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1. Introduction

In several complex variables, one of the most fundamental question asks
that whether there is a biholomorphic map between two given domains in
Cn. When n = 1, the Riemann mapping theorem tells us that any simply
connected domain in C is holomorphically equivalent to either C or the unit
disk. However, in higher dimension case, there are lots of domains which

The second author is supported by NSFC Grant (11531007), Tsinghua Uni-
versity start-up fund as well as Tsinghua University Education Foundation fund
(042202008). He is grateful to National Center for Theoretical Sciences (NCTS) for
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is topologically equivalent to the ball but not holomorphic equivalent to
the ball, for example, ∆n = {(z1, · · · , zn) | |zi| < 1}. About 100 years ago,
Poincaré observed that the interior complex structure of a domain D in
Cn is close related to the partial complex structure of its boundary ∂D,
which is called the CR structure. This structure was studied systematically
by Cartan [Ca] and later by Chern and Moser [CM], Tanaka [Ta], Webster
[We], etc. A fundamental result by the work of Fefferman [Fe] asserts that a
biholomorphic mapping between two bounded smooth strictly pseudoconvex
domains induces a CR-equivalence between their boundaries. Therefore, two
bounded smooth strongly pseudoconvex domains in Cn are holomorphic
equivalent if and only if their boundaries are CR equivalent.

However, the fundermental question that whether two given strictly
pseudoconvex CR manifolds are CR equivalent is still unsolved. In 1974,
Boutel de Monvel [Bo] (see also Kohn [Ko]) proved that any compact strictly
pseudoconvex CR manifold of dimension ≥ 5 can be embedded in CN for
N large enough. A beautiful result by Harvey-Lawson [HL] asserts that any
embeddable strongly pseudoconvex CR manifold is the boundary of a com-
plex variety with only isolated normal singularity, which is called the Stein
filling of the CR manifold. One can use the structures of singularities in the
Stein fillings to distinguish the structures of the CR manifolds (see Theorem
3.1 of [Ya]). Hence if two CR manifolds bound non-isomorphic singularities,
then they are not CR equivalent. However, when two CR manifolds bound
isomorphic singularities, i.e. they lie on the same variety V , it is difficult
to distinguish them, or equivalently, distinguish the singular domains they
bound. If V is smooth, this difficult problem is just the classical problem
mentioned above and has been considered by many leading mathematicians.
On the other hand, if V is singular, the CR equivalence problem is wide open.
In [Ya], the second author introduced a novel method, the so called Bergman
function, to attack this problem. This is a new biholomorphic invariant for
singular varieties, which puts lots of restrictions on bioholomorphic maps.
We can use Bergman functions to construct many numerical invariants and
determine the automorphism groups of the singular varieties. Using this
new technique, Du and the second author [DY] solved the biholomorphic
equivalence problem for bounded complete Reinhardt domains in the two
dimensional An-variety. This technique can also be used to attack the equiv-
alence problem for smooth complete Reinhardt domains in Cn (see [DGY]).

In this paper, we use Bergman functions to solve the equivalence prob-
lem for bounded complete Reinhardt domains in the 3-dimensional singular
variety Ṽ = {(u1, u2, u3, u4) ∈ C4 | u1u4 = u2u3}. Biholomorphic maps be-
tween two such domains not only have to preserve Bergman functions, but
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also have to leave the variety Ṽ invariant, thus the set of biholomorphic
maps is dramatically small (see Theorem 3.5 and Theorem 3.7). Indeed, we
prove that any biholomorphic map between two such domains in Ṽ must
be the restriction of a linear automorphism of C4. This is an analogue of
Cartan’s well known result that any automorphism of a bounded circular
domain in Cn which fixes 0 must be linear.

We construct a numerical invariant νV for any bounded complete Rein-
hardt domain V in the singular variety Ṽ . If V1 is biholomorphic to V2, we
show in Theorem 4.3 that νV1

= νV2
or νV1

νV2
= 1. This invariant reflects

the symmetry of the domain. We say V is asymmetric if νV ̸= 1. In this
case the set of biholomorphic maps is much smaller. Indeed, we prove that
any biholomorphic map between two asymmetric domains must be of the
special form: permutation of coordinate modulo scalar multiplication (see
Theorem 4.2). Using this theorem we construct lots of numerical invariants
for asymmetric domains and give a sufficient and necessary condition for the
equivalence of two such domains (see Theorem 4.4).

