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We consider minimization problems of functionals given by the dif-
ference between the Willmore functional of a closed surface and its
area, when the latter is multiplied by a positive constant weight Λ
and when the surfaces are confined in the closure of a bounded open
set Ω ⊂ R

3. We explicitly solve the minimization problem in the
case Ω = B1. We give a description of the value of the infima and
of the convergence of minimizing sequences to integer rectifiable
varifolds, depending on the parameter Λ. We also analyze some
properties of these functionals and we provide some examples. Fi-
nally we prove the existence of a C1,α ∩W 2,2 embedded surface
that is also C∞ inside Ω and such that it achieves the infimum of
the problem when the weight Λ is sufficiently small.
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Introduction

If Σ ⊂ R
3 is a smooth immersed surface and H is its mean curvature vector,

that we define with norm equal to the absolute value of the arithmetic mean
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of the principal curvatures, we define the Willmore energy of Σ as:

(1) W(Σ) :=

ˆ

Σ
|H|2 dσ

where σ is the area measure on Σ. The opertor W is called Willmore func-
tional. Surfaces will be usually denoted by Σ and will be always compact
and without boundary, but not necessarily connected.
The variational study of this functional has been revived in 1965 with the
work of T. Willmore ([36] and [37]). He found that round spheres are the
only global minimizers for W and then he introduced the study of the min-
imization problem subject to constraints of topological type, such as fixing
the genus of the surfaces; the celebrated Willmore Conjecture is related to
these kind of problems, and it has been proved in [17]. In the last decades
a number of properties about the functional itself have been proved, and
the ones we will use are recalled in Section 1. The minimization problem
at fixed genus has also been solved in a couple of works ([34] and then [2]),
developing also a theory of which we will make use in the following.
In this work we are going to study the following functional:

(2) WΛ(Σ) :=W(Σ)− Λ|Σ|,

where Σ ⊂ R
3 is a smooth surface, Λ > 0 is fixed and |Σ| denotes the area

of Σ. Moreover, we will always consider surfaces Σ ⊂ Ω̄ with Ω ⊂ R
3 open

and bounded with ∂Ω of class C2. Also, by a rescaling property shown in
Section 1, we will usually take Ω ⊂ B 1

2
(0) (so that diam(Ω) ≤ 1).

With the above assumptions we show that the minimization problem

(3) (P )Ω,Λ : min{WΛ(Σ) : Σ ⊂ Ω̄}

sets a non trivial competition between the Willmore and the Area terms.
We define

(4) CΛ := inf{WΛ(Σ) : Σ ⊂ Ω̄}.

We also give here the following definitions, that will be useful later on:

ΛΩ := inf{Λ > 0 : CΛ = −∞}, W(Σ) :=
W(Σ)

|Σ| ,(5)

Λ̃Ω := inf{W(Σ) : Σ ⊂ Ω̄}.



✐

✐

“7-Pozzetta” — 2023/11/29 — 23:47 — page 409 — #3
✐

✐

✐

✐

✐

✐

Confined Willmore energy and the area functional 409

Variational problems of a similar type, that is problems involving the area,
have already been studied. There is a complete treatment of the minimiza-
tion problem of the Willmore energy with fixed area for surfaces of genus
zero ([19] and [20]) and with fixed isoperimetric ratio for surfaces of arbitrary
fixed genus ([31] and [12]). This kind of works found interesting comparisons
with works about the shape of organic corpuscles ([32]).The link with the
quantities W and Λ̃Ω defined above resembles the Cheeger Problem, which
is actually strongly related to the existence of confined surfaces with pre-
scribed mean curvature vector ([15]). It would be interesting to study related
problems for curves in dimension two, for which there are already remark-
able results about the variational problems of functionals depending on the
curvature of the curve in the same way the Willmore energy depends on the
curvature of the surface (in [6] and [7] confined elastic curves are considered,
while in [3] [4] and [25] relaxed notions of the elastic energy are studied).
In the next statement we sum up our main results in the case of a general
domain Ω.

Theorem A. Under the above assumptions on Ω, denoting CΛ : (0,+∞)→
[−∞,+∞) the function that associates to Λ the infimum of (P )Ω,Λ, it holds:

(i) CΛ is a concave, continuous, non negative, strictly decreasing function
on an interval (0,ΛΩ] for some ΛΩ ∈ [4, 1/ϵ2Ω] where ΛΩ, ϵΩ depend on
Ω. Moreover limΛ→0+ CΛ = 4π, CΛΩ

≥ 0 and CΛ = −∞ for all Λ >
ΛΩ.

(ii) If Λ ∈ (0,ΛΩ) there exists a sequence (ΣΛ
n) that is minimizing for the

functional WΛ and such that it converges in the sense of varifolds to a
varifold V that is integer rectifiable and has generalized mean curvature
square integrable with respect to the weight measure of V .

(iii) If Λ is sufficiently small, depending only on Ω, the limit varifold in item
(ii) is actually a C1,α ∩W 2,2 embedded surface Σ with multiplicity one
and it is such that WΛ(Σ) = CΛ. Moreover it holds that Σ ∩ Ω is of
class C∞.

Next we state the result concerning the case Ω = B1, where B1 is the stan-
dard unit ball of R3.

Theorem B. If Ω = B1 the minimization problem (P )B1,Λ admits a so-
lution if and only if Λ ≤ 1, in which case the minimum is 4π(1− Λ). If
Λ < 1 the unique minimizer is the unit sphere S2. Moreover for all Λ > 1
the infimum of the problem is −∞.
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The paper is organized as follows. In Section 1 we state some classical
properties of the Willmore functional and of theWΛ energy. In Section 2 we
prove the first two items of Theorem A and we prove Theorem B. Section
3 is devoted to the proof of item (iii) of Theorem A, that is essentially
a regularity issue. In this work we adopt a very classical method, today
named Simon’s ambient approach ([34]), that is well applicable in our
setting. We will mainly highlight the differences that arise with respect
to [34], that is taking care of the area term and of the presence of the
boundary ∂Ω. By now we just mention that this method is based on the
direct proof of the regularity of a set contained in R

3 from information
about the boundedness of its second fundamental form and it has already
been used in other works linked to the Willmore energy ([14], [18], [30] and
[31]). It is very remarkable a more modern method, called parametrization
approach, essentially due to Rivière and presented for example in [26],
[27] and [28]. This method is based of the formulation of suitable spaces
of parametrizations of surfaces, where abstract techniques of calculus of
variations are applicable. Notable applications are contained in the already
cited [12] and [19].

Acknowledgments: I am very grateful to Matteo Novaga for his help and his
interest during the preparation of this work, that is partially contained in my
master thesis. I also thank Giovanni Alberti for some precious observations.

1. Basic properties

We are going to collect some useful properties about the Willmore functional
that we will use later on. The symbol V2(Ω̄) denotes the set of 2-rectifiable
integer varifold defined in R

3 with support contained in Ω̄. The convergence
in V2(Ω̄) is the classical convergence of varifolds in R

3. The symbol µV will
always denote the Radon measure on Ω̄ induced by the varifold V ∈ V2(Ω̄).
We recall that Ω ⊂ R

3 is open, bounded and with ∂Ω of class C2. For the
general notation and results about varifolds see Appendix A. Let us start
with an important observation.

Remark 1.1 (Semicontinuity). Let us consider a sequence Vk ∈ V2(Ω̄)
that converges to V ∈ V2(Ω̄) in the sense of varifolds. Assume that for each
k there exists the generalized mean curvature Hk of Vk such that

W(Vk) := ||Hk||2L2(Ω̄,µVk
) ≤ C0 < +∞,
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with C0 independent of k.
Then applying convergence of Radon measures and using the continuity of
the first variation with respect to the varifold convergence, we have that V
has generalized mean curvature HV such that

lim inf
k
W(Vk) ≥ W(V ).

We note also that, since Ω̄ is compact, we have that M(Vk)→M(V ), where
M denotes the mass of a varifold. Thus:

lim inf
k
WΛ(Vk) ≥ WΛ(V ),

lim inf
k

W(Vk) ≥W(V ).

For further details see [29], where it is also shown the more involved lower
semicontinuity property under convergence of currents.

Now we state a couple of fundamental properties of the Willmore energy.

Theorem 1.2 (Conformal Invariance, [37]). Let Σ ⊂ R
3 be an im-

mersed surface in the 3-dimensional Euclidean space. Suppose Σ ⊂ Ω, with
Ω ⊂ R

3 open. If F : Ω→ F (Ω) is a conformal transformation, then:

W(Σ) =W(F (Σ)).

Remark 1.3. We recall that, by Liouville’s Theorem, conformal transfor-
mations of the Euclidean R

3 are just compositions of translations, dilata-
tions, orthogonal transformations and spherical inversions (for an interesting
proof see [22]).

Theorem 1.4 (Lower Bound for Immersed Surfaces, [2]). Let Σ be
an immersed surface and ξ ∈ Σ be a point with multiplicity k. If I : R3 \
{ξ} → R

3 \ {ξ} is the standard spherical inversion about the sphere S2
1(ξ),

then:

(6) W(I(Σ \ {ξ})) =W(Σ)− 4πk.

Remark 1.5. We immediately get from Theorem 1.4 that if a surface Σ
has a point with multiplicity k, then W(Σ) ≥ 4πk.
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A similar argument holds for a varifold V ∈ V(Ω̄) with square integrable
generalized mean curvature in the sense that it holds:

(7) θ(x) ≤ W(V )

4π
µV -almost every x,

where θ is the multiplicity function of V and µV is the Radon measure given
by V on R

3 (see [14], Appendix A). In particular we get that if W(V ) < 8π,
then the varifold has multiplicity 1 µV -almost everywhere.

Now we state some results relating the Willmore and the Area functionals.

Lemma 1.6 ([34]). If Σ ⊂ R
3 is a connected surface, then:

√

|Σ|
W(Σ)

≤ diamΣ ≤ C
√

|Σ|W(Σ),

where diamΣ is the diameter of Σ and C is a constant independent of Σ.

Another fundamental inequality is the following:

Lemma 1.7 (Willmore vs Area Inequality, [20]). Let Ω ⊂ B1 ⊂ R
3

and let V ∈ V2(Ω̄) such that there exists the generalized mean curvature
HV ∈ L2(Ω̄, µV ). Then:

(8) W(V ) :=

ˆ

Ω
H2

V dµV ≥M(V ),

with equality if and only if µV = kH2 ¬S2 and S2 ⊂ Ω̄, with k ∈ N>0.

