590,20))0 will be
isomorphic to a copy of L%(S';C) sitting in L?(S';C2), up to quotients
of finite dimensional subspaces determined by the Fredholm operator.
Meanwhile, by and the fact [a*|? + [a~|? > 0 everywhere, we expect
that the vector space of leading coefficients of is also isomorphic to
another copy of L?(S';C) in L?(S';C?), up to finite dimensional quotients.
We have to prove that these two images of isomorphisms intersect only on
a finite dimensional subspace in L?(S';C?), which is Kq. That will be the
main result in Section 6. The computation of £, will be shown in Section
6.2. It is the most crucial part of this paper.

Finally, in Section 7 and Section 8, we will derive a particular kind of
implicit function theorem to prove Theorem 1.5. Unfortunately, this part is
very tedious because there is no standard notation for Kuranishi problems
perturbing both the domain M \ ¥ and the section 1 simultaneously.



The moduli space of S'-type zero loci 127

2. Basic setting and results
2.1. Functional spaces

Let (M,g) be a compact, 3-dimensional Riemannian manifold and ¥ € A
be a C'-embedded circle in M. Moreover, we suppose that g is Euclidean
near X in first four sections of this paper. In Section 5, we will show that all
these theorems and propositions established in the first four sections hold
even the metric g is not Euclidean near X..

Under this setting, there exists Ng, a small tubular neighborhood of ¥
which is parametrized by coordinates (t,r,0) € [0,27] x [0, R] x [0, 27], such
that g|n, = dt? + dr? + r2d6?. We parametrize ¥ by t € [0, 27]. Also, we use
the following notation for cut-off functions: For any a,b with a < b < R, we
define a nonnegative smooth function

0 on N,
(2.1) Xab = { 1 onM\N

with [V*(xap)| < ﬁ for k < 4 and C a universal constant. This notation
will appear frequently in this paper.

Recall that (see Chapter 2 in [4]) the spin structures on M are one-to-one
corresponding to the homology group H' (M, Zs), which is discrete. We fix a
spin structure on M in this paper. Let S be the corresponding spinor bundle
over M with respect to g (see Chapter 3 in [4]). There is a corresponding
Dirac operator (see Chapter 3 in [4] and [17]) which can be written as

(2.2) D9 =e; - Vfl +ez- V‘; +e3- V‘;
locally, where {e1, ez, e3} is an orthonormal frame in TM, - is the Clifford
multiplication equipped on S and V¢ is the Levi-Civita connection on S,
see Section 3 in [4].

Let Z be a real line bundle defined on M \ ¥ . We suppose that Z cannot

be extended to the entire manifold M, which means 7 is a Mobius band when
restricted to a small circle linking 3. It can be written formally as

(2.3) Tli=ar=b = [0,27] x R/{(0,z) ~ (27, —z) for all x € R}
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for all @ € [0,27] and 0 < b < R. We fix an inner product on Z and define
v @ w| = |v||w]| for any (v,w) € S® Z.

S itself is equipped with the connection V. Since we fix the inner prod-
uct defined on Z, there exists a unique connection VZ defined on Z which is
compatible with this inner product; i.e., X (s1, s2) = <V§s1, s9) + (s1, Vj)’—(82>
for any vector field X on M and any smooth sections s1, so on Z. We define
the connection

(2.4) VST = VS @idr +ids ® V*

on the bundle S ® Z. This connection induces a Dirac operator defined on
S ® Z, which can be written as

(2.5) DWEe) = ¢y . V‘;@I +ea- Vi@I +es- st®1
locally (Recall that we fix e € Hy; in the rest of this paper).

With the norm and the connection defined, one can define the following
functional spaces.

Definition 2.1. Let u e C*(M \ X,S®7T) be a smooth section of S ® L.
We define the following norms and corresponding spaces:

o ullze = (fung 022

o ullz = (fapys [0 + V)2

o [[ullr2, =sup{ [0, w) | 0 € C¥(M\ X, S8R I) and ||o]|; < 1}.

Moreover, the spaces of sections bounded with respect to these norms will be
denoted by

LY M\ %;8®I) = closure of {u € C*(M\2,8®I) | ||lullz2 < oo}

fori=1,0,—1. In the rest of this paper, we simply use the notation Lf to
denote L2(M \ ;S ® I) and usually omit the subscript i when it is zero.

Similarly, we can define the space of compactly supported sections, L% ept
by taking the closure of the set of smooth, compactly supported sections with
respect to the norm || - || .

Remark 2.2. We should always remember that the space L2 is the dual
space of L? in our case. For a general open domain 2 on R™, the notation
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L?,(€) usually denotes the dual space of L (), the closure of smooth

functions(sections) compactly supported in © in L2(Q). L?(Q) # L%,Cpt(Q)

in general. However, in our case, we will see that L}(M\X;S®7I) =

L%,cpt(M \ ;S ®7) by Lemma 2.6 below (see Section 9.4 in Appendix for

the proof). Therefore, our definition is consistent with the usual one.

The space L? | has the following property. This is an analog version of
Theorem 1 in Section 5.9 of [7].

Proposition 2.3. Let f € L?,. Then there exists a pair
(fo,f1) € LM\ ;8 ®T) x L*(M\%;8 @ T ® T*M)

such that

(2.6) /M\E<n,f> - /M\E<0,fo>+<vmf1>

for all v € L}. Furthermore, we have

2, = ( /M\E ol + m?) .

Proof. Let T} : L? — C be a bounded functional sending each v to fM\E<U’ f).
By Riesz Representation Theorem, there exists u € L% such that

(2.7) Ty(0) = / (0,u) + (Vo, Vas.
M\Z
So we can simply take fp = u and f; = Vu.
To prove the second part, by taking v = u in (2.7)), we have
e = Ti(w) <l oz [l 2, -
This inequality implies that ( [,y [fol* + f112)2 = luflze < [Ifllzz -

Meanwhile, from (2.7]) we have

Ty (0)] < ( /M\E ol? + W>2

if |lo]|2 < 1. So by Definition 2.1, we have ||f|[z2, < (fM\E Ifol? + |f1|2)§. O
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2.2. Some analytical properties of Dirac operators on M \ X

We prove the following basic properties in this section. These are very similar
to some well-known results (see Chapter 4 in [4]). We simply denote D(9>¢)
by D in the rest of this section because our g, 3 and e are fixed here.

Proposition 2.4. Let D|p: : L2(M\X;8S®T) = L2(M\ %;S ®1T) be the
Dirac operator. Then we have the following properties:

a. ker(D|rz2) is finite dimensional.

b. range(D|.2) is closed.

c. Let

ker(D|z2) = {u € L2 (M\%;S®1T) |
(u,Dv) =0 for allv € L3(M\ X;S®T)}

Then
L* = range(D|rz) @ ker(D|rz2).
Remark 2.5. ker(D|z2) is not finite dimensional in general.
To prove this proposition, we need the following lemma, which is also
very useful in the rest of this article. Here N, is the tubular neighborhood of
radius r < R as we defined in ([1.6) and R is a fixed number with N being

a tubular neighborhood of ¥, too.

Lemma 2.6. For anyu € L3(M \ X;S ® I), we have

/ 2 §647r2r2/ Va2
N, N..

T

for allr < R.
Proof. Let u € L? and {u,} be a sequence of smooth sections such that
U, = u

in the L? norm. We can write u, = (un1 + itn 2, Un3 + iup4) locally for
some real-valued functions w,, ;. Because Z is nontrivial along the  direction,
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for any r, ¢, there exists 6; € [0, 27| such that uy, ;(r,6;,t) = 0fori =1,2,3,4.
By the fundamental theorem of calculus, we have

27
un (7, 5, 8)] < 4 / gt (1, 0, )|
0

27
<4 / Vet (1,6, 1)|rd6
0

27 %
< / |V eyt (7,6, t)|2rd0>
0

for any s,t € [0,27], 0 < r < R, where ey = %89. So we have

r 27 2
/ |up|? = 16 / / / un (7, 5, 8)|2rdsdtdr
N, 0 0 0

3647r2r2/ |V epttn |2
N,

N =

< 4N 27r

By taking n — oo, we prove this lemma. O

Proof of Proposition 2.4.
First, for any u € L%, one can write the Lichnerowicz-Weitzenbock formula

R
D*u=V*Vu+ =u

4
in the following sense:
K
for all ¢ € Licpt. Here Z# is the scalar curvature of M. We will now prove

that (2.8)) is true for all ¢ € L2.

By Lemma 2.6, we have

(2.9) / ¢ < 64n%? /N w2

T

for all ¢ € L2. Let us denote (fn, IVC?): = fe(r). We have fe(r) =0 as
r — 0.
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We now take the family of cut-off functions x5 := x 255 with |V (xs)| < %
3 K
for 6 > 0 (Recall the definition (2.1])). So by (2.8]), we have

2 [10660. 0w = (V06094 + [T e

for all ¢ € L3. Clearly the second terms on the right-hand side of (2.10))
converges to [ %(C ,u) as 6 — 0 by Cauchy’s inequality.

For the left-hand side of ([2.10]), we have

D060 Dy = [ 606w+
where

s = [(Txae. )+ [ T st

Because of the inequality (2.9)), ¢ can be bounded as follows.

1

el < 5 [ i < S( [ 167) 1pulee < Ce@oul
So we have
[ 0600w~ [ (D¢ Dy
as 0 — 0.
Similarly, we have
[ 9060 v = [ (¢,
as 0 — 0. So
(2.11) / (D¢, Du) = / (V¢, Val) + / %c,u)
for all ¢ € L2.

Once we have (2.11]) for all ¢ € L2, the proof of Proposition 2.4 a will
be obtained from the standard argument. Readers can see p. 107 in [4] for
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details.

To prove part b, we shall prove the following claim first: There exists
C' > 0 such that

(2.12) lollz= < CJ|Do]l.»

for all v L ker(D|zz).

Suppose (2.12)) is false. Then there exists a sequence {vj}pen in
ker(D Lff)L satisfying

(2.13) [onlze = 1

and

(214) lim ||Dnn||L2 — 0.
n—oo

By taking { = u = v, in (2.11)), (2.13) and (2.14)) implies ||vy,| 2 is bounded

uniformly. Hence we can find a subsequence of {v,},eny which converges
weakly to v € L2. So this subsequence also converges strongly in L2-sense
to v, which implies |[b||2 = 1. Meanwhile, by (2.14]), we have Db = 0. So v
is a nonzero element in ker(D|zz2), which is a contradiction.

Combining (2.12)) and (2.11)) (with ( = u = v), we obtain

(2.15) lollz < C|Do]| >

for all v L ker(D|z2). This implies that range(D|;:) is closed, which proves
b. Finally, part c is immediately true by using b. O

We have proved that D| 12 has closed range and finite dimensional kernel.
However, the cokernel of D|y:, which is also the kernel of D|r- : L? — L2, is
infinite dimensional in general. In Section 3, we will describe the elements of
ker(D|z2) explicitly in terms of Bessel functions on a tubular neighborhood
of X.
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3. Harmonic sections defined on the tubular neighborhood
with the Euclidean metric

3.1. L? and L% harmonic sections expressed
by modified Bessel functions

In this section, we will write down the Fourier expansion for L?- and
L3-harmonic spinors. This expansion gives us the growth rate of these
spinors and explains and in Section 1.2. Then, we will define
the notation for leading terms and leading coefficients for these spinors. As
we will see in Section 6.3, the leading coefficient of v is the key to define
the Fredholm operator corresponding to the linearization of moduli space 1.

Let us consider the space N = S! x R?, which can be regarded as a local
model for the tubular neighborhood of 3. The Dirac operator on N can be
written as

(3.1) D:el-%—l—eg-%—l—eg-%
where
el_(—z 0)@_( 0 0>’€3_<0 1>
0 = -1 0 0 0
and z = x 4 1y.

Using the cylindrical coordinates, r := \/z2 + y? and 6 = arctan(¥), we
can write down the Fourier expansion of u as follows:

e T
u(t,r,0) = el (bl kil
lz,k: ¢ (k+2)ebk ()

)

for any ue C®°(M \ ;S ®Z). (The structure gives us the e!(k=3)?
and ei(k+3)0 exponents along #-direction.) Here k runs over all integers and
[l can be either in Z or Z + %, according to the spin structure we chose (see
Chapter 2 in [6]). The Dirac operator can be written in terms of 6, r by
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changing of coordinates:

%=1 i) = 1 (5 - )

Suppose u is a harmonic section. Then we have

. i(k=3)0 (o117 + (k+3) 7 -
(32)  Du=>)» ¢ ( f(kJr o, (WU + drUkl + )U/gl) —0
Lk (_QZUk,l - % )

which gives us the following system of equations:

(3.3) d(UhN (52 Uy
' dr\ U, )\ _gp _*+3) U, )
b r b
By the standard ODE theory, we can reduce this system of first order ODEs
to the following modified Bessel equations:

d? 1d (k—1)?
(3.4) dr 2Ulj_l + - rdr Ul:_l (412 + T22 Ul:z =0,
2 _ 1d. (k+ 352\
(3.5) o U+ = ~a —Up, — <4l2 + TQ Uy = 0.

There are standard solutions for this type of equations called modified
Bessel functions (see [14]).

o0

B 1 T\ 2m+p
(3.6) Iy(r) = n;m!r(m+p+ 1)(2)

According to the study of modified Bessel functions, U,j ,(r) will be a
linear combination of I, 1 (2lr) and I_j 1 1 (2lr) and Uy, (r) will be a linear
combination of I | 1 L (21r) and I_ ,f_,(ZZr) “when # 0.

Therefore, by equation (3.3)), we have

< U > _ u;l(zn—kﬁlfk_%(zzr) —u,;l(QZ)k+éf_k 1 (20r)
Uk —u (20) T Ly 1 (20r) 4 g, (2082 1 (20r)
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for some w},, u;, € C when [ # 0. From |D we have I,(r) = O(rP). To
normalize the leading coefficient of I,,(2lr), we define

Jpa(r) = (20)"PL,(2lr).

When [ = 0, we have

k—1
(V)= ()

Uk,O ul;,Or_k_g
Now, we apply these results to sections of S ® Z over N. Fix R > 0, we
simply have Ng = N N {r < R}. Suppose u € L?*(N;S ® T) and Du|y, = 0,

then
cilk—3)0 : i(k—1)0,k—1
k— l u e
SO e B ol )

k>0;1£0 k>0
i(k—3)015
—e Jpra(r) 0
+ Z ukle ( k+1)0~ +Z = pilk+3)0,.—k—}
k<0510 Rl 3 l( ) <o \ Uk0€ r

1

which has the leading term with order r™ 2, i.e.

.1 -1
A e 293 1 (r) —le™%297. ,(r)
2 : |, + -5 - 5l
u= 61 u, -1 2 +u -1 2
0,1 20~ 0, 20~
= [ ( —le"2"F1 (r) e'z J—é,l(r)
+ —iif, .—1
ut e~ 303
+ ( 0,0 ilg 1 ) + higher order term

uo’oe 27r" 2

where the higher order term is O(r?) for some p > —3.

The Bessel functions I 1( ) and I_i1(z) can be written explicitly as

\/ 7 2 sinh(z) and \/7 cosh(z). So the leading term can be expressed in

—2lr

terms of {e NG } Let us use this expression, then

e2ltlr e—2lilr
(37) u= Z ellt [{Lgl ( . \/E e2ltr ) "I_ aal ( . \/Ee—Z\HT ) ]
l —sign(l) 7 sign(l) NG

+ higher order term
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where ﬁ(—)k,l = (uafl —sign(lu,), 4y, = (uf{l + sign(l)u, ;) and the higher or-
der term is O(rP) for some p > —%. Notice that by 1’ we the following
inequality:

(3.8) STl P + lag,P) < Iul2eqvsem)
10

We have seen from the equation and , the leading terms of
7/2—
harmonic spinors in L2(M\3;8®Z) and L*(M\%;8®Z) as r — 0
involve in the argument of the lineariation of 9. These leading terms
play an important role in the proof of Fredholmness. So here we define
the notation of the leading terms and lading coefficients of Z/2—harmonic
LA(M\X;8®Z) and L3(M \ 2;S®Z) sections in Definition 3.3 and
Definition 3.5 for later use. Moreover, we also introduce a space called Kg
in Definition 3.2. This space help us to obtain the regularity for the leading
terms defined of L?(M \ ¥;S ® Z) in Proposition 3.6.

To begin with , let us recall the notation for sequence spaces ¢? and E%:

Definition 3.1. Let k € Z. We define

(3.9) 2= {{a,}lez c CZ‘ 3l < oo};

IEZ

(3.10) 6 1= {{ahez € C4 (1 + ) < oo}.

lez

Definition 3.2. Given R >0, let Kr be a subspace of L*>(Nr;S ®T) de-
fined by

1
Kp = {u € L*(Np; S © T)|Du = 0 and a5, = 0 for all |I| > ﬁ}.

By (3.8), we obtain the Fourier coefficients of L?-harmonic spinors is an
% | sequence. We define the following notations.

Definition 3.3. Let u be a harmonic section in L?>(Ng;S ® ) with the
corresponding Fourier coefficients {ufl} Then

o We define {(af, + dy,, —sign(l)ag, + sign(l)iy,)} € €2, x €% to be the
sequence of leading coefficients of u.
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e Define the space

(311) ker(D|L2(NR;S®I))O = {11 S ker(D’Lz(NR;‘g@I))
with its leading coefficients in €% x 62}.

o We define (Zl(ﬁar’l + ﬁal) , > (—sign(l )uafl + sign(l)ﬁal)ei”) to be the
leading term of u when u € ker(D| - NR;S®I)) .

Definition 3.4. Let u € ker(D|2(n,.s07))" and {uf,} be its Fourier coef-
ficients. We define the following terminologies:

e Define {(u;f,u; )} € £2 x €% to be

1
2R

Tour) = (af,, —sign(l)aT l | < —
(ul y Uyp ) (uo,lv sign( )uo,l) + (uop sign( )u()l) for |1

(u;r,ul )= (ugl,—szgn(l)u(”) for |l > —

2R’

We call {(ufr,uf)} the sequence of Kr-leading coefficients of u.

e Define ut(t) =Y, ue™ and u=(t) =Y, ufem where {ul } is the se-
quence of Kg-leading coefficients of u. We call u*(t) to be the Kp-leading
term of u.

o Let u™(t) be the Kg-leading term of u. We call (u*
Kr-dominant term of u.

Moreover, we can see that if u € Kg, then the Kg-leading term (coefficients)
will be the leading term (coefficients) of u. The sequence of leading coeffi-
cients of u can also be regarded as the sequence of Ko-leading coefficients

of u.

(t)ﬁ,u_(t)%) the

When we perturb (g, %,v) € M, the leading term of ¢ plays a crucial
rule in the linearization of 9. So readers should be familiar with these
definitions.
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Now if we consider v € L?(Ng; S ® T) satisfying Db = 0, we will have

i(k=3)0y | (r) + i(k—1)0, k—1
_ + it e kfg,l Uk,Oe 27T 2
"= Z Uk ( —ei(k+%)gljk+l !(r) " Z 0

k>1;1£0 ; k>1
A —eik=3)0 3 (r
Y et . kra(r)
’ e\ 1 (r)
k<—1;10 k=3
0
+ Z o kD)0, —k—1 |-
k<—1 \ k0

So we can write
19 1 + ito~
B vioe% r2 " v e’ J%J(T)
(3.12) b= M, |+ ) e T i1p2
v ge 202 v 27J1(r)

+ higher order term

where the higher order term is O(r?) for some p > 5. By the definition of
modified Bessel function (3.6]), we can check that

(3.13) {of 3 {vZ ) € &
Again, we define leading coefficients and the leading term for v.

Definition 3.5. Let v be a harmonic section in L}(Ng; S ® T).

o We call the Fourier coefficients, {(vf’l,v:l’l)}, denoted by {viF} € €2 x (2,
to be the sequence of leading coefficients of v.

o We define vE(t), where v (t) =Y, v e and v=(t) = >, v; e, to be the
leading term of v.

e We call (vt (t)\/z,v™ (t)V/Z) the dominant term of v.

In the rest of this paper, we always use letters of Fraktur script,
u,0,b,¢, etc., to denote the sections defined on L?*(M\¥;S®Z) or
L3(M \ X; S ® T). If they satisfy the Dirac equation on Ng for some R > 0,
their corresponding sequences of (Kg-)leading coefficients will be denoted
by letters of normal script {uli}, {vli}, {hli}, {cli}, etc. which are in £2 x (2.
Meanwhile, the corresponding (Kg-)leading terms will be denoted by
ut = Zulie“t, vt h*, ¢t which are in L?(S';C). We have the L?-norm for
u® will be the same as (||{u] }|% + [[{u; }|%)=.
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By Definition 3.4, any L?-harmonic spinor u with K g-leading coefficients
can be decomposed as a sum of a dominant term and a remainder term. It
is also true that for any L%—harmonic spinor, it can be decomposed as a sum
of a dominant term and a reminder term. In the following proposition, we
take care of the regularity estimate for these remainder terms.

