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In this note we prove the following theorem in any Carnot group
of step two G:

lim
s↗1/2

(1− 2s)PH,s(E) =
4√
π

PH(E).

Here, PH(E) represents the horizontal perimeter of a measurable
set E ⊂ G, whereas the nonlocal horizontal perimeter PH,s(E) is
a heat based Besov seminorm. This result represents a dimension-
less sub-Riemannian counterpart of a famous characterisation of
Bourgain-Brezis-Mironescu and Dávila.

1. Introduction

In their celebrated papers [4], [5] (see also [7]) Bourgain, Brezis and
Mironescu discovered a new characterisation of the spaces W 1,p and BV
as suitable limits of the fractional Aronszajn-Gagliardo-Slobedetzky spaces
W s,p. We also mention the earlier work [40], in which the authors had al-
ready settled the case p = 2 of their limiting theorem, and the subsequent
work [41], in which Maz’ya & Shaposhnikova extended the results in [5].
Keeping in mind the definition of the seminorm in W s,p, see [1],

[f ]p,s =

(
∫

Rn

∫

Rn

|f(x)− f(y)|p
|x− y|n+ps

dxdy

)1/p

, p ≥ 1, 0 < s < 1,

The first author is supported in part by a Progetto SID (Investimento Strategico
di Dipartimento) “Non-local operators in geometry and in free boundary problems,
and their connection with the applied sciences”, University of Padova, 2017. Both
authors are supported in part by a Progetto SID: “Non-local Sobolev and isoperi-
metric inequalities”, University of Padova, 2019.
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and denoting by 1E the indicator function of a measurable set E ⊂ Rn, we
recall that such set is said to have finite nonlocal s-perimeter if |E| < ∞ and

(1.1) Ps(E)
def
= [1E ]

2
2,s = [1E ]1,2s < ∞.

This notion appeared in the above mentioned works [4], [5], [7], as well as
in Maz’ya’s paper [39], and in the work of Caffarelli, Roquejoffre and Savin
[9], in which these authors have first studied the Plateau problem for the
relevant nonlocal minimal surfaces. It is well-known that every non-empty
open set has infinite s-perimeter as soon as 1/2 ≤ s < 1. For instance, if we
denote by B = {x ∈ Rn | |x| < 1}, then it was observed in [24] that

Ps(B) =
nπnΓ(1− 2s)

sΓ(n2 + 1)Γ(1− s)Γ(n+2−2s
2 )

,

where for x > 0 we have indicated by Γ(x) =
∫∞
0 tx−1e−tdt the Euler gamma

function. It is clear from this formula, as well as from those appeared in [22]
and [18], that s → Ps(B) has a pole in s = 1/2 (and also in s = 0), and that
moreover one has the limiting relation

lim
s↗1/2

(1− 2s)Ps(B) =
2π

n−1

2

Γ(n+1
2 )

P (B),

where we have denoted by P (B) = 2π
n
2

Γ(n

2
) the standard perimeter of B. This

limit relation is in fact a special case of the following result proved by J.
Dávila in [15, Theor. 1], and conjectured in [4]:

(1.2) lim
s↗1/2

(1− 2s)Ps(E) =

(
∫

Sn−1

| < en, ω > |dσ(ω)
)

P (E),

where en = (0, ..., 0, 1), and P (E) indicates the perimeter of E according
to De Giorgi, see [16]. The limiting behaviour of the fractional perimeter
was also studied in [2] and [10]. All these results underscore an important
aspect of the nonlocal minimal surfaces: they asymptotically converge to the
classical ones.

To introduce the results in the present paper, we now make the crucial
observation that theorem (1.2) admits a dimension-free formulation using

the heat semigroup P∆
t f(x) = e−t∆f(x) = (4πt)−n/2

∫

Rn e
− |x−y|2

4t f(y)dy. For
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s > 0 and 1 ≤ p < ∞, consider the following caloric Besov seminorm

(1.3) N
∆
s,p(f) =

(
∫ ∞

0

1

t
sp

2
+1

∫

Rn

P∆
t (|f − f(x)|p) (x)dxdt

)
1

p

.

Seminorms such as (1.3) were first considered by Taibleson in his works [46],
[47] for quite different purposes than those in the present note. We leave it
as an easy exercise for the reader to recognise that

(1.4) N
∆
s,p(f)

p =
2spΓ(n+sp

2 )

π
n

2

[f ]ps,p.