Remark 1.8. The inequality proved in Lemma 1.7 can be specialized in
the case of Ω ⊂ B 1

2
. If V ∈ V2(Ω̄), by a simple scaling argument and using

the conformal invariance of W one gets that

(9) W(V ) ≥ 4M(V ).

From these results we establish some very useful inequalities, as stated in
the following.
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Corollary 1.9. If Σ ⊂ Ω̄ is a connected surface, then

WΛ(Σ) ≥ |Σ|
(

1

(diamΣ)2
− Λ

)

,

WΛ(Σ) ≥ W(Σ)(1− Λ(diamΣ)2),

WΛ(Σ) ≤ W(Σ)− Λ

C2

(diamΣ)2

W(Σ)
,

W(Σ) ≥ 1

(diamΣ)2
,

W(Σ) ≥ 1

C2

(diamΣ)2

|Σ|2 ,

where C is the constant in Lemma 1.6.
If Ω ⊂ B1 then

WΛ(Σ) ≥ |Σ|(1− Λ),

WΛ(Σ) ≥ W(Σ)(1− Λ),

W(Σ) ≥ 1.

Finally, we derive a simple but useful result about invariance under dilata-
tion.

Lemma 1.10. For all Σ surface and for all α > 0 it holds:

W(Σ) =W(αΣ),

WΛ(Σ) =W Λ

α2
(αΣ),

W(Σ) = α2
W(αΣ).

Proof. The first equation is a consequence of the conformal invariance of the
Willmore functional. For the same property we have:

WΛ(Σ) =

(
ˆ

Σ
H2

Σ

)

− Λ|Σ| =
(
ˆ

αΣ
H2

αH

)

− Λ|Σ|

=W(αΣ)− Λ

α2
|αΣ| =W Λ

α2
(αΣ).

By the same token we get the last equality:

W(αΣ) =
W(Σ)

|αΣ| =
W(Σ)

α2|Σ| =
1

α2
W(Σ).

□
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Remark 1.11. From Lemma 1.10 we see that from the variational point
of view we have the following equivalence of problems:

(P )Ω,Λ ←→ (P )αΩ, Λ

α2
,(10)

in the sense that if we have that for a couple (Ω,Λ) there exists minimum
of (P )Ω,Λ then the same holds for the couple (αΩ,Λ/α2) and with the same
value of minimum (and the same holds in case of nonexistence of minima).
For these reasons in the study of Problem (P )Ω,Λ with generic Ω we will
exploit this invariance assuming Ω ⊂ B1/2 without loss of generality.

2. Compactness and properties of CΛ

This section is devoted to the proof of items i), ii) of Theorem A and of
Theorem B. Let us start with a significant example.

Example 2.1. If Λ > 1 then

inf
Σ⊂B̄1

WΛ(Σ) = −∞.

In fact let us define the sequence of surfaces

Dk = S2
r1 ∪ · · · ∪ S2

rk ⊂ B1,

ri =
1√
Λ

+
i− 1

k

(

1− 1√
Λ

)

i = 1, . . . , k,
(11)

that is a surface made of k concentric spheres with minimum radius r1 =
1/
√
Λ, ri < ri+1 for i = 1, . . . , k − 1 and maximum radius rk < 1 (since Λ >

1). We have:

WΛ(D
k) = 4πk − Λ

k
∑

i=1

4πr2i

= 4π

(

k − k − Λ

k
∑

i=1

(

1− 1√
Λ

)2 1

k2
(i− 1)2

+
2

k
√
Λ

(

1− 1√
Λ

)

(i− 1)

)

≤ −4πΛ 2√
Λ

(

1− 1√
Λ

)

1

k

(

k(k + 1)

2
− k

)

→ −∞ k → +∞,

where we strongly used the fact that Λ > 1.
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Now we see that we can actually connect together the rounds of the previous
example in a way in which we are able to obtain the same conclusion also
in the case in which the problem is restricted to connected surfaces. We are
going to see this in a general way as stated in next lemma.

Lemma 2.2. If there exists an embedded surface Σ ⊂ Ω̄ such thatWΛ(Σ) <
0, then there exists a sequence of embedded surfaces Σn such thatWΛ(Σn)→
−∞. In particular CΛ = −∞.
Moreover if Σ is connected, the surfaces Σn can be taken connected.

Proof. We are going to reproduce the idea of Example 2.1 with the surface
Σ in the hypothesis of the statement. Let us fix ϵ ∈ (0, 1). First we notice
that it may occur that Σc := Σ ∩ ∂Ω ̸= ∅, and so we suppose we are in this
situation (the case Σc = ∅ will be a simpler by-product of this case). Let
us fix for each connected component Σα

c (note that Σα
c is compact) a field

Nα ∈ N (Σc) such that Nα point inside Ω for each α, where N (Σc) denotes
the normal bundle of Σc. Now fix an open neighborhood Uα ⊂ Σ of each Σα

c

such that dist(p,Σα
c ) < δ for each p ∈ Uα and Uα ∩ Uβ = ∅ for all α ̸= β.

Let for all α the functions ϕα ∈ C∞
c (Σ) such that ϕα(p) = 1 for all p ∈ Σα

c

and ϕα(p) = 0 for all p ∈ Σ \ Uα. Now mapping:

Uα ∋ p 7−→ p+ δNα(p)ϕα(p) ∈ Ω,

we obtain a new embedded surface Σ′ ⊂ Ω such that for an appropriate
choice of δ above sufficiently small we have:

WΛ(Σ
′) =WΛ(Σ) + ϵ.

Since Σ′ is compact and embedded, it is orientable, so there exists a fieldN ∈
N (Σ′) that orients the surface. For M ∈ R sufficiently big we can consider
the surface:

Σ′
M :=

{

p+
1

M
N(p) : p ∈ Σ′

}

⊂ Ω s.t. WΛ(Σ
′
M ) =WΛ(Σ

′) + ϵ.

Now we are going to connect together Σ′ with Σ′
M in order to obtain the first

term Σ1 of the desired sequence (Σn). Select p̄ ∈ Σ′ and consider the corre-
sponding p̄M = p̄+ 1

MN(p̄) ∈ Σ′
M . Letting q̄ the middle point between p̄ and

p̄M , there exists δ0 such that (Σ′ ∪ Σ′
M ) ∩Bδ0(q̄) is diffeomorphic to the dis-

joint union of two 2-dimensional discs. Operating a blow up procedure by a
factor Γ sufficiently big on (Σ′ ∪ Σ′

M ) ∩Bδ0(q̄) we obtain a surface C∞-close



✐

✐

“7-Pozzetta” — 2023/11/29 — 23:47 — page 416 — #10
✐

✐

✐

✐

✐

✐

416 Marco Pozzetta

to the disjoint union of two 2-dimensional discs. By removing appropriate
sets ΓD1 and ΓD2 diffeomorphic to a disc from each disconnected compo-
nent, we see that we can connect the remaining surfaces (diffeomorphic to
a disjoint union of two 2-dimensional annular surfaces) with a modifica-
tion ΓC̃ of the catenoid that is C2 close to the standard catenoid and such
that Λ(|D1 ∪D2| − |C̃|)| ≤ ϵ andW(C̃) ≤ ϵ (for an explicit construction see
[38]). Rescaling back in Ω and using the dilatation invariance we see that
we have obtained a connected embedded surface Σ1 ⊂ Ω such that:

WΛ(Σ1) =WΛ(Σ
′) +WΛ(Σ

′
M ) +W(C̃)− Λ|C̃|

−W(D1 ∪D2) + Λ|D1 ∪D2|
≤ 2WΛ(Σ) + 5ϵ.

Now we can clearly iterate the procedure obtaining Σ2, and in this case,
by arbitrariness on the value of ϵ, we can take a value ϵ2. Thus, using the
notation above with an additional index 1 to distinguish from the previous
quantities, we get a connected embedded surface Σ2 ⊂ Ω such that:

WΛ(Σ2) =WΛ(Σ1) +WΛ(Σ1,M1
) +W(C̃1) + Λ(|D1,1 ∪D2,1| − |C̃1|)

−W(D1,1 ∪D2,1)

≤ 2(2WΛ(Σ) + 5ϵ) + 3ϵ2

= 22WΛ(Σ) + 5(2ϵ) + 3ϵ2.

So iterating the procedure taking ϵn when constructing Σn we obtain:

WΛ(Σn) ≤ 2nWΛ(Σ) + 5(2n−1ϵ) + 3

n
∑

i=2

2n−iϵi

≤ 2nWΛ(Σ) + 5(2n−1ϵ) + 3
2n−2

1− ϵ −→ −∞ as n→∞,

being WΛ(Σ) < 0. □

The previous discussion allows us to solve completely Problem (P ) in the
ball B1:

Theorem 2.3 (Solution of (P )B1,Λ)). If Ω = B1 the minimization prob-
lem (P )B1,Λ admits a solution if and only if Λ ≤ 1, in which case the min-
imum is 4π(1− Λ). If Λ < 1 the unique minimizer is the unit sphere S2.
Moreover for all Λ > 1 the infimum of the problem is −∞.
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Proof. The last part of the statement is a consequence of Example 2.1 and
Lemma 2.2, in fact for Λ > 1 we have WΛ(S

2) < 0.
If we consider Λ ≤ 1, applying Lemma 1.7, we get WΛ(Σ) ≥ |Σ|(1− Λ) ≥ 0,
hence as for the minimization problem we can restrict ourselves to connected
surfaces. MoreoverWΛ(Σ) ≥ W(Σ)(1− Λ) ≥ 4π(1− Λ) =WΛ(S

2). So S2 is
a minimizer.
If Λ < 1, the uniqueness of the minimizer follows havingWΛ(Σ) ≥ W(Σ)(1−
Λ) ≥ |Σ|(1− Λ) for all Σ, with equality if and only if Σ = S2. □

Remark 2.4 (Upper Bound for ΛΩ). Combining Example 2.1 with the
proof of Lemma 2.2 we see that if there exist two balls B1(p), B1−δ(p) such
that B̄1(p) \B1−δ(p) ⊂ Ω̄ for some δ > 0 then a minimizing sequence of con-
nected surfaces (Σn) can be realized inside B̄1(p) \B1−δ(p) and thus for all
Λ > 1 we have CΛ = −∞.
By rescaling invariance this means that if two balls Br(p), Br−δ(p) are such
that B̄r(p) \Br−δ(p) ⊂ Ω̄ for a δ > 0, then for all Λ > 1

r2 we have CΛ = −∞
(in other words ΛΩ ≤ 1

r2 ).