Proposition 3.6. We have the following two properties.

a. Let u € Kp, then we can decompose

u= ( ZJFEgi ) + um
for some ugp € L%(N%;S ®I) where u*(t) = ulie“t and
(3.14) a2z (2 ) < CRH Il 22
for some constant C. In the following paragraphs, we call (u— ug) the Kg-

dominant term of u and call ugpz the remainder term of u.
b. Let v € L?(Ng; S ®I) and Dv = 0, then we can decompose

b= ( Z+8é ) T og

for some v € L3(Nzr; S ® T) where vE(t) = Y vife™ and
3
-2
(3.15) ool 3oy < ORI 22 (v

for some constant C. Similarly, in the following paragraphs, we call (b — vg)
the dominant term of v and call vy the remainder term of v.

Proof. (proof of part a). We claim the following two inequalities:
ut ()L
()% ) € L*(Ng) and

(3.16) HD( ZTQ? )

First, we have D

< CR™[[ulZ2(ny
L*(Nr)
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for some C' > 0. Second,

(3.17) H ( Ziggg )

We will prove these inequalities in Corollary 3.8.

2
< CllullZ2(n,)-
L*(Nr)

We now fix K > 0 and define

i(k—l)GUJr ut

_ 1 L A I ilt l

=3 5 G )= 5 ()
k#0 |I|[<K k,l I#0;|l| <K

We can easily see that |ug x| < Cx+/r and [Vug | < CK#, which means

there will be no boundary term when we do the integration by part for the

Lichnerowicz-Weitzenbock formula. Let x = 1 — x2 p be a cut-off function.

3 )

By applying Lichnerowicz-Weitzenbdck formula on xug i and using ((3.16)),
(13.17) above, we have

S-S

1
(3.18) Hufﬁ,KH%f(N%) < || Dugt k [|72 (v, +Cﬁ||um,K||%2(NR)

<o ()

< CR?|[uZ2(ny

2
1
+ Cﬁ”u%KH%%NR)

S-S

L?(Ng)

for some C > 0.

By taking K — oo in (3.18)), we have

||u9%||%§(1v%) < CR™|[ulZ2(n)-

(proof of part b). Similar to the proof of part a, we claim the following
two inequalities which will be proved in Corollary 3.10.

(3.19) HD( Ztg;g )

(62 )

2
< CR?||0)172 ()

2

(3.20) < Cllol12:(n,)-

L2(Nr)
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Fix K > 0, define

k0 \l|<K

We have [pg | < CxVr3 and Vo k| < Cry/r and |VVog | < CKxf
So by applying Lichnerowicz-Weitzenbock formula on xvg i, we have

(3:21)  onaltzov,gy < Do + O ool oy
V(D)
<
<[o( vz
< CR ol

2

+cf|\nm,K||22 .
L) R2 L?(Ng)

for some C' > 0. By taking the limit K — oo, we have

2 21,02
[o9tl|Z2(nvy) < CRTNONT2 (v,

212)

Notice that [V;, D] = 0, so we can use the same argument on V;v. Here
we need the following inequalities which are also proved in Corollary 3.10.

2

(3.22) HD(V( ZTE;% )) e < CR™v|| 2y
and

(3.23) H ( ZTE;@ ) . < CR™l0]|Z2 ()
So we have

1
(3:24) ookl zz(va) < ID(VO0r,1) 12 (i) + C gz 1090 ke vy

o (Gv: )
< CR™jo]|72 (v,

%)

2

IN

1
+ C?HU?KK”%f(NR)

L2(Nr)

for some C' > 0. By taking the limit K — oo, we prove this proposition. [J
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3.2. Regularity properties and the asymptotic behavior of
L2-harmonic sections on the tubular neighborhood

In this subsection, we will derive some regularity theorems for harmonic
spinors u € L?(Ng; S ® Z). These estimates are similar to the doubling esti-
mate appearing in [12]. Recall that, by standard interior regularity theorem,
u is a smooth section on any compact subset of Np. We write

k—LYor7+
MU

(
it [ €
u= € IRy N
zz,z; (6( U )

where

Ug _ulj:_,lljk+§,l(r) + gy I g1 ()

< Ul:l > _ < u;ljk’—%vl(r) _“i;llj—kJr;l(?") )

for I # 0 and

+ + L k—2

< Uk,o > _ Uy o7 21
i) = NI I

Uk,O Up o7 2

Since u € L?, so we have

u;l:Ofork:S—l;
u,, =0 for k> 1.

Moreover, let us define

i L0~ i 101~
o {e”t ( ae'z Jk_%’l(r) — be'z lJ_,H_%’l(r) )

—ae_%eljk_,_%,l (7’) + be_iéej_k_;l(?“)

a,bER},

then Ej; and Ep are L%-orthogonal for any two pairs (k,l) # (K',1')
(readers can obtain this result by using the orthogonality of modified Bessel
functions, see [14]).

By using these observations, we can prove the following proposition.

Proposition 3.7. Let u € L?(Ng;S ® ) Nker(D) with the corresponding
Fourier coefficients {ufl} Then the sequence of Kgr-leading coefficients
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{ui"} is in (2 (see (3.10) for the definition) for all k € N. Moreover, we
have

2k+1
(3.25) I ezl < 385 R

Proof. First of all, let Py : ker(D|z2) — Ej; be the orthonormal projection.
We have

Gt el | oo enlir
Py (u) = eilt Ol f Ol \[ 2|lr
ba(u) —sign(l)ugle\‘f —i—&gn(l)ﬁgle\/;

for any .

Recall that (u;",u; ) = (Qlar’l,—sign(l)ﬁafl) for |I| > ﬁ and (u;f,u; ) =
(ag,, —sign(l)ag,) + (tg,,sign(l)dy,) for |I| < 5. We can compute directly
to get

Il 2 3210
R
>3 a2 / i+ 3 g P [ e rar
1 0 0
R
> Sl | etrar

l 2k R2k+1

(2
>ZZ’ Ol|2 (2k +1)!

Meanwhile, the second line of this inequality also tells us that

R
- —4)l
v = 3 Jag, P /0 el gy
> > e Yig, PR

ll<3g

— 2R

> Z 1’u |l|2k‘R2k‘+1
lt<5x

— 2R

So we prove (3.25|).
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By using this proposition, we can prove (3.16|) and (3.17)) in the following
way.

—n v is the Kr-dominant term of

an L?-harmonic section u as we showed in Proposition 3.6, then

Corollary 3.8. Suppose that

< CR™?||ull (v

L2(Ng)

and

1
(o)

for some constant C > 0.

Proof. We can compute directly that

ut(t) = Ou™(t)
D( u (1)L ) = ( Dy~ (1) )

Then by Proposition 3.7, we can prove this corollary immediately. O

SIS

3.3. Regularity properties and the asymptotic behavior of
L%-harmonic sections on the tubular neighborhood

The main result of this section is Theorem 3.11. Our goal is to estimate the
L?-norms of harmonic spinor v and its derivative d;v on a small tubular
neighborhood of .
Suppose that v is an L3-harmonic section, then we can write
k*l)9v
_ at [ € k,l
o=z (et )

where

( v ) _ Ulj,ljkfé,l(r) — Vgl T gy 1(r)
Vo _U;zljkﬁ,l(r) + U I g1 (7)
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for I # 0 and

Since v € L?, so we have

v,jlzofork:g();
v, =0 for k> 0.

Proposition 3.9. Let v € L?(Ng;S ® T) Nker(D) with the corresponding
coefficients {v,fctl}. Then the sequence of leading coefficients {(vli)} defined
in Definition 3.5 is in €2 for all k € NU{0}. Moreover, we have

2k + 3)!
(3.26) o el < PRt oy,

Proof. We use the same notation defined in Proposition 3.7.

i _U: [T (’l“) ; U+ 5 (’f‘)
P—l,l(")zelt< T ) , Ppy(v) =€ ( lifl ! .

vy J1(r) —vy 135 ,(r)
for I # 0 and
0 vfre
P_19(b) = _ 1|, Pio(p) = 1,0 .
TORI (R I FORI
Since J1; = %, we have

lol|Z2 =D IP-12(0)[[72 + | Pra(o) 122
l

R 1,2 R
_ sinh*(21r) _
> (ohP+ TP | dr 4 (ol + 0Dy ?) [ rPdr
120 ’ ’ 0 41 0

o0 l2k7'2k+2

R
> Sl + ) [ (3 Gy )
l 0 k=1 '

oo l2kR2k+3

_ +
=2 P Gy
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Therefore, we prove this proposition. O

The proof of the following corollary is similar to the proof of Corol-
lary 3.8. So we omit the proof of this corollary.

vt (t)/z . , 2
Corollary 3.10. Suppose < NG is the dominant term of an Lj-

harmonic section v as we showed in Proposition 3.6, then we have
a.

HD< zfggé > < CR ol
)

L2(Nr)

and
2

N

< ClolZa )
L*(Nr)

H (e

for some constant C > 0.
b.
(= (%))

| (o)

for some constant C' > 0.

N

2

< CR™ 01 Z2(ny
L?(Nr)

and
2

I

< CR™ol|72
L(Ng)

Finally, we can prove the following theorem by using Proposition 3.9
now.

Theorem 3.11. For any v € L}(Ng) Nker(D), we have
C
2 3 2
[ollzan,y <7 ﬁHUHLQ(NR)-
In addition, if we let v, = Oyv, then we can prove that
<

Ht’tH%%NT) = TS@HUH%?(NR)-

for some constant C > 0 and all r < %.
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Proof. To prove the first statement, we use Lemma 2.6 to get
(3.27) 01172,y < CT2[IV0 72

for all v € L#(Ng) and r < R. By Proposition 3.9 and Proposition 3.6 b,
(3.27) implies

+ 2
2 o 2 2 o 2 v (t)vz 2
/N 0|2 < Cr /NT]VU <20 /zv,“v(v‘(t)ﬁ ‘ 4 [Voo|

’ 3
r
< QCﬁHUH%?(NR) + 20703172 (v
< 40@”“”1:2(%%)
for some C > 0.

To prove the second statement, we notice that by applying Lemma 2.6
on vy,

/NT ool <o /N Ve < 2 /N v ( Zgggg ) o

By using Proposition 3.9, we have

) <t

So we have

3
,
[ 1o < 25 ol + 2% ol

[d

Then by the first statement proved above and Proposition 3.6 b,

C r
los][72 () < ﬁ”UH%Z(NZT) < Cﬁ”“”%z(z\m)-
So we prove the second statement. O

Remark 3.12.

a. By using this theorem, Proposition 2.3 and Lemma 2.6, we can prove that
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for any v € L3(Ng) Nker(D), we have

C
o2, vy < 7 ol e )

Moreover, we have

C
oell72 () < 7“5@”0”%2(1\73)
for some constant C' > 0.

b. By Proposition 3.9 and the definition of modified Bessel functions,
one can prove directly that the remainder term vy is bounded by the order
rP for any p < % Similarly, for an L2-harmonic spinor u with Kp-leading
coefficients, the remainder term ug; is bounded by the order 7P for any
p < % This can be obtained by Proposition 3.7. This result is also true for
L2-harmonic spinors with its sequence of leading coefficients has L? bound.

4. Variational formula and perturbation of curves

The previous Section gives us some analytic tools to handle the perturbation
of 9 later. Section 4 follows below will give us some important analytic tools
to deal with the perturbation of the metric g and X.

4.1. Variational formula

We should review the following fact about the Sobolev inequality and
introduce a modified Poincare inequality first.

Letv € L2(M \ 2;S ® T). We have |o] € L?(M \ ¥;R). Since ¥ is a mea-
sure zero subset of M, |v| can be extended as an L? section over M. More-
over, suppose b is in L2(M \ ¥;S ® Z), then we will have |v| € L(M;R)
and

(oD Iz (arir) < CliollLz (v si501)-
Now, by Sobolev inequality, we have

(4.1) [0l Lo (avn\sss2z) = N(10D 2o (arsm)
< Coll(loDllz2(arry < Cllvllz2(an\ss07)
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for some constant Cy, C > 0.

Another important tool we need is the following modified Poincare in-
equality.

Lemma 4.1. Letv € L? and v | ker(D) in L?—sense, then we have
(4.2) [ollz < Cl|Do]|
for some C depending only on the volume of M.

Proof. This inequality is just a small modification of (2.15)) in the proof of
Proposition 2.4. One can obtain the proof by using the same argument (The
only different is the way to define the perpendicularity). O

We will use L2 Nker(D| Lf)l to denote the collection of elements in L2
which is perpendicular to ker(D|rz2) in L?-sense. The terminology “1” used
in this section is always in L?-sense.

Definition 4.2. Let f € L? |, we define the functional
Eiw) = [ Do+ o)
M\E

for allv € L3.
Since D is self-adjoint, the Euler-Lagrange equation of Ej will be
(4.3) D?b ={.

However, the following proposition and its corollary (Proposition 4.3 and
Corollary 4.4) tell us a solutions of (4.3) exists only if f € L2, Nker(D| L%‘)Lﬂ
We will have further discussion in Section 4.5.

4The space L7 N ker(D|L§)J— is composed by elements f € L2 where [(f,0) =0
for all v € ker(D|gz2). By Definition 2.1, this is well-defined. As I mentioned before,
the perpendicularity is in L2-sense.
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Proposition 4.3. Letf € L2 be given. There exists o > 0,3 € R such that
for any v € L} Nker(D|2)*,

(4.4) E;(v) > o|[Dol|7. - 3

(This property is usually called coercivity). Moreover, if we minimize Ej in
the admissible set L3 Nker(D|y2)*, then we have a unique minimizer for Ej.

Proof. The inequality (4.4) can be obtained directly from Proposition 2.3
and Lemma 4.1. So we should only prove that Ej has a unique minimizer
in L? Nker(D| Lf)J- by using 1) Suppose we have a sequence {v,} C L? N
kelr(D|L§)L such that

lim FEs(v,) = inf E;(v).
nlgolo f( n) neL%r%(ler(D)J- f()

Let us call inf,cr2qker(p)r £j(0) = m. Then there exists ng € N such that
Ej(v,) <m+1
for all n > ng. So
a||Dv,||7: — B < Ej(v,) <m+1

for all n > ng. This inequality implies that the sequence {|[Dv, |12 }n>n, is
bounded. By Lemma 4.1, {||v,||z2} is bounded. So a subsequence of {v,}
has a weak limit, say v. Because of the Lichnerowicz-Weitzenbock formula

4
D012 = Vol + [ ol

one can apply Theorem 5 on p. 103 in [I5] to obtain the inequality
| Dol < liminf,, o || Doy||z2. So v is a minimizer of Ej.

Finally, we prove the uniqueness. Suppose we have v,, v, are two mini-
mizers in L? N ker(D|L§)J', then

2 2
1 1 1 1
< /Q\DnaF + 5!Dnb!2 + §<vmf> + 5

B (%) = [ 40D+ Duf?) ¢ o)+ o)

2<Ub, f)

=m
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by Cauchy’s inequality. The equality holds if and only if Dv, = Dv;, which
implies v, = v by Lemma 4.1. O

Corollary 4.4. For any §=fo+f1 € L%, with fo € ker(D|[2) and f, €
L% N ker(D|Lz;)l. The minimizerv € L3N ker(D\Lﬁ)J— of E; given by Propo-
sition 4.3 will satisfy the equation

D?v = fy.
In particular, if f € L? | Nker(D|2)*, we have Do = 7.

Proof. For any w € L} Nker(D|;2)*, we have

d
(4.5) 0= £Ef(u + stv)

T /M\E<Dm, Do) + (1, )

following by Propositin 4.3 and the standard argument in Theorem 4, p. 473
in [7]. Since o € L2 N ker(D|L§)l, we have

/M\E<m7f> - /M\E<m’f1>.

So (4.5) implies that
(4.6) / (Dvo, Dv) + (,§1) =0
M\Z

for all o € L Nker(D|y2)*. Since f; € ker(D]L%)L, (4.6) holds for all 1 €
L%. In particular, it holds for any smooth section with compact support. So
by taking integration by parts, we have

(4.7) / (w, (D% — 1)) = 0
M\E
for all w € CZ5(M \ ¥;S ® Z). This implies Corollary 4.4 immediately. [J
4.2. Perturbation of X: Local trivialization
In this section, we define some notation and explain the local trivialization
of & (We follow the notation in Section 1). First of all, let N be the tubular

neighborhood of 3 € A. There exists a neighborhood of ¥ in A, say Vs,
such that ¥/ C N= for all ¥’ € V5. Therefore, we can parametrize elements
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in Vs by {n:S! — C|n € C! and ||n||c: < Cr} for some Cr depending on
R. We map n to {(¢,n(t))} = X' C Ng.

Here we choose a variable t < % This variable will also be used in
the rest of this paper. Also, we fix a T > 1 which will be specified in the
following sections. We can assume t, R and T are fixed although they will
be modified finite many times in this paper (The precise value of v and R
can be assumed to decrease between each successive appearance; T' > 1 can
be assumed to increase between each successive appearance).

We define

1—x=x on Np
4. (t): 7t
(4.8) X { 0 on M\ Ng

(We will omit the superscript (t) later, but keep in mind that this function
depends on t).

For each (n,t), we now define the following map

o) M\S — M\ Y,
(4.9) ¢ (p) =pfor all pe M\ N,
(t,2) = (8,2 + X (2)n(t)) on N

with 3 = {(n(t),t)}. This map is a diffeomorphism if ||n|c1 < C, for some
constant C depending on t.

We fix ¢ for a moment. Recall that the fiber of £ over (¢g,%',e) € X x Apy
is the space L}(M\X';S;s.), which can be identified with
L3 (M \ 3840 xe). Therefore, for any element (g,%)€ X x Ay,
there exists N C X x Ay, a neighborhood of (g,%), such that the
bundle &y ~ m(N) x B x L} where L}~ L3(M\;S;x.) and
B. = {n:S!' — C|n e C! and |n||c: < e} for some small & > 0.

By the same token, we have the local trivialization of F near (g, %, e) to
be m1(N) x B. x L2. The Dirac operator D : £ — F will be a family of first
order differential operator mapping from B, x L3 to B. x L?. Therefore, the
kernel of the lineariztion map of 9t (when ¢ is fixed),Kg, will be contained
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in V x L? where
V={n:8'=Cpec.

By Proposition 2.4, we know the projection of Ky on the second factor L?
is finite dimensional. We will prove that the projection of K¢ on V is also
finite dimensional in Section 6.

4.3. Perturbation of ¥: Estimates

Recall that we assume the product metric being defined on Np, which
is gy, = dt? +dr? +r2df. In the following sections, we choose a positive
constant t < %. The precise value of t can be assumed to decrease between
each successive appearance. Also, we fix a T > 1 which will be specified in
the following sections.

Consider a pair (x,7) where 7 € C*(S*;C) (here x = x{7)). We can
define the corresponding one-parameter family of diffeomorphisms

bs M\X — M\ Xg;
(4.10) (t,2) — (t,z+ sx(z)n(t)) on Ng,
¢s(p) = p for all p € M\ Ng

with 0 < s <tp for some small ¢y and X5 = {(¢,sn(t))}. We fix a positive
s <to and use (1,u) € [0,27] x {z € C||z|] < R} to denote the coordinates
on ¢s(Np) in the following paragraphs. We also define the notation

(4.11) N = O,
(4.12) Xz = 02X,

If we write down the relationship of 0, 0, and 05 and the push-forward
tangent vectors (¢;1)«(0-), (¢5')«(0u) and (¢5")«(9a),

( or ou ou
_ —1 _
@—m>4ma+&m+mm)
ou ou
_ -1 _
82_(¢8)*<828U+_8z&0 ,
ou ou
_— (AhL - 279
9z = (95 )*<828“ + 828“>
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we will have

T at
(¢;1)* O | =M\ 0
Oy 0,
where
B 1
14+ S(in + Xfﬁ)
1+ s(x=n + xz7) 0 0

x | —sxile — $2xx=(e — mell) L+ sxan  —SX2T]
—sxme — $2xxz(mi — n)  —sxzn 14 sxah

Since the metric and spinor bundle are fixed over M here, so the Clif-
ford multiplication x : TM — CI(TM) will always send 0., 0g, 0, to e; =

—i 0 0 O 0 1 .
< 0 ) , €9 = ( 10 ) ,€3 = < 0 0 ) respectively. Therefore, the
Dirac operator Dy defined on ¢4(Ng) will be

Ds=e1-0; +e3-0,+e3- 0z

3
+ % Z €; Zwkl(ei)ekel

i=1 ki

where wy; is the forms defining the Levi-Civita connection.