Combining (1.4) with (1.1) and (1.2), and keeping in mind that
∫

Sn−1 | <
en, ω > |dσ(ω) = 2π

n−1
2

Γ(n+1

2
)
, we now see that the theorem of Bourgain-Brezis-

Mironescu-Dávila can be reformulated in terms of the heat seminorm (1.3)
in the following suggestive dimension-free fashion:

(1.5) lim
s↗1/2

(1− 2s)N ∆
2s,1(1E) = lim

s↗1/2
(1− 2s)N ∆

s,2(1E)
2 =

4√
π

P (E).

The present work stems from the desire of understanding what happens
to (1.5) if we leave the Euclidean setting and move into sub-Riemannian
geometry. Does the Bourgain-Brezis-Mironescu-Dávila phenomenon persist?
Our main result proves that, remarkably, the answer is yes - and with exactly
the same universal constant as in (1.5)! - in the framework of stratified
nilpotent Lie groups of step two provided that:

(i) the perimeter of De Giorgi P (E) is replaced by the sub-Riemannian
horizontal perimeter in (2.6) below;

(ii) the nonlocal perimeter Ps(E) in (1.1) is replaced by a notion of nonlo-
cal horizontal perimeter defined via some Besov seminorms based on
the heat semigroup in G, see Definition 3.1 below.

Before stating our main theorem we mention that the basic prototype
of the geometric ambients in this note is the Heisenberg group Hn, which
is the primary model of a Sasakian CR manifold with zero Tanaka-Webster
Ricci tensor, see [17]. More generally, a distinguished subclass of step-two
Carnot groups is formed by the groups of Heisenberg type which were in-
troduced by Kaplan in [35] in connection with hypoellipticity questions.
Groups of Heisenberg type constitute a direct and important generalisation
of the Heisenberg group, as they include, in particular, Iwasawa groups, i.e.,
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the nilpotent component N in the Iwasawa decomposition KAN of simple
groups of rank one, see in this respect the seminal work of Cowling, Dooley,
Korányi and Ricci [13], and also the visionary address of E. Stein [45] at the
1970 International Congress of Mathematicians in Nice.

Given a Carnot group of step two G, we indicate with PH(E) the hori-
zontal perimeter of a set E ⊂ G. Such notion was introduced in [11] in much
greater generality than Lie groups, and a corresponding theory of isoperi-
metric inequalities was subsequently developed in [25]. Next, let us denote
with PH,s(E) the key notion of nonlocal horizontal s-perimeter of E as in
Definition 3.1 below. The following is the main theorem of this note.

Theorem 1.1. Let G be a Carnot group of step two, and let E ⊂ G be
a measurable set having finite horizontal perimeter and such that |E| < ∞.
Then,

lim
s↗1/2

(1− 2s)PH,s(E) =
4√
π

PH(E).

One should compare Theorem 1.1 with the dimension-free version of the
Bourgain-Brezis-Mironescu and Dávila theorem in (1.5) above. It is worth
mentioning explicitly that our result underscores the critical role of the heat
based notion of nonlocal perimeter in Definition 3.1. Our proof of Theorem
1.1 combines the interesting Ledoux type result in the work of Bramanti,
Miranda and Pallara [6, Theorem 2.14] with two crucial asymptotic esti-
mates for the nonlocal perimeter PH,s(E) which are proved in Section 3.
We emphasise that such estimates continue to be valid in Carnot groups of
arbitrary step and, more in general, for operators of Hörmander type under
suitable assumptions. We mention that even for Rn our proof provides a new
perspective on (1.2) (based also on the result in [42]), with a dimensionless
constant in the right-hand side.

Having stated our main result we briefly describe the organisation of the
paper. In Section 2 we collect some basic facts which will be needed in the
rest of the paper. In Section 3 we introduce the notion of nonlocal horizontal
s-perimeter, see Definition 3.1. Then, we prove the two key results of the
section, Propositions 3.2 and 3.3. These two results allow us to conclude in
Section 4 that the limit in the left hand-side of the equation in Theorem 1.1
does exist, and moreover

(1.6) lim
s↗1/2

(1− 2s)PH,s(E) = lim
t→0+

√

4

t
||Pt1E − 1E ||L1(G),
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provided that the limit of the sub-Riemannian Ledoux functional in the
right-hand side of (1.6) exists. At this point, we exploit the geometric mea-
sure theoretic result in [6, Theorem 2.14], which states that in every Carnot
group of step two one has

(1.7) lim
t→0+

√

4

t
||Pt1E − 1E ||L1(G) = 8

∫

G

ϕG(νE)d|∂HE|,

where we have indicated by d|∂HE| the horizontal perimeter measure, and
by ϕG(νE) the function defined in (26) of [6]. Finally, we prove that the
function ϕG(νE) is a universal constant which is independent of both the
dimension of the horizontal layer and of that of the vertical layer of G. Once
this is recognised, the proof of Theorem 1.1 follows.