Now we turn our attention to the study of the general Problem (P )Ω,Λ.
When no other is specified, Ω is assumed to be open, with boundary of class
C2 and

Ω ⊂ B 1

2
.

By the rescaling invariance of Remark 1.11 we can do this without loosing
any information.
Let us first make a simple observation.

Remark 2.5 (Monotonicity). It is very important to keep in mind a
simple monotonicity relation about functional WΛ:

(12) Λ1 > Λ2 ⇒ WΛ1
(Σ) <WΛ2

(Σ) and CΛ1
≤ CΛ2

.

Moreover let us define a useful parameter:

(13) ϵΩ := sup{r > 0 : ∃δ > 0, ∃Br(p), Br−δ(p) s.t. B̄r(p) \Br−δ(p) ⊂ Ω̄},

so that by Remark 2.4 we have ΛΩ ≤ 1
ϵ2Ω
.

Lemma 2.6. If Λ > ΛΩ then CΛ = −∞.
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Proof. By definition of ΛΩ there is λ ∈ (ΛΩ,Λ) such that Cλ = −∞. By
monotonicity for all Σ ⊂ Ω̄ we have:

Wλ(Σ) >WΛ(Σ),

so CΛ = −∞. □

Now we are able to give a first result about compactness.

Theorem 2.7 (Compactness for Λ < ΛΩ). If Λ < ΛΩ and if Σn is
minimizing for WΛ, then Σn converges (up to subsequence) to a varifold
V ∈ V2(Ω̄) with generalized mean curvature HV ∈ L2

(Ω̄,µV )
.

Proof. Let us take a minimizing sequence (Σn) such thatWΛ(Σn) ≤ CΛ + 1
n .

Suppose that |Σn| → ∞. Let λ ∈ (Λ,ΛΩ), then:

0 ≤ Cλ ≤ Wλ(Σn) =WΛ(Σn)− (λ− Λ)|Σn| → −∞,

that is impossible. So we have that there exists L such that |Σn| ≤ L for
all n, and being (Σn) a minimizing sequence then there also exists C0 such
that W(Σn) ≤ C0 for all n. Moreover, denoting by Hn the mean curvature
vector of Σn and calling again Σn the varifold associated to Σn, for all
W ⊂⊂ Ωϵ := ϵ-neighborhood of Ω we have (see Appendix A):

||δΣn||(W ) = sup
|X|≤1, supp(X)⊂W

∣

∣

∣

∣

δΣn(X)

∣

∣

∣

∣

= sup
|X|≤1, supp(X)⊂W

∣

∣

∣

∣

ˆ

Ωϵ

⟨X,Hn⟩ dµΣn

∣

∣

∣

∣

≤
√

LC0 ∀n.

So by compactness of varifolds ([1], Appendix A) we get the existence of a
limit V ∈ V2(Ω̄) of a subsequence (Σnk

) in the sense of varifolds. By lower
semicontinuity we have that V has mean curvature HV ∈ L2

(Ω̄,µV )
. □

Remark 2.8. From the proof of Theorem 2.7 it is useful to remember
that if a sequence (Σn) of uniformly bounded surfaces has both uniformly
bounded Willmore energy W(Σn) and area |Σn|, then such sequence is pre-
compact with respect to varifold convergence.

Combining the information collected up to now we have the following con-
sequence.
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Corollary 2.9. The number ΛΩ is contained in the interval [4, 1
ϵ2Ω
].

Proof. First recall that we already observed that ΛΩ ≤ 1
ϵ2Ω

(observe that

ϵΩ ≤ 1
2 since Ω ⊂ B1/2). Now let us blow up Ω by a factor 2; we get 2Ω ⊂ B1

andWΛ(Σ) ≥ |Σ|(1− Λ) ≥ 0 for all Σ ⊂ 2Ω and for all Λ ≤ 1 by Lemma 1.7.
Thus we get Λ2Ω ≥ 1, then rescaling back to Ω we get ΛΩ ≥ 1

(1/2)2 = 4. □

Without further assumptions on Ω we will see that we are not able to identify
ΛΩ among its possible values (Example 2.14). We need some further results
first.

Remark 2.10. Let us consider two parameters Λ, (Λ + ϵ) ∈ (Λ,ΛΩ), and
call (ΣΛ

n) and (ΣΛ+ϵ
n ) two corresponding minimizing sequences. By the proof

of Theorem 2.7 we know that areas |ΣΛ
n |, |ΣΛ+ϵ

n | are uniformly bounded;
assume that there exist the limits of the sequences of their areas. It holds
that:

(14) lim
n
|ΣΛ

n | ≤ lim
n
|ΣΛ+ϵ

n | < +∞,

(15) lim
n
|ΣΛ+ϵ

n | ≤ lim
n

Λ− 4

Λ
|ΣΛ

n |+
1

Λ
W(ΣΛ+ϵ

n ),

(16) CΛ+ϵ = lim
n
WΛ+ϵ(Σ

Λ+ϵ
n ) ≤ lim

n
WΛ(Σ

Λ
n)− ϵ|ΣΛ

n | < CΛ.

Let us prove such inequalities separately. First we have:

lim
n
WΛ+ϵ(Σ

Λ+ϵ
n ) ≤ lim

n
WΛ+ϵ(Σ

Λ
n)

= lim
n
WΛ(Σ

Λ
n)− ϵ|ΣΛ

n |+ ϵ|ΣΛ+ϵ
n | − ϵ|ΣΛ+ϵ

n |
≤ lim

n
WΛ(Σ

Λ+ϵ
n )− ϵ|ΣΛ

n |+ ϵ|ΣΛ+ϵ
n | − ϵ|ΣΛ+ϵ

n |
= lim

n
WΛ+ϵ(Σ

Λ+ϵ
n ) + ϵ lim

n
|ΣΛ+ϵ

n | − |ΣΛ
n |.

Since |ΣΛ
n |, |ΣΛ+ϵ

n | are uniformly bounded we get (14). Moreover from
limnWΛ(Σ

Λ
n) ≤ limnWΛ(Σ

Λ+ϵ
n ) we get

Λ lim
n
|ΣΛ+ϵ

n | ≤ lim
n
W(ΣΛ+ϵ

n )−W(ΣΛ
n) + Λ|ΣΛ

n |
≤ lim

n
W(ΣΛ+ϵ

n ) + (Λ− 4)|ΣΛ
n |,
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where in the second inequality we used Remark 1.8. Hence we got (15).
Finally

lim
n
WΛ+ϵ(Σ

Λ+ϵ
n ) ≤ lim

n
WΛ+ϵ(Σ

Λ
n) = lim

n
WΛ(Σ

Λ
n)− ϵ|ΣΛ

n |,

that will give (16) once we prove that |ΣΛ
n | ≥ δ > 0 for all n. But in

fact if S is any sphere contained in Ω we have that WΛ(S) < 4π and
thus CΛ < 4π; therefore if by contradiction limn |ΣΛ

n | = 0 we would have
CΛ = limnWΛ(Σ

Λ
n) ≥ 4π that gives a contradiction.

Now we are able to complete the characterization of the infima CΛ. recall
that

ΛΩ := inf{Λ > 0 : CΛ = −∞}.

Theorem 2.11 (Properties of CΛ). The function CΛ : R>0 →
[−∞,+∞) that associates to the parameter Λ the corresponding infimum
CΛ has the following properties:

(i) C0 := limΛ→0CΛ = 4π independently of Ω, and CΛΩ
≥ 0,

(ii) for Λ ∈ (0,ΛΩ] the function CΛ is continuous, nonnegative, concave
and strictly decreasing. Moreover for all ϵ < ΛΩ there exists δ = δ(ϵ) <
0 such that the derivative C ′

Λ ≤ δ < 0 for almost all Λ ∈ (ΛΩ − ϵ,ΛΩ]
(i.e. where it exists), and δ(ϵ) cannot decrease as ϵ decreases,

(iii) CΛ = −∞ for each Λ > ΛΩ.

Proof. For any Σ, since |Σ| ≤ W(Σ) and W(Σ) ≥ 4π, we have:

WΛ(Σ) ≥ W(Σ)(1− Λ) ≥ 4π(1− Λ) −→ 4π Λ→ 0,

then C0 ≥ 4π. Now take r sufficiently small such that S2
r ⊂ Ω̄, then:

CΛ ≤ WΛ(S
2
r ) = 4π − 4πr2Λ −→ 4π Λ→ 0,

thus C0 ≤ 4π, and we got (i).
For Λ ∈ (0,ΛΩ) we already know from Equation (16) that in this interval the
function is positive and strictly decreasing, thus it is differentiable almost
everywhere and it has at most a finite number of jump-type discontinuities.
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Now we have:

∀Σ WΛΩ
(Σ) = lim

Λ→ΛΩ
−

WΛ(Σ),

thus:

CΛΩ
= inf

Σ⊂Ω̄
WΛΩ

(Σ) = inf
Σ⊂Ω̄

lim
Λ→ΛΩ

−

WΛ(Σ) ≥ inf
Σ⊂Ω̄

lim
Λ→ΛΩ

−

CΛ ≥ 0,

since CΛ ≥ 0 for all Λ < ΛΩ.
Now we can prove continuity from the left. Take Λ0 ∈ (0,ΛΩ) and suppose
by contradiction that there exists η > 0 such that limΛ→Λ−

0
CΛ ≥ CΛ0

+ η.
Calling (Σn) a minimizing sequence for the functional WΛ0

, we have:

CΛ0
= lim

n
WΛ0

(Σn) = lim
n

lim
Λ→Λ−

0

WΛ(Σn) ≥ lim
Λ→Λ−

0

CΛ ≥ CΛ0
+ η,

that is impossible.
We can also prove continuity from the right. Take Λ0 ∈ (0,ΛΩ) and suppose
by contradiction that there exists η > 0 such that limΛ→Λ+

0
CΛ ≤ CΛ0

− η.
Call (ΣΛ

n) a minimizing sequence for the functional WΛ. If Λ1 ∈ (Λ0,ΛΩ),
using Equation (14) we know that limn |ΣΛ

n | ≤ limn |ΣΛ1
n | ≤ L1 for any Λ ∈

(Λ0,Λ1). Therefore

CΛ0
≥ η + lim

Λ→Λ+
0

lim
n
WΛ(Σn) = η + lim

Λ→Λ+
0

lim
n
WΛ0

(ΣΛ
n) + (Λ0 − Λ)|ΣΛ

n |

≥ η + CΛ0
+ lim

Λ→Λ+
0

(Λ0 − Λ) lim
n
|ΣΛ

n |

≥ η + CΛ0
+ lim

Λ→Λ+
0

(Λ0 − Λ) lim
n
|ΣΛ1

n |

≥ η + CΛ0
+ L1 lim

Λ→Λ+
0

(Λ0 − Λ) = η + CΛ0
,

for some constant L1 ≥ limn |ΣΛ1
n |, but that is impossible.