In the following sections, all these perturbed curves will be identified
with ¥ by using the pull-back operator (¢;!).. So we have to write down
the corresponding Dirac operator explicitly

Dgyn = (¢;1)* oDs=e1- (¢;1)*(37-) +ea- (¢;1)*(au) +e3- (Gbs_l)*(aa)

£33 e > (6 (wnle)eser

Suppose that we have the following assumptions: There exist kg such
that

(4.14) 1l 2251y < Kot?,
(4.15) 7l 22 (s1) < Kot
(4.16) 7t 251y < Ko-
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We will see that these inequalities will imply that there exists k1 = O(ko)
such that

(4.17) max{|x:||n, [xz|[nl, Im]} < vpr102
(4.18) Ix=melles Ixemellee < vekn
(4.19) Ixznllze, anllee, xzznllee < 4251

where we denote (7-7) by 7.

For the perturbed Dirac operator D,,, we have the following proposi-
tion.

Proposition 4.5. There exists k1 = O(ko) depending on ko with the fol-
lowing significance. The perturbed Dirac operator Ds,, with n satisfying

f can be written as follows:
(4.20)  Dayy = (14 0syn)D + s(x=n + xz0)(€10) + OF + RY + HJ + FY

where

o OF = [e1(sxm0:+5X7kz) +e2(sxz00: — 5X2710z) +e3(—sXz10: + 5X2105)]
is a first order differential operator.

o RV: L2 = L? is an O(s?)-first order differential operator supported on

N — Nz with its operator norm ||Rs|| < V2Ris2.

o HY is an O(s%)-zero order differential operator supported on N, — N%.
Moreover, let us denote O, by 71, the vector field defined on Ng, then

(4.21) /{ . [ H2|%izdVol(M) < 42 kirs?

for all ro <.

o 7V is an O(s)-zero order differential operator where

(4.22) fé’:;[D(s(xzmxzn)mHD(( a0 ))]

The reason to rewrite the perturbed Dirac operator in this form is be-
cause in Section 7 and Section 8, we will construct an iteration which defines
the homeomorphism in Theorem 1.5. In the process of the iteration, the first
two terms and ©; play the leading role in the iteration. The terms R, Hs
and F; are relatively unimportant. They give some elements which converge
to 0.
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Proof. Step 1. We can see that, after some standard computation,
(423) (95 Dslwm(e) = M(w(e))M ™ + (dMIM™! = (dMIM ™

Here we write down precisely the O(s) order term of

3

Zezz (5 1) wlwraed))erer,

which equals

— [(d/\/l)u(el)fd -+ (dM)ll(GQ)@Q + (d./\/l)ll(eg)eg]
+ [=(dM)12(e1)ea — (dM)13(e1)e3
+ (dM)as(e1)ereges + (dM)sa(e1)ereses)

_ 0 —SsixN
= D(s(xzn + x=0)1d) + D( ( sy o ) ) = 270

So the term 3 3 e Zk,l(qﬁs_l)*(wkl(ei))ekel can be expressed as

3
(4.24) €; Z (wri(ed))ene; = FO 4+ HY

1kl

N | —

)

where F? is the O(s)-zero order differential operator described as above

and H? is an O(s?)-zero order differential operator.

Here we prove (4.17)), (4.18)) and (4.19). First, notice that by Sobolev

inequality, we have 7 is continuous. So

() < = /%\ et [ o)
n S o n AU
21 Jo 0
1 2
< ol + 2l 2
1
< 2—/@(2)51 + QH(Q)tS
v
1
S ( +2)/{0t

Meanwhile, we have |x.|, |xz| < CVTT. Therefore,

| (xi)zlmils | (xi)zlm] < Croee.
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IX:1 [xz| < Cv,.1; (4.19) can be proved by the fact |y, |z, [xzz| < Cv2 %

and (4.14).

Under these assumptions, for any s small, we have

This implies (4.17). The inequality (4.18) can be proved by the fact

1

1
1+ s(x2n+ xz7)

1
< 2sy,K1v2.

We can write m =1+ Osxn- Then

(4.25) |0syn| < 257T/£1té.

Step 2. Using the conventions defined above, we have

L+s(xzn+xzm) 0 0

(4.26) M = (1+ 0syn) 0 10
0 0 1

0 0 0

+ —SXMt SXzN —SXzN
—SXMt  —Sxzn  Sxz7

0 00

+ | =s*x:mm—ma) 0 0

—s*xxz(mi—mm) 0 0

Therefore, by (4.24), we can rewrite

(4.27)  Dsyn = (1 + 0sxy)(D + s(xzn + xz0)(€101))
+ (1 + stn)[el(sxntaz + SXﬁtaE) + 62(3X2778z - SXZ'F/@E)
+ e3(—sxzn0; + sx=10z)]
+ R+ Hs + F

where
B 1
1+ s(xan + xz7)
x [ea(s®xxz(me — en)0) + es(s*x=(ne — )0 )]

(4.28)  R,:

is a first order differential operator satisfying |R| < V2R3s2.
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Finally, we define the following two terms for the second term on the

right-hand side of (4.27]):

QY = [e1 (sxmd: + sx7:05)
+ 62(5)(27782 - SXzﬁaz)
+ e3(—sxzn0: + sx=10z)]

and

57321) = 0synle1(sxne0; + sxm:0)
+ ea(sxzM0, — sx.N0%)
+ eg(—sxzn0; + sxn0s)]

where 67321) is an O(s?)-first order differential operator. We can also simplify
the first term on the right-hand side of (4.27)) by writing (1 4+ 0syn)(sX21 +

xz1)(e10¢) = s(x.n + xz7)(e10;) + 57&9 where 57&9 is also an O(s?)-first
order differential operator. So we can rewrite (4.27) as the following.

Dy = (1+ 05yn) D + s(xan + x77)(€18;) + 0% + RY + H? + F?

where Rg = 7?,8 + 57%9) + 5Rg2).

To prove the estimate (4.21]) for H,, we notice that the term (dM)M ™!
involves at most the second derivative of x and n, which can be estimated

by (4.16)), (4.18) and (4.19). So we get (4.21). O

Using the same notation introduced in this proposition, we can state the
following proposition. This proposition will be used in Section 7.3.

Proposition 4.6. Let 1 € L? be a harmonic section. Then
IR (®)°l|z= < Cvi wies?

for some constant C' depending on the ||¢| 2. In fact, this estimate is true
for any ¢ € L% which can be expressed as ¢ = +/ru(t,0,r) with v being a
C'-bounded section.
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Proof. By Proposition 3.6 b, we have ¢ = /rv(t,0,r) where v is a C!-
bounded section. We write down by the definition:
0 -1
T 14 s(xen + xem
+ Osxyle1(sxm0s + sxMe0z) + ea(sxzn0; — sx»10z)
+ e3(—sxzn0: + sx=n0s)]
+ 05y (821 + Xz1) (€10y).
-1

Oen + xz1)
(4.14), (4.15), (4.16), (4.17), (4.18) and (4.19) we notice that every term in
Rs can be written as the type Zle s2;3;0; with (01,02, 03) = (O, 0z, 0y),

il < 'mit% and

) [e2(s*xxz(mei — 0em)Or) + es(s*xx= (nie — ) Oy)]

By (4.25)), we can bound ‘ i by 1+ 237T/€1t%. Then by using
S

/ |ﬁi|2iﬁdV0l(M) < ’}/TI{',%tj.

So we have

3

IR ()°llz2 < 8°[[vllcryz wTe?.

4.4. Series of perturbations: Estimates
In this section, we discuss a series of perturbations and its corresponding
Dirac operator. These results will be used in the Section 7 when we

construct the iteration for the proof of Theorem 1.5.

Let v < %, T > P > 1 be fixed for a moment. We consider a sequence
{(xi,n:)} satisfying the following conditions:

L xi:==1-=x_z = is a cut-off function (Recall the definition (2.1))).

2. There exists ko > 0 such that

2

T
(4.29) 7]l 2(51) < Fo2 7y

T
(4.30) 1)ell 2(s1) < K2z

(4.31) 1(m) gl 2251y < K2, -
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for all ¢ € N.

Similar to the argument of (4.17)), (4.18) and (4.19)), we have the following

results

.
(4.32) max {|(xi)||mil, [(xa)zl|mil, [(mi)e] } < ek
(4.33) 1 (Oxi)=millzes | (xa)zmill 2 < e k3,
(4.34) 1(xi)z2mill 225 | (i) =2mill 22, | (Oca) zzmill 2 < 72 ks,

for some k3 = O(k2). We define

7
(4.35) n' = annn.
n=0

As we have shown in the previous section, we define the following family
of diffeomorphisms

¢ MN\E — M\ Zy;
(4.36) (t,2) = (t,z + sn'(t)) on Ng,
qSi(p) =pforallpe M\ Ny

with 0 < s < tg for some small ¢y and 3, = {(t,s(n'(t)))}. Now, we fix s
and use (u,T) to denote the coordinates on ¢%(Ng).

The Dirac operator D, on M \ ¥ will be
Dsni = (Qbé);l oD; =ey - (¢é);1(8’r) +e2- (¢é);1(au) tes- ((ﬁ;);l(&ﬂ

3
53 e S0 wulen)erer

=1 k<l

Proposition 4.7. There exists k3 = O(k2) depending on ko with the fol-
lowing significance. The perturbed Dirac operator D, with n' satisfying

“-29)- can be written as follows:

(4.37) Dgyirn = (1+ 0" Dy + 5((Xit1) 2Mit1 + (Xis1)57i41)€10;
+OL+ R+ H.+ Fi

where
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e O, the (x,n) = (Xiz+1,Mmi+1) version of O, is a first order differential
operator with order O(s).

e R.: L2 — L? is an O(s?)-first order differential operator supported on
N% — N% with its operator norm bounded in the following way:

j 2,22
IRl < v;r3s”

T

° 7:[@, is an O(s?)-zero order differential operator. Moreover, let us denote by
71 = Oy the vector field defined on Ng, then
. i+ 1
(4.38) / | HL[PiadVol (M) < v;*ﬂé((l%)%s?
{r=ro} T

T
Jor all rg < 7.

o Fiis an O(s)-zero order differential operator where

1

(4.39) Fl= 5 [D(S((Xi+1)z77i+1 + (Xi+1)z0iv1)1d)

+ D(( SiXi+1(27h'+l)t _SiXHé(ﬁHl)t ) )]

Proof. We can define the matrix M’ to be

/o [
@0 | 9 | =M o
Oy, 0,

Notice that the support of (x;). and (x;)z are disjoint for all i # j.
Therefore, we can write M1 as follows

(4.40) ML — 1 M+ N

1+ s((1) =M1 + (Xig1)27i41)
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where N1 is a (xi11,7i+1) version of M:

1

Nz—l—l
L+ s((Xit+1)2Mit1 + (Xit1)27i+1)

s((Xi+1)2Mit1 + (Xi+1) 7i41) 0 0

—5Xit+1(Mit1)t

—82Xi+1(Xi+1)z [Mi+1(Tit1 ) s(Xi+1)2Miv1  —S(Xit+1)2Mi+1
X — (Mis1)e7i41]

—8Xi+1(Mi+1)t

—5%Xi1(Xit1)z [ (1) el —s(Xit1)zmiv1  S(Xi+1)zMit1

— (Ti1)i41]

Let us define
1
L+ s((xi)2mi + (Xi)z7i)

Define ©% and R to be the (x;11,7i+1) version of % and R?. Then we have

=1+ ¢

-Dsni+1 = (1 + QiJrl)(Dsni - Aé) + 5((Xi+1)z77i+1 + (Xi—i—l)?ﬁi-i—l)elat
+ 0L+ R+ A
=(1+ QHI)Dsni + 5((Xi+1)2Mi1 + (Xit1)z7i+1)e10;
+ O+ R+ AT = (1404
where ATl = Z?Zl e; Zk<l(wl(;l+ )( ej))exe; with w1 being the pull back
of Levi-Civita connection (¢:*!);!(w). Using these conventions, we have
AT — (14 oA
— |(dMi+1)(Mi+1)—1 _ (sz)(Mz)—l _ Qi+1(dMi)(Mi)_1‘.
Now, by (4.39 and 4.40), we can see that F¢ is the O order term of

(sz—i-l)(MH-l (d/\/l )(M )) 1 . Therefore, by using and
(4.32), we have

[ 1@ @M = iV ol ()

< Oy} (= )kos”

RoS

Ti+1
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for some universal constant C. Therefore, we can choose k3 = O(k2) large
enough such that the right-hand side of this equation is smaller than

%’Y;l (Tirﬂ )”§34°

Meanwhile,

T

(4.41) / [(dMITHYMITHTE — (AMIY (M) 2idVol (M) < O k38
for all j, so we have

/ |(de)(Mj)_1]2iﬁdVol(M) < 'yi (i + 1)/%52.

Now recall that [oT1] < stng(ﬁ)é. So we have

@42 [ MM PindVol (M) < G+ 1) (el
—=To
Therefore, by taking
R
we prove this proposition. O

We have a similar version of Proposition 4.6 as follows.

Proposition 4.8. Let v € L? be a harmonic section. Then

2

IRE ()] 2 < Oy w3( 2.

Ly
Ti+1
for some constant C' depending on the ||| 2. In fact, this estimate is true
for any ¢ € L? which can be expressed as 1) = \/rv(t,0,7) where v is a C*-
bounded section.

4.5. Variational formula for perturbed Dirac operators

In Section 4.1, we proved that there exists a unique minimizer of Ej in
L? Nker(D|r2)* when the metric g is Euclidean on a tubular neighborhood
of . The argument in Section 4.1 works not only for D but also for the
perturbed Dirac operator Dy, Dy, appearing in Section 4.3 and 4.4. How-
ever, using the variational method to find the solution Dy,;us = § wouldn’t
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give us enough information about u; changing by varying s. Therefore, we
need to prove the following proposition (Proposition 4.9) to clarify this part.

In addition, let b be the minimizer of E; in L% N ker(D|L§)L. Then u :=
Do will satisfy the equation Du = § only if f € L? ; Nker(D)| L%)L. Namely,
Corollary 4.4 gives us the following statement: For any § € L2, there exists
u € D(L? Nker(D|r2)") such that

Du = f+ some elements in ker(D|rz).

We will use mod(ker(D|zz2)) to denote “some elements in ker(D|zz2)” in the
rest of our paper.

Proposition 4.9. Fiz j € N and f € L? . Suppose that uy € L? satisfies
Dug = § mod(ker(D|pz)),

then there exist u = ug + u® and tg > 0 such that
Dgysu = | mod(ker(D|rz2))

and |[v*|lzz < C(lluollzz + (Ifllz2,)s for s € [0,t0o] and C being a universal
constant C. Furthermore, the existence of uy will be given by Corollary 4.4
or Proposition 6.2 which appears later.

Proof. We can assume ker(D|zz) = 0 for a moment. The general case follows
the same argument as below.

Suppose Dgy; is the perturbed Dirac operator and § € L2_1. We want to
solve u € L? satisfying

Dgnju = f

We solve this equation iteratively. First, we know that the perturbed
Dirac operator D,,; can be written as D + 52 where 67 : L2 — L2_1 is a first
order differential operator with its operator norm |62 < C's for some C > 0.
Meanwhile, by Corollary 4.4, there exists ug € L? such that

Duo = f
So we have

Dsnju() = f— 5§(u0).
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Since uollze < Clflze,.
small enough, we have || (uo)|lz2, < 3lfllr2, -

we have [|02(uo)|z2, < Os|f||z2,. By taking s

17

Now we solve v; € L2 such that
DUl = 5; (uo)

by using Corollary 4.4. Then we have Dy (ug + v1) =+ 6%(vy) where
163 (o1)llz2, < 5162 (uo)ll < 22, -

We call 6§(u0) = 30, —5?(01) =3 and ug+ v; = u;. Suppose that we
have (u;, 3;) satisfying

Dgpivi =§— 3

with [[3;]|z2, <
satisfies

S [fl|z2, for some i € N, then we can solve v; 41 € L? which

Dov;tq =3
by Corollary 4.4. So we have
Dgpi (u; +0;41) =F+ 69 (0i41)

where 162 (0i1)llz2, < 3ll3:ll < 5tz fllz2,- By taking w; + vi41 = ;41 and
—82(bi+1) = 3i+1, we can repeat this argument inductively.

Finally, by taking the limit i — oo, then we have u;y; — u in L?-sense
which satisfies

Dsnf (u) = f

Moreover, since u—1uy = 2, 0v; and Dv; = (—1)(1'*1)5@‘(02'_1), we have
>0, is an O(s)-order L? section. We call Y 2% v; = u®.

Therefore, ug + u® satisfies

(4.43) Dsnj (ug + us) =i
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Remark 4.10. In our proof, since we can always write 8 = Yoy siég
where the operator norm of 52]- is bounded uniformly, u can be written as
>y stul®.

322 suld|ly — 0 as m — .

5. X with a non-Euclidean neighborhood

We now try to derive same results as we did in previous section without
assuming that > has a product type metric on the tubular neighborhood.
The discussion in this section is necessary because even if we start with a
FEuclidean metric, it will change to a non-Euclidean one when we perturb
the curve ¥ and use a diffeomorphism to identify it with the original curve.

There are two parts in this section. In Section 5.1, we prove an important
result in Lemma 5.1. This lemma shows that the regularity properties proved
in Section 3 for the leading terms of Z/2-harmonic spinors in L? still holds
when the metric is non-Euclidean near 3; In Section 5.2, we formulate the
way Dirac operator changes when we deform 3. This part generalizes the
results in Section 4.3 by taking away the assumption that 3 has a Fuclidean
metric on the tubular neighborhood. The results in this section will be used
in Section 7 (see also Section 9.1).

5.1. Asymptotic behavior of the L%-harmonic section

Let g be a smooth metric and ¥ C M be a C! curve embedded in
M. We use the exponential map to send elements in the normal bun-
dle {v € vg|lv| < R} to the tubular neighborhood of ¥ in M. We can
parametrize this neighborhood by a cylindrical coordinates (t,7,6) and
g = dt?® + dr® +r2d6? + O(r?) on Nop for some R > 0. Let S®Z be the
twisted spinor bundle defined on M \ ¥ with respect to g.

Now, we define gg := (xr2r)g + (1 — Xr2r)(dt? + dr? + r?>df?) and let
SE ® T be the twisted spinor bundle defined on M \ ¥ with respect to gp.
Then we can see that they are isomorphic (recall that they are classified by
H'(M:;Zs)). So we can regard them as the same complex vector space with
different Clifford multiplications and Dirac operators. Denote by D the
Dirac operator with respact to ¢ and Dg the Dirac operator with respect
to gE-
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The main result of this section is Lemma 5.1 below.

Lemma 5.1. Let v € L?(Ng;S®TI) satisfies HUHCO’%(M\Z)<OO and

D(v) = 0. Then there exists v* € L?(Ng; S ® ) and w*(t) € L3(S'; C) such
that Dgpv* =0 and

(5.1) v—0" — < w ()3 > (1 —X%R) o < O(r2)
and

o [tz _ "
(5.2) b—0 < w (V3 > (1—-xzp) oo < O(rz2)

Proof. We divide our proof into two parts.

Step 1. Here we set up the strategy of the proof. First, it is clear that we
can write D = Dg + O(r?)£1 + O(r)Lo where L; is a bounded first order
differential operator and Ly is a zero order operator, composed by Clifford
multiplications.

Second, the argument in Lemma 2.6 still works for elements in
L3(N,; S ® ). So the right hand side of the equation

Dgv = O(T2)[,1(U) + O(r)Lo(v)

will satisfy [|O(r?)L1(b) + O(r)Lo(0)]|12(n,) < O(a?) for all a < R. Namely,

we have
(5.3) Dpv=f
for some f satisfying

(5.4) £l 22w,y < O(a?)

for all a < R.
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By the standard theory of ODEs, the solution of (5.3)) has the form
(5.5) b =1+ 0"

where Dpto = f is a particular solution and v* satisfies Dgv* = 0. In par-
ticular, if we can prove that o has the leading term

wt(t)vz
o0 (wove)
satisfying w*(¢) € L3(S';C) and the remainder term
(5.7) b— 0 — ( Ziggﬁ ) (1 Xz ) = ron

satisfying (|5.1)), then we prove Lemma 5.1.

Step 2. Here we study the solution w € L?. We write down the Fourier
expression of to on N as we have done in Section 3.

el k——)ew-l- )

ilt
w(t,r,0) Ze ( (k! 9W

The equation Dgto = f will give us

d . _ (k+ )
d (k+ 3)

dr

where PT is the projection mapping to the Fourier modes of the first
component and P~ is the projection to the modes of the second component.

Therefore, we have

d 1 1
(5.8) W) = MW — B (f);

d k-1 k-1 — -1 5
(5.9) o ERWE) = R, — e P (f)

for all &, 1.