As an application, in Theorem 5.2 and 5.4 we solve the equivalence prob-
lem of two four parameter families V k

a,b,c,d = {(u1, u2, u3, u4) ∈ C4 | u1u4 =
u2u3, a|u1|2k + b|u1|2k + c|u1|2k + d|u1|2k < ε}, where a, b, c, d > 0, ε is a
fixed positive constant and k = 1, 2. We show that

V1 = V k
a1,b1,c1,d1

≃ V1 = V k
a1,b1,c1,d1

⇐⇒ νV1
= νV2

or νV1
νV2

= 1

⇐⇒ a1d1
b1c1

=
a2d2
b2c2

or
a1d1
b1c1

=
b2c2
a2d2

for k = 1, 2.
Let M̃ be the total space of the vector bundle OP

1(−1)⊕OP
1(−1) on

P1, then M̃ is a open Calabi-Yau manifold of three dimension (i.e. the canon-
ical bundle is trivial). It is well known that if we blow down the 0-section in

M̃ to a point then we obtain the singular variety Ṽ = {u1u4 = u2u3}. That
is to say, there is a resolution map π̃ : M̃ → Ṽ such that the 0-section in
M̃ is the exceptional set. A biholomorphism between π̃−1(V1) and π̃

−1(V2)
will induce a biholomorphism between V1 and V2 (see the end of Section
4). Therefore we obtain a necessary condition for the equivalence problem
of a class of open Calabi-Yau manifolds of three dimension. However, the
equivalence of V1 and V2 may not imply that of π̃−1(V1) and π̃−1(V2) (see
Counter-Example 4.9). Thus this is not a sufficient condition.

Remark 1.1. Our Counter-Example 4.9 says that in general for 1-convex
manifoldM , there may exist two strictly pseudoconvex open subsets U1 and
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U2 containing the maximal compact analytic subset of M such that U1 and
U2 are not biholomorphic equivalent although the boundaries of U1 and U2

are CR biholomorphic equivalent.

Our paper is organized as follows. In Section 2, we recall some basic def-
initions and results about Bergman functions in [Ya] and [DY]. In Section 3,
we write down explicitly the k-th order Bergman functions for bounded com-
plete Reinhardt domains in Ṽ = {u1u4 = u2u3}. In Section 4, we introduce
the definition of asymmetric domains and determine all possible biholomor-
phisms between two asymmetric domains. Then we give a sufficient and
necessary condition for the equivalence of two such domains. In Section 5,
as an application, we solve the equivalence problem of two concrete four
parameter families.

2. Bergman function

In this section, we will recall some basic definitions and results about
Bergman functions in [Ya] and [DY].

We first recall the definition of the Bergman kernel. LetM be a complex
manifold of dimension n. Let FM be the set of all L2 integrable holomorphic
n-forms on M . Then FM is a separable complex Hilbert space under the
inner product

⟨ϕ1, ϕ2⟩M = (
√
−1)n

2

∫

M

ϕ1 ∧ ϕ2.

The corresponding norm
√

⟨ϕ, ϕ⟩M will be denote by ||ϕ||M . Let {ωi} be a
complete orthonormal basis for FM . Then

KM =
∑

ωj ∧ ωj

converges uniformly on compact subsets to a 2n-form on M , which is in-
dependent of the choice of the orthonormal basis of FM (see [Kr]). KM is
called the Bergman kernel of M .

Definition 2.1. ([Ya],[DY]) Let M be a complex manifold with a reduced

divisor E. Denote by F
(k)
M,E the set of all L2 integrable holomorphic n-forms

on M vanishing as least the k-th order on each irreducible component of E.

Let {ω(k)
j } be a complete orthonormal basis of F

(k)
M,E . The Bergman kernel
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vanishing on E of k-th order is defined to be

K
(k)
M,E =

∑
ω
(k)
j ∧ ω(k)

j .

And the k-th order Bergman function B
(k)
M,E on M is defined to be

B
(k)
M,E =

K
(k)
M,E

KM
.

The proof of the following two lemmas can be found in [Ya]. For the
convenience of readers, we will give a proof here.

Lemma 2.2. K
(k)
M,E and B

(k)
M,E are independent of the choice of the complete

orthonormal basis of F
(k)
M,E.

Proof. Let {ωi} and {ω̃i} be two complete orthonormal bases of F
(k)
M,E .

Let {αi} be a complete orthonormal base of (F
(k)
M,E)

⊥ in FM , then both
{αi} ∪ {ωi} and {αi} ∪ {ω̃i} are complete orthonormal bases of FM . Since
the Bergman kernel KM is independent of the choice of the complete or-
thonormal basis, we have

∑
αi ∧ αi +

∑
ωi ∧ ωi =

∑
αi ∧ αi +

∑
ω̃i ∧ ω̃i.