We can also check continuity from the left in ΛΩ. In fact let us consider
a sequence Λn → ΛΩ

−, then the functions WΛn
: V := {V ∈ V2(Ω̄) : ∃HV ∈

L2
(Ω̄,µV )

} → R converge uniformly to the functionWΛΩ
: V→ R with respect

to the F-metric of V2(Ω̄) on bounded sets (i.e. bounded in mass), that is:

sup
V ∈V, M(V )≤K

|WΛn
(V )−WΛΩ

(V )|

= sup
V ∈V, M(V )≤K

|(Λn − ΛΩ)M(V )| −→ 0 n→∞,
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for all K > 0. Hence we can swap the limit with the infimum in the following
relation.

lim
Λn→ΛΩ

−

inf
Σ⊂Ω̄, |Σ|≤K

WΛn
(Σ) = inf

Σ⊂Ω̄, |Σ|≤K
lim

Λn→ΛΩ
−

WΛn
(Σ)

= inf
Σ⊂Ω̄, |Σ|≤K

WΛΩ
(Σ),

for all K ≥ 0. Hence:

(17) lim
K→∞

lim
Λn→ΛΩ

−

inf
Σ⊂Ω̄, |Σ|≤K

WΛn
(Σ) = CΛΩ

.

If we are able to swap the first two limits in (17), we are done. Let

CK,n := inf
Σ⊂Ω̄, |Σ|≤K

WΛn
(Σ) ≥ 0

Since CK,n is decreasing in the two indexes and the numbers CK,n are greater
than or equal of zero we have

inf
K
Ck,n = lim

K→∞
CK,n ≤ lim

K→∞
CK,m = inf

K
CK,m ∀n > m,

and then

inf
n

inf
K

= lim
n

inf
K
CK,n = lim

n
lim
K
CK,n.

Similarly we get

inf
K

inf
n
CK,n = lim

K
lim
n
CK,n,

and thus

lim
K

lim
n
CK,n = lim

n
lim
K
CK,n = inf

K,n
CK,n.

Using (17) we conclude that

CΛΩ
= lim

K→∞
lim

Λn→ΛΩ
−

CK,n = lim
Λn→ΛΩ

−

lim
K→∞

CK,n = lim
Λn→ΛΩ

−

CΛ.

Now using Equation (16) and reminding that CΛ is differentiable for almost
all Λ, we see that for almost all Λ the function fΛ : ϵ 7→ CΛ+ϵ is such that
f ′Λ(0) ≤ − limn |ΣΛ

n | < 0 for almost all ϵ for which fΛ is defined. Using now
Equation (14), we get f ′Λ+ϵ(0) ≤ f ′Λ(0) < 0 for almost all ϵ for which the
relation is defined. Again by Equation (14) we see that δ cannot decrease as
ϵ decreases, thus we have completed the proof of (ii). We already know that
(iii) is true by Lemma 2.6, thus we completed the proof of the theorem. □
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For the convenience of the reader let us recall the definitions:

(18) W(Σ) :=
W(Σ)

|Σ| , Λ̃Ω := inf{W(Σ) : Σ ⊂ Ω̄}.

We want to prove some results that motivate the connection between WΛΩ

and W.

Proposition 2.12. It holds that

(19) ΛΩ = Λ̃Ω.

Moreover

(i) if a minimizing sequence (Σn) for the functional W satisfies that |Σn| ≤
L for any n, then it is also minimizing for the functional WΛΩ

and
CΛΩ

= 0,

(ii) if a minimizing sequence (Σn) for the functional WΛΩ
satisfies that

|Σn| ≤ L for any n and if CΛΩ
= 0, then Σn is also a minimizing for W.

Proof. For all Σ it holds:

W(Σ) =
WΛΩ

(Σ)

|Σ| + ΛΩ ≥
CΛΩ

|Σ| + ΛΩ ≥ ΛΩ,

thus Λ̃Ω ≥ ΛΩ.
Now let us take a sequence Λn → ΛΩ

+ and surfaces Σn such thatWΛn
(Σn) ≤

0 for all n. Then:

W(Σn) ≤ Λn → ΛΩ ≤ Λ̃Ω,

thus ΛΩ = Λ̃Ω. Now we prove the remaining two statements separately.
(i) Since |Σn| ≤ L for some constant L, and we have:

0 ≤ WΛΩ
(Σn) = |Σn|(W(Σn)− ΛΩ) ≤ L(W(Σn)− Λ̃Ω) −→ 0 n→∞.

(ii) If Σn is minimizing for WΛΩ
, then |Σn| ≥ δ > 0, otherwise WΛΩ

(Σn)→
CΛΩ

≥ 4π, but CΛΩ
= 0 by hypothesis. We have:

0 ≤ δ(W(Σn)− Λ̃Ω) ≤ |Σn|(W(Σn)− ΛΩ) =WΛΩ
(Σn) −→ 0 n→∞.

Hence W(Σn)→ Λ̃Ω. □
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Let us say that a functional F : {Σ ⊂ Ω̄} → R is coercive if there exists
L > 0 such that inf F (Σ) = inf |Σ|≤L F (Σ). With this definition we see that
Proposition 2.12 shows that the fact that CΛΩ

= 0 is strictly related to the
coerciveness of W. More precisely we can state the following.

Corollary 2.13. If WΛΩ
is coercive and CΛΩ

= 0, then W is coercive. In
particular, if Ω = B1 the functional W is coercive.

Proof. The proof immediately follows by item ii) in Proposition 2.12 and by
Theorem 2.3. □

In the following examples we show that it is not possible in general to identify
the value of ΛΩ in the interval [4, 1/ϵ2Ω].

Example 2.14. Let us illustrate three examples.

(i) A first simple example is Ω = B1/2 \B1/2−ϵ with 0 < ϵ < 1/2, for

which we have 4 = ΛΩ = 1
ϵ2Ω
.

(ii) Now we construct an example in which 4 < ΛΩ = 1
ϵ2Ω
. Let us consider

1/4 < r < 1/2, δ = 1/2− r < r and let Ω = Br ∪Bδ/4

((

r + 3
4δ, 0, 0

))

.

In this case diam(Ω) = 1 but clearly ϵΩ = r < 1/2 and ΛΩ = 1
r2 = 1

ϵ2Ω
>

4.

(iii) We can also construct an example in which ΛΩ <
1
ϵ2Ω
. Let us denote by

Ea,c = {(x, y, z) ∈ R
3 : x2/a2 + y2/a2 + z2/c2 = 1}. Let us fix c = 1/2

and c− η < a < c for η > 0 sufficiently small such thatW(Ea,1/2) ≤ 10
(this is possible since when a = 1/2 we would obtain a sphere).
Now we consider Ω as the volume enclosed by Ea,1/2 except the volume
enclosed by {p− δν(p) : p ∈ Ea,1/2} with ν outer normal of Ea,1/2 and
δ << 1. For δ sufficiently small we get that ϵΩ = δ/2 and:

WΛ(Ea,1/2) ≤ 10− Λ|Ea,1/2| < 10− Λ4πa4/3
1

22/3
,

where we used the isoperimetric inequality (4π)1/332/3|A|2/3 ≤ |∂A|
for A ⊂ R

3. Finally we observe that for δ sufficiently small there exists
Λ < 1/δ2 such thatWΛ(Ea,1/2) = 0. This implies ΛΩ < 1/δ2 = 1/ϵ2Ω as
desired.

The following examples point out the strong dependence of the problems on
the geometry of the domain as it is taken unbounded. The scenario seems
to become somehow chaotic, in the sense that we did not find spontaneous
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hypotheses on an unbounded Ω under which general conclusions can be
derived.

Example 2.15. Let us take:

Ω = {(x, y, z) ∈ R
3|x2 + y2 < 1}.

Let us consider a sequence of surfaces Σn that is C1-close to Σn = S1 ∪ Cn ∪
S2 where Cn is a cylinder or radius 1 and height n, while S1 and S2 are the
two hemispheres of the standard S2 translated in a way in which Σn becomes
an admissible surface. We can arrange:

WΛ(Σn) ≤ 4π(1− Λ) +

(

1

4
− Λ

)

2πn+ δ,

for some δ > 0, where the first term is the energy of the two hemispheres
and the second one is due to the cylinder. Then WΛ(Σ) converges to −∞ as
n increases if Λ > 1/4, so ΛΩ ≤ 1/4.
Being Ω unbounded we cannot use the results obtained above, and it is also
interesting to notice that the direct method consisting of taking a mini-
mizing sequence and proving its convergence in the sense of varifolds is no
longer applicable, since in this case we apparently have no tools in order to
uniformly estimate the area of the sequence.

Considering different unbounded domains Ω the situation may degenerate,
as shown in the next example.

Example 2.16. Let us take:

Ω = {(x, y, z) ∈ R
3 : |z| < 1}.

In this case we will see that the problems become immediately trivial. Let us
consider the sequence of surfaces Σn C

1-close to σ1n ∪ σ2n ∪ Tn, where σin are
two discs of radius n with center (0, 0,−1) or (0, 0, 1) lying on the opposite
sides of ∂Ω, and Tn is the subset with positive Gaussian curvature of the
torus given by the rotation of a circumference of radius 1 at a distance n
from the axis z. We can estimate for some δ > 0 that:

WΛ(Σn) ≤ Cn− 2πΛn2 + δ −→ −∞ n→∞,

for all Λ > 0. So there is not a minimum for WΛ and the infimum of the
problem is −∞.
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Let us conclude with a further example.