170 Ryosuke Takahashi

The integral of (5.8]) shows that there exists a double sequence ng; > 0
satisfying >y 17,21 ng, < oo such that

b
(5.10) MHM@@—JHWMws/%“Mmm+mmm>

< (b2k+2 _ a2k+2);(/b O(].))

< nk,l(b2k+2 _ a2k+2)%<b - a)

N =

N

for any b > a > 0 and k # —1. Meanwhile, since we have |[W,5| |P,(f)| are
o(1), we have

(5.11) b2 W2, (b) — a2 W, (a))]

b
< [ PR < CO- )
for some C' > 0, b > a > 0.

Suppose k > 0, (5.10) implies

lim ¥t 2 W (r) =
Lim M(T) c

for some c € C. |W_,| > %r‘k_% > %r‘é which is contradictory to Lemma
2.6 if ¢ # 0. So we have lim,_,q rk+§Wk_’l(r) = 0. By taking a — 0 in 1)

we have

Clb’f+%|Wl;l|(b) < bR,
So we have
(5.12) (Wil (r) < ngar

for all k > 0 with >, Ing|* < co. Similarly, by using the same argument,
we can also prove that

(5.13) ]W;l\(r) < g

for all £ <0.
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For the case k= —1, by 1’ we have lim,_,q r—%w,;l = ¢ for some
c € C. So we have

|-

(5.14) W2 (r) =wZy rz +o(rz).

Similarly, we have
(5.15) Wih(r) = wflr% + 0(7’%).
For the case k < —1, if we have

lim sup |rk+% pal(r) =c<oo
r—0

then |W,[(r) < cr~F=3 < ¢r2. On the other hand, if we have

. 1o
lim sup |rk+2Wk7l|(r) = 00,
r—0

k < —2 by (5.10). Moreover, ({5.10) implies that
W (b) — a" TR ()] < Cat
So

pr+3

akTng_’l(b) — a_QW,;l(a) < ngO(1).

Therefore, we have

lim sup |a72Wk_7l(a)| < ny,0(1)

a—0

which implies

(Wyl(r) < N
So we can conclude that
(5.16) Wi l(r) < nyr

for all k < —1.
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We summarize (5.12)), (5.14)), (5.15) and (5.13]): There exists a double
sequence ny; > 0 with Zk,lez n%l < oo such that

- Nk when k # —1,
(5.17) Wia(r) = { wyrE 4 o(rs)  when k= —1
and
o g when k # 1,
(5.18) Wk,l(r) = { wflrg +o(rz) whenk=1

Now, by using (5.10)) and (5.12)) again, we have

- ngr2 when k # —1,
5.19 w, = 1 3
(5.19) ka(7) { w”,,;r2 +nig(rz)  when k= —1
and
g lr% when k # 1
5.20 Wit (r) = . ’
( ) k,l(r) { wi"lfrE —+ n_l’l(T%) when £ =1

Step 3. Here we prove {wfu}, {wil} € /3. By 1D and 1} this

implies (5.1).
First of all, by Definition 1.4, we have
(5.21) [0¢, D] = O(r*) L} + O(r) L}

for some continuous first order differential operator £] and zero order dif-
ferential operator L{. So we have

(5.22) Doy = O(r*) L5 (0) + O(r) LE(v) € L?

By (5.19), (5.20), (5.22)) and Lichnerowicz-Weitzenbock formula, v; is in L?.
Meanwhile, since v* € L? satisfies Dgb* = 0, we also have v} € L?. There-
fore, by (5.5, we have w; is in L? and

(5.23) Dpwoy =(0(r*)L1(v¢) + O(r)Lo(vs)) + (O(r?) L3 (v) + O(r)L(v))
=f*.
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One can check directly that
(5.24) 1 L2 vy ) < Cr*(loell L2 vy + 01l 22 ()

for all » < R. Consider the following partition of unity for R*:

(525) Xn ‘= X__R 2254_2 (1 — X

R R )
22nF3) 22nF1532n

which satisfies ) -y xn = 1. By taking f; = x,,f*, a particular solution of
the equation Dgq, = f;; can be solve by using the method of variation of
constants in section 2.2.2 of [6] and it will satisfy

(5.26) 10dnllL: < Cllfallz2

by using the argument in Lemma 2.2.3 of [6]. Now, since f;! =0 on N s
by using Proposition 3.9, (5.24) and (5.26)), we have

R \3 .
(5:271)  (go75) 1000 Ollza(sney < Clldwaallze < CI7

R\2
< C(55) Uvellzan + lollzzn,)

where ¢ (t) is the leading term of q,,. (5.27) implies that

1
(5.28) \|erf(t)||L§(51;<c) < C\/EQT(HWHLHNR) + [0l 22 (nm))

So we have )\ . satisfies the equation

(5.29) De(d_an) =) fi=1f

neN neN

with its leading terms in L}(S*; C). Since to; and Y~ .\ gy satisfy the same
equation, we have

(5.30) ;=) Gn P

neN

for some p € L? satisfies Dpp = 0. Proposition 3.9 implies the leading terms
of p is smooth. So the leading terms of tv; is in L?(S';C), which implies
the leading terms of  is in L3(S%; C), i.e., {w™,,}, {wy,} € 3.
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Step 4. We should prove lb now. Let x = (1 — xz p). We have

(630 ISl = |1Dewl} = HDE[( otz ) e

L2
By (5.4) and the fact that w™(t) € L2, we have
vz )|
2 < 2 z
(5.32) [Detos|[z2 < [ fllz- + DE[( w()VE >X] B
Lut(t)yz [
< f 22 + ( Ew_ % )X
H HL %w (t) Z L
2
wt(t)y/z 3
+C <w_(t)\/§ O(rz)
By Lichnerowicz-Weitzenbock formula and (5.1)), we have
(5.33) Iwgl|72 < [|1Dpws |72 + Cllws 7. < O(r2).
This implies (5.2]). O

Remark 5.2. By the same token, we can also show that elements in
ker(D|z2) have a similar decomposition. To be more precisely, for any
u € ker(D|2)°, there is a decomposition

ut (5L
(5.34) u= ( U_Egﬁ ) + up

such that w* (1) € L2(8%;C) and Jusl () = O(r?).
5.2. Properties on a non-Euclidean tubular neighborhood

Now we modify results in Section 4 without assuming a Euclidean metric
on the tubular neighborhood.

First of all, we should set up some notation. Let Nr to be the tubu-
lar neighborhood of ¥, and Dg to be the Dirac operator with respect
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to Euclidean metric on Ng. We define D™ = v, Dp + (1 — xn)D, where
Xn =1—x_x_ _ is defined in Section 4.4. So we have

Tn+17n

D™ = D on N_«

¥l "

Moreover, we have the following proposition (Here we take 91 = 0, d2 = 0y
and 05 = ).

Proposition 5.3. Let (D™ — D) = 6™ we have
5 = 5 4 5

where

° (5§n) s a first order differential operator supported on NTLH such that
3
07" =" wid; with |a1| < O(r?) and |az], |as| < O(r).
i=1
° 5(()71) s a zero order differential operator supported on N# such that
551 = O(r).

We follow the setting in Section 4. Suppose (n1,x1) satisfies (4.14)),
(4.15)), (4.16]). We also define

¢s(t,z) = (t,z + sni(t)) on Npg,
¢s(p) =pon M\ Ng
and
> 1
Day =Y ei (95 )alen) +5 ) e
i=1

3
(65 ) (wji)ejer.
i=1 k=1
Then we have the following proposition.

Proposition 5.4. The perturbed Dirac operator can be written as

Dgy, = (14 p")DW + s((x1)2m + (x1)=71) (e10y)
+ 090+ R+ HY + FO 4 5.

where
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o OF = [e1(sxm0s+5xT10s) +ea(sxz70: — sxx70z) +e3(—sxz10z+5X:105)]
is a first order differential operator.

o RV: L2 L? is an O(s?)-first order differential operator supported
on Ne— Nx with its operator norm IR < v2kis*. Moreover, for any
Y eLin ker( ), we have

[Ra(@)°llze < Oy w3e2s?

for some constant C' depending on ||{|| 2.

o H is an O(s?)-zero order differential operator supported on N, — N%.
Moreover, let us denote O, by 7i, the vector field defined on Ng, then

(5.35) / [H2|%izdVol(M) < v2kirs?
{r=ro}

for all rg <'t.

o 7V is an O(s)-zero order differential operator where

(5.36)  F= % [D(S(in +xzn)1d) + D( < Sigm o ) )]

e 0 can be written as 5V = 5(()1) + 59) where 5%1) is a first order operator
with

(5(1) Zala with |a;| < O(r?) and |asl, laz] < O(r)

and (5[()1) s a zero order operator with

1
55" = O().
Moreover, 8 is supported on Ng.

Similarly, we have a new version of Proposition 4.7. Suppose that we have
a sequence of pairs, {(x;,7)}, which is defined in Section 4.4. Moreover, we
suppose that n; satisfies (]4.29 , (]4.30[), (]4.31[) and we write n° = Z;:O X;Mj-
Then we have

Proposition 5.5. There exists k3 = O(k2) depending on ko with the
following significance. The perturbed Dirac operator D, which satisfies
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{“-29)- can be written as follows:

(5:37)  Dgyier = (1 + QiH)DS;FI) + 5((Xi+1) 241 + (Xit1)27i+1) €10k
+ O+ R+ HL + Fi 4 60D

where
e OL the (x,n) = (Xit1,Mir1) version of ©%, is a first order differential
operator with order O(s).

e RL: LY — L? is an O(s?)-first order differential operator supported on
N% — N_x_ with its operator norm

T+
(5.38) IRl < 77 3s
. 7:[; is an O(s?)-zero order differential operator. Moreover, let us denote
7 = O, be the vector field defined on Ng, then
N (i+ 1)
(5.39) /{ } (H2izdVol (M) < yjmg‘(w)szl.

T
for all ro < 7.

e Fiis an O(s)-zero order differential operator where

1

(5.40) fsi =5 [D(S((XiJrl)z"?iJrl + (Xi+1)zMi41)1d)

+ D( < SiXi+1(z77¢+1)t —SiXi+8(77i+1)t ) >] )

o 0D can be written as §01) = 5(()i+1) + 5§i+1) where (5§i+1) is a first order
operator with

(5.41) 50D =37 0,0, with |ail < O(r%) and |as, as| < O(r)
and 5(()i+1) s a zero order operator with
(5.42) 550 = o(r).

Moreover, 8%t s supported on N%.
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6. Fredholm property
6.1. Basic setting

In this section, we develop an important theorem which indicates that the
the perturbation along V is finite dimensional as I mentioned in Section 4.2.
The operator 7,+ -, which we construct in this section, is an important
part in the linear approximation of the moduli space 9T we defined in our
main theorem. We explain the idea of construction this operator in the
following sections first.

The idea comes from [8]. Let N be a tubular neighborhood of ¥ equipped

with the Euclidean metric. By the computation in Section 3.1, we know that
for any u in the ker(D|r2(n.s57)) can be written as

82\1\7‘ e—?\Hr
_ it | ~+ vz ~— vz
u= e | . 2l +u ) e—2llr
Sl (v )5 (i )|

+ higher order term

where the higher order term is O(r?) for some p > —3.

Recall the space ker(D|rz(y; 5®I))0 shown in Definition 3.3, we firstly
define

(61) B: ker(D\L2(N;S®I))0 N L2<Sl;62);
wis (O ag,e™ + 3 g™, = sign()ag,e™ + > sign(l)ig,e™).
! l

l l

Secondly, we define the following spaces

Exp™ = {(Z we't, Z —sign(l)uleiltﬂ{ul}lez € EQ} and
1

l

Exp~ = {(Z ule”t,Zsign(l)ulem)’{ul}lez € 52}-
. I

Then we have the corresponding projections 7 : L2(S1;C?) — Ezp*. For
any u = (>, a;e™, >, bet) € L2(S;C?), it can be written as u = u™ +u~
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where

(2 al—szgn )br) il Zbl_szgn(l)“l) th) € Exp™;

)br) (b !
<Zl: al+529n 1) utZl:W”t)eExp-

So we have L?(S';C?) = Eapt @ Exp~.

Finally, we define the space

keI‘(D’Lz (M\3; 3@1) = {u S ker(D|L2 (M\X; S®I))
with its leading coefficients in £? x 62}.

It is a Banach space with norm |[uflo := [[u| r2(ansis07) + | B(W)[ 2 (51:02)-
Clearly, B : ker(D|L2(M\Z;S®I))O — L?(8';C?) is a bounded linear operator.

Then we have the following proposition.

Proposition 6.1. Define the maps p* = n+ o B in the following diagram.

Exp*

/ o

ker(D|L2(M\Z S®I % L2 Sl (CQ

We have
a. p~ is a Fredholm operator.

b. pt is a compact operator.

Proof. (proof of part a). Let {u,,},en be a bounded sequence in ker(p™).
Assuming that |u,ljo < 1. If we can show that there exists a convergent
subsequence, then we have ker(p™) is finite dimensional.
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Since u,, € ker(p~), we have B(u,) € Exp*. So u, € Kg. By Proposi-
tion 3.6, we have

g
3

1
(6:2) %:< “?f)+Mﬁ
Up, )\/g

on the tubular neighborhood of Np of 3. So we have

wl(t) L
(6.3) Uy = ( ungt;\{g ) (1- X§,R) + 1, 0
n\" Vz
with
(6.4) [upmllzoans) < Cllunllzzans) < Clluallo =C

for some C' > 0 by Proposition 3.6 and Lichnerowicz-Weitzenbock formula
1D Therefore, there exists a subsequence of {u:;m}neN convergences
weakly in L3-sense to ug;, so it converges strongly in L2

Meanwhile, u,, € g also implies that
(6.5) lum ()]l L3(s1:0) < Crllwnllzzanys) < Cllunllo = C.

By Proposition 3.7. This means that there exists a subsequence of {uﬁ Inen
converging strongly in L?(S*;C). So

w1
(6.6) ( i@%Z)a—Xgm
VZ

also converges in L?*(M \¥;S®7Z) as n — oco. Therefore, we have a
subsequence of {1, }nen converges to u in L2-sense. It is easy to check that
u satisfies the Dirac equation. So ker(p™) is finite dimensional.

To prove that p~ has finite dimensional cokernel, we need several steps.
Firstly we consider the extension

(67) ]? : keI‘(D‘L2(M\E;S®I)) — E:Epi
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where Exp~ is the completion of Exp~ with its Fourier coefficients in 2.
Exp~ has the norm | - ||2 (g1) induced by the norm defined on 2| x ¢2:

< Z afe ilt Z a;eilt), (z bfeilt, Z bl—ez‘lt)>

lez lez leZ lez

= > L+ [D2(af b +arby).
IEZ

Since p~ jo» We can prove p~ has finite dimensional

__p |ker(D|L2(Z\/I\E;S®Z)
cokernel instead.

Claim: There exists n > 0 with the following significance: For any

u=( Z a&lei”, Z sign(l)a&le“t) € Exp,

ll|<n ltl<n

there exists u € ker(p™) such that

1
1B() = ullzz, s1) < Sllullzz,(s1).

Suppose this claim is true. Let

W= {3 ey i, =0 for all | > n}.
l

We prove that range(p™) + W = Exp~ as follows. Suppose not; there exists
v € L?(S1;C) such that v ¢ range(p~) + W. Then we can assume that v L
(range(p™) + W). So by using the claim in previous paragraph, for any

( Z ﬁaleilt, Z sign(l)ﬁaleilt) € Exp~
! l
with || Y, eag ||z (s1) = 1, we have
<v, (Z ﬁale“t, Z sign(l)ﬂ&leilt)>
!
= <U, {0 le Z sign(l uOIe’lt)>

li|<n |l|<n
+ <v, (. le Z sign(l)a, le”t)>
[t|>n [I|>n
Z {1 le’lt Z sign(l uOIe’lt)> + <v B(u)> +X
ll|<n lf]<n

=X
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for some | X| < Z|v| 72 .(s1), which is a contradiction. Therefore, we have
dim(coker(p™)) < 2n + 1.

To prove the claim, we can consider the following section

ll>n ’ -
e—2ltlr
= X Z ezltaal ( S' (Zgge—mur )
l>n e =

with x =1 — X2z . So by this setting, we have

efnR
Do) |2 < €

By wusing the arguemnt in Corollary 4.4, we minimize the functional
Ep(y,) among L3 Nker(D|z2)*. We can find u* such that D(u*) = D(up).

efnR

Moreover, we have ||B(u*)||z2 (s1) < C%p—. So by taking u =ug —u*, we

finish the proof of this claim.

(proof of part b). Notice that the coefficients of u in Exp™ are corre-
sponding to exponential increasing Fourier modes. Therefore, we have

> Mgy < Cllullansy-
l

So for any bounded sequence {u(™} which {p*(u™) = (a(()ill”)} converges,

we have

Z |%+,1|2 + Z W|@6r,z|2 <C.
!

l

This implies that there exists a convergent subsequence of {u(™} which
converges to some 1 and lim,, o p (u(™) = pT(u). Therefore, p* is compact.
]

We should remember that under a small perturbation of the metric and 3,
the dimension of cokernel of p™ will be an upper semi-continuous function.
I will leave this proof in Appendix 9.2.
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Corollary 4.4 shows that the equation
Db = § mod(ker(D|13))

is solvable for any §€ L?;. By Proposition 6.1, we have the following
enhanced result. It tells us that we can find the solution h such that
B(h) € L3(SY; C?) when { is identically zero near X.

Proposition 6.2. Suppose that f € L? (M \ $;8 ®I) and f|n,, =0 for
some rog <t. Then there exists h € L2(M\X;S®Z) such that Dh =
f mod(ker(D|rz)) and

a. |[bllz < Cllfllzz, for some universal constant C' > 0.
b. The leading term of b, h*, will satisfy

roll B (172, o> [ (B )l e, ro° | ()22 < CIFIIZ:
for some universal constant C > 0.

Proof. First of all, we claim that, for any I > 0, there exists u; € L?(M \

¥, S ®7Z) with
e—2llr
u = €ilt . \/572”“
( 81gn(l)eﬁ

on Npg such that Du; = 0 on M \ . Since Proposition 6.1 tells us that p™
is a compact operator, limit of finite dimensional operator, and p~ is a
Fredholm operator, this claim can be regarded as a special case. We will
modify the proof of this claim and get the proof for general cases later.

We have
2C
(6.8) Jwllze < T

Meanwhile, by using Corollary 4.4, there exists v € L2(M \ ;S ® T)
such that

D?b = 1.

Taking b = Do, we have
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Now, since f € range(D)| 12), it is perpendicular to ker(D|z:) by Proposi-
tion 2.4. So it is perpendicular to u;. Suppose that the Fourier coeflicients
of b are hfl. We define

where ht, = (ht, —sign(l)h7,) and 7, = (hZ, + sign(l)h7,). Then we have
0.l 0.l 0,0 0,l 0,0 0,0

. 2C
(6.9) [l < =5

Uk

Now, by a straightforward computation, we have

/ (b,i) =0 = [fg | / o llirgy / (5, ).
M\2 0 M\N.,

This implies that

4Cl1|=
(610 i < ARGy

where P, is the orthogonal projection from L?(M \ N,,;S ® T) to span{u;}.
Now define

H = Z B&lul.

|l \>%
Then, by (6.10]), we have
hol?
vl < Cllrozvlow,, ez, = > TS Z - _2|l|r0 S 1P ()]72
|z|>— 1>

Z |17y (h ”L2 < I3
]

Let h = b — 1, which satisfies D =0 and b € Kr,. We have

16llzz < O]l z=.
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Notice that by Lemma 4.1, we have by integration by parts and Cauchy
inequality

~ C
[ollZz < Clblze < Cllollzzlifllze, < ellollzz + ZlIflee, -
So by choosing ¢ small enough, we have

1Bl1z2 < [[ollz2 < ClIfllz2, -

Therefore, we prove a. For b, we can get it immediately by using Proposi-
tion 3.7.

For the general case (p™ is nonzero and p~ is Fredholm), we have similar
argument by modifying u; to be

672”‘7‘
u; = eilt \/572 r + O
: < sign(l)e\/‘; :
where [|Oy]|z> < Ce 2 (We can choose t small such that |I| > 5 is very
large). The existence of these u; can be proved by using Corollary 4.4. The

term
e—2ltlr
eilt ﬁfzm
sign(l)< 7

has L2-norm O(#), which will dominate O;. So we can check that the
argument above works for these u; and the argument in Proposition 3.7
works for them, too. Therefore, we prove this proposition. O

6.2. Linearization: The crucial observation

Here we derive the linearization of 9. Suppose that 1 is an L?-harmonic
spinor with respect to metric g, which is locally written as

(6.11) Y= ( Zig;é ) + higher order term.