Thus
∑
ωi ∧ ωi =

∑
ω̃i ∧ ω̃i, which implies that K

(k)
M,E and B

(k)
M,E are inde-

pendent of the choice of the complete orthonormal basis. □

Lemma 2.3. If f :M1 →M2 is boholomorphic and f(E1) = E2, where Ei
is a reduced divisor on Mi for i = 1, 2, then

f∗(B(k)
M2,E2

) = B
(k)
M1,E1

.

Proof. Let {ω(k)
j } be a complete orthonormal basis of F

(k)
M2,E2

. Since f is

biholomorphic, {f∗(ω(k)
j )} is a complete orthonormal basis of F

(k)
M1,E1

, which

implies that f∗(K(k)
M2,E2

) = K
(k)
M1,E1

. As a consequence, f∗(B(k)
M2,E2

) = B
(k)
M1,E1

.
□

Let V be a Stein variety with only one normal isolated singularity p. Let
π :M → V be a divsorial resolution of p (i.e. the exceptional set π−1(p) is
a divisor on M). Denote the exceptional divisor by E, then E is connected
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since (V, p) is normal. For convenience, we denote K
(k)
M,E (resp. B

(k)
M,E) by

K
(k)
M (resp. B

(k)
M ) in the following. Since E is compact and connected, using

the maximum principle for harmonic functions we conclude that B
(k)
M is a

constant function on E.

Definition 2.4. ([Ya],[DY]) In the above notation, the k-th order Bergman

function B
(k)
V on V is defined to be the push forward of B

(k)
M by the map π.

The argument in the proof of [LYY, Theorem 1] can be used to prove
the following lemma.

Lemma 2.5. Let M be a complex manifold with a reduced divisor E. Let
A be a submanifold of codimension ≥ 2 which is contained in E. Let π :

M̃ →M be the blow up of M along A. Then we have K
(k)

M̃
= π∗(K(k)

M ).

Consequently, B
(k)

M̃
= π∗(B(k)

M ).

Proof. Since π is birational, the map π∗ : FM → F
M̃

is injective and pre-
serves inner product. Take ω̃ ∈ F

M̃
, then ω̃ defines a n-form ω on M \A.

Since A is a submanifold of codimension ≥ 2, ω extends to a holomorphic
n-form on M . Clearly π∗(ω) = ω̃, hence π∗ is surjective.

Next we prove that π∗(F (k)
M ) = F

(k)

M̃
. It is clear that π∗(F (k)

M ) ⊆ F
(k)

M̃
.

If ω ∈ FM \ F (k)
M , then there exists a irreducible component Ei of E such

that the vanishing order of ω on Ei is less than k. Let Ẽi be the strict
transformation of Ei, then the vanishing order of π∗(ω) on Ẽi is less than k,
which implies that π∗(ω) /∈ F

(k)

M̃
. Therefore, π∗(F (k)

M ) = F
(k)

M̃
.

Let {ωi} be a complete orthonormal basis of F
(k)
M , then {π∗(ωi)} is a

complete orthonormal basis of F
(k)

M̃
. Hence

K
(k)

M̃
=
∑

π∗ωj ∧ π∗ωj = π∗(
∑

ωj ∧ ωj) = π∗(K(k)
M ).

□

Let Mi → V be two divisorial resolutions of the singularity of V . By Hiron-
aka’s theorem [Hi], there exists a resolution π̃ : M̃ → V such that M̃ can be
obtained from Mi, i = 1, 2, by successive blowing up along submanifolds in

the exceptional set. In view of Lemma 2.5, B
(k)
V is independent of the choice

of resolutions.
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Theorem 2.6. ([Ya],[DY]) Let V be a Stein variety with only one nor-

mal isolated singularity p. The k-th order Bergman function B
(k)
V on V is

invariant under biholomorphic maps.

Proof. Let f : V1 → V2 be a biholomorphic morphism. Let π2 :M2 → V2 be
a divisorial resolution of V2 with the exceptional divisor E2. Consider the
base change of π2 :M2 → V2 by f

M1

□

g
//

π1

��

M2

π2

��

V1
f

// V2

.

Denote g−1(E2) by E1. Then π1 :M1 → V1 is also a divisorial resolution
of V1 with the exceptional divisor E1. Since f is biholomorphic, g :M1 →
M2 is also biholomorphic. By Lemma 2.3, we have g∗(B(k)

M2
) = B

(k)
M1

. Hence

f∗(B(k)
V2

) = f∗(π2)∗(B
(k)
M2

) = (π1)∗g∗(B
(k)
M2

) = B
(k)
V1

. □

3. Bounded complete Reinhardt domains

In this section, we will use Bergman functions to study the equivalent prob-
lem for bounded complete Reinhardt domains in the singular variety

Ṽ = {(u1, u2, u3, u4) ∈ C4 | u1u2 = u3u4}.