In closing we mention the recent work [8] in which we have studied
the limiting behaviour as s → 0+ of Besov seminorms such as (3.1) below,
but associated to some non-symmetric and non-doubling semigroups whose
generators contain a drift. We also mention two upcoming works that are
connected to the present one. In the former [29], we develop in the setting
of arbitrary Carnot groups some optimal nonlocal isoperimetric inequalities
which involve the notion of nonlocal horizontal perimeter in Definition 3.1.
In a related perspective, but with a different framework, the reader should
also see [27]. In the latter [30], we provide in the setting of the Heisenberg
group Hn a stronger version of the sub-Riemannian Ledoux limiting relation
in (1.7). Our result extends in a nontrivial way a preceding result in [42] in
the Euclidean setting, see also the original paper by Ledoux [37], where this
circle of ideas originated.

2. Preliminaries

In this section we collect some preliminary material that will be used in the
rest of the paper. We begin with introducing the main geometric ambients
of this note. A Carnot group of step r = 2 is a simply-connected Lie group
G whose Lie algebra admits a stratification g = V1 ⊕ V2, with [V1, V1] = V2

and [V1, V2] = {0}. We let m = dim(V1) and k = dim(V2). Assuming that
g is endowed with an inner product ⟨·, ·⟩ and induced norm | · |, then the
Kaplan mapping J : V2 → End(V1) defined by

< J(σ)z, z′ >=< [z, z′], σ >
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has the properties that J(σ)⋆ = −J(σ) and J is an injective map which is
linear as a function of σ. Thus the mapping

(2.1) A(σ)
def
= J⋆(σ)J(σ) = −J(σ)2,

defines a symmetric nonnegative element of End(V1) for every σ ∈ V2.

Example 2.1. A Carnot group of step two is said of Heisenberg type if
J(σ) is orthogonal for every σ ∈ V2 such that |σ| = 1. We refer the reader
to [35], [13] and [23, Section 2] for an extensive discussion. In particular,
when G is of Heisenberg type, we have m = 2n for some n ∈ N and

(2.2) A(σ) = |σ|2I2n for all σ ∈ V2.

If in addition k = 1 then the group G boils down, up to isomorphism, to the
Heisenberg group Hn.

We fix orthonormal basis {e1, ..., em} and {ε1, ..., εk} for V1 and V2

respectively, and for points z ∈ V1 and σ ∈ V2 we will use either one of
the representations z =

∑m
j=1 zjej , σ =

∑k
ℓ=1 σℓεℓ, or also z = (z1, ..., zm),

σ = (σ1, ..., σk). Accordingly, whenever convenient we will identify the point
g = exp(z + σ) ∈ G with its logarithmic coordinates (z, σ). By the Baker-
Campbell-Hausdorff formula, see p. 12 of [12],

(2.3) exp(z + σ) exp(z′ + σ′) = exp
(

z + z′ + σ + σ′ +
1

2
[z, z′]

)

,

we obtain the non-Abelian multiplication in G

g ◦ g′ = (z + z′, σ + σ′ +
1

2

k
∑

ℓ=1

< J(εℓ)z, z
′ > εℓ).

If for j = 1, ...,m we define left-invariant vector fields by the Lie rule

Xju(g) =
d
dsu(g ◦ exp sej)

∣

∣

∣

∣

s=0

, then by (2.3) one obtains in the logarithmic

coordinates (z, σ)

(2.4) Xj = ∂zj +
1

2

k
∑

ℓ=1

< J(εℓ)z, ej > ∂σℓ
.

Given a function f ∈ C1(G) we will indicate by ∇Hf = (X1f, ..., Xmf), its
horizontal gradient, and set |∇Hf | = (

∑m
j=1(Xjf)

2)1/2.
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2.1. Horizontal perimeter

We next recall the variational notion of horizontal perimeter that in our
main result will replace the perimeter of De Giorgi P (E) in (1.2). Such
notion was introduced in [11] (in much greater generality than in stratified
nilpotent Lie groups) and it has since occupied a central position in the
theory of minimal surfaces in sub-Riemannian geometry. Given an open set
Ω ⊂ G, we denote by

F (Ω) = {ζ = (ζ1, ..., ζm) ∈ C1
0 (Ω;R

m)
∣

∣ ||ζ||∞ = sup
g∈Ω

(

m
∑

j=1

ζj(g)
2
)1/2 ≤ 1}.