Example 2.17. It is not true in general that the boundary ∂Ω of a bounded
convex domain is a minimizer for Problem (P )Ω,Λ for all Λ ≤ ΛΩ. Take for
example ∂Ω C1-close to S1 ∪ Ch ∪ S2 where S1 and S2 are translations of
the two hemispheres of the standard S2 and Ch is a cylinder of radius one
and height h. Ω is the bounded set with such boundary. We can arrange
that:

WΛ(∂Ω) ≥ WΛ(S
2) +

(

1

4
− Λ

)

2πh− δ >WΛ(S
2),

for some δ > 0 for each Λ < 1
4 − δ

2πh . Being S
2 ⊂ Ω̄ we see that the boundary

cannot be a minimizer for WΛ for all Λ ≤ ΛΩ.

3. Regularity

In this section we prove statement (iii) of Theorem A. We adopt the conven-
tion that if L is a plane in R

3, then we write u = (u1, u2, u3) ∈ Cr(Ā;L⊥),
where A ⊂ L, if u(x) ∈ L⊥ ∀x ∈ A. In this case we write:

(20) graph u = {x+ u(x)|x ∈ A}.

Let us first recall the two main tools that we will use in the proof.

Lemma 3.1 (Graphical Decomposition, [34]). Let Σ be a compact
surface without boundary with 0 ∈ Σ. Then for any β > 0 there exists ϵ0
(independent of Σ, ρ) such that if ϵ ∈ (0, ϵ0], |Σ ∩ B̄ρ| ≤ βρ2 and

´

Σ∩Bρ
|A| ≤

ϵρ, then the following holds.
There are disjoint closed sets P1, ..., PN ⊂ Σ such that:

N
∑

j=1

diam Pj ≤ Cϵ1/2ρ

and

Σ ∩Bρ/2 \
( N

⋃

j=1

Pj

)

=

( M
⋃

i=1

graph ui

)

∩Bρ/2,

where ui ∈ C∞(Āi;L
⊥
i ), with Li plane, Ai smooth bounded connected open in

Li of the form Ai = A0
i \ (∪kdi,k) where A0

i is simply connected and di,k are
closed disjoint discs in Li not intersecting ∂A

0
i and also

∑

i,k diam(di,k) ≤
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Cϵ1/2ρ,
∑

i,k |di,k| ≤ Cϵρ2.
Moreover graph ui is connected and:

sup
Ai

|ui|
ρ

+ sup
Ai

|Dui| ≤ Cϵ1/6.

If we also have
´

Bρ
|A|2 ≤ ϵ2, then in addition to the above conclusions it

holds that for every σ ∈ (ρ/4, ρ/2) such that ∂Bσ intersects Σ transversely
and ∂Bσ ∩ (∪jPj) = ∅, we have:

Σ ∩ B̄σ =

M
⋃

i=1

Dσ,i,

where each Dσ,i is homeomorphic to a disc and graph ui ∩ B̄σ ⊂ Dσ,i. Also
Dσ,i \ graph ui is a union of a subcollection of the Pj and each Pj is home-
omorphic to a disc.

Lemma 3.2 (Comparison, [31]). Let L be a plane, x0 ∈ L, u ∈
C∞(U ;L⊥) where U ⊂ L is an open neighborhood of L ∩ ∂Bρ(x0) and as-
sume |Du| ≤ C on U . Then there exists a function w ∈ C∞(Bρ(x0) ∩ L;L⊥)
such that

w = u, ∂νw = ∂νu on ∂Bρ(x0) ∩ L,
∥w∥L∞(Bρ(x0)∩L)

ρ
≤ c(n)

(∥u∥L∞(∂Bρ(x0)∩L)

ρ
+ ∥Du∥L∞(∂Bρ(x0)∩L)

)

,

∥Dw∥L∞(Bρ(x0)∩L) ≤ c(n)∥Du∥L∞(∂Bρ(x0)∩L),
ˆ

(Bρ(x0)∩L)
|D2w|2 ≤ c(n)ρ

ˆ

graph (u|L∩∂Bρ(ξ))
|A|2 dH1,

(21)

where ∂ν denotes the normal outward derivative and A is the second funda-
mental form of graph (u).

Now we can prove the regularity result. We will make use of arguments in
[34], so we will mainly focus on the differences that arise in our problem,
namely the additional area term and the confinement in Ω. The feeling is
that this method is very well applicable for functionals given by the sum of
the Willmore energy and some lower order term.

Theorem 3.3 (Regularity). If Λ > 0 is sufficiently small (depending on
Ω), then there exists an embedded surface Σ ⊂ Ω̄ of class C1,α ∩W 2,2 such
that WΛ(Σ) = CΛ. Moreover the surface Σ ∩ Ω is of class C∞.
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Let us briefly illustrate the strategy of the proof of Theorem 3.3. We are
going to consider a minimizing sequence (Σn) for the functional WΛ with
Λ < ΛΩ converging to some varifold V . For Λ small enough we will have
that W(Σn) ≤ 8π − δ and V has multiplicity 1. The analysis of the reg-
ularity of the support of V is divided into two steps. We can distinguish
finitely many points ξ1, ..., ξP ∈ suppV , called bad points, that are points
that can accumulate energy in the limit. First we will study the regularity at
points p ∈ suppV \ {ξ1, ..., ξP }, in fact around such points we will be able
to apply the Graphical Decomposition Lemma 3.1. The graphical decom-
position will be applied to any Σn of the minimizing sequence around the
same chosen point p ∈ suppV \ {ξ1, ..., ξP }; in such a way we will be able
to replace controlled pieces of Σn with comparison graphs given by Lemma
3.2. The minimizing property of the sequence (Σn) thus yields inequalities
by comparing (Σn) with the modified sequence. This will lead to the de-
cay inequality (28), that readily implies C1,α regularity around the good
point p. Then a bootstrap argument based on the elliptic equation satisfied
by critical points gives C∞ regularity of suppV \ {ξ1, ..., ξP } inside Ω and
C1,α ∩W 2,2 of suppV \ {ξ1, ..., ξP } in Ω̄. The study of the regularity around
a chosen bad point ξ is similar in the spirit, but more careful. By uniform
bounds one can identify around ξ a ball Bτ (ξ) such that the convergence
Σn → V is smooth outside such ball; controlling the oscillation of the tan-
gent planes in suitable annular regions around Σn ∩ ∂Bτ (ξ), we will replace
part of Σn ∩Bτ (ξ) with suitable controlled disks, and we will argue again
by comparison with the original minimizing sequence. This yields estimates
completely analogous to the ones of the first case, and one derives regularity
around the bad point as well.

Proof of Theorem 3.3. For Λ < ΛΩ, let us consider a minimizing sequence
(Σn) for WΛ converging in the sense of varifolds to V ∈ V(Ω̄). For a given
ϵ > 0, we say that a point ξ ∈ R

3 is a bad point if

(22) lim
ρ↘0

(

lim inf
n→+∞

ˆ

Σn∩Bρ(ξ)
|An|2

)

> ϵ2,

where An is the second fundamental form of Σn and |An| is its norm. If a
point ξ ∈ R

3 is not a bad point we then call it a good point. Now we show
that there is only a finite number of bad points.
Fix some Λ̄ < ΛΩ. We know from Remark 2.10 that there exists sequences
(ΣΛ

n) and (ΣΛ̄
n) that are minimizing respectively for the parameters Λ and
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Λ̄ and they converge in the sense of varifolds, and then:

lim
n
|ΣΛ

n | ≤ lim
n
|ΣΛ̄

n | =: m(Λ̄).

In the following we choose Λ < min
{

ΛΩ,
4π

m(Λ̄)

}

, so that Λ limn |ΣΛ
n | < 4π.

Hence, since CΛ < 4π, we get that W(ΣΛ
n) ≤ 8π − δ for n big enough and

some δ > 0. This implies that ΣΛ
n is embedded by Theorem 1.4 for n big

enough and that the genus of Σn is bounded, in fact the minimum Willmore
energy at genus g is less then 8π and converges to 8π as g →∞ (see [13]).
The above discussion has also another consequence: let gn be the genus of Σn,
then gn ∈ {0, 1, ..., ḡ} for some ḡ ∈ N big enough. Hence there is a convergent
subsequence gnj

. This means that gnj
is constant for j big enough. Then

replacing Σn with Σnj
we get a minimizing sequence that has definitely

constant genus. Hence we can assume without loss of generality that Σn has
fixed genus g for all n.
Another consequence is that, since by lower semicontinuity we haveW(V ) <
8π, then V has multiplicity 1 µV -almost everywhere by Remark 1.5.
We can apply Gauss-Bonnet Theorem to get:

1

4

ˆ

Σn

|An|2 =W(Σn)−
π

2
(2− 2g),

with g the genus of Σn (the same for all n). Being Σn minimizing, we have
that

´

Σn
|An|2 is bounded. So if N is the number of bad points related to

ϵ > 0, we get:

Nϵ2 ≤ lim inf
n

ˆ

Σn

|An|2,

giving an upper bound on N in term of ϵ.
Moreover, by modifying the minimizing sequence with small perturbations,
we can assume that Σn ⊂ Ω for every n without loss of generality.
The monotonicity formula ([34] Equation (1.3), or Appendix B in [21]) im-
plies that

(23)
|Σn ∩Bρ(p)|

ρ2
≤ 3

2
W(Σn),

for any ρ > 0 and any p ∈ Σn. Hence we can take β = 12π > 3W(Σn)
2 in

Lemma 3.1 and let ϵ0 be the corresponding number given by such lemma.
Let us fix an arbitrary ϵ ∈ (0, ϵ0); from now on we will call ξ1, ..., ξP the bad
points related to such ϵ.
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For any ξ ∈ supp(V ) \ {ξ1, ..., ξP } we can select ρ(ξ, ϵ) > 0 such that for all
ρ′ ≤ ρ(ξ, ϵ) we have

´

Σn∩Bρ′ (ξ)
|An|2 ≤ ϵ2 for infinitely many n; hence the last

part of Lemma 3.1 is applicable to Σn in Bρ′(ξ) for infinitely many n. Also
by (23) we get that there exists r ∈ (0, ρ′] such that |∂Br(p) ∩ Σn| ≤ 3βr.
Taking ρ = min{ρ′, r} we can Lemma A.1 for n large enough with θ small
enough fixed (independent of n, ϵ, ξ). We deduce that only one of the discs

D
(n)
j , for example D

(n)
1 , given by Lemma 3.1 can intersect the ball Bθρ(ξ).