An explicit resolution π̃ : M̃ → Ṽ can be given in terms of coordinate
charts and transition functions as follows:

Coordinates charts: Ũ1 = C3 = {(x, y1, y2)} and Ũ2 = C3 = {(w, z1, z2)}.

Transition functions:





z1 = xy1

z2 = xy2

w = 1/x

or





y1 = wz1

y2 = wz2

x = 1/w

.

Resolution maps: π̃(x, y1, y2) = (y1, y2, xy1, xy2) and π̃(w, z1, z2) =
(wz1, wz2, z1, z2).

Exceptional set E = π̃−1(0): E ∩ Ũ1 = {y1 = y2 = 0} and E ∩ Ũ2 =
{z1 = z2 = 0}.

It is easy to see that M̃ is the total place of the vector bundle OP
1(−1)⊕

OP
1(−1) on P1 and the exceptional set E is the 0-section. However, since

E has codimension 2, π̃ : M̃ → Ṽ is not a divisorial resolution. So we need
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to consider the blow up of M̃ along E

p̃ : W̃ → M̃.

Then π̃ ◦ p̃ : W̃ → Ṽ is a divisorial resolution of Ṽ .
An open subset D ⊆ Cn is called a complete Reinhardt domain if, when-

ever (z1, · · · , zn) ∈ D, then (τ1z1, · · · , τnzn) ∈ D for any complex numbers
τj with |τj | ≤ 1.

Definition 3.1. An open subset V in the singular variety Ṽ =
{(u1, u2, u3, u4) ∈ C4 | u1u4 = u2u3} is called a bounded complete Reinhardt
domain if there exists a bounded complete Reinhardt domain D in C4 such
that V = Ṽ ∩D.

From now on, we always suppose V to be a bounded complete Reinhardt
domain in Ṽ . LetM = π̃−1(V ),W = p̃−1(M), Ui =M ∩ Ũi for i = 1, 2, π =
π̃|M :M → V and p = p̃|W :W →M .

Next we will calculate the k-th Bergman function for V . In term of the
transition functions, we have

xayb1y
c
2dx ∧ dy1 ∧ dy2 = −wb+c−azb1zc2dw ∧ dz1 ∧ dz2.

Hence for any non-negative integers a, b and c, the 3-form xayb1y
c
2dx ∧ dy1 ∧

dy2 is holomorphic on M if and only if b+ c ≥ a. Thus

{xayb1yc2dx ∧ dy1 ∧ dy2 | a, b, c ∈ Z≥0, b+ c ≥ a}(3.1)

is a complete basis of FM .

Proposition 3.2. In the above notation, let ϕabc = xayb1y
c
2dx ∧ dy1 ∧ dy2,

a, b, c ∈ Z≥0. Then { ϕabc
||ϕabc||M

| b+ c ≥ a
}

is a complete orthonormal basis of FM . As a result,

{ p∗(ϕabc)
||ϕabc||M

| b+ c ≥ a
}

is a complete orthonormal basis of FW .

Proof. We only need to prove that ⟨ϕabc, ϕdef ⟩M = 0 for any (a, b, c) ̸=
(d, e, f). Suppose V = D ∩ Ṽ , where D is a bounded Reinhardt domain in
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C4. Then (u1, u2, u3, u4) ∈ D if and only if (|u1|, |u2|, |u3|, |u4|) ∈ D. Recall
that the resolution map is given by π̃(x, y1, y2) = (y1, y2, xy1, xy2), so the

chart U1 =M ∩ Ũ1 is given by

{(x, y1, y2) ∈ C3 | (|y1|, |y2|, |x||y1|, |x||y2|) ∈ D}.

Since M \ U1 is of measure zero, we may compute integrals on M using the
(x, y1, y2) coordinate on the chart U1 alone. Hence

(3.2)

∫

M

ϕabcϕdef =
∫

(|y1|,|y2|,|x||y3|,|x||y4|)∈D
xayb1y

c
2x
dye1y

f
2dxdy1dy2dxdy1dy2.

Write x = seiδ, y1 = r1e
iθ1 and y2 = r2e

iθ2 . Then dxdx = (−2i)sdsdδ,
dy1dy1 = (−2i)r1dr1dθ1 and dy2dy2 = (−2i)r2dr2dθ2 (here i =

√
−1). Hence

(3.3)

∫

M

ϕabcϕdef = (−2i)3
∫

(r1,r2,sr1,sr2)∈D
sa+d+1rb+e+1

1 rc+f+1
2 dsdr1dr2·

∫ 2π

0
ei(a−d)δdδ

∫ 2π

0
ei(b−e)θ1dθ1

∫ 2π

0
ei(c−f)θ2dθ2.