We say that a function f ∈ L1
loc(Ω) has bounded horizontal total variation

in Ω if

VarH(f,Ω)
def
= sup

ζ∈F (Ω)

∫

Ω
f

m
∑

j=1

Xjζjdg < ∞.

Hereafter, we denote with dg the bi-invariant Haar measure in G obtained by
pushing forward with the exponential map the standard Lebesgue measure in
the Lie algebra g. Such Haar measure interacts with the group non-isotropic
dilations, δλ(z, σ) = (λz, λ2σ), according to the formula

(2.5) dδλ(g) = λQdg,

where Q = m+ 2k is the group homogeneous dimension, see [21]. The Ba-
nach space of L1(Ω) functions of bounded horizontal total variation in Ω,
with its norm given by

||f ||BVH(Ω) = ||f ||L1(Ω) +VarH(f,Ω),

will be denoted by BVH(Ω). Given a set E ⊂ G such that |E| < ∞, we say
that E has finite horizontal perimeter with respect to Ω if 1E ∈ BVH(Ω). If
this is the case, the horizontal perimeter of E in Ω is defined as

(2.6) PH(E; Ω) = VarH(1E ,Ω) = sup
ζ∈F (Ω)

∫

E∩Ω

m
∑

j=1

Xjζjdg.

When Ω = G we will simply write PH(E), instead of PH(E;G). For the
main properties of the space BVH and general sharp isoperimetric inequal-
ities for the horizontal perimeter, we refer the reader to [25].
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2.2. Heat semigroup

The horizontal Laplacian generated by the orthonormal basis {e1, ..., em} of
V1 is the second-order differential operator on G defined by

∆Hf =

m
∑

j=1

X2
j f,

where X1, ..., Xm are given by (2.4). From (2.4) one finds

(2.7) ∆H = ∆z +
1

4

k
∑

ℓ,ℓ′=1

⟨J(εℓ)z, J(εℓ′)z⟩∂σℓ
∂σℓ′

+

k
∑

ℓ=1

Θℓ∂σℓ
,

where ∆z represents the standard Laplacians in the variables z = (z1, ..., zm)
and

Θℓ =

m
∑

i=1

< J(εℓ)z, ei > ∂zi .

The operator ∆H fails to be elliptic at every point g ∈ G. However, thanks
to the commutation relation [Xi, Xj ] =

∑k
ℓ=1⟨J(εℓ)ei, ej⟩∂σℓ

(which follows
from (2.4)), and to the fundamental hypoellipticity theorem of Hörmander
in [33], one knows that ∆H is hypoelliptic, see also [19].

In [20] Folland proved, for stratified nilpotent Lie groups G of arbitrary
step, the existence of a fundamental solution p(g, g′, t) for the heat equation
∂tu−∆Hu = 0 associated with a horizontal Laplacian on G. We need the
heat semigroup defined by

(2.8) Ptu(g) =

∫

G

p(g, g′, t)u(g′)dg′.

It is well-known that (2.8) defines a stochastically complete, positive and
symmetric semigroup in Lp(G), for any 1 ≤ p ≤ ∞, which is contractive

(2.9) ||Ptu||Lp(G) ≤ ||u||Lp(G), 1 ≤ p ≤ ∞.

Although we will not make explicit use of the following Gaussian estimates
(which are corollaries of the general results in [32] and [36]) we state them
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for completeness

(2.10) Ct−Q/2 exp(−α
d(g, g′)2

t
) ≤ p(g, g′, t) ≤ C−1t−Q/2 exp(−β

d(g, g′)2

t
).

In (2.10) we have indicated with d(g, g′) the left-invariant intrinsic distance

inG defined by d(g, g′)
def
= sup{f(g)− f(g′) | f ∈ C∞(G), |∇Hf | ≤ 1}. Such

d(g, g′) coincides with the Carnot-Carathéodory distance defined in [43].
If we indicate by B(g, r) = {g′ ∈ G | d(g, g′) < r}, then by scale invariance
we obtain for every g ∈ G and r > 0, |Bρ(g, r)| = ω rQ, where ω > 0 is a
universal constant and Q is as in (2.5), and this accounts for the term t−Q/2

in (2.10).
In the proof of Theorem 1.1 it is of paramount importance to have a

flexible formula for the heat kernel in a Carnot group of step two. We recall
that in the Heisenberg group Hn an explicit formula, up to Fourier transform
in the central variable, was first independently discovered by Hulanicki [34]
and Gaveau [31], and subsequently generalised to groups of Heisenberg type
in [14, 44]. For general Carnot groups of step two, the heat kernel was
constructed by Cygan in [14] with the aid of a lifting procedure, and more
recently by Beals, Gaveau and Greiner [3] using complex Hamiltonians. We
shall use Theorem 2.2 below which represents a version of Cygan’s formula
which is tailor made for our purposes. We have recently obtained this result
in [28] with a new approach based on the Ornstein-Uhlenbeck operator.