¥ is its zero locus. Denote by p the triple (g, 3, ) € M;

B = {C* — real valued (2,0)-tensor § with supp(d) N3 = 0};
V={n:8"—=C|necC}.
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Now suppose that we have a differentiable one-parameter perturbation
(gs, 25, 1s) with (go, X0, %0) = (g, 2, ) which can be written as

(6.12) gs = go + 50 + O(s?),
(6.13) Ze = {(t, sn(t) + O(s*))},
(6.14) bs(t,2) = P(t, 2 — s + 0(82)) + 50
- ( i \/_777 ) + OL2 + S¢s

for some § € B, n € V and
¢s = ¢+ Opz(s) € LM\ B5; Sy, 5.) = LT (M \ TSy 5)
Here we use Op:(s) to denote a one-parameter family of sections f satisfy-

ing || fs|lz2 < Cs for some constant C. Let D) be the Dirac operator with
respect to gs, then we have

(6.15) D) =D+ sT + 0(s?)

for some first order differential operator T'. Notice that the support of T is
disjoint from a tubular neighbourhood of .

Therefore, the linearization of 91 at p can be written as

)
(6.16) &p(6,m,0) : = 5-(DPwy)|
0

= T(6) + D (- (w(t, 2 = sn+ O(?))

+ OLf(l) + gb)

s=0
£, is amap from B x V x L3(M \ X;8,5) to L>(M \ 3; S, 5).

Notice that T'(y)) € L? is compactly supported away from ¥. By Propo-
sition 6.2, there exists h € L? such that Db = —T'(¢)) mod(ker(D|2)) with

(6.17) h= (

ST

> + higher order term.
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Therefore, the right-hand side of (6.12)) can be rewritten as

+

(5

s)
=S

QN
iﬂ%

ST

) +0.:(1) +¢).

This implies that if (J,7, ¢) € ker(£,), the element

at ht
(6.18) << 2y >+ ( é >+0L§(1)+¢)
2Vz z

is an L?-harmonic spinor. Using the notation of Proposition 6.1, we can
rewrite this condition as follows:

(atn+2ht,a 5 +2h7) = B(u)

for some u € ker(D|72)?. In particular, this defines a map ¥ : B x V x L} —
ker(D|r2)? with (8,7, $) = u. Our goal is to prove that for any h* given,
there are only finite dimensional solutions 7 satisfying (a*n + 2h™, a7 +
2h~) € B(ker(D|r:)?). Namely, we have to show that the equations

atn4ct =—-2n",
a n+c =-2h".

for (c¢*) € B(ker(D|z2)°) have a finite dimensional solution space. These
equations have the following constraint:

(6.19) la™|* + o= > > 0.

which comes from the assumption that % > 0 for all p. By some
p?
basic computation, these equations imply

NI

(6.20) a ct—ate =—-2a"h" +2a"h".
Therefore, we can define the following operator

(6.21) Tata- : L*(SY;C?) — L*(SY;C);

Tora- () =a ¢ —atc.
One can check that

ker(£,ls=0) = ker(Ty+ - © B)
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and
coker(£p[s=o) C coker(Ta+ o o B) @ ker(D|:2),
we leave the proof of this part in Appendix 9.3. Therefore, we define

(6.22) Ko = ker(Tg+ o- © B);
(6.23) K1 = coker(7g+ 4~ o B) @ ker(D|pz2).

So our goal in this section is to show the following Proposition
Proposition 6.3. 7.+ ,- o B is Fredholm.
It implies that K; and Ky are finite dimensional.
To prove Proposition 6.3, recall that p™ is a compact operator. So
Tat+ a- © B ="Ta+ o~ |Eap- ©p~ + a compact operator.

We have that T4+ o- o B is Fredholm if and only if 74+ o |gazp- is Fredholm
(because p~ is a Fredholm operator). This will be proved in Theorem 6.14.

Remark 6.4. By (6.15), we can see that the operator 7" depends only on
5. So the operator ® in ((1.10) is defined by ®(§) = b where b is defined
in (6.17).

6.3. Fredholmness of finite Fourier mode case

The main result of Section 6.3 are Theorem 6.6 and Lemma 6.12. Theo-
rem 6.6 shows the Fredholmness for 7.+ ,- when at and a~ have only finite
Fourier modes. The reason we have to deal with this special case first is
because 7,+ - is in general not Fredholm when the condition fails.
So we have to find a sequence of Fredholm operators converging to 7+ o-
and prove the Fredholmness holds under this limit.

The proof of Theorem 6.6 is quite long. In fact, there should be a easier
way to prove it. However, by following our proof, it is more easier to see
how the Fredholmness holds when a* have infinite Fourier modes. Lemma
6.12 plays the crucial rule to prove this statement in Section 6.4.
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Consider the equation

atn+ct = —2hT,

with constraint (6.14]) and ¢t € Exp~. So there is the following relationship
between ¢t and ¢~ if we write ¢t = 3" e, we have ¢ = Y sign(l)pe.
Namely, ¢~ is determined by c*.

In this section, we will use the following notation.

Definition 6.5. Let g=),., giet € L?(SY;C). We define ¢ =
Zlez sign(l)gle”t.

So we can rewrite operator T,+ o~ in the following way:
Ta+a-(c) :=a c—atcaps

with To+ - : L2(S1;C) — L%(S;C). Here we should explain the meaning
of this L?(S';C) space: We can easily see that, Tot .o~ is not a C—linear
operator, since the conjugate term c¢®5 involved. However, it is still an
R—linear operator. Therefore, we define our index under the real vector
spaces. To simplify the notation, we sometime use L?(S') to denote
L?(S';C) in the rest of this paper.

So in our case, we define the inner product to be
(F.9) = Re( [ f-ga
for all f,g € C>®(S';C). We can see that, under this definition, the
L?—bounded space will be coincident with the one equipped with the usual

inner product over C.

The following is the main Theorem of Section 6.3:

Theorem 6.6. 7,4+ o is a Fredholm operator and index(Tq+ o-) = 0 when
both a™ and a~ have only finite many Fourier modes:

Zal zlt, § :a— ilt

for some M € N. Namely, we have
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a. ker(7T,+ o) and ker(7), ) are finite dimensional.

b. range(7q+ o) and range(7 ,-) are closed. Here T, ,_ is the dual oper-
ator of Ta+ q--

To obtain the proof, we need few notation.

Definition 6.7. Leta = (z,y) € C x C, we define the spouse of a, denoted
by a, to be (y,—x) € C x C. We can easily see that & = —a.

Similarly, for any p-tuple of complex pairs, we have the following defini-
tion.

Definition 6.8. Let A = (a1,a2,...,ap-1,ap) € (Cx C)P for some p € N.
We define the spouse of A, denoted by A, to be (ap,ap—1,...,a42,41) €
(Cx C)r.

In the following 7 Steps , we will prove part a of Theorem 6.6 from Step
1 to Step 3 and prove part b of Theorem 6.6 from Step 4 to Step 7.

Step 1. In Step 1 and Step 2, we prove that ker(7,+ o-) is finite dimen-
sional. Let ¢ =) ;; pie'*t. First, we notice that the n-th Fourier coefficient
of (@~ ¢ — a*c%%) can be written as

M

(@~ c— atcms), = Z a_pn—t + sign(l — n)a; prn.
I=——M

When n > M, sign(l —n) = —1 for all | = —M, ..., M. So we have

M
(6.25) (@ c—a’c™), = Y @ pni—a; Prn
l=—M
forn > M.
Similarly
M
(6.26) (@ c—a™c™), = Y @ poi+a Prn
l=—M

for n < —M.
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If we take n = —n’ and then take the conjugation on both side of the
equation (6.26]) above, we will have the following equation:

M
(627) (a_é - C_L+Caps)n/ = Z atlpn/_l + a;ﬁl—n"
I=—M

for n’ > M.

Step 2. To show that the kernel of 74+ .- is finite dimensional, here
is the idea: We claim that every element in ker(7,+ ,-) can be determined
by their Fourier coefficients from —2M to 2M. Therefore, the dimension of
ker(7g+ o) cannot exceed 4M + 2. To prove this claim, we have to show
that ¢y —ca =0 for any ¢; and ¢z in ker(7g+ o) which have the same
Fourier coefficients from —2M to 2M. Therefore, our claim is true iff any
c € ker(Tq+ o) which has zero Fourier coefficients from —2M to 2M is
identically zero.

Now we prove this claim. Suppose that ¢ € ker(7g+ o) has zero Fourier
coefficients from —2M to 2M. Because c € ker(Tg+ 4- ), we have

M = —
(6.28) Eé\TM A~y Pn—t — @ Prpn =0
Sy APt + 4 Pron =0
for n> M. We can rewrite (6.28) by pairing (pj,p—;):=wv; and

(@, —a}) :=dj; for all j € Z:

S ldn ) =0
(6.29) { Z;‘lﬁ_ﬂ%,l,@nw =0

with the bracket (-, -) denoting the usual inner product over C. Here we can
use the following convention: Let U = (u;), W = (w;) € (C x C)Z. Define a
new bracket ((-,-))n to be

(O n = 3 (s, wos).

1€EZL

So (6.29) can be written as

D, V) =
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where D = (d;), V = (v;) and n > M.

Now we apply the following lemma.
Lemma 6.9. Given A= (aj)j=12,..p € (CxCP. If V= (vj)jez € (C x

C)% satisfies

(6'31) <<A7 V>>m = 0; <<A7 ‘7>>m =0

for all m >0, then there is B =(0,...,0,b1,..by) € (Cx C)? with

det < 2q > # 0 such that
1

(6'32) <<B7 V>>m = 0; <<B*7 ‘7>>m =0,

~

where B* = (0, ...,0, by, ...,I;l), for all m > 0.

Proof. 1f det ( Zp ) # 0, then we can just take A = B. The lemma holds
1

trivially.

Suppose now det < Zf = 0. Then we have aa, = a; for some o € C —
{0}. So implies
(6.33) (A V) m — al(A, V) = (A= ad,V)m =0
and
(6.34) (A V))m+ al{A,V))m = ((A+ @A, V))m =0.
We define

B = (/i —ad) = (ap — aay,dp—1 — @ag, ...., 42 — aa,_1,0).

Notice that: Since «a, = a; implies @a, = —a1, we have a, —aa; =

ap + |al*a, = (14 |a|?)a, # 0. This implies B} # 0.
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Now let By = (0,a, — aay, dp—1 — g, ....,a2 — aa,—1). We can easily
verify that

(A=A, V))mi1 = (B, V)m =0
for all m > 0 by .
Since (A — aA) = (A + ad)", gives us
(A=A, V))m = (B}, V))m =0
for all m > 0.

By repeating this process inductively, we prove this lemma. U

Back to our problem, we have ([6.30)):

{ o

for n > M. We can apply Lemma 6.9 with A = (d_ns, d_(ar—1y; -, dar), m =

>>n:0
>>n:0

< <

b
n — M. So there exists B € (C x C)P such that det ( l;q ) # 0 and
1

for all n > M. Combining with the condition v; =0 for [ =0,1,...,2M, we
have

(B, V)1 = (bgs vanr1) = by Pani41) + by D—2na41) = 0
(B*, V) arg1 = (b1, vanrs1) = 0T pnrsr) + b Panr41) = 0,

b

which implies vops 11 = 0 because det < l;q =% 0. Now we can solve vy, in-
1

ductively: Suppose vy, v2,...,vpr1k are all zero for some k > M + 1. Then
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the equation tells us that

(B, V)1 = (bgy vnr4k11) = bf P(vask+1)

(B*, V))ka1 = (b1, varskr1) = by P(ar+ks)

So we have vpr111 = 0. Therefore, we have v; = 0 for all [, which implies
c=0.

Step 3. Here we prove that ker(7 ) is finite dimensional. We can get
the following computation by the definition: Let ¢ = > pei’t, k = > gt €
L2 ( Sl)

(Tor a-(c), k) = Re( / Tor o (c) - Fdt).
Sl
= /T kdt+/ k- Tor o (C)dt)
St st

=> Z a—ipp—1 + sign(l — n)a; Pi—n)dn

nGZl—f
+ Z Z Qn(a:lﬁn—l - Sign(l - ”)a?_Pl—n)
nGZl——
=> Z aZ qn 11+ sign(n)af g ni1)pn
neZ l=—M
M
+ an( Z (a:lQn—I—l + Sign(”)“f@—n—f—l)
neEZ l=—M
- (Cv a*ﬂaﬁ k) :

We get the last equality by taking

M
T o ()= (> a,gnii + sign(n)a; ni1)e™.

neZ l=—M
Now we can repeat the argument in Step 1 and 2 on 7 ,_, then we
will get dim(ker(T} ,-)) < oo.
Step 4. The proof of closeness for range(7,+ ) and range(7.% ,-) are

similar. Here we only prove that range(7,+ ,-) is closed from Step 4 to Step
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7. Readers can prove the other result by applying the same argumemﬂ

Lemma 6.10. Let Py : L?(S') — L?(SY) is the projection defined by
Py - anemt — Z frne™.
In|<k
Then we have
Tat o range(1-Pase) * (I = Paan) (L*(8)) = (I = Pap)(L*(S1))
18 1njective.
Proof. Let f € (I — Popr)(L2(SY)). Clearly To+ o (f) € (I — Par)(L2(S1)),

so we should prove this map is one to one. We prove this by induction.

Suppose f = fre? € (I — Py)(L%(SY)), by the equation given by
Lemma 6.9,

{ (B, V))ars1 = (bg, vanrs1) = b panrsn) + by boemrr1) = farst,
(B*,V))nr1 = (b1, vanry1) = by peonrtry + 07 Poarsny = fo(mt)

we can solve voar41) = (P2mr+1, P—(20m+1)), Which is unique.

Now suppose v(2p741)s -+, UM+k are uniquely determined (where k > M +
1) , we consider the equation

<<B’V>>k:+1 = (bgs UM+k+1)
= b p(Mkt1) + by D—(vkt1) + Fr(v@nrs1ys - Vartk)
= fk+1

(B, V))is1 = (b1, vnrir1)
= by P(+kr1) + 0 Do) + Gr(Vrs) - Vs k)
= f-(k+1)-

where Fi(vion11ys -+ VMtk) = fer1 and Gr(vin11ys - Vark) are deter-
mined by {var41), -+, Var 4k} S0 we can solve vps 1) uniquely.

°In fact, the Fredholmness holds when property a. and closeness of range(7,+ ,-)
hold. It is redundant to check the closeness of range(7.% ,_) because it will auto-
matically hold (although this statement is non-trivial).
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Therefore, 7:1+’a*’([7P21W%(L2(SI)) is an injective map from (I —
PQM)(L2(51)) to (I—PM)(L (Sl)) ([

Notice that, by using the notations of this lemma, we have
Tat o~ (Pana(L*(S1))) € Panr(L*(S"))
and
Tat o~ (I = Paar)(L*(S1))) € (I — Par)(L*(S1)).
Step 5. Suppose we have c* € L?(S'), k € N such that
Jim Tora- () = f

in L2-sense for some f € L2(S'). Here we can assume that ¢* L ker(7To+ -)
without loss of generality. In this step, we will show that there exists ¢ such
that To+ o (c) = f when {c}ey is bounded.

First of all, suppose that {ck}keN is bounded by some constant K. De-
note by {U]],f} the corresponding pairing ¢-coefficients of ¢*. We choose a
subsequence, which is denoted by ¢* again, such that {U;;}keN converges for
all p < 3J with some J > M. Let us say

k
Up %’Up

for p < 3J and choose J large enough such that v, # 0. Now, by Lemma 6.9,
there is a unique solution ¢ such that

Ta+,a- (c)=f

where the corresponding ¢?-coefficients of ¢ are vp when p < 3M. We shall
show that c is in L?(S1).

Now, for any r € N, we have

k k
S ol < 37 ek — vl + S b1

i <r i<r i <r

<3 lok il + K.

i<r
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We notice that the first term converges to 0 as k — oo. Therefore, we have

S il <1+ K

i<r
for any r > 0. So ¢ € L?(S1).

Step 6. Suppose that ¢* is unbounded, say ||ck||L2(51) — oo (by taking
subsequence if this is necessary). we can take ¢* = W which satisfies
L

Tat.a- (¢¥) — 0. We will prove that this case will lead a contradiction in
Step 6 and Step 7. This is the part that condition (6.14)) involved.

To begin with, we should define the following notation.

Definition 6.11. Let ¢ > 0. We define the number

7 =1inf{y/|at|? + |a—|?}

and the following sets:

e Oy ={la"|=|a"|} C S,

e, = {Ha_| - |a+|‘ <er},

e Of ={la*| >|a"|+eT},

e O ={la”| > |aT| +er}.

Clearly, we have ST = Q. UQF UQC.

Now we fix a e < & ¢ which will be specified later. We define x; . to be a
nonnegative real valued function defined on S' which has value 1 in Ql < and
0in QF UQ_. Also, define x2. to be 1 in QF and 0 on {|a™| < |a™| + ST}
Define x3. to be 1 in Q7 and 0 on {|a™t| > ]a | + §7}. Moreover, suppose
that {xi.c}ti=123 is a partition of unity, i.e.,

X1l,e + X2, + X3e = 1.

In the the rest of Section 6, we will use || -||2 to denote || - [|r2(s1)
(Similarly, we will use |- ||~ to denote || - ||z e=(g1)). If we consider the
L?-norm of some functions defined on a set 2 C S', we will use | - || z2(q) to
denote it.

Step 7. In this Step, we will rephrase the statement in the first
paragraph of Step 6 by some observation. Then we will prove that the new
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statement leads to a contradiction.

First, by Step 6, we have a bounded sequence {c'k } with their L? norms
equalling 1 and

lim Tg+ o (%) =0
k—o0 ’

in L? sense. Denote by {v]’,f } the corresponding pairing ¢2-coefficients of é¢*.
For any i € Z fixed, suppose that

lim sup |vF| # 0,
k—o00
than we can use the argument in Step 5 by taking J > ¢ to achieve a con-
tradiction. So we must have
(6.35) lim |[vf| =0
k—o0

for all 7 € Z.

Now, for any L € N let Pp, : L2(S') — L2(S!) be the projection which
maps > ez qe' to ZII\SL giet. By using , for any L € N given, we
can add the additional assumption into our statement: Pr,(¢*) = 0 for some
k. This number L, which will be specified later, is determined by & and
Xie- Now, we can rephrase the statement in the first paragraph of Step 6 as
follows.

Lemma 6.12. There ezists L € N depending only on a™, such that for any
sequence {c*}ren C L2(SY) satisfying

¥l e = 1, Pp(c®) =0 for all k € N,

we have infey {H7;+,(f (Ck)HLz} > Cy, where Cy depending only on the C-
norm of a* and 7.

Proof. We consider the function

+

‘ Q

Q=

Ql

defined on €2 .. Extend this function as a C'! function defined on S'. Then
we can approximate it by its first Ny Fourier modes, S, such that the L*-
norm and L*-norm of | — S| are O(e). Notice that by taking £ small, we
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can assume

(6.36) 18] 1~ < 2.

Since x1¢ + X2, + X3, = 1, we have

L= |2z < Ixaect(lee + lIxacctllee + lIxs,ec®|l e
Therefore, there exists i € {1,2,3} such that [x;cc*||z> > } infinite many
times. We take this subsequence and renumber them consecutively from 1.
Since x; ¢ is a smooth function, we approximate x;. by its first N; Fourier
mode, denoted by (., such that |x;e — Giellze <e€ <% and sup |x;e —

Cie| < e, so by Cauchy’s inequality, we have ||(; c¥|[z2 > %. Notice that by
taking e < %, we can assume

(6.37) IGiellz~ < 2.

Now we shall prove Lemma 6.12 case by case.

Case 1. If i =1,

1
(6.38) ¢ ec|| e > G

Meanwhile, we have

(6.39) CLeTara- (") = Cuef*

for some f* € L?(S'). The left hand side of (6.39) can be written as
CeTara (4) = Tara (Ge®) + (GeTara () = Tara (Gech)),

The second term on the right can be written as [(1.¢, To+ o-](c¥). Let

Ge= 3 act

[l <N,
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Then we get

(G Tara-]() = Gre(e >“PS>—<<1 oy
Z gsign(n — j)pn_;) — (Z Sign(n)gjpn_j)]eint

neZ  |jI<N: l71<N,

= Z +2( Z gjpn_j)emt.

[n| <Ny l7|<N:
So this term will be 0 by taking L > 2Nj.