Since
∫ 2π
0 einxdx = 0 for any integer number n ̸= 0, the above integral is

equal to 0 for any (a, b, c) ̸= (d, e, f). □

Since p :W →M is the blow up ofM along the submanifold {y1 = y2 =
0} ∪ {z1 = z2 = 0} of codimension 2, p∗(dx ∧ dy1 ∧ dy2) vanishes on the ex-
ceptional divisor in W of order 1. Thus p∗(ϕabc) vanishes on the exceptional
divisor inW of order b+ c+ 1. By Proposition 3.2, the Bergman kernel van-

ishing on the exceptional divisor of k-th order K
(k)
W and the Bergman kernel

KW are given by

K
(k)
W = p∗(Θ(k)

M dx ∧ dy1 ∧ dy2 ∧ dx ∧ dy1 ∧ dy2)(3.4)

and

KW = p∗(Θ(0)
M dx ∧ dy1 ∧ dy2 ∧ dx ∧ dy1 ∧ dy2)(3.5)

where

Θ
(k)
M =

∑

b+c≥max{k−1,a}

|x|2a|y1|2b|y2|2c
||ϕabc||2M

.(3.6)
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Therefore, the k-th order Bergman function on W is given by

B
(k)
W = p∗

(
Θ

(k)
M

Θ
(0)
M

)
.(3.7)

Recall that the π is given by (u1, u2, u3, u4) = (y1, y2, xy1, xy2). Hence

π∗(ui11 u
i2
2 u

i3
3 u

i4
4 ) = xi3+i4yi1+i31 yi2+i42 .(3.8)

If i3 + i4 = j3 + j4, i1 + i3 = j1 + j3 and i2 + i4 = j3 + j4, then
π∗(ui11 u

i2
2 u

i3
3 u

i4
4 ) = π∗(uj11 u

j2
2 u

j3
3 u

j4
4 ) on M , which implies that

ui11 u
i2
2 u

i3
3 u

i4
4 = uj11 u

j2
2 u

j3
3 u

j4
4 on V . For example, u1u4 = u2u3 on V .

Define a equivalence relation on Z4
≥0 :

(i1, i2, i3, i4) ∼(j1, j2, j3, j4) ⇐⇒
i3 + i4 = j3 + j4, i1 + i3 = j1 + j3 and i2 + i4 = j3 + j4.

Denote by [i1, i2, i3, i4] the equivalence class of (i1, i2, i3, i4).

Theorem 3.3. In the above notations, the k-th order Bergman function for
V is given by

B
(k)
V =

Θ
(k)
V

Θ
(0)
V

,(3.9)

where

Θ
(k)
V =

∑

[i1,i2,i3,i4]∈Sk

|u1|2i1 |u2|2i2 |u3|2i3 |u4|2i4
ψV[i1,i2,i3,i4]

,(3.10)

Sk = {[i1, i2, i3, i4] ∈ Z4
≥0/ ∼| i1 + i2 + i3 + i4 ≥ k − 1},(3.11)

ψV[i1,i2,i3,i4] = ||ϕi3+i4,i1+i3,i2+i4 ||2M .(3.12)

Proof. Recall that π is given by (u1, u2, u3, u4) = (y1, y2, xy1, xy2). The con-
clusion follows from (3.6) and (3.7). □

In particular, for k = 2, using the above theorem, we have

(3.13) B
(2)
V =

Θ
(2)
V

1
ψV

[0,0,0,0]

+Θ
(2)
V

=
ψV[0,0,0,0]Θ

(2)
V

1 + ψV[0,0,0,0]Θ
(2)
V

.
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Proposition 3.4. ψV[0,0,0,0]Θ
(2)
V is invariant under biholomorphic maps.

Proof. The proposition follows from Theorem 2.6 and the equation (3.13).
□

Denote

φV[i1,i2,i3,i4] =
ψV[0,0,0,0]

ψV[i1,i2,i3,i4]
.(3.14)

Then

ψV[0,0,0,0]Θ
(2)
V =

∑

[i1,i2,i3,i4]∈S2

φV[i1,i2,i3,i4]|u1|
2i1 |u2|2i2 |u3|2i3 |u4|2i4(3.15)

where S2 = {[i1, i2, i3, i4] ∈ Z4
≥0/ ∼| i1 + i2 + i3 + i4 ≥ 1}.

For short, we denote

(3.16)
φ1
V = φV[1,0,0,0], φ2

V = φV[0,1,0,0],

φ3
V = φV[0,0,1,0], φ4

V = φV[0,0,0,1].