We denote by
√

A(λ) the square root of the nonnegative matrix defined
in (2.1). Moreover, given a m×m symmetric matrix M with real coeffi-
cients, we denote by j(M) the matrix identified by the power series of the
real-analytic function j : R → (0, 1] given by j(x) = x

sinhx . An analogous in-
terpretation holds for the matrix coshM .

Theorem 2.2. Let G be a Carnot group of step two. For g = (z, σ), g′ =
(z′, σ′) ∈ G and t > 0, the heat kernel relative to the horizontal Laplacian in
(2.7) is then given by

p(g, g′, t) = 2k(4πt)−(m

2
+k)

∫

Rk

e
i

t
(⟨σ′−σ,λ⟩+ 1

2
⟨J(λ)z′,z⟩)

(

det j(
√

A(λ))
)1/2

(2.11)

× exp

{

− 1

4t
⟨j(
√

A(λ)) cosh
√

A(λ)(z − z′), z − z′⟩
}

dλ.

We mention that in (2.11) we have identified the vertical layer V2 ⊂ g

with Rk. When G is a group of Heisenberg type as in Example 2.1, we have
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√

A(λ) = |λ|I2n and we easily recover the expression

(2.12)
2k

(4πt)n+k

∫

Rk

e
i

t
(⟨σ′−σ,λ⟩+ 1

2
⟨J(λ)z′,z⟩)

( |λ|
sinh |λ|

)n

e
− |z−z′|2

4t

|λ|

tanh |λ|dλ,

which is the formula of Hulanicki and Gaveau1.

3. The nonlocal horizontal s-perimeter and two key

asymptotics

With the notion of horizontal perimeter in hands, we now turn to the sec-
ond key player in our main result: the nonlocal horizontal perimeter. In this
section, using a new functional space based on the heat semigroup, we intro-
duce this object in Definition 3.1. Then, we prove two results that will play
a key role in the proof of Theorem 1.1. The former provides an interesting
one-sided bound for the limiting case s = 1/2 similar to the right-hand side
of the Bourgain, Brezis and Mironescu’s bound in [4]. The latter instead
contains a lower bound for such limit. The results in this section are valid
without changes in much greater generality than groups of step two since, as
it will be clear with the proofs, they rely on the stochastic completeness and
the contractive properties of the relevant semigroup. As we have mentioned
in the introduction, Propositions 3.2 and 3.3 hold in fact in Carnot groups
of arbitrary step, as well as for general Hörmander type operators under
suitable hypotheses.

Consider the heat semigroup (2.8). For any 0 < s < 1 and 1 ≤ p < ∞ we
define the horizontal Besov space Bs,p(G) = B∆H

s,p (G) as the collection of all
functions u ∈ Lp(G) such that the seminorm

(3.1) Ns,p(u) =

(
∫ ∞

0

1

t
sp

2
+1

∫

G

Pt (|u− u(g)|p) (g)dgdt
)

1

p

< ∞.

The norm ||u||Bs,p(G) = ||u||Lp(G) + Ns,p(u) turns Bs,p(G) into a Banach
space. We emphasise that Bs,p(G) is nontrivial since, for instance, it con-
tains C∞

0 (G). In a different, but related perspective, similar semigroup based
Besov spaces have been introduced and developed in [26], [27] and [8]. We
mention that in the framework of stratified nilpotent Lie groups the limiting

1We warn the reader that different authors choose different group laws and nor-
malisations. As a consequence, in the cited works formula (2.12) appears with dif-
ferent constants.
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behaviour in s of fractional Aronszajn-Gagliardo-Slobedetzky seminorms dif-
ferent from (3.1) was studied in [38], without any identification of the sharp
constants. We are ready to introduce the central notion in this note.

Definition 3.1. Given 0 < s < 1/2, we say that a measurable set E ⊂ G

has finite horizontal s-perimeter if 1E ∈ B2s,1(G), and we define

PH,s(E)
def
= N2s,1(1E) < ∞.

We call the number PH,s(E) ∈ [0,∞) the horizontal s-perimeter of E in G.