Therefore, we have
(640) 7:1*,(1* (Cl,sck) = Cl,sfk
= d*CLack —a™ (1 ck)aps,

Dived both side of (6.40)) by a~, we have

k
o — Gy = S

on £ .. Notice that [a~| > 7(1 — €) on ;.. Now, because g—f =Qon Q.
and [(1] < e outside Q ., so we have

Clafk

Cl,eck - Q(Cl,eck)aps = + OLQ( )

for some a* € C1(S1;C) with a* =a~ on Q. and
L1
(6.41) la*| > 57(1 —¢)

every where. Here Opz2(¢) term has its L?-norm with order O(g). Write
Q=S+ (Q — S) where the L?-norm and L*®-norm of Q — S are O(e). So
we have

Clsfk

(6.42) Crec® — 8(¢y ock)ars = + Op2(e).
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Finally, we define the projections P* : L2(S') — L2(S') by

P-‘r(zpleilt) _ Zpleilt’

Iz 1>0
P (Y me™) =Y pe.
I€Z 1<0
and define A* := (3 .c¥, B¥ := ((1..ck)®s. Then 1| implies
ok ptaph_ pt(Gef”
(6.43) PEAb 4 PESBr = P2 1 0pae).
a

Notice that
(6.44) PE(AF) = PTF(BF).
Let S = Z|n| <N, Spe™. We shall also notice that

(6.45) [P, S]|BF = (P*SB* — SPtB*)

=2 (> 8iBuje™) =D (> SiBnje™)

n>0 |jI<N; n2j |j|<N:
_ . int
== g E S;Bn_;e"™ =0
[n|<Nz |jI<N2

when we take L > 2N + 2Ns.
Therefore, by (6.44]) and (6.45)), the equation (6.43]) implies

k
PTA*Y + SPYB* = Op:(e) + P+ (%)

k
PJFBk — SPJFAk = OL2(8) —l—_Pf(Cl’Ef )

a*
Using these two equations, we have
(6.46) P+ A% + Spt Bk — 5Pt Bk — SptAk)

= (L+|SP)PtA" = Opa(e) + P*(Q;f»?fk) 8P <Q§*fk)‘

By (6.38), || A*||r> > &. We have either |[PTA*| ;> > & or [|P~A¥| 2 >
L. Suppose that ||[PTA*||;: > &. By (6.36), (6.37), (6.41) and (6.46)), we
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have
1
5 < NP A¥ s < 1+ ISP PHAY
Gef®
<0(e) + || (5]

1
<O(e) + ;16||fk||L2

k
Cref )‘

a*

+H§P*<

P o

for € arbitrary. So we have

k T
5 > —
174 > o

for all k by taking e sufficiently small. The same result holds when

|P~A¥|| 2 > 5. By taking Cy = 143, we prove Lemma 6.12.

Case 2. If i =2 (Or i = 3. These two cases are similar), we have

42,67;#@* (Ck) = E*,a* (CQ,ka) = CQ,sfk
=a (§2,sck) - a+(<27sck)aps = (2,sfk

Dividing both side by a™ and notice that |%| <1 — Te on QF, we have

-

—(Goec®) = (Goeck)ars

‘ o f*

L2(Qt) L2(Qt)
o INome T
> [|(Coec®) 5| 2y — (1 = 55)HC2,eCkHL2(Q:)

T k
= 55\\@,50 I L2)-

Therefore, we have

T 1 T
56(3 = 00)) = el eIl 208

< Hngf

/\

2k
< = ze-

L2(Qf) — T

Then fix a small ¢ such that the left end is a positive constant. We get
1F*)ze > C7*

where C is a constant depending only on C'-norm of a*. ([
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Remark 6.13. Notice that the lower bounded Cj is a constant depending
on 7, [|[at||cr and ||ja”||¢1. We will write Cy = Cy(T, ||a™|cn, [|a™ ||¢1). More-
over, if we have a sequence of {ai’(k)}keN such that the corresponding )
|a®®)||c: are bounded and do not accumulate at 0, then

i &) (1 g .
inf {Co(r®, @, =@ cn)} > 0

6.4. The general case

Now we turn to the proof of the general case: a* have infinite many Fourier
modes. We will prove the following theorem.

Theorem 6.14. Let
Tat a-(c) =a c—atc®s
be the operator from L*(S';C) to L?(S';C), with the following constraint:
(6.47) la™]? +]a"|* > 0.
Suppose that
la®ller, la™ ller < oo
Then we have Tyt o~ 15 a Fredholm operator with the index 0.

Recall that we have the following well-known equivalent statement for
the Fredholm operators [9]. This will be the key lemma for proving Theo-
rem 6.14.

Lemma 6.15. Let X be a Hilbert space and F € Hom(X). Then F is a
Fredholm operator iff there is S € Hom(X) such that

SF =FS =1 mod(Com(X))

where Com(X) is the subring(ideal) consisted by all compact operators map-
ping from X to itself.

Proof of Theorem 6.14.
Step 1. To prove this theorem, notice that we can approximate the
operator T+ - by a sequence of Fredholm operators {7,+.c 4-.0) rens
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where a®(*) are summations of the first k& Fourier modes of a®. Since

that the Fredholm operators form an open set in Hom(L?(S!;C)), this is
insufficient to say that T,+ o~ itself is a Fredholm operator. However, by
using Lemma 6.15, we have the following argument:

Since 7:1+,(k)’a7,(k) is a Fredholm operator for all k¥ € N by Theorem 6.6,
by Lemma 6.15, there exists a sequence of right inverse {S*},cy such that

Tt g—00S* = I mod(Com(L*(S*; C))).

Suppose that {|S*||}ren is bounded uniformly by a number K. For any
€ > 0, there exists a constant N > 0 such that ||To+ o — Tpr0 -0 || < €
for all £ > N. So we have

Tata- SN = a+,<N)7a—,<N>SN + 0(e)SN
= I+ 0(e)SY mod(Com(L*(S*; C))).

Since [|O(¢)SY|| < O(¢)K, we can choose e small enough such that
10(e)SN|| < 5. Therefore, we have I+ O(e)SY invertible. Let V be the
inverse of I + O(¢)SY, we have

Tot a- SNV = I mod(Com(L*(S; C))).

S0 Tg+ o~ has the right inverse SNV modulo the ideal of compact operators.
Similar result is true for the existence of the left inverse. Therefore, it is a
Fredholm operator.

Step 2. In Step 1, we prove that if there is a uniform bound for
{115¥||}xen, then Theorem 6.14 will be immediately true. To prove this
claim, we should know how to construct inverse S* for each k. In the
following paragraphs, we use 7% to denote the operator T+.00 4.ty and T
to denote Ty+ o-.

A standard way to construct S* is to use the decomposition
L*(SY) = N(T*) & N(T*)* = R(T*) & N(T*).
By standard Fredholm alternative, we have

T N(T*)*" — R(T")
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is a bijection. Therefore, by open mapping theorem (see p. 168 in [15]),
there is a bounded inverse map Sk R(TF) — N(T*)*. Now, we define S*
to be S¥ o Prirwy.

Here we should imitate this idea to construct S¥. Here we know that
T*: (I - Pp)(L*(SY) = T = PL)(L*(S")) € (I = Pr_g)(L*(S"))

is a bijection, where L is the number given by Lemma 6.12. Moreover, we
can prove that T#((I — Py)(L*(S'))) is a closed subspace by using the
argument in Step 5,6,7 in Section 6.3. Therefore, we have a bounded inverse
RE - TH((I — PL)(L2(SY))) — (I — Pp)(L2(S")). Meanwhile, Remark 6.13
tells us that R* have a uniform bounded norm. Now we set our S* to be
RFo Pri(i—pyy12(s1)))- S0 {II5*|}ren has a uniform bound.

Step 3. Finally, we should prove that S* is actually an inverse of 7,
modulo the ideal of compact operators. To prove this, just recall that both
(I — Pp)(L*(SY)) and T*((I — Pr)(L?*(SY))) are finite codimensional. We
define

A= (I - Pr)(L*(sh),
B =T"((I - Pr)(L*(5)

for a while, then L?(S') = A® At = B® B+ and
(T*S* — I)(v) = 0 for any v € B.

So for any bounded sequence {v* = (v¥ v§) € B @ Bt = L2(S")}ren, we
have

(TES® = D)(W*) = (TFS* — I)(v5)

where {v4} lies in a finite dimensional space B+. We can get a convergence
subsequence of {v§} easily. This implies

(T*S* — I) = 0 mod(Com(L?(S*; C))).

Similarly, we have (S¥T* —I) = 0 mod(Com(L?*(S*;C))), too. Therefore,
we finish our proof for the Fredholmness.
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The computation of the index is simple: One can choose at be nonzero
everywhere and = = 0. In this case, Tg+ o is invertible. So index(Tq+ o) =

0. U

Remark 6.16. Remember that (a*,a™) is the leading term of an L2(M \
¥; S ® 7) harmonic section, so by Proposition 3.9, it is smooth. Meanwhile,
notice that 7o+ o- maps from L?(S1) to L3(S) for any k € N. We can show
that all these maps are Fredholm by using the same argument. In addition,
since C°°(S1;C) is dense in LZ(S?) for all k > 0, To+ o- : L2(S') — L2(S1)
share the same the kernel and cokernel in C*°(S;C) for all k¥ > 0. When
the metric is not Euclidean, by Lemma 5.1, we have a* € L2(S1). So Tat,a-
is a Fredholm operator form L?(S') to L2(S') when k < 2.

6.5. Relations between 7 and the original equation

Recall that by the argument in Section 6.2, we want to solve the equation

atn+c=—-2nT,
a N+ =-2h"

which will give us the equation 7o+ 4- (¢) = —2(a~h" —ath™). Here we de-
fine the map

J : L*(8%C%) — L*(S%;C)

by J(h*,h™) = —2(a"h™ —a*h™) and the map
O : ker(T) — L*(S*;C)
by

atc+ a ¢
4 - __ .
(6.48) O(c) prEEER PEE

This map will give us n when h* = 0.

Now, using the notation in Section 6.1, we can always be decomposed
the pair (u™,u~) € L?(SY;C) x L2(SY;C) as 7T (u™,u™) + 7~ (u,u™). By
using this proposition and the Fredholmness of 7,+ ,-, we can find a fi-
nite dimensional vector space U C Exzp™ such that range(T,+ .- ) ® J(U) =
L*(S% ).
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7. Proof of the main theorem: Part 1

So far, we have proved the Fredholmness for the linearization of 9. To
obtain the proof of Theorem 1.5, we need a version of implicit function
theorem. Unfortunately, these types of theorems are usually established
based on a suitable Sobolev norm or a suitable Holder norm (see ,[I§] for
example). In our case, however, since Theorem 1.5 involves the L2-Sobolev
norm for Z/2-harmonic spinors and C'-norm for the embedding circles ¥,
we should build an “hybrid” type of our own.

In Section 7, we prove Theorem 1.5 of the version without showing f is
C'. In the Section 8, we will prove that f is a C! map.

The argument in this section assumes that the metric g defined on a
tubular neighborhood is Euclidean. The case with a general metric is more
complicated but follows the similar argument. To be precise, in the general
case, we need apply Lemma 5.1 and remark 5.2 whenever we apply Proposi-
tion 3.6 and replace Proposition 4.4 and Proposition 4.6 by Proposition 5.4
and Proposition 5.5 in our argument. See Appendix 9.1 for details.

7.1. Reformulate Ko and Ky

The definition of Ky and Ky are given by and . We also notice
that ker(D|z2)? = B(ker(D|z:)°) @ ker(D|zz). Use Hy to denote the space
O[B(ker(Tg+ o- © B))] (see for the definition of @). In addition, we
define H; = coker(7g+ o- © B). Then Ky and K; can be written as follows

(Ky remains the same as (6.23)):

Ko = Hyo & ker(D)|2);
Ki=H; & ker(D|L§).

To prove this, we notice that the map O is injective on ker(7,+ 4-) since the
equation

ate+a ¢ =0,
a c—atc® =0

implies ¢ = 0. So

Ho @ ker(D|y2) = B(ker(Tg+ o~ © B)) @ ker(D|2) = ker(Tg+ o~ 0 B).
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7.2. Basic setting
Before we start our argument, we define some notation.

First, in the following paragraphs, we fix two constants t < %, T>1in
the beginning. The precise values of v and T will be specified later (again, t
can be assumed to decrease between each successive appearance and 1’ can
be assumed to increase between each successive appearance in this section).
Moreover, let us assume that [|7, |range(7— 1 )|| <1

Second, we suppose that there exists ty > 0 which is the upper bound for
s. The precise value of {3 can be assumed to decrease between each successive
appearance.

Definition 7.1. For any A C M, we say that a section u: [0,tg] X A —
S®I isin C¥([0,to]; LI (A; S ® I)) if and only if [[u(s, -)|| 12 (ase1) < 00 for
all s € [0,t0] and the function f(s) := [[u(s,")|lz2(a;s07) varies analytically
on [0,t]. (The remainder of Taylor series will converge to zero in L?-sense).

Definition 7.2. For any i € N k > 0, we define

(7). 2 = {f € C¥(0, 0 L22 (M \ N S @ TIiCs. e, <

N_s ;8 ®1D)|[f(s, uLzl_%};
(7.3) €y = {F € C¥([0, to); L2(N ;S®I))|

6 e o € A =) ()

(7.2) By = {f€ C¥((0,t]; L*(N =, —

for all ro <1 < ﬁ
Since these sets are subsets of C¥([0,to]; L2 (M \ ;S ® I)), we use
s€% , to denote the collection of sC for all C € €%, |, s?*Bf ; + s€F | to
denote the collection of s2B + sC where B € BY | and C € CF, 4, etc.

Third, suppose that we perturb the metrics g on the region M \ Ng
analytically with the parameter s. Let us call this family of perturbed metric
gs- We use the notation Dy = D + T to denote the Dirac operator per-
turb by metric. The operator T% : L2(M \ ;8 ®Z) — L? (M \ ;8 ® I)
will be a first order differential operator with its operator norm || 7°%|| < C's.
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Therefore, given ((g,%,e), 1) € M, we have
(7.4) Dpertth = sfo
for some fo = T%(v) € C*([0,to]; L*(M \ 3;S ® I)).
To prove Theorem 1.5, we should prove the following Proposition:

Proposition 7.3. There exists £ > 0 with the following significance: For
any & € Ho with ||{||2 = € and ¢ € ker(D|2) with ||[¢| 12 < e, there exist
a unique

ns = 1s(&,9) € C¥([0,1); C*(S; C))
and a unique

b =(60) e {fue LAM\%;8®7T)|
B(u) € LQ(SI;CQ) and B(u) L ker(7;+7a—)}

such that
(7.5) Dpert,ns(¢ + 7& +stg) =0 mod(ker(D|L§))
for all s € [0,ty] with the constraint ns = s€ +nt for some ny L Hy.

By using this Proposition, we can define the map f by
(7-6) f(gsa s, 7;) = (7:1+,a— © B(Séto% Pker(D|L%)(Dpert,ns (¢ + 1,; + Sés))

for any v € ker(D|zz) with ||1/A1||L§ <. Here Per(p|,,) is the L?-orthogonal

projection from L? to ker(D| 12). Therefore, once we prove Proposition 7.3,
we will obtain the main theorem if we prove f is C! and it induces a home-
omorphism Y : f~1(0) — N N M for some N, neighborhood of (g, 3, ) in &.

We will complete the proof of Proposition 7.3 in Section 7. In the Section
8, we will prove f is C! and it induces the homeomorphism Y.

Remark 7.4. In fact, the £ we choose in our claim can be replaced by a
smooth family £(s) : [0, o] — Ho with ||{(s)zz = € and ¢ can be chosen as
a smooth family 1 (s) € ker(D|r2). The argument in the rest of this section
will still hold under this setting.
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7.3. Proof of Proposition 7.3:
First order approximation of n; and &,

We start our proof of Proposition 7.3. In Section 7.3, we will introduce
two constant k9 and k1. The precise value of these two constants can
be assumed to increase between each successive appearance. Then, after
Section 7.3, we will fixed these two constants in the rest of this paper.

Step 1. Let fp be the section defined in ([7.4)). By using Proposition 6.2,
there exists ho € L? such that

(7.7) Do = fo mod(ker(D|pz)).
Combine and the fact Dyt = D 4 T, we have
(7.8) Dypert (1 — sho) = —sT*(ho) mod(ker(D)|yz2)).
Since T is a first order differential operator, we have

17 (bo)ll 2, < Csllbollzz < Cs|lfoll 2 ,-

This implies
(7.9) sT%(ho) € s2A>
by taking kg > 20||f0||L2_1.

Step 2. In this step we construct 7y and prove that ny will satisfy the
condition (4.14)), (4.15), (4.16).

Since fo = 0 on N, we have Dby =0 on N,. So by Proposition 3.6, we
can write

hg
bo = ;L/O—E + b: 0.
vz

on N,. By Theorem 6.14, there exists (1, cp) such that

2hd +atny —co = kg
2hy +a"io — g’ = kg

(7.10) {
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where (ki ky) L ker(Ta+ o-) and (kg , kg ) L (2hd — kg, 2hg — ky ) in L3-
sense (Recall that elements in H; are smooth by Remark 6.16 and (h{, hg)
isin L% by Proposition 6.2 b). Meanwhile, there is ¢y which satisfies D¢y = 0

on M \ ¥ and
Co
o = < igrﬁ >+Cm,0
2vz

because (cg, cy’®) € B(ker(D‘LZ(M\E;S(X)I))Oﬂ

Since we have by is given by Proposition 6.2, so

el g 1 Ze el (g el T, I (R)eel|Z2 < CllbollZa ) < ClifollZz |

R
2

by part c of Proposition 6.2. By taking o > 4%

f0||%2_1, we have

+ Ko + Ko
(7.11) I 117 < e N0l < S

Ko
(A5 eellZ < X 1bollZ- < ro.

Moreover, since To+ o (co) = a~h* —ath™ mod(J (Hy)), by (7.11)) and Re-
mark 6.16, we can choose ¢y such that

ko KQ
(7.12) leollE < 5¢% eyl < 5
Ko
H(CO)ttH%Z < 5 ”COH%z < Kg.

Then
a-‘r

(7.13) no = m(

]{78_ — th_ — CQ)
i

(kT —9hT — WS
Tl r eyt ~ 2 — )

will satisfy (4.14)), (4.15) and (4.16]). So it satisfies (4.17)), (4.18) and (4.19)).

We should notice that the condition kg > 2% |[follz2. will give us a
t2 -1
constraint for gs. In the following paragraphs, we should always assume

61t is inappropriate to denote the leading terms of a L?-harmonic spinor by

(co,cP?) unless p~ = 0 in Proposition 6.1. However, since p~ is compact, we have

the same argument by taking (co, cg”*) to be an element in B(ker(D|p2(an\ s;507))°)-
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Ifollz2, < ts. This assumption will give us some restriction to define N in
Theorem 1.5. We will discuss this part in Section 7.5.

By (7.10)),(7.11]) and (7.12), we will also have

+ Ko + KO + Yo}
(14) I < Sk < e lDale < 5
Furthermore, since
Ko
I7°(eo)ll 2, < Cslleollze < s,

we have

a0}

(7.15) sT%(co) € s°A2 .

Finally, notice that we still have some freedom for the choice the cg: It
can be chosen differently by choosing a different leading terms or by adding
a element in ker(D|y:). By finding a suitable leading term for ¢y, i.e., adding
¢ by an element in Blker(7 o B)], we choose ¢y such that the corresponding
n=¢&+ 176- with n(J)- 1 Hy and ¢ satisfying (4.14), (4.15) and (4.16) (replac-
ing n by £). So still holds in this case.

Remark 7.5. We know that g satisfies (4.14]), (4.15) and (4.16)). By using
the same argument in the proof of (4.17)), we have

Inoll& < C(llmoliZz + llmollzzll(mo)ellze + 1(mo)ellz=ll(mo)eell £2) < Cixfe.

Meanwhile, we can estimate the following Hélder seminorm (I follow the
standard way to estimate the Holder norms, readers can see [13] for details):

1)~ (8]

n T
[I7elo o S

1
4

When |a — b| < ¢, we have

< sup ‘
ab

[Imello

1
'4

b
| o] < sup el 0 < Ot
a— 0|4 Ja

when |a — b| > v, we have

1 1
[[7el]o,2 < C'sup |ni|+ < Crori.
t1

1
4
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So we have the Holder estimate
(7.16) HnOHCl% < Crkgta.

Remark 7.6. We should also notice that the choice of (o, k:g:) is unique.
More precisely, for any ¢ € Hp, the choice of 770L is unique.

Step 3. First of all, since 7y satisfies (4.17)) , (4.18) and (4.19) (These
hold because 7 satisfies (4.14)), (4.15)) and (4.16]) by Remark 7.5), we should
assume that x; is the constant appearing in these estimates in the beginning.

On Ng, we can define

hg _Co_ —3 k(J)r
b b 2 b
hOZXO ;\g ) cO:XO< c(%éé )7 t = X0 k[\)—/g
vz 2vz vz
We also define =bho — ho and ¢} = ¢y — 50 Here the superscript “g”

means “good” because all these good terms are in L?. On the contrary,
the superscript “b” indicates these terms are “bad”, which means that we
should find a corresponding Y-perturbation to eliminate them (with some
finite dimensional exceptions).