Theorem 3.5. Let Vi, i = 1, 2 be two bounded complete Reinhardt domains
in Ṽ = {(u1, u2, u3, u4) ∈ C4 | u1u4 = u2u3}. Suppose that Ψ : V1 → V2 is a
biholomorphic map, then Ψ is the restriction of a linear map ℓ : C4 → C4,
that is to say, Ψ is given by

Ψ(u1, u2, u3, u4) = (

4∑

i=1

a1iui,

4∑

i=1

a2iui,

4∑

i=1

a3iui,

4∑

i=1

a4iui).

Moreover, the linear map ℓ satisfies the following conditions

4∑

k=1

φkV2
|aki|2 = φiV1

for i = 1, 2, 3, 4,(3.17)

4∑

k=1

φjV2
akiakj = 0 for i ̸= j ∈ {1, 2, 3, 4},(3.18)

det(aij) ̸= 0.(3.19)
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Proof. Write Ψ = (Ψ1,Ψ2,Ψ3,Ψ4) and

Ψi(u1, u2, u3, u4) = ℓi(u1, u2, u3, u4) + fi(u1, u2, u3, u4),

where ℓi is a linear function and fi is the nonlinear part for i = 1, 2, 3, 4. By

Proposition 3.4, we have ψV1

[0,0,0,0]Θ
(2)
V1

= Ψ∗(ψV2

[0,0,0,0]Θ
(2)
V2

) on V1, i.e.,

(3.20)

4∑

i=1

φiV1
|ui|2 + higher order terms

=

4∑

i=1

φiV2
|ℓi + fi|2 + higher order terms

=

4∑

i=1

φiV2
(|ℓi|2 + |fi|2 + ℓifi + ℓifi) + higher order terms

modulo u1u4 − u2u3. Comparing (1, k)-terms for k ≥ 2 (here (p, q)-term
means apbq where ap is a monomial of degree p and bq is a monomial of
degree q), we have

4∑

i=1

φiV2
ℓifi = 0.(3.21)

Write ℓi(u1, u2, u3, u4) = ai1u1 + ai2u2 + ai3u3 + ai4u4 for i = 1, 2, 3, 4.
Since Ψ is isomorphic, we have ℓ = (ℓ1, ℓ2, ℓ3, ℓ4) induces a isomorphism be-
tween the Zariski tangent spaces of V1 and V2 at 0, which implies A = (aij)
is invertible. (3.21) implies that

4∑

j=1

(

4∑

i=1

aijφ
i
V2
fi)uj = 0.

Hence
∑4

i=1 aijφ
i
V2
fi = 0 for j = 1, 2, 3, 4. Since A = (aij) is invertible, we

have φiV2
fi=0 for all i. By the definition of φiV2

, we know that φiV2
̸= 0, which

implies that fi = 0 for i = 1, 2, 3, 4. Hence Ψ is induced by a linear map.
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Since fi = 0 for all i, (3.20) implies that

4∑

i=1

φiV1
|ui|2 + higher order terms(3.22)

=

4∑

i=1

φiV2
|ℓi|2 + higher order terms.

Substitute ℓi by ai1u1 + ai2u2 + ai3u3 + ai4u4, then by comparing the coef-
ficients of terms |ui|2 for i = 1, 2, 3, 4 and terms uiuj for i ̸= j ∈ {1, 2, 3, 4}
in (3.22), we obtain (3.17) and (3.18). □

Lemma 3.6. Let Vi, i = 1, 2 be two bounded complete Reinhardt domains in
Ṽ = {(u1, u2, u3, u4) ∈ C4 | u1u4 = u2u3}. Suppose that Ψ : V1 → V2 is a bi-
holomorphic map, then Ψ is the restriction of a linear map ℓ = (ℓ1, ℓ2, ℓ3, ℓ4) :
C4 → C4 such that

ℓ1ℓ4 − ℓ2ℓ3 = c(u1u4 − u2u3),

where c is a nonzero constant. That is to say, Ψ is given by

Ψ(u1, u2, u3, u4) = (

4∑

i=1

a1iui,

4∑

i=1

a2iui,

4∑

i=1

a3iui,

4∑

i=1

a4iui)

such that

a1ia4i − a3ia2i = 0 for i = 1, 2, 3, 4,(3.23)

a1ia4j − a2ia3j − a3ia2j + a4ia1j = 0(3.24)

for i, j ∈ {1, 2, 3, 4} such that {i, j} ≠ {1, 4}, {2, 3},
a11a44 − a21a34 − a31a24 + a41a14+(3.25)

a12a43 − a22a33 − a32a23 + a42a13 = 0.