Also, for infinitely many n we know that there exist a plane Ln containing
ξ and a C∞(Ω̄n) function un : Ω̄n → L⊥

n such that:

|un|
ρ

+ |Dun| ≤ Cϵ1/6,

(graph un ∪j Pn,j) ∩Bσ(ξ) = D
(n)
1 ∩Bσ(ξ),

∑

j

diam(Pn,j) ≤ Cϵ1/2ρ,
(24)

where each Pn,j is diffeomorphic to a closed disc disjoint from graph (un|Ωn
)

and σ ∈ (θρ/2, θρ) is independent of n.
Now let us consider Cσ(ξ) := {x+ y|x ∈ Bσ(ξ) ∩ Ln, y ∈ L⊥

n }; by the Selec-
tion Principle A.2 there exists a set T ⊂ (θρ/2, θρ) of measure ≥ θρ/8 such
that for each σ ∈ T we have ∂Cσ(ξ) ∩ Pn,j = ∅ for infinitely many n. Hence
for infinitely many n we can apply Lemma 3.2 on Dn

1 ∩Bσ(ξ) to get a func-
tion wn on Bσ(ξ) ∩ Ln such that:

ˆ

Ln∩Bσ(ξ)
|D2wn|2 ≤ Cσ

ˆ

Γn

|An|2 dH1,

with Γn = graph (wn|Ln∩∂Bσ(ξ)) (the integration on subsets of planes Ln is
always understood with respect to the Lebesgue measure on such planes).
Let Ãn be the second fundamental form of graph wn, in particular we have:

ˆ

graph(wn)
|Ãn|2 ≤ Cσ

ˆ

Γn

|An|2 dH1.

Note that by the estimates in Lemma 3.2, by choosing σ sufficiently small
(depending on ξ), we can assume graph wn ⊂ Ω̄. Then the C1,1 surface Σ̃n :=

(Σn \ (D(n)
1 ∩Bσ(ξ))) ∪ graph wn is such that WΛ(Σn) ≤ WΛ(Σ̃n) + ϵn for

some ϵn ↘ 0. Now we argue like in [34], except that here we have to control
the area term in the energy.
Since Σn has the same genus of Σ̃n, by the Gauss-Bonnet Theorem we also



✐

✐

“7-Pozzetta” — 2023/11/29 — 23:47 — page 431 — #25
✐

✐

✐

✐

✐

✐

Confined Willmore energy and the area functional 431

get:

ϵn +

ˆ

Σ̃n

(

1

4
|Ãn|2 − Λ

)

≥ +

ˆ

Σn

(

1

4
|An|2 − Λ

)

.

So we have that:
ˆ

D
(n)
1 ∩Bσ(ξ)

1

4
|An|2 ≤ ϵn +

ˆ

graph(wn)

1

4
|Ãn|2 dH2

+ Λ

(
ˆ

D
(n)
1 ∩Bσ(ξ)

dH2 −
ˆ

graph(wn)
dH2

)

.

Using Equations (24), let us estimate:

ˆ

D
(n)
1 ∩Bσ(ξ)

dH2 ≤
ˆ

πLn (graph(un)∩Bσ(ξ)

√

1 + |Dun|2 dL2 +
∑

j

|Pn,j |

≤
√

1 + cϵ1/3|πLn
(graph(un) ∩Bσ(ξ)|+ Cρ2

≤ (
√

1 + cϵ1/3πθ2 + C)ρ2 =:
1

4
aρ2.

Hence:
ˆ

D
(n)
1 ∩Bσ(ξ)

|An|2 ≤ 4ϵn + aρ2 +

ˆ

graph(wn)
|Ãn|2

≤ 4ϵn + aρ2 + Cσ

ˆ

Γn

|An|2 dH1.

That is:

(25)

ˆ

Σn∩Bσ(ξ)
|An|2 ≤ 4ϵn + aρ2 + Cσ

ˆ

∂(D
(n)
1 ∩Bσ(ξ))

|An|2 dH1.

Since σ was selected arbitrarily from the set T of measure ≥ θρ/8 in the
interval (θρ/2, θρ) we can arrange that:

ˆ

∂(D
(n)
1 ∩Bσ(ξ))

|An|2 dH1 ≤ 4

σ

ˆ

Σn∩Bθρ(ξ)\B θρ
2
(ξ)
|An|2

for infinitely many n. So using Equation (25), for all ρ ≤ θρ(ϵ, ξ) we get:

ˆ

Σn∩B ρ
2
(ξ)
|An|2 ≤ 4ϵn + aρ2 + C

ˆ

Σn∩Bθρ(ξ)\B θρ
2
(ξ)
|An|2.
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Adding C times the left side we obtain:

ˆ

Σn∩B ρ
2
(ξ)
|An|2 ≤ ϵn + αρ2 + γ

ˆ

Σn∩Bρ(ξ)
|An|2,

where γ = C
C+1 ∈ (0, 1) and we named ϵn and α respectively the quantities

4
C+1ϵn and a

C+1 .
Defining:

(26) ψ(ρ, ξ) := lim inf
n

ˆ

Σn∩Bρ(ξ)
|An|2,

we get the following decay relation:

(27) ψ

(

ρ

2
, ξ

)

≤ γψ(ρ, ξ) + αρ2.

Now let us observe that if ξ0 ∈ supp(V ) \ {ξ1, ..., ξP }, we can take:

ρ(ξ, ϵ) =
ρ(ξ0, ϵ)

2

for all ξ ∈ supp(V ) ∩B ρ(ξ0,ϵ)

2

(ξ0). Hence, fixed ξ0 ∈ supp(V ) \ {ξ1, ..., ξP },
Equation (27) holds for all ξ ∈ supp(V ) ∩B ρ(ξ0,ϵ)

2

(ξ0) and for all ρ ≤
θρ(ξ0, ϵ)/2 := ρ0. The constant C defining γ is the one given by Lemma
3.2, so we can choose it arbitrarily big in order to get γ = C

C+1 ∈ (1/2, 1)
and α = a

C+1 ∈ (0, 1/8). Hence given ξ0 ∈ supp(V ) \ {ξ1, ..., ξP } we can ap-
ply Corollary A.4 to get:

ψ(ρ, ξ) ≤ C
(

ρ

ρ0

)β

ψ(ρ0, ξ) ≤ C
(

ρ

ρ0

)β

ψ(ρ(ξ0, ϵ), ξ0)

∀ξ ∈ supp(V ) ∩B ρ(ξ0,ϵ)

2

(ξ0), ∀ρ ≤ ρ0 := θρ(ξ0, ϵ)/2,

(28)

for some C > 0, β ∈ (0, 1), where second inequality holds since ψ(ρ0, ξ) ≤
ψ(ρ(ξ0, ϵ), ξ0).
Hence we ultimately got the key decay relation on the second fundamental
form (the same of Equation (3.2) in [34]). So following the same arguments
in [34] (page 301) one gets that the varifold V has a multiplicity 1 tangent
plane at each point ξ ∈ supp(V ) ∩Bρ(ξ0) with a normal vector N(ξ) such
that ∥N(ξ1)−N(ξ2)∥ ≤ C|ξ1 − ξ2|α for all admissible ξ1, ξ2. Also this means
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that if U is a sufficiently small neighborhood of ξ0, we have:

µV
¬
U = H2 ¬ (Σ ∩ U),

where Σ is a C1,α surface. Moreover from (28) one gets
´

Σ∩Bρ(ξ)
H2 ≤ Cρα

for ξ that is not a bad point, and this decay implies that Σ is a C1,α ∩W 2,2

surface away from the bad points ξ1, ..., ξP .
Now we improve the regularity of Σ up to C∞ around points contained in
Ω and different from the bad ones. This will be one of the main differences
with [34] in the sense that the following argument only applies for ξ ∈ Ω.
Locally parametrizing the surface with a function w ∈ C1,α ∩W 2,2 as before,
we have that w is a critical point for the functional

´

|A|2 − Λ on the domain
of w. This implies that the first variation of the functional calculated on w
vanishes, that is:

δ

(
ˆ

graph(w)
|Aw|2 − Λ dH2

)

= δ

(
ˆ

dmn(w)

2
∑

i,j,r,s=1

(1− h)gijgrswirwjs
√
g − Λ

√
g

)

= 0,

where dmn(w) denotes the domain of w. This relation is equivalent to say
that w satisfies in the weak sense a fourth order partial differential equation
of the form:

(29) DjDs(A
ijrs(x,w,Dw)DiDrw)

+DjC
j(x,w,Dw,D2w) +B0(x,w,Dw,D2w) = 0,

where:

Cj = Bj + B̃j ,

withAijrs, Bj , B0 the coefficients given by the first variation of the functional
´

|A|2 and B̃j the ones coming from the first variation of −Λ
´

dmn(w)

√
g.

That is:

B̃j(x, z, p, q) = B̃j(p) = Λ
pj

√

1 +
∑

i p
2
i

.

We know by [34] (page 310) that the coefficients Aijrs, Bj , B0 satisfy the
hypotheses of Lemma A.5. By a simple calculation also the coefficients B̃j

satisfy the same relations, then we can apply Lemma A.5 to get w ∈ C2,α.
Hence by a bootstrap argument on Equation (29) we conclude that w ∈ C∞.
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At this point we know that supp(V ) = Σ ⊔ {ξ1, ..., ξP }, with Σ that is a
C1,α ∩W 2,2 surface (and C∞ in Ω \ {ξ1, ..., ξP }). From now on we will
rename Σ the union Σ ⊔ {ξ1, ..., ξP }, so that supp(V ) = Σ, keeping in mind
that the regularity of Σ is achieved away from the bad points.