By (7.8]), we have

Dpert (1) + sco — sho) = STS(CO —bo)
Dypert (¥ 4 s¢f — shj) + Dpert(sco 560)
Dpert (¥ + sc — sbp)
+ D|NR(8C8 - 5[)8) mod(ker(D[Lf)),

which implies
(717)  Dypert(¥h + s¢ — sb2) + D|n, (sch — shf) = s2A mod(ker(D|rz))

for some A € 2A7° by (7.9) and (7.15).
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By a straightforward computation, we have

D|n, (sch — sbp) = sD|n,, (Xo

(7.18)

co—Qh(J{
2\/z
cars Zop~
2Vz
_,L'ata+770+a+(770)t
= SX _ \/2 _
0 iata7n0+a7(770)t
VZ

) + so(xo)ch — so(x0)b

— b5 — 50 (x0)t — 5D, (8)

i O:atng

=8X0<_ vz

Z'ata_f]()
VZz

) (

— 50(x0)h} — 50(x0)t — sD| N, (£).

Using the operator ©0 defined in Proposition 4.4, we can check that

So (|7.18]) implies

—1i
(719) D‘NR(SCO SbO) = 5Xo < iata7ﬁ0
Now, we define

(7.20)  eo = x0 <

(7.21) ¢

(7.22)
(7.23) W

5
e1(sx
e2(s

.at
—la (m0)e

-Oratno
vz

NG

—idwatn/z

(x=m+ x=m) + (

—i0ia" oV'z >

LX) 0

0(70)¢9= + sx0(70):9z),
(XO)znOa

0 —ixm

5(x0)=M00z) + e3(—

) + SU(Xo)Cg — SO’(XU)hg - SU(XO){?S.

) + 62(1/1) - Dpert(SEg)'

)¢

5(x0)z100= + 5(x0)-100z)
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where ©2 + W0 = 00 (The RHS defined in Proposition 4.5). Then by Propo-
sition 4.5, Proposition 4.6, (4.17)), (4.18)), (4.19) and a straightforward com-

putation, (7.17)) and (|7.19)) implies

(7.24)  Dpert,sxomo (¢ + s¢f — shf + seq)

Z Q)) — Dyers(st3) + s> A+ s2B + sC mod(ker(D|2))

where A € A7°, B € B}, C € €}" and

(7.25) s2Q1 = 09 (seo);
(7.26) 5°Qy = —O(scf — sbf)
(7.27) 5203 = 0Y(se)).

Step 4. In this step we prove that there exists ¢ € L% such that
Diyono (8%¢)) = s2Q; + s3B + s*C for some B € BY* and C € €' where i =
1,2,3.

Lemma 7.7. Let QQ be one of the following two types:

—~

gt (t) a*
QZSQXO( q;) ) oerS%(o( ] )

for some ¢ € L2(SY;C) satisfying ||q¢* |2 < k1t and ||(g)e||z2 < k1. Then
there exists an L? section ¢’ which can be written as

—
o~
N

=

o~
~
N3

N

for the first type and

for the second such that Dgy,n,(s%¢') = s*°Q + s?B + sC for some B € B

and C € €7 for all s < 5 . Furthermore, we have ||¢'|[ 12 < 25y,
Y2 k1t2
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Proof. First of all, let Q is of the first type. We start with the element
wm( 1).
Under a straightforward computation, we have
D(s%¢)) = s*Q + s’B + s°C
with B € ‘Biﬁn? and C € €]"'. Recall that by Proposition 4.4, we have

Dixone = (14 0")D + s((x0)=1m0 + (x0)z7l0)e1d; + O + HJ + F{ + RY.

By Proposition 4.5, Proposition 4.6, (4.17)), (4.18) and (4.19)), we have

s((x0)=1m0 + (x0)zM0)e10(s%e) + (HY + Fo)(s%eq) € 32(’25'“
0" D(s%¢}) + R2(s%¢p) € 52% e

Meanwhile, recall that © = [e(sx7:0, + sx7:05) + e2(sx570, — sX-705) +
e3(—sxzn0; + sx»ndz)] and the decomposition

0 =07+ Wy

given by (7.22) and (7.23). WY is an O(sk1)-first order differential operator

2 2
with its support on N, — Nr which implies WO s2el) e 2B S0 we
pp ) p 0 1
have

00(s%e)) = ©%(s%e) + s*°B

S’YT i

for some B € B, . Moreover, since

ef el
OU(s%6h) = 10O (22) + B0(n0)s? 2
X0 X0

with the second term on the right hand side in 52‘3i7T Hl, we have
00(2¢)) = x0O0(*2) + 28
X0

s'y K3

for some B e B, "
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Now we call Q' = Xo@Q(%), which can be simplified as

qf:ﬁ)
1 .2 z
Q =sx0| 4
NE
with
a7 = —i(xo(M0)e)q™

q; = —i(xo0(n0)t)q" -

By using the fact ||¢%|z2 < k1t, ||(¢%)¢]|z: < k1, fundamental theorem of
1
calculus and Hélder’s inequality, we have ||¢*||p~ < Ckirz. Therefore, by

using () 1) we have [|¢f||z2 < K%tg, ()t < m%t%. So we have
(7.28) Disyono (8%¢0) = s2Q + 5?B° + s%C°

sy2 Kie

1
for some B° € B, and C° € (U

Here we define an L?(S'; C)-module V which is generalized by

L))

1 1 1
(a,b)G(Z+§)XZOI (a,b)EZx(Z—|—2),a+b:2}‘

Now, we define a linear map J by the following rule:

g 42N —ilio)ea 2 b —i(io)eg TRz
g 2bz® i(70)sq— 22" a+1 i(no)eq 2% 12071
This map is not will defined on the entire V sin(;;e it makes no sense when
.
> with (a,b) = (3,0) or

qT 2%
(a,b) = (0,1), we can always define J"(x) for any n. Here we call that

a = —1. However, if we start with x = ~ bea
q 2’z
’ 2

+ a5
T = ( Zﬁ'zb; ) is of the type (a,b). To prove that J"(x) is well-defined
for all n when z is of the type (%, 0) or (0, %), we should prove that there
is no term in J"(z) which is of the type (—1,3) or (2, —1). We show this

fact inductively. When n = 0, this statement is obviously true. Suppose
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there exists a smallest n € N such that J"(z) has a component of the type

(—1,3) or (3, —1). For the first case that the component appearing in J"(z)

is of the type (—1, %), it must be generated from a component in J"!(x)

of the type (3,—1), which is a contradiction (n is the smallest). For the

second case that the component appearing in J"(z) is of the type (%, —-1),
either this component comes from a component in J"!(x) of the type
(-1, %), which is a contradiction again, or it comes from a component in

J=Y(z) of the type (%, —2). The later case is also impossible because we

start from the term of the type (%, 0) or (0, %) At each time we apply J on
it, it will only change (a,b) by adding (+1,£1). So there must be a number
m <n—1 such that J™(z) contains a component of the type (—1,3)

or (%, —1), which leads a contradiction. Therefore, all the components in

J"(z) are not of the type (—1, 3), which means J"(z) is well-defined for all n.

Now we define ¢ inductively by

e . —¢
(7.29) = sxi () e
0

By induction hypothesis, we suppose that ¢, € L? satisfying

Digyono (s%¢),) = s2QF ! + 287 + s°CF

ko sPT(k+1)y2 K3
where B* € B~ o

ko s* (k1) Rit2
,CF e QZFOS (kL) and

e, —¢
k41 _  k+1A70( %k k=1
Q = Xo @S( k+1 )
X0

By taking s < %, we can see that the sequence {e;} will converge in
K1T

L3 sense to some ¢’. Meanwhile, we can see that

[
Xo

+ $20BF T 1 25ck ! + §2BF + s2Ck.

A (%s1 — €%)
Disxone (528;6-&-1) = XISHQ(S) (S2+7>

k+2 2 2 2
where Bk e ‘Bi (k27 and 5CkHL e Q:‘;H (k+2)%1  \We define induc-

tively that BF1 = gBF+1  BF CF+1 = 5CF+1 + CF and

/ /

/e —¢

k4220 (k1 — Ck\ k42

Xo @S( k42 )_Q :
X0
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Furthermore, if we take s small enough such that > 2%, sk +1) =
ﬁ < ﬁ, e.g., s< 3_2‘/57;&1, then we have B¥ — B € B and
ck —ceap.

Therefore, by taking k — oo, we finish our proof by induction.

To get the L2-estimate of ¢/, we have

/
/ / _ k+1. k+2 7k ( %0 1
¢ —¢ = J (—)‘ < —
H k+1 k”L% HS Xo o/ llpz = 2kff1
by using (7.29), [lgi5, /e < S and [|(gf, )il < £ So we have
[e'll Lz < 2k1 O

Now we apply this lemma to the Q1, Qs and Qs in (7.25)), (7.26)) and
(7.27). Notice that for every i € {1,2,3}, we have

§°Q; = s?°Q + s*B + sC

for some B € B}* and C € €} with Q being one of the type in Lemma 7.7.
So we can find ¢; € L? such that

(7.30) Disyono (5%¢}) = s2Q; + 8B+ sC for i = 1,2, 3.
Finally, by Proposition 4.8, we can find %8,5 € L? such that

(731) Dp@Tt»onTlo (S%g,s) = DpeTt(Seg)'

We decompose %875 = 3875 + s{?&s where Tg+ o- © B(Eg’s) € Hy and Tgt - ©
B(EO{S) € Hi-. Again, by Proposition 6.2, we have the following estimates
for B(Eé:s):

Ko R0 R0
(732)  IBEEIE: < 2 I(BEE 3 < 2o (Bl < 2.

Therefore, by (7.30) and ([7.31), we can rewrite (7.24) as

(7.33) Diert,sxon, (¥ + s¢§ — shi + sef + sth , + stg,)
= s A+ 5B+ sC mod(ker(D|2))
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where ¢f = ¢o +¢f) +5>5 ¢, A€ AP, BB and C € €. We define
0= sc) — shf + sed + 3?878.

Notice that, the argument in Section 7.3 still holds if we replace ¢y by any
element in co + 1 for some 1 € ker(D|r2). So we can choose a suitable cg
such that

(7.34) £ 1 ker(D|r2).
Now we fix kg and &1 in the rest of this paper.

7.4. Proof of Proposition 7.3: Iteration of
(nia (C?a hf? 2‘?, E'IZ’S, Ei})? f’iv )

In this section we will construct an iterative process by determining the
following three constants vt <1 and P € (Té + l,Té) and 7' > 512. We
will use another constant £ > 0 whose upper bound depends only on these
constants. In addition, the upper bound for ty will be determined by these
constants, too. We divide our argument into the following 4 steps.

Step 1. Let (n;, (c?, h?, e?,?ﬁs,éﬁs), f;) be given in the space
LA(ShO)x LA(M\2;S®1)3
x LH(M\ 2,8 @ T)% x (s*AL 0 4 s2pFm 4 selimn)
for all j <14 which satisfy the following condition: First, by taking

%

¢ = Z(sc? — shf + sef + E?,S)

j=0
and
i =+ st € L?
we have
(7.35) Dipert,sni (Y1 + s°8) = sf; mod(ker(D|13))

where 1’ = Z}:o XiMj-
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Moreover, we assume the following conditions:

(7.36) Inductive Assumptions:
1. sf; can be decomposed as
sf; = s2A+ s°B + sC

where A € A0 B e B and ¢ € e,

2. The sequence {(xj,nj)ti<j<i satisfies (4.29), (4.30), (4.31) with
H2:€le€0.

3. We have ¢ Lker(D|;2) and {€} converges in L? sense;
> i—o(s¢] — sb? + se?) converges in L3-sense.

To obtain the iteration, we need to construct the following data

(771'+1a (C?J,-l’ h?—&-l’ e?—i—l’ E?—&—l,s’ Ez’ﬁ-l,s)v fi+1)
cLX(SLCO)x LA(M\S;:8®I)3 x L2(M\ X;S®T)?
X (s%li’fo + 52%5;’;0 + SCZIZTO)

form all previous data {(7;, (cg, h?, e?, végs’kj%s)’fj)}jﬁi- We will show that

all conditions in ([7.36]) will hold inductively.

Step 2. In this step, we will construct h;11 and determine the constant
to in terms of €, v and T First of all, since C € CZP "1 50 we have

(7.37) xi+1C € ¢ 7
and

(1— xi11)C € B,
Now we can rewrite
(7.38) sti = s°fi.a + sfi.B + se;

where fia = A€ A" §i 5 = sB+ (1 — xi11)C and ¢ = xi11C € Q;Tlpi”l.
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Before we start to solve h; 11, we show that

(7.39)

5
EL2 %Piﬁl
5 =g .
4T

First, by taking s small enough, we will have sB S et ‘BP "1 This fact

can be achieved if we assume tg < 8'5;2@ .
2

Second, by Lemma 2.6, for any ¢ € L7 and |||z = 1, we have

| [ a=xaa] = | [ =0

T
<C’—.||C||L2
T .1
< Clz) Pk ()
T 5
< ép (Tz‘—H)2

by taking v small enough. Therefore, we have

cts Piky
(1= xi+1)Cllr2, < —=a
8T =

which implies ([7.39)).
Because ([7.35]) and (|7.38]) are true for i, we can solve

Dgyibit1,4 = sfi,.a mod(ker(D|rz))
Dgyibit1,5 = fi,p mod(ker(D|rz2))

by using Proposition 4.9. Since f; 4|y . =fiBlN x =0, we have
Ti+1 Ti+1
(TZ-‘rl)H i+1, AHL27 (TH_l) H( i+1, A) ”%27 <T7’+1) H( i+1, A)ttH%Q

21
P2k
T5

< [ < 8%fiall7z, < s
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This implies that
EP‘H() + EPZ"KJO
(7.40) ||h’z+1 allze < 4T2(z+1) H(hi+1,A)t”L2 = AT+L?
i ePiky eP'kgy
(P a)uellze < 1 [Bit1,4llz2 < e
by taking tg < i(T)g
Meanwhile, we have
(7.41) 1hi1,pllze < T2 [(hisa,p)elle < AT
+ eP'kg ePikg
[(hit1 Blellee < 1 Bit1,Bl/z2 < PPy
So we put these data together. Define
Bi+1 = bit1,4 + bis1,5 — sty
We have
Dpert snt (d} 5hz+1) = sT° (bl+1) mOd(ker(D‘LZ))
with
pizo
(7.42) STS(hi_H) < Q[i+12 .
Step 3. By Theorem 6.14, we can find (7;+1, ¢;+1) such that
(7.43) { 2hify i — gy = Ky
2hiy +a i1 — ¢y = ki
for some (k' 1, ki, ;) L ker(To+ o) where
(B ki) L 2R — Ky 20y — ki)
in L3-sense. So
€P'I£[) 5P"‘10

223

(T44) k5allZe < Sy 150 < S (R ullze < =

€Pi/i()
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By Proposition 4.8, there exists ¢; 11 where Dg,ic;11 = 0 and

Cit1
2./z s
tit1 = ( cit1 ) + Cotit1 + Gy

B

Since i1 satisfies To+ o~ (cip1) = a (ki — 2k ) —at (k7 — 2hi ), we
have

ePiky ePiky
(7.45) leil7e < T2 I(ci+1)elZ2 < ST
ePikg -
(civ)ielliz < ——, lleinallz2 < eP'ro.
2

According to these estimates, we can show that
pito

(7.46) STS(CZ‘_H) S Qli_Hz .

Moreover, we can choose ¢;41 such that 7,41 in (7.43) satisfies

(747) MNi+1 1 Ho.

Meanwhile, by (7.40), (7.41)), (7.44) and (7.45), we can check that
niy1 satisfies i + 1-th version of (#.29)), (4.30) and (4.31)) with (k2,r3) =
(eP'kg,eP'r1) and so it satisfies the condition (4.32), (4.33) and .
Therefore, the inductive assumption 2 in holds. Also, we have the
k3 = e Pk version of Proposition 4.6 and Proposition 4.7. Therefore,

(7.48) / 17 2imdVol (M)
{r=ro

t
Tit1

' 1 ) 1
<9 PURY () st < PR ()=

by taking P < T+ and s small enough.

Remark 7.8. Here we show the estimate of the Hélder norm of n; € Hg. By
the argument similar to Remark 7.5, we have the following Holder estimate

(7.49) Iill oy < cnopi<%)1 < C’FLOT%(;)Z < Cro—

7 i
20

for all <.
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Step 4. In this step and the next step, we construct f;+1 and prove

the inductive assumption 1 in (7.36]). We follow the argument in Step 3 of
Section 7.3.

We can write h;11 = th + f)fﬂ +bi, and ¢; 41 = C§+1 + cé’H +c¢, as
follows: By Proposition 4.9, we have h;11 = h?+1 +bi,, and ¢4 = C?_H +
¢;, 1 such that

Dthrl = sf;a+fiB mOd(ker(D|L§));
D¢, = 0 mod(ker(D)|yz2)).

Since sf; 4 + fi,p =0 on N_r_, we have

ht c;
it1 l\*fl
0o _ z .0 2v/z
0= |, | e = ( il ) et
NE 2VzZ
So we define
hi Cl\‘*’[l ki
b z L 2v/2 .pb z
Bit1 = Xi+1 h\i{l PG = Xk | | b = X k\a
Vz 2Vz NG

Since Dgyiciy1 = 0, (3.31) and (3.35) imply

Dpert,sni (¥ + scip1 — shiv1) = sT5(cip1 — biy1) mod(ker(D)|2))
= s2A mod(ker(D|z))

for some A € AL %0 So we have

i+1
(7.50) Dpert,sys (¥ + sy — sbl, ;)
b b
+ Dpert,sn" NTiEH (sci—i—l + 8Cf+1 - Shi+1 - Sbf—l—l)

= s2A mod(ker(D|z))

Pifﬂo
for some A € 20, 7°.
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We define
o —i0a Mip1VZ
(7.51) Ci+1 =Xi+1 ( _iata+77i+l\/g )
(7.52) O =eq (sxi41(Mi41 )¢9 + sXi41(7i41)¢0s),
(7.53) Wt =eo(s(Xi41) #0410 — $(Xi41)27i4105)
(7.54) + e3(—s(Xi+1)zMi+10 + s(Xi+1)2Mi+10z).

Then by x3 = e P’k version of (4.38)), (2, k3) = (¢ P'ko,eP'k1) version
of (4.29)—(4.34)), Proposition 4.7 and Proposition 4.8, ([7.50) implies the fol-

lowing equation:

(755) Dpert,sni (wz + sCj41 — bi—l—l)
2
=S A+ B+5C+sY Q;
=1

- Dpert(S{?i-’H) mod(ker(D|r:))

where A € sQlES}fLCE)Pi)”O, Be %(Cepi)m, ¢ e ¢(TFFCIPIm g some uni-

i+1 i+1
versal constant C' > 0 and

(7.56) s2Qp = O (v — ) + Z@g(scngl = sbi, 1),
=0
(7.57) $7Q1 = 01 (seir1) + Y O (sei1),
=0
(7.58) $°Qy = —é)’;rl(scfﬂ = sb71)-

Step 5. In this step, we state the following lemma which is the ¢ + 1-th
version of Lemma 7.7. The proof of this lemma can follow from the argument
of Lemma 7.7 directly. So we omit the proof.

Lemma 7.9. Suppose Q be either the following 4 types:

A 0) a* (1) gt () a* (1)
SQX@'H( q-@) >’82Xi+1< q% )752< q% ) or 32< q-f(zo )
vz vz vz vz
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where || ¢ || z2 < k3, [[(¢5)elln: < k3. Then there exists an L} section ¢
which can be written as

el z et zz_%
=3t (e ) 2 Xﬂ( il )

>0 J >0 ¢j (
— _ 1
ot (20E ) S ( 07
+1 |\ - +1 . |
=0 ! e; (V= >0 ! e; (t)zz"2

for the each type respectively such that Dsnm( s2¢') = s2Q + s2B + sC where
Be B3, and C € T}y for all s < 27; . Furthermore, we have |[¢'|| 2 <

vz ngt

2/%3 .