Proof. By Theorem 3.5, Ψ is induce by a linear map ℓ = (ℓ1, ℓ2, ℓ3, ℓ4) : C
4 →

C4. Since ℓ induce a isomorphic from V1 to V2, we have

ℓ∗(u1u4 − u2u3) = (u1u4 − u2u3)g(3.26)

where g is an invertible element in the ring of convergent power series
C{u1, u2, u3, u4}. Denote the constant term of g by c, then c ̸= 0. By looking
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at the quadratic part of (3.26), we obtain

ℓ∗(u1u4 − u2u3) = c(u1u4 − u2u3).

Thus

ℓ1ℓ4 − ℓ2ℓ3 = c(u1u4 − u2u3).

Substitute ℓi by ai1u1 + ai2u2 + ai3u3 + ai4u4 and compare the coefficients,
we obtain (3.23), (3.24) and (3.25). □

Theorem 3.7. Let V1 and V2 be two bounded Reinhardt domains in
Ṽ = {(u1, u2, u3, u4) ∈ C4 | u1u4 = u2u3}. The biholomrphic map Ψ : V1 →
V2 must be of the following form

Ψ(u1, u2, u3, u4) = (

4∑

i=1

a1iui,

4∑

i=1

a2iui,

4∑

i=1

a3iui,

4∑

i=1

a4iui)

and there exist complex numbers a1, · · · , a4 and b1, · · · , b4 such that

A = (aij) =




a1b1 a1b2 a2b1 a2b2
a1b3 a1b4 a2b3 a2b4
a3b1 a3b2 a4b1 a4b2
a3b3 a3b4 a4b3 a4b4


 =

(
a1 a2
a3 a4

)
⊗
(
b1 b2
b3 b4

)
(3.27)

or

A = (aij) =




a1b1 a2b1 a1b2 a2b2
a1b3 a2b3 a1b4 a2b4
a3b1 a4b1 a3b2 a4b2
a3b3 a4b3 a3b4 a4b4


 =(3.28)

(
a1 a2
a3 a4

)
⊗
(
b1 b2
b3 b4

)
∗




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ,

where ⊗ means the Kronecker product of two matrices and ∗ means the
matrix multiplication.
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Proof. By (3.23), we have a1ia4i − a3ia2i = 0 for i = 1, 2, 3, 4. Hence there
exist (b1i, b2i) and si, ti such that

(a1i, a2i) = si(b1i, b2i), (a3i, a4i) = ti(b1i, b2i)(3.29)

for i = 1, 2, 3, 4. Note that (si, ti) ̸= (0, 0) since A = (aij) is invertible. For
i, j ∈ {1, 2, 3, 4} such that {i, j} ≠ {1, 4}, {2, 3}, by (3.24) we have

a1ia4j − a2ia3j − a3ia2j + a4ia1j = 0.(3.30)

Equations (3.29) and (3.30) imply that

(sitj − sjti)(b1ib2j − b2ib1j) = 0(3.31)

for i, j ∈ {1, 2, 3, 4} such that {i, j} ≠ {1, 4}, {2, 3}.

Claim 3.8. (a) There do not exist mutually distinct i, j, k ∈ {1, 2, 3, 4} such
that [si : ti] = [sj : tj ] = [sk : tk].

(b) There do not exist mutually distinct i, j, k ∈ {1, 2, 3, 4} such that [si :
ti], [sj : tj ] and [sk : tk] are mutually distinct.

Here [α1 : β1] = [α2 : β2] means α1β2 = α2β1.

Proof of claim 3.8. (a) Assume that there exist mutually distinct i, j, k
such that [si : ti] = [sj : tj ] = [sk : tk]. Then there exist ci, cj , ck such that
(ci, cj , ck) ̸= (0, 0, 0) and

(3.32)
cisi(bi1, bi2) + cjsj(bj1, bj2) + cksk(bk1, bk2) = 0,

citi(bi1, bi2) + cjtj(bj1, bj2) + cktk(bk1, bk2) = 0.

Equations (3.29) and (3.32) imply that

ci(ai1, ai2, ai3, ai4) + cj(aj1, aj2, aj3, aj4)

+ ck(ak1, ak2, ak3, ak4) = 0,

which contradicts the fact that A = (aij) is invertible.
(b) Assume that there exist mutually distinct i, j, k such that [si : ti],

[sj : tj ] and [sk : tk] are mutually distinct. Since i, j, k are mutually distinct,
there must be two distinct pairs {α1, β1} and {α2, β2} ⊆ {i, j, k} (α1 ̸= β1,
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α2 ̸= β2) which are not equal to {1, 4} or {2, 3}. By (3.31), we have

[b1α1
: b2α1

] = [b1β1
: b2β1

] and [b1α2
: b2α2

] = [b1β2
: b2β2

],

which implies that

[b1i : b2i] = [b1j : b2j ] = [b1k : b2k].