We have the following result.

Proposition 3.2. For every measurable set E ⊂ G, such that |E| < ∞, one
has

(3.2) lim sup
s↗1/2

(1− 2s) PH,s(E) ≤ lim sup
t→0+

√

4

t
||Pt1E − 1E ||L1(G).

Proof. Henceforth in this note, whenever there is no risk of confusion we

simply write || · ||1, instead of || · ||L1(G). Now, if L
def
= lim sup

t→0+

1√
t
||Pt1E −

1E ||1 = ∞, then (3.2) is trivially valid. Therefore, we might as well assume
that L < ∞. This implies the existence of ε0 > 0 such that

sup
τ∈(0,ε0)

1√
τ
||Pτ1E − 1E ||1 ≤ L+ 1.

For every 0 < s < 1/2 we thus have

∫ ε0

0

1

τ1+s
||Pτ1E − 1E ||1 ≤ sup

τ∈(0,ε0)

1√
τ
||Pτ1E − 1E ||1

∫ ε0

0

dτ

τ1+s−1/2

≤ (L+ 1)
ε
1/2−s
0

1/2− s
< ∞.

On the other hand, since by (2.9) Pτ is contractive on every Lp(G), with
1 ≤ p ≤ ∞, we have

∫ ∞

ε0

1

τ1+s
||Pτ1E − 1E ||1dτ ≤ 2|E|

∫ ∞

ε0

dτ

τ1+s
< ∞.
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The latter two inequalities show that

(3.3)

∫ ∞

0

1

τ1+s
||Pτ1E − 1E ||1dτ < ∞.

Using the stochastic completeness of the semigroup, we can recognise by
Definition 3.1 and (3.1) that

PH,s(E) =

∫ ∞

0

1

ts+1

∫

G

Pt (|1E − 1E(g)|) (g)dgdt(3.4)

=

∫ ∞

0

1

ts+1

(
∫

G∖E
Pt(1E)(g)dg +

∫

E
(1− Pt(1E)(g))dg

)

dt

=

∫ ∞

0

1

ts+1

(
∫

G∖E
|Pt(1E)(g)− 1E(g)| dg

+

∫

E
|1E(g)− Pt(1E)(g)| dg

)

dt

=

∫ ∞

0

1

t1+s
||Pt1E − 1E ||1dt < ∞,

where in the last inequality we have used (3.3). Thus, assuming L < +∞,
we reach the conclusion that the set E has finite horizontal s-perimeter for
every 0 < s < 1

2 . With this being said, given any ε ∈ (0, ε0), we now obtain
from (3.4)

PH,s(E) =

∫ ε

0

1

τ1+s
||Pτ1E − 1E ||1dτ +

∫ ∞

ε

1

τ1+s
||Pτ1E − 1E ||1dτ.

As before, one easily recognises

∫ ∞

ε

1

τ1+s
||Pτ1E − 1E ||1dτ ≤ 2|E|

s
ε−s.

On the other hand, one has

∫ ε

0

1

τ1+s
||Pτ1E − 1E ||1dτ ≤ sup

τ∈(0,ε)

1√
τ
||Pτ1E − 1E ||1

ε1/2−s

1/2− s
.

We infer that for every ε ∈ (0, ε0) we have

(3.5) PH,s(E) ≤ 1

(1/2− s)
sup

τ∈(0,ε)

1√
τ
||Pτ1E − 1E ||1 ε1/2−s +

2|E|
s

ε−s.
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Multiplying by (1− 2s) in (3.5) and taking the limit as s ↗ 1/2, we find for
any ε ∈ (0, ε0),

(3.6) lim sup
s↗1/2

(1− 2s)PH,s(E) ≤ sup
τ∈(0,ε)

√

4

τ
||Pτ1E − 1E ||1.

Passing to the limit as ε → 0+ in (3.6), we reach the desired conclusion (3.2).
□

Our next result can be seen as dual to Proposition 3.2.

Proposition 3.3. For every measurable set E ⊂ G one has

lim inf
s↗1/2

(1− 2s) PH,s(E) ≥ lim inf
t→0+

√

4

t
||Pt1E − 1E ||L1(G).

Proof. Before starting we remark that (3.4) holds regardless the assumption
that the right-hand side be finite. Now, for every 0 < s < 1/2 and any ε > 0,
the identity (3.4) yields

(1− 2s)PH,s(E) ≥ (1− 2s)

∫ ε

0

1

t1+s
||Pt1E − 1E ||1dt

≥ (1− 2s) inf
0<t<ε

1√
t
||Pt1E − 1E ||1

∫ ε

0
t1/2−s−1dt

= inf
0<t<ε

√

4

t
||Pt1E − 1E ||1 ε1/2−s.