Since we chose Λ < ΛΩ we know that CΛ > 0 and thus we can assume that
Σn is connected for any n. Together with boundedness of the Willmore
energy, this implies that the sets Σn converge to Σ in the Hausdorff distance
dH (see [34] page 310-311, or Theorem 3.4 in [21] for a detailed proof), and
hence in particular we get that Σ is connected.
Now we are going to derive the regularity also in neighborhoods of the
bad points. By the very same arguments of [34], pages 313-316, one can
find distinct points y1, ..., yM+P ∈ Σ with yM+i = ξi for i = 1, ..., P and radii
τk for k = 1, ...,M + P such that Σ ⊂ ⋃M+P

k=1 Bτk(yk) and for each k ̸= l
we have that ∂Bτk(yk) ∩ Σ and ∂Bτl(yl) ∩ Σ are either disjoint or intersect
transversely and:

∂Bτk(yk) ∩ ∂Bτl(yl) ∩ ∂Bτm(ym) ∩ Σ = ∅

for distinct k, l,m. Moreover the curves Γl :=

(

Σ \
(

⋃M+P
k=M+1Bτk(yk)

))

∩
∂Bτl(yl) for l = 1, ...,M + P divide Σ \ (∪M+P

k=M+1Bτk(yk)) into polygonal re-
gions R1, ..., RQ. And letting for all l = 1, ..., Q

Rl :=

{

x+ z|x ∈ Rl, z ∈ (TxΣ)
⊥, |z| ≤ θ δ

4

}

,

for some δ, it turns out that Σn ∩Rl is C
1,α-diffeomorphic to Rl and then

Σn \
( M+P

⋃

k=M+1

Bτk(yk)

)

is C1,α-diffeomorphic to Σ \
(

⋃M+P
k=M+1Bτk(yk)

)

for n big enough (up to

subsequence).
So we can now take surfaces Σ̃n such that:

Σ̃n \
( M+P

⋃

k=M+1

Bτk(yk)

)

, Σn \
( M+P

⋃

k=M+1

Bτk(yk)

)

, Σ \
( M+P

⋃

k=M+1

Bτk(yk)

)
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are C1,α-diffeomorphic for all n, and:

(30) Σ̃n ∩ Vk = Σn ∩ Vk ∀k =M + 1, ...,M + P

for some neighborhood Vk such that Bτk(yk) ⊂⊂ Vk ⊂⊂ B2τk(yk), and:

(31) Σ̃n \
( M+P

⋃

k=M+1

B2τk(yk)

)

= Σ \
( M+P

⋃

k=M+1

B2τk(yk)

)

∀n,

and also:

(32)

ˆ

Σ̃n∩(B2τk
(yk)\Bτk

(yk))
|Ãn|2 ≤ Cϵ2,

where Ãn is the second fundamental form of Σ̃n.
By (30) and the minimizing property of Σn we have:

ˆ

Σn\(∪
M+P
k=M+1Bτk

(yk))
|Hn|2

≤
ˆ

Σ̃n\(∪
M+P
k=M+1Bτk

(yk))
|H̃n|2 + Λ|Σn \ (∪M+P

k=M+1Bτk(yk))|

− Λ|Σ̃n \ (∪M+P
k=M+1Bτk(yk))|+ ϵn,

with ϵn → 0. Then by (31) and (32) we obtain:

ˆ

Σn\(∪
M+P
k=M+1Bτk

(yk))
|Hn|2

≤
ˆ

Σ\(∪M+P
k=M+1B2τk

(yk))
|H|2 + ϵn + Cϵ2

+ Λ
(

|Σn \ (∪M+P
k=M+1Bτk(yk))| − |Σ̃n \ (∪M+P

k=M+1Bτk(yk))|
)

.
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Using the hypotheses on the surfaces Σ̃n, let us estimate the quantity:

|Σn \ (∪M+P
k=M+1Bτk(yk))| − |Σ̃n \ (∪M+P

k=M+1Bτk(yk))|
≤ |Σn \ (∪M+P

k=M+1B2τk(yk))| − |Σ \ (∪M+P
k=M+1B2τk(yk))|

+

M+P
∑

k=M+1

|Σn ∩B2τk(yk) \ (Bτk(yk) ∪ Vk)|

− | ∪M+P
k=M+1 Σ̃n ∩B2τk(yk) \ (Bτk(yk) ∪ Vk)| ≤

≤ |Σn \ (∪M+P
k=M+1B2τk(yk))| − |Σ \ (∪M+P

k=M+1B2τk(yk))|

+

M+P
∑

k=M+1

|Σn ∩B2τk(yk) \ (Bτk(yk) ∪ Vk)|

≤ |Σn \ (∪M+P
k=M+1B2τk(yk))| − |Σ \ (∪M+P

k=M+1B2τk(yk))|

+

M+P
∑

k=M+1

|Σn ∩B2τk(yk)|.

Since this is true for all ϵ > 0, we get:

ˆ

Σn\(∪
M+P
k=M+1Bτk

(yk))
|Hn|2

≤
ˆ

Σ\(∪M+P
k=M+1B2τk

(yk))
|H|2 + ϵn

+ Λ

(

|Σn \ (∪M+P
k=M+1B2τk(yk))| − |Σ \ (∪M+P

k=M+1B2τk(yk))|

+

M+P
∑

k=M+1

|Σn ∩B2τk(yk)|
)

.

Since we already know that by the convergence of varifolds we also have
|Σn| →M(Σ) = |Σ|, then we get:

lim sup
n

ˆ

Σn\(∪
M+P
k=M+1Bτk

(yk))
|Hn|2 ≤

ˆ

Σ\(∪M+P
k=M+1B2τk

(yk))
|H|2

+ lim sup
n

Λ

(

|Σn \ (∪M+P
k=M+1B2τk(yk))| − |Σ \ (∪M+P

k=M+1B2τk(yk))|

+

M+P
∑

k=M+1

|Σn ∩B2τk(yk)|
)
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=

ˆ

Σ\(∪M+P
k=M+1B2τk

(yk))
|H|2 + Λ

M+P
∑

k=M+1

|Σ ∩B2τk(yk)|.

Hence finally:

lim
σ↘0

lim sup
n

ˆ

Σn\(∪
M+P
k=M+1Bσ(yk))

|Hn|2(33)

≤ lim
σ↘0

ˆ

Σ\(∪M+P
k=M+1Bσ(yk))

|H|2 =
ˆ

Σ
|H|2.

Combining this with the natural lower semicontinuity of the Willmore func-
tional under varifold convergence, we establish that:

(34) |Hn|2H2 ¬Σn −→ |H|2H2 ¬Σ

as measures on the domain R
3 \ {ξ1, ..., ξP }.

Moreover, with the above notation, we have by the Gauss-Bonnet The-
orem that:

ˆ

Σ̃n\(∪
M+P
k=M+1Bτk

(yk))
|H̃n|2 −

ˆ

Σn\(∪
M+P
k=M+1Bτk

(yk))
|Hn|2

=
1

4

(
ˆ

Σ̃n\(∪
M+P
k=M+1Bτk

(yk))
|Ãn|2 −

ˆ

Σn\(∪
M+P
k=M+1Bτk

(yk))
|An|2

)

,

then same conclusions hold for the second fundamental form, that is:

(35) lim
σ↘0

lim sup
n

ˆ

Σn\(∪
M+P
k=M+1Bσ(yk))

|An|2 ≤
ˆ

Σ
|A|2,

and:

(36) |An|2H2 ¬Σn −→ |A|2H2 ¬Σ

as measures on the domain R
3 \ {ξ1, ..., ξP }.

Finally we prove the claimed regularity of the varifold Σ, that is regularity in
the bad points. According to the above discussion, let us sum up some useful
results. For each δ > 0 sufficiently small there is σ ∈ (δ/2, δ) such that:

(37) lim sup
n

ˆ

Σn∩(∪P
i=1B2σ(ξi)\Bσ(ξi))

|An|2 ≤ δ2,
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(38) Σn \
( P
⋃

i=1

Bσ(ξi)

)

is C1,α-diffeomorphic to Σ \
( P
⋃

i=1

Bσ(ξi)

)

,

(39)

∣

∣

∣

∣

W
(

Σn \
( P
⋃

i=1

Bσ(ξi)

))

−W(Σ)

∣

∣

∣

∣

≤ δ2.

In particular choosing appropriate δn ↘ 0 and then σn ∈ (δn/2, δn), for all
i = 1, ..., P we have:

(40) lim
n
W

(

Σn \
( P
⋃

i=1

Bσn
(ξi)

))

=W(Σ).

By Equation (38) we have that for σ small enough Σ ∩B2σ(ξi) \Bσ(ξi) is
C1-close to an annulus Li ∩B2σ(ξi) \Bσ(ξi). Hence we can take a smooth
compact surface Σ̃ such that, for suitable points y1, ..., yp ∈ Σ̃ and sufficiently
small σ, Σ̃ \ (∪Pi=1Bσ(yi)) is C

1,α-diffeomorphic to Σ \ (∪Pi=1Bσ(ξi)) and such
that, for σ = σn as above small enough, it is possible to replace Σ̃ ∩Bσn

(yi)
by a slight deformation of Σn ∩Bσn

(ξi) followed by a rigid motion to give
(Σn ∩Bσn

(ξi))
∗ such that the surface

Σ̃n :=

(

Σ̃ \
( P
⋃

i=1

Bσn
(yi)

))

∪
( P
⋃

i=1

(

Σn ∩Bσn
(ξi)

)∗)

is C1,α ∩W 2,2 and

(41) WΛ((Σn ∩Bσn
(ξi))

∗) ≤ WΛ(Σn ∩Bσn
(ξi)) + ϵn ϵn ↘ 0.

Using the minimizing property of Σn and then (41), we have:

WΛ(Σn) =WΛ

(

Σn ∩
(

⋃

i

Bσn
(ξi)

))

+WΛ

(

Σn \
(

⋃

i

Bσn
(ξi)

))

≤ WΛ(Σ̃n) + ϵn

≤ WΛ

(

Σn ∩
(

⋃

i

Bσn
(ξi)

))

+WΛ

(

Σ̃ \
(

⋃

i

Bσn
(yi)

))

+ (P + 1)ϵn.

(42)
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Hence:

WΛ

(

Σn \
(

⋃

i

Bσn
(ξi)

))

≤ WΛ

(

Σ̃ \
(

⋃

i

Bσn
(yi)

))

+ (P + 1)ϵn,

and by (40) we get:

(43) WΛ(Σ) ≤ WΛ(Σ̃).

Analogously, using Gauss-Bonnet Theorem on the first inequality in (42),
being Σn and Σ̃n diffeomorphic, we find:

(44)

ˆ

Σ

(

|A|2 − Λ

)

≤
ˆ

Σ̃

(

|Ã|2 − Λ

)

.