By using this lemma, we can show that there exist e;+1,jv 7 =0,1,2, such
that

2./ 2 2
Dpert7sq7'i+1 (S ei+1,j) =S Qj + s Bj + SCj

(with k3 = eP'k1). Meanwhile, by Proposition 4.8 and Proposition 6.2, we
can show that there exist € 11,5 and Eﬁl, . satisfying

b 1
DPWES??HI (EiJrl,s + SEiJrl,s) = perthJrl,

7:#,@* OB(EH—I S) c Hl, 7;+a OB(EH—I S) c Hf‘ and

(159)  IBEELIE S oy I(BEELDNIE: < S,
(B (e Dl < 27

Therefore, we can rewrite as the following:

(7.60) Dyert,spi+ (i + selyy — shi ) +selyy + s8  + 5785 )

=2 A+ s*B+ sC = fi1 mod(ker(D|z))
with ¢l = e+ 3,0, A€ le(lﬁcs)P ", Be®Bi ™ and

C€€£1§+CE)P%1. So by taking e < & W and P > 1, we prove the

inductive assumption 1 in ([7.36]).
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Step 6. Finally, we should prove the inductive assumption 3 in ((7.36]).
To prove this part, we notice that both h? 1 and ¢/ +1 vanish on 3. Therefore,
we can do the integration by parts to get

1671172 < 1 Dsyi b [172 + ClIbE (122

for some constant C' depending on the curvature of M. Now, by the fact
Dgyibiv1 =0on N_c_ and Corollary 3.8, we have

TiFT

ht \/z
9 2 < ; ; 2 i i+l
HDsn hz—l—lHL > ‘U(Xz-l-l)’”bz-i-lHL + HDsn < hz’_—&-l\/g >

L2(N x )

Pi+1l-€1
= O

and by ((7.40) and (7.41) and Corollary 3.8, we have

Pi+1
167 10z < Cllbigallze < O hin-

So we have
16741z < C'];i;:’f)l.
Similarly, we have
I,z < 0

For L?-bounds, we have

Pilio .
T2(z‘+1) ’
Pilﬁio

1 b
15 sllze < Clltigllze < Crgrry-

165 41,llz2 < Ol llze < C

So Ef;Ls — 0 in L2-sense. Therefore, we finish the proof of the inductive

assumption 3 in ((7.36)).
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By induction, we get a sequence 1); € L? and a family of perturbations
n' = > 5_oX;nj such that

Dpert sn* (djz + 52?@—&—1 s) —0

mod(ker(D|L2)) as i — oo in L2, sense. Moreover, since ||[t;+1 — ;|2 <
Clig( )i for some C >0, so we have 1; — ¢ in L? sense. Meanwhile,
since \|77@||L2 < Cks(£)" for some C >0, we have Y n; — n, in L} sense.
In addition, we choose ¢;+1 (by adding an element in ker(D|y:)) such that
(Yir1 — ;) L ker(D|r2) for all 4. So

(7.61) (¥s — tho) L ker(D]pz).

To prove that 7' converges to a C'—function, we only need to use the
Holder estimates in Remarks 7.5 and 7.8. We have

v )
Tw/
for all 4. Therefore, by Arzela-Ascoli theorem, there is a subsequence of

the partial sum {n‘} converging in C'—sense. So the limit, n, will be a C*
circle.

Inillgay < Cro

Because B(1s) =0, v, will vanish on X and Dperssy(s) =
0 mod(ker(D|2)), we have s € L3.

Remark 7.10. Suppose we consider a smaller neighborhood of
((g9,%,€),1). This means we can take t, ¢y smaller. In this case, the con-
stant € can be chosen smaller, too. We can see that

Z”J)

1
T —0

cr(syc

as t goes to 0. Similarly, we have £ — £ is O(¢). So all these terms we derived
in this iteration process have order o(s).

7.5. Proof of Proposition 7.3: uniqueness of (7s, ¥s)
To complete the proof of Proposition 7.3, we have to show that the solution

(ns,1s) we found in Section 7.4 is unique. The uniqueness can be obtained
immediately by the following proposition.
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Proposition 7.11. For any two solutions (ns,v¥s) and (nk, %) satisfying

(7.62) s — 15 = 0(s)

Dpert,sns (¢s) = 0,
Dyert,sn: (5) = 0,
(¥s — vo) L ker(D|p2),
(s — o) L ker(D|rz)

for all s € [0,to] and
Yo = vy,
then we have Y5 — i =0 and ns = n}.

Proof. We can write Dyt s, = D + P® where P? is a first order differen-
tial operator with the operator norm O(s) and is analytic with respect to
s. Meanwhile, since we have 95 € C¥([0,t]; L?), ¥F € C¥([0,%0]; L?) (with
different zero locus), so by (7.62), (7.63)) and (7.64), we have

(7.67) Dyertsn, (Vs —5) = D(¥s — b5) — P*(1hs — ¥5) = o(s)

on the complement of a small neighborhood Ny of . So inductively, since
P?® = 0(s), by Lemma 4.1, and (7.66)), implies (15 —¥k) =
O(s*) for all k. This implies (¢»5 —1*) = 0 on a M \ Ng for all s small. By
unique continuation property of Dirac equation (see p. 43, [I1]), ¢o = vy
everywhere. This implies ns = n}. O

By this proposition, we complete the proof of Proposition 7.3.
7.6. The set p1(N)

Here we should say more about the neighborhood N. We define the
topology on ) as follows. Let ((g,%,e),1) € M, we recall the definitions of

Vs.rc and 7, ¢ in (1.2)) and (1.3).We can generate the topology on ) by
the family of open sets {¥;, c» X Vs, ¢} for r < R, C,C" € RT.

Now we define our N' = J,~ %;.r,crsr2 X Vs r,c for some C small enough.
Reader can double check the argument in Step 2 of Section 7.3: By taking
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N in this way, we have all elements in p;(AN) will follow the argument in
Section 7.

Remark 7.12. It seems to be impossible to take N to be (J,~o ¥5r.crsr2 X
Vs r.c because the map f is not differentiable on this set. However, the
choice of t can be arbitrarily small.

8. Proof of the main theorem: Part II

In this section, we prove two statements. First, we have to show that f
we defined in (7.6) is C!. Second, we have to find the homeomorphism
T:f7H0) = NN

8.1. C'! regularity of f

Since the function f is defined on an infinity dimensional space, so the defi-
nition of C! will be in the sense of Fréchet C'. Here we recall the definition
of Fréchet C.

Definition 8.1. Let By, By are two Banach spaces. F : %1 — P be a
bounded operator. Then F is differentiable at p if and only if there exists a
bounded linear operator d,F : %1 — Py such that

|7 (p + x) = dpF (x) = F(p)ll 2, = o]l z,)-

In addition, if F s differentiable everywhere and dy,.# vary continuously.
Then we call F a C' map.

Now let . maps from R™ x & to R™. Suppose we have

0
81‘1'
(8.2) The family of directional derivatives

Z(p) := hi(p) is continuous near 0.

{Dy.7 = ju(p)|v € A, ||v|| = 1} is equicontinuous near 0,
(8.3) {DyF = kp(v)|p € R" x A} is equicontinuous on {v € A|||v| = 1}.

Then we can define the linear operator as follows:

Il

(8.4) Z(ew) = Y - F )i+ D F
i=1 '
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To prove this is the linear approximation, we need to check some other condi-
tions. However, this is the only possible linear operator tangential to .# at 0.

Now, suppose we already show that these linear operators are the
differential of .#. To show .% is C, it is sufficient to show that 2, varies
continuously. So the condition (8.1) and (8.2) are exactly what we need to
show.

Here I divide my proof into two parts. In first part, I will assume that f
is differentiable at every point and then showing that f is C'. In the second
part, I will prove that f is differentiable.

Step 1. Since £ is analytic (w.r.t s), the family of directional derivatives
of f is actually equicontinuous at any point except p = 0. Therefore, we
only need to show conditions (8.1)) and (8.2]) hold near 0.

Since
(8.5) s = st = "stl4+0(s?),
=0 =0

we can further simplify this equation by using the conclusion in Remark
7.10:

(8.6) st = st) + o(s).

Now, recall the way we construct k(jf from Step 1 and Step 2 in Section
7.3. In the case that we have no perturbation for g, k= = 0. That is to say,
st% = o(s). Therefore, the directional derivatives of f along Hy will be 0.
Meanwhile, it is obvious that they are continuous by using .

To prove , we use again. Here we can check that if we perturb
the metric along the opposite direction, then the corresponding Eg will only
change the sign. So the directional derivatives along p;(N) also exist and
are continuous at 0. Furthermore, since the estimates shown in Section 8
are independent of the choice of gs, so it doesn’t depend on v. Therefore,
{jv(p)} is equicontinuous at 0.
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Step 2. In this step, we need to show that f is differentiable. By Defi-
nition 8.1, we need to show that for any p = (y,w) € R" x A,

B.7) Iy +zw+v) = Lyuw(@v) = fy,w)l < o(y/ll2]* + [v]Z.)

where z,y € Ko and w,v + w € p1(N). All we need to show is the ”small 0”
in will converge to zero uniformly. Namely, we are going to prove (8.3
here. Now, since we already prove that the directional derivatives of f are all
continuous, so we can obtain by showing that {k,(v)} is equicontinuous.

By using the conclusion in 7.5, we suppose that [|0sgs|/c2 = Crs,

then the directional derivative of f along v = Dede gt g% will be
[EAA

01§ %(B(SEZ))‘SZSO' Now we can prove || by using the fact that € is
r2

analytic and the estimates ([7.14]) and (|7.44]).

Therefore, we complete the proof of this part.

8.2. Homeomorphism Y

Let me summarize what we have proved in Section 7 and Section 8: For
any ((g,%,e),1), there exist a neighborhood of y = (g,%,e), N C ), finite
dimensional ball B = B.(0) C Ky with ¢ providing by Proposition 7.3 and
finite dimensional vector space K; all defined as above such that f can be
defined as

f(gs,s¢, 1&) = (%*,a* o B(sts), Pker(D|L§)(Dpert,m (¢s)))
e H; x ker(D]L%) ~ Ky

for all g, € p1(N), (s€,v) € B. Here Prer(p|,») 18 the orthogonal projection
from L? to ker(D|2). Since B(ts) L ker(Ta+ q-), Ta+,a- © B(sts) = 0 implies
B(ts) = 0. So we can define the following map from f~1(0) to N:

(88) T (g sE,1) = (95,2 = h({(t, ms (W)t € §'3),€), 9 + ¢ + sts)

(Recall (L.1)) for the definition of k). To complete the proof of Theorem 1.5,
we have to show Y is a homeomorphism.

We can check that this map is injective (see Remark 7.6 and Proposition
7.11). It is also straightforward to see the inverse (from its image) of this map
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is continuous. Therefore, in order to prove (8.8]) defines a homeomorphism,
we have to show the map T is surjective to NN 9t when N, € are sufficiently
small.

Proposition 8.2. Y(f~1(0) Np1(N) x B) = N NM for a small neightbor-
hood N of y and a small ¢ > 0.

Proof.

Step 1. Let N be a small neighborhood of y. Then we can assume that
all pe N is in the fiber &, for some = € #5,c X V¢ (€ is defined in
Definition 1.3) with some small r,C,C’ € R.

Claim. We claim the following two facts: Let gs,g,ﬁ be given and €,
be the corresponding element provided by Proposition 7.3. We have

1. Suppose (Tg+ 0~ © B(Es), Dpert,n, (1)) # 0, then

(8.9) N m 5(95756712)) m S):Tt — @.

2. Suppose (Tg+,q- © B(ts), Dperty, (¥s)) = 0, then

N

(8.10) NN E(gs,sw)

contains only one point.

Suppose these two properties are true, Proposition 8.2 will be obtained
directly.

Step 2. To prove these two claims, we need the following fact: For
any &1 > 0, there exists a small neighborhood A7 of y with the following
significance:

For any ¢y € M NN, denote by K{,, K] the corresponding Ko, K; defined in
(6.22) and (6.23) with respect to ', we have

(8.11) dist(v,Ko) < e1|jv|| for all v € K;
(8.12) dist(w,Ky) < || for all w € Kj.

These two inequalities can be obtained from the Fredholmness of 7+ o-
and the argument in Section 9.2. So we omit the proof. In the following
paragraphs, we assume N = N with a small ¢; which will be determined
later.
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Step 3. In this step, we prove in the claim. Suppose N N 5(95,55,1/3) N

9 # (. Then there exists ' = (¢',%,¢') e N N &y, se) NI We have

K] = coker(7,+ ,— o B) @ ker(D|z2).

where (a],a]) is the leading term of v'. Define

(8.13) L= coker(7,+ ,- o B).
By (8.12)), we have
(8.14) dist(w,Ky) < eq|jv|| for all w € Hj.

Suppose Dpert,p, (1) = 0. Since ¢, = 1) + 1]1 + sk, satisfies |D we have
(8.15)  Tot - © B(s) € range(T,+ .- o B) = coker(T,+ ,- o Bt =H{t
By taking 1 < %, this leads to a contradiction because

Tt ay © B(¥s) = Tos o7 © B(sts) € Hy
and , unless T+ o— o B(sts) = 0.

Suppose  Tg+ 4 0 B(sts) =0. We have Dperey, (¥s) € ker(D|gz) N
range(Dpert,p, |12), which implies Dpertn, (¢5) = 0 when £ small (recall 3.
in Proposition 2.4). So this case also leads to a contradiction.

Step 4. In this step, we prove (8.10)) in the claim. Clearly, because g
satisfies 1' the set N'N 5( gosei) N M is non empty. Now, suppose that

we have two elements in this set, say y1 = (g1, X1,¢1) and y2 = (g2, X2, ¥2).
We can define

(8.16)  g(s) :=sg1 + (1 — 5)g2,
(8.17)  2(s) := h{(sn(t),t)|t € S'} such that £(0) = 1 and 2(1) = o,
(8.18)  1h(s) := sy + (1 — )ty

by using h as we defined in (|1.1)) to parametrize a small tubular neighborhood
of ¥1. Then, by mean value theorem, there exists ¢ € (0, 1) such that

(8.19) 2D(S)zp(s)

Os =0

s=t
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where D) is the Dirac operator with respect to g(s) and X(s). By the same
argument in Section 6.2, (8.19) gives us an element 1 in Hf such that

atn+c=0(e);
a” 7+ ¢ = 0(gy)

for some (¢, c*®) € B(ker(D|r2)). However, since both y1, y2 are in E g se)
we will have n L Hy, which is also contradict to (8.11)). Therefore, we prove
this proposition. O

With this proposition, we have f~!(0) and V' N M are homeomorphic.

Here I should make one more remark. Recall that we define N =
Urse Ygrorsr2 X Vo in Section 7.5. The choice of this open set depends
on t, so we can call it () for a while. Now, what we proved in the previous
section show us that there exists Cy > 0, which goes to infinity as v — 0, such
that ||df [0 || < C, for any v > 0. Because of this, there is no uniform control
for [|df|| when v — 0. So we can not choose N to be (U, %5.r.crsi2 X VsC-
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9. Appendix

9.1. Remark of the proof when the metric
is not Euclidean around X

Here I will sketch the proof of the general case that the metric is not
Fuclidean near 3. The idea is to replace Proposition 4.4 and 4.6 by
Proposition 5.4 and 5.6 in the argument contained in Section 7.

First of all, let me summarize what we have done in Section 7. We
start with a perturbation gs which gives us an extra term fo such that
Dperttp = fo. Then in the next step, we construct a triple (bo, co,70) such
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that Dby = fo (mod a finite dimensional space), D¢y = 0 and ”eliminate”
the # part in bho by (co,7m0). Then we repeat this process. Each time
we will produce a new f which can be decomposed into 3 parts, which
belongs to 2, B and € defined in Definition 7.2 (We omit all subscripts here).

Now, we restart the process of producing (ho,c¢o,7n0) for the general
case, but this time we replace the Dirac operator D by DM defined in
Section 5.2. So DMhg = fo(mod a finite dimensional space) and DM ¢y = 0.
By using the same argument, we will still generate f;. The only difference
will be an extra term in €, which is something we can deal with. This part
is generated by the operator 6(!) defined in Proposition 5.3.

Now we do this process step by step. We replace D by D in i-th step,
then we will get the same result. So the whole argument works for the general
case.

9.2. Upper semi-continuity of dim(coker(p™))

In this final part, I will answer the question about the upper semi-continuity
of dim(coker(p™)).

Since p~ is a Fredholm operator, we can decompose FExzp~ =
range(pt) & W where W is finite dimensional. Now, for any ¢ € range(p~),
there exists ¢ € ker(D|z2)° such that B(c) = ¢*. Suppose we have a per-
turbed Dirac operator Dpe,s. We can follow the argument in the proof of
Proposition 4.8 to get a ¢’ such that Dper¢(¢') = 0 and || B(c — ¢')|| < || B(¢)].

To prove coker(p~) is upper semi-continuous, we need to show that
the dimension of cokernel under a small perturbation will be less or
equal than the dimension of W. We can prove this fact by showing that
range(p;e'rt) + W= E:L'p_

Suppose this is not the case, then we can find v € Exp™, ||v|]| = 1 such
that v L W and v L range(p,.,;). So we have

(v, B()) = 0= (v, B()) + O(e).

This means that, if we decompose v = vy + v1 where vy € range(p~) and
vy = W, then we have ||vg|| < O(e) and v; = 0. Therefore, we have |Jv]| =
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O(e), which is a contradiction. Therefore, we prove the upper semi-continuity
of dim(coker(p™)).

9.3. The bijection between ker(£,|s=0) and Ko and the injection
between coker(£p|s=0) and K;

First of all, we prove that ker(£,|s=o) is isomorphic to Ko = ker(7g+ - o B).
Recall the notation in Section 6.2, we have the following map:

J i ker(£,]5=0) = ker(Tg+ o~ © B);
atn

wm(( 2 >+0L;<1>+¢)
2vz

where the right-hand side is the element defined in (6.18]) (The element b
defined in is zero since ¢ = 0). Notice that the Orz(1) term on the
right is determined by 7 and vg. To prove J is a bijection, we need to find
the inverse. Suppose we have u € ker(7,+ - o B), B(u) = (ut,u™). Then

we can solve ) = 2:—: = 2(_?—: Once we solve 71, ¢ will be solved immediately.

So we can construct the inverse map. Therefore, J is a bijection.

Next, we prove that there exists an injection from coker(£,|5=0) to
Ky = coker(7g+ o o B) ® ker(D|z2).
Notice that
coker(£,|s=0) C mnge(D|L§)L = ker(D|L2)

by (6.12) and Proposition 2.4. Since we have ker(D|r2)" C ker(D|r2) is a
dense subspace, there exists a dense subspace of coker(£,|s=o):

coker(£,]5-0)" C ker(D|12)" = B(ker(D|r2)?) @ ker(D|2).
So for any u € coker(£,|s5—0)°, there is a unique corresponding pair

(B(w),0) = ((u",u”),v) € B(ker(D|L2)") @ ker(D|13).
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Since u L range(£,|s—0), by integration by parts, we have a~u" = atu.
Therefore, we can define the following map

L: coker(£p|5:0)0 — coker(Tg+ - 0 B) @ ker(D|2);
at (
u— (c,v) wherec= — = —
(c,0) w L=
To prove this element c is in coker(7,+ - © B), we use the inner product
defined in the Section 6.3 and integration by parts:

(Tt a0 B(w),c) = Re(/ awt — ut o)

Sl
= Re(/ (Du,w) + (u, Dr)) =0
M\S

for any o € ker(D|z:)? with B(tv) = (w*,w™). Finally, it is easy to see
from the definition that L is injective. Since coker(7g+ - o B) @ ker(D|z2)
is finite dimensional, we have coker(£,|s=0)" is finite dimensional. So
coker(£,5-0)" = coker(£,|5=0); L defined on coker(£,|s—0) is an injective
map. Therefore, we complete this proof.

9.4. Proof of Remark 2.2

For each n € N given, let us denote the cut-off function x 1 1 by x (see D
for the definition of x 1+ 1). So we have

2n’n

(9.1) Vxa| < Cn

for some universal constant C' > 0.

By the definition of L2(M \ ¥;S ® Z) and Licpt(M \ ;S ®T), we have

(9.2) LI (M\ S8 ®TI) C LI(M\ S8 I).

To prove that they are equal, we have to show that for any
ue Li(M\ ;8 ®I), there exists a sequence {u,} C LT (M \ 38 ® 1)
such that u,, — uin L%—norm.
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We define u,, = (1 — xp)u. Clearly, we have u, € L%Cpt(M \E;S®7)
and

(9.3) / 4y — w2 = 0
M\S

as n — 0o. Meanwhile, we have

/ IV (t — )| = / (V) + Xn V0l
M\S M\S

(9.4) <z [ Tl TP
M\S
By (9.1) and Lemma 2.6, we have

(9.5) / (V) ul? §02n2<647r212)/ \Vu\2:64027r2/ V2.
M\ n N1 N

n n

The left hand side of (9.5) converges to 0 as n — oo. Meanwhile, we have

(9.6) / \an\?g/ Vul.
M\E Ni

So the left hand side of (9.6) also converges to 0. By (9.3), (9.4), (9.5) and
(9.6), we have u, — u in L¥-norm. We complete our proof.
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