Taking the lim inf as s ↗ 1/2 in the latter inequality, gives

lim inf
s↗1/2

(1− 2s)PH,s(E) ≥ inf
0<t<ε

√

4

t
||Pt1E − 1E ||1.

If we now take the limit as ε → 0+, we reach the desired conclusion.
□

4. Proof of Theorem 1.1

In this section we finally prove Theorem 1.1. Our first key observation is
that, if we knew that for any measurable set E ⊂ G with finite horizontal
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perimeter we have
(4.1)

lim inf
t→0+

√

4

t
||Pt1E − 1E ||1 = lim sup

t→0+

√

4

t
||Pt1E − 1E ||1 =

4√
π
PH(E),

then the combination of Propositions 3.2, 3.3 and (4.1) would give

lim
s↗1/2

(1− 2s)PH,s(E) =
4√
π
PH(E),

and Theorem 1.1 would be proved. To establish (4.1) we first appeal to (29)
in [6, Theorem 2.14] which ensures that the limit in (4.1) does exist for any
set of finite horizontal perimeter E ⊂ G, and moreover

(4.2) lim
t→0+

√

4

t
||Pt1E − 1E ||1 = 8

∫

G

ϕG(νE)d|∂E |.

In the right-hand side of (4.2) for every horizontal unit vector ν the function
ϕG is defined by

(4.3) ϕG(ν) =

∫

TG(ν)
p(ĝ, e, 1)dĝ,

where we have denoted by e ∈ G the identity and by ĝ the generic point on
the vertical space TG(ν) perpendicular to the horizontal vector ν, see (26)
in [6].

Remark 4.1. It is easy to see from (2.12) that in the particular case of
a group of Heisenberg type G the function ϕG(ν) must be independent of
the horizontal vector ν and therefore constant, see in this respect [6, Re-
mark 2.12]. We emphasise that this circumstance is by no means enough to
complete the proof of Theorem 1.1 since the latter hinges crucially on the
identification of such constant value.

To this task we now turn and we claim that, remarkably, in a general
Carnot group of step two G, the function ϕG(ν) in (4.3) is also a universal
constant and we have in fact

(4.4) ϕG(ν) ≡
1√
4π

for every horizontal unit vector ν.

If we take this claim for granted, then in light of the above discussions
and recalling that PH(E) =

∫

G
d|∂E |, it is immediate to finish the proof of
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Theorem 1.1 by inserting (4.4) in (4.2). We are thus left with the proof of
the claim in (4.4).

As we have so far done in this paper, we keep identifying V1
∼= Rm, V2

∼=
Rk. Given a unit vector ν ∈ Rm we denote by Tν the (m− 1)-dimensional
subspace of Rm defined as (span{ν})⊥, and indicate with Pν : Rm → Rm the
orthogonal projection onto Tν , i.e. Pνz = z− < z, ν > ν. Clearly, its range
is R(Pν) = Tν , and we have P 2

ν = Pν = P ∗
ν . We also denote by I − Pν the

orthogonal projection onto span{ν}. One has

TG(ν) = Tν × R
k = {(ẑ, σ) ∈ G | ẑ ∈ R

m, σ ∈ R
k, such that Pν ẑ = ẑ}.

From the expression in (2.11) we obtain for any ĝ = (ẑ, σ) ∈ TG(ν)

p(ĝ, e, 1) = 2k(4π)−(m

2
+k)

∫

Rk

e−i⟨σ,λ⟩
(

det j(
√

A(λ))
)1/2

(4.5)

× exp

{

− 1

4
⟨j(
√

A(λ)) cosh
√

A(λ)ẑ, ẑ⟩
}

dλ.

Keeping in mind that for any λ ∈ Rk we have j(
√

A(λ)) cosh
√

A(λ) ∈
End(Rm), we introduce the notation

Qν(λ)
def
= Pν j(

√

A(λ)) cosh
√

A(λ) Pν : Tν → Tν ,

and henceforth identify such map with the invertible and symmetric (m−
1)× (m− 1) matrix associated with it. Having fixed such notations, from
(4.3) and (4.5) above we find (after first making the change of variable
σ = 2πτ , and then η =

√

Qν(λ) ẑ, and subsequently using the well-known

formula
∫

RN e−|ζ|2dζ = π
N

2 )