Constructing Σ̃ taking a small perturbation of Σ (so that no bad points lie
on ∂Ω) and replacing Σ \Bσ(ξi) with the graph of the function given by
Lemma 3.2, by (44) we get the estimate

ˆ

Σ∩Bρ(ξi)
|A|2 ≤ cρα + Λ(|Σ ∩Bρ(ξi)| − |Σ̃ ∩Bρ(ξi)|) ≤ Cρα,

for sufficiently small ρ for some α > 0. Hence actually:

ˆ

Σ∩Bρ(y)
|A|2 ≤ Cρα

for ρ small enough and for all y ∈ Σ, now bad points included. And by
classical arguments similar to the ones applied above in the case of good
points one can show that this imply that Σ is a C1,α ∩W 2,2 surface globally
(and Σ ∩ Ω is of class C∞). In particular, arguing by approximation, we have
WΛ(Σ) ≥ CΛ and then by lower semicontinuity WΛ(Σ) = CΛ and by the
upper bound on the Willmore energy we also conclude that Σ is embedded.

□

We conclude this section with some observations on the proof of Theo-
rem 3.3.

Remark 3.4 (Smallness of Λ). The fundamental hypothesis of Theo-
rem 3.3 is to take the weight Λ sufficiently small. Observe that if CΛΩ

= 0
and if there exists a minimizing sequence (ΣΛΩ

n ) for WΛΩ
with equibounded
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areas |ΣΛΩ
n | (i.e. if W is coercive, by Corollary 2.13), then in the proof of

Theorem 3.3 we can take

(45) Λ <
4π

m(ΛΩ)
,

with

(46) m(ΛΩ) = lim
n
|ΣΛΩ

n |,

This estimate is sufficient for completing the proof. Of course the value of
m(ΛΩ) depends on the chosen sequence ΣΛΩ

n . It is interesting to notice that
in the case of Ω = B 1

2
, where we know that the sphere S 1

2
of radius 1/2 ia a

minimizer for ΛB 1
2

= 4, we have m(4) = |S 1

2
| = π; hence the estimate (45)

gives Λ < 4, that is precisely the critical parameter ΛB 1
2

= 4, so in this case

the estimate is sharp, excluding only the limit case of WΛΩ
.

It could be a future development to prove or disprove the convergence to an
enough regular surface for greater parameters Λ and in particular for the
critical value ΛΩ, perhaps using the more modern theory of [28].

Remark 3.5 (Regularity of the limit surface). We derived the exis-
tence of a globally C1,α ∩W 2,2 surface Σ that it is actually C∞ inside Ω,
so if we know that Σ ⊂ Ω then Σ is actually a smooth surface and hence a
classical solution of the Problem (P )Ω,Λ. Also, ∂Ω is of class C2 by hypoth-
esis, so on each relatively open set A ⊂ (Σ ∩ ∂Ω), the surface is actually C2.
However, we want to notice here that it is not obvious that Σ is globally C2.
In fact the smoothness of the surface inside Ω is obtained by the Elliptic
Regularity Lemma A.5 used on Equation (29), that is an equation given by
the first variation of a functional, so it is something like d

dtF (w + tφ)|t=0 = 0
for the appropriate functional F . While this calculation is possible inside Ω,
on ∂Ω this leads only to a variational inequality of the fourth order subject
to an obstacle boundary condition (given by the boundary of Ω), for which
the development of a regularity theory is quite more difficult. Very remark-
able results are proved in [5], where it is studied the variational inequality of
the bilaplacian ∆2 subject to obstacle boundary conditions; here it is proved
that in dimension 2 (that is also our case) the solution is C2. Of course our
case is different, since the elliptic operator is nonlinear (recall (29)), but it
is likely that we could achieve the same conclusion, having then Σ of class
C2 globally and C∞ inside Ω (hence getting a classical minimizer for the
variational problem). This can be another possible development of the work,
having also an interest itself in the theory of regularity for elliptic problems.
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Appendix A. Appendix

In the Appendix we collect the technical results used in the proof of
Theorem 3.3 and some basic facts about varifold theory.

Lemma A.1 ([34]). Let Σ be a compact surface without boundary, let Bρ

be an open ball such that ∂Bρ intersects Σ transversely and Σ ∩Bρ contains
disjoint subsets Σ1,Σ2 with Σj ∩Bθρ ̸= ∅, ∂Σj ⊂ ∂Bρ and |∂Σj | ≤ βρ for
j = 1, 2, where θ ∈ (0, 12) and β > 0. Then

W(Σ) ≥ 8π − Cβθ,

with C independent of Σ, β, θ.

Lemma A.2 (Selection Principle, [34]). If δ > 0, if I ⊂ R is a bounded
interval and if Aj ⊂ I is a measurable set with measure ≥ δ for each j =
1, 2, ..., then there exists a set S ⊂ I of measure ≥ δ such that each x ∈ S
lies in Aj for infinitely many j.

Here we have the results leading to the decay estimate (28). Results of this
kind are standard, however usually stated under more general forms; since
we needed only the following more simple decay estimates, we prove such
inequalities here for the convenience of the reader.

Lemma A.3. Let f : (0, x0]→ [0,+∞) such that f(x0) > 0, f is non de-
creasing and:

f

(

x

2

)

≤ γf(x)

for all x ∈ (0, x0] for some γ ∈ (0, 1). Then there are C > 0, β ∈ (0, 1) such
that:

f(x) ≤ C
(

x

x0

)β

f(x0)

for all x ∈ (0, x0].

Proof. For all x ∈ (0, x0/2] there is n such that 2nx := x′ ∈ (x0/2, x0]. Then:

f(x) ≤ γnf(x′) = 2−n log2(1/γ)f(x′) =

(

x

x′

)log2(1/γ)

f(x′)

=

(

x

x0

)log2(1/γ)
(

x0
x′

)log2(1/γ)

f(x′) ≤ 1

γ

(

x

x0

)log2(1/γ)

f(x0).
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For all x ∈ (x0/2, x0]:

f(x) =
1

γ

(

1

2

)log2(1/γ)

f(x) ≤ 1

γ

(

x

x0

)log2(1/γ)

f(x0).

Now if log2(1/γ) < 1 we are done, otherwise, since x/x0 ≤ 1 for all x, we can
choose an arbitrary β ∈ (0, 1) and we have (x/x0)

log2(1/γ) ≤ (x/x0)
β . □

Corollary A.4. Let f : (0, x0]→ [0,+∞) such that f(x0) > 0, f is non
decreasing and:

f

(

x

2

)

≤ γf(x) + αx2

for all x ∈ (0, x0] for some γ ∈ (1/2, 1), α ∈ (0, 1/8). Then there are C >
0, β ∈ (0, 1) such that:

f(x) ≤ C
(

x

x0

)β

f(x0)

for all x ∈ (0, x0].

Proof. Let h(x) = f(x) + x2. We have:

h

(

x

2

)

= f

(

x

2

)

+
x2

4
≤ γf(x) +

(

α+
1

4

)

x2 ≤ γh(x).

Applying Lemma A.3 and taking a > 0 such that x20 ≤ af(x0) we obtain:

f(x) ≤ h(x) ≤ K
(

x

x0

)β

h(x0) = K

(

x

x0

)β

(f(x0) + x20) ≤ C
(

x

x0

)β

f(x0),

with C = K(1 + a). □

Lemma A.5 (Elliptic Regularity, [34]). Let β, γ, L > 0, B2 = {x ∈ R
2 :

|x| < 1} and let

u = (u1, ..., um) ∈W 2,2(B2;Rm) ∩ C1,γ(B2;Rm)

be such that |u|+ |Du| ≤ 1 and:

ˆ

B2∩{x:|x−ξ|<ρ}
|D2u|2 ≤ βρ2γ
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for each ξ ∈ B2 and ρ < 1. Moreover suppose that u is a weak solution of
the system:

DjDs(A
ijrs
αβ (x, u,Du)DiDru

β)

+DjB
j
α(x, u,Du,D

2u) +B0
α(x, u,Du,D

2u) = 0

where Aijrs
αβ = Aijrs

αβ (x, z, p) and Bj
α = Bj

α(x, z, p, q) satisfy:

∑

i,j,r,s,α,β

Aijrs
αβ ξ

α
ijξ

β
rs ≥ L−1

∑

i,j,α

|ξαij |2,

|Aijrs
αβ (x, z, p)| ≤ L, |D(x,z,p)A

ijrs
αβ (x, z, p)| ≤ L,

|Bj
α(x, z, p, q)|+ |D(x,z,p)B

j
α(x, z, p, q)| ≤ L(1 + |q|2),

|DqB
j
α(x, z, p, q)| ≤ L(1 + |q|),

for all |z|+ |p| ≤ 1 where DPF means the tensor of all first derivatives with
respect to the variables P .
Then u ∈W 3,2

loc (B
2) ∩ C2,α.

Finally, we list some facts about theory of varifolds that we used in the work.

Theorem A.6 (Compactness of Varifolds, [1] and [33]). Let Vn =
v(Mn, θn) be a sequence of 2-rectifiable varifolds in U ⊂ R

3 open such that:

(1) sup
n
µVn

(W ) + ||δVn||(W ) < +∞ ∀W ⊂⊂ U,

(2) ∃Θ(Vn, x) ≥ 1 on U \An : µVn
(An ∩W )→ 0 ∀W ⊂⊂ U,

where µV denotes the Radon measure on U induced by a varifold V and
δV is its first variation, and where Θ(V, x) := limr↘0

µV (Br(x))
πr2 . Then there

exists a subsequence Vnk
converging to a rectifiable varifold V with locally

bounded first variation with the properties that:

∃Θ(µV , x) ≥ 1 µV -ae in U,

lim inf
n
||δVn||(W ) ≥ ||δV ||(W ) ∀W ⊂⊂ U.

Moreover if each Vnk
is integer, then V is integer too.

Remark A.7. It is very important to observe that if in Theorem A.6 the
varifolds Vn are integer, then the hypothesis (2) is automatically satisfied
(with sets such that µVn

(An) = 0).
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Also, we remind the concept of F-metric ([23], page 66) used in the proof of
Theorem 2.11, defined as follows.

Definition A.8. The F-metric on V2(U), that is the set of 2-rectifiable
integer varifolds with support contained in the open U ⊂ R

3, is defined as:

F(V,W ) = sup{V (f)−W (f) : f ∈ Cc(Gn(R
n+k)),(A.1)

|f | ≤ 1, Lip(f) ≤ 1}.

And we have the useful:

Lemma A.9 ([23], page 66). In sets V2(U) ∩ {V : M(V ) ≤ C < +∞}
with U ⊂ R

n+k open, the convergence of varifolds is equivalent to the con-
vergence in the F-metric.
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