ϕG(ν) =
2k

(4π)
m

2
+k

∫

Rk

∫

Rk

∫

Tν

e−i⟨σ,λ⟩
(

det j(
√

A(λ))
)1/2

(4.6)

× exp

{

− 1

4
⟨j(
√

A(λ)) cosh
√

A(λ)ẑ, ẑ⟩
}

dẑdλdσ

=
1

(4π)
m

2

∫

Rk

∫

Rk

e−2πi⟨τ,λ⟩
(

det j(
√

A(λ))
)1/2

×
∫

Tν

exp

{

− 1

4
⟨Pνj(

√

A(λ)) cosh
√

A(λ)Pν ẑ, ẑ⟩
}

dẑdλdτ
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=
1

(4π)
m

2

∫

Rk

∫

Rk

e−2πi⟨τ,λ⟩

(

det j(
√

A(λ))
)1/2

(detQν(λ))
1/2

(
∫

Rm−1

e−
1

4
|η|2dη

)

dλdτ

=
1√
4π

∫

Rk

∫

Rk

e−2πi⟨τ,λ⟩
(

det j(
√

A(λ))

detQν(λ)

)1/2

dλdτ

=
1√
4π

∫

Rk

f̂ν(τ)dτ

where we have let

fν(λ) =

(

det j(
√

A(λ))

detQν(λ)

)1/2

,

and we are using the following definition of Fourier transform

f̂(σ) =

∫

Rk

e−2πi⟨σ,λ⟩f(λ)dλ.

We now make the crucial observation that

A(0) = Om, j(Om) = cosh(Om) = Im,

and that Pν is the identity on Tν = R(Pν). These facts imply

(4.7) fν(0) = 1.

Moreover, keeping in mind that coshx and j(x) = x
sinhx are even ana-

lytic functions on R, and that (
√

A(λ))2 = A(λ) ∈ C∞, we have also fν ∈
C∞(Rk). Furthermore, we notice that the injectivity of the Kaplan mapping
J ensures that A(λ) is not the null endomorphism for every λ ̸= 0 and, be-
ing J(λ) skew-symmetric, the dimension of the range of A(λ) has to be at
least two. Hence, using the linearity of J which allows us to write

√

A(λ) =
|λ|
√

A(λ/|λ|), one can deduce that there exists k0 > 0 such that
√

A(λ) has
at least two eigenvalues growing bigger than k0|λ|. This property accounts
for the exponential decay of the functions λ 7→ j(

√

A(λ)), cosh
√

A(λ), using
which one can recognise that fν belongs in fact to the Schwartz class S (Rk)
(we mention that in Heisenberg type groups the function fν is independent

of ν and it is given by fν(λ) =
(

1
cosh |λ|

)n ( |λ|
tanh |λ|

)1/2
). We can then apply
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the inversion theorem for the Fourier transform and conclude from (4.7) that

1 = fν(0) =

∫

Rk

f̂ν(σ)dσ,

which completes, in view of (4.6), the proof of the desired claim in (4.4).
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[33] L. Hörmander, Hypoelliptic second order differential equations. Acta
Math. 119 (1967), 147–171.

[34] A. Hulanicki, The distribution of energy in the Brownian motion in the
Gaussian field and analytic-hypoellipticity of certain subelliptic opera-
tors on the Heisenberg group. Studia Math. 56 (1976), no. 2, 165–173.

[35] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE gen-
erated by composition of quadratic forms. Trans. Amer. Math. Soc.
258 (1980), no. 1, 147–153.

[36] S. Kusuoka & D. Stroock, Long time estimates for the heat kernel as-
sociated with a uniformly subelliptic symmetric second order operator.
Ann. of Math. (2) 127 (1988), no. 1, 165–189.



✐

✐

“3-Garofalo” — 2023/11/29 — 23:46 — page 340 — #20
✐

✐

✐

✐

✐

✐

340 N. Garofalo and G. Tralli

[37] M. Ledoux, Semigroup proofs of the isoperimetric inequality in Eu-
clidean and Gauss space. Bull. Sci. Math. 118 (1994), no. 6, 485–510.

[38] A. Maalaoui & A. Pinamonti, Interpolations and fractional Sobolev
spaces in Carnot groups. Nonlinear Anal. 179 (2019), 91–104.

[39] V. Maz’ya, Lectures on isoperimetric and isocapacitary inequalities in
the theory of Sobolev spaces. Heat kernels and analysis on manifolds,
graphs, and metric spaces (Paris, 2002), 307–340, Contemp. Math., 338,
Amer. Math. Soc., Providence, RI, 2003.
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