Thus there exists ci, cj , ck such that (ci, cj , ck) ̸= (0, 0, 0) such that

(3.33)
cib1i(si, ti) + cjb1j(sj , tj) + ckb1k(sk, tk) = 0,

cib2i(si, ti) + cjb2j(sj , tj) + ckb2k(sk, tk) = 0.

Equations (3.29) and (3.33) imply that

ci(ai1, ai2, ai3, ai4) + cj(aj1, aj2, aj3, aj4)

+ ck(ak1, ak2, ak3, ak4) = 0,

which contradicts the fact that A = (aij) is invertible. □

Returning to the proof of Theorem 3.7. By the above claim, there are three
following cases:

(1) [s1 : t1] = [s2 : t2] ̸= [s3 : t3] = [s4 : t4]. Then there exist (s, t) and
c1, c2 such that such that (s1, t1) = c1(s, t), (s2, t2) = c2(s, t) and there ex-
ists (s̃, t̃) and c̃1, c̃2 such that (s3, t3) = c̃1(s̃, t̃), (s4, t4) = c̃2(s̃, t̃). Since
[s2 : t2] ̸= [s3 : t3], we have

st̃− s̃t ̸= 0.(3.34)

By (3.31), we have [b11 : b21] = [b13 : b23] and [b12 : b22] = [b14 : b24]. Then
there exists (p, q) and d1, d2 such that such that (b11, b21) = d1(p, q),
(b13, b23) = d2(p, q) and there exists (p̃, q̃)) and d̃1, d̃2 such that (b12, b22) =
d̃1(p̃, q̃), (b14, b24) = d̃2(p̃, q̃). Since [b11 : b21] ̸= [b12 : b22] (if not then A =
(aij) is not invertible), we have

pq̃ − p̃q ̸= 0.(3.35)

Then we have

A = (aij) =




c1d1sp c2d̃1sp̃ c̃1d2s̃p c̃2d̃2s̃p̃

c1d1sq c2d̃1sq̃ c̃1d2s̃q c̃2d̃2s̃q̃

c1d1tp c2d̃1tp̃ c̃1d2t̃p c̃2d̃2t̃p̃

c1d1tq c2d̃1tq̃ c̃1d2t̃q c̃2d̃2t̃q̃


 .(3.36)
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Equations (3.25) and (3.36) imply that

c1d1spc̃2d̃2t̃q̃ − c1d1sqc̃2d̃2t̃p̃− c1d1tpc̃2d̃2s̃q̃ + c1d1tqc̃2d̃2s̃p̃

+ c2d̃1sp̃c̃1d2t̃q − c2d̃1sq̃c̃1d2t̃p− c2d̃1tp̃c̃1d2s̃q + c̃1d2t̃qc̃1d2s̃p

= (st̃− s̃t)(pq̃ − p̃q)(c1d1c̃2d̃2 − c2d̃1c̃1d2) = 0.

By (3.34) and (3.35), we have

c1d1c̃2d̃2 − c2d̃1c̃1d2 = 0.

Hence there exists (α, β) and γ1, γ2 such that (c1d1, c2d̃1) = γ1(α, β) and
(c̃1d2, c̃2d̃2) = γ2(α, β). Hence

A = (aij) =




γ1αsp γ1βsp̃ γ2αs̃p γ2βs̃p̃
γ1αsq γ1βsq̃ γ2αs̃q γ2βs̃q̃

γ1αtp γ1βtp̃ γ2αt̃p γ2βt̃p̃

γ1αtq γ1βtq̃ γ2αt̃q γ2βt̃q̃




=

(
γ1s γ2s̃

γ1t γ2t̃

)
⊗
(
αp βp̃
αq βq̃

)
.

Therefore, (3.27) holds.
(2) [s1 : t1] = [s3 : t3] ̸= [s2 : t2] = [s4 : t4]. Using a similar argument in

the case (1), we can prove that (3.28) holds.
(3) [s1 : t1] = [s4 : t4] ̸= [s2 : t2] = [s3 : t3]. Then [s1 : t1] ̸= [s2 : t2] and

[s1 : t1] ̸= [s3 : t3]. By (3.31) we obtain [b11 : b21] = [b12 : b22] = [b13 : b23],
which contradicts the fact that A = (aij) is invertible (see the argument
in the proof of Claim 3.8(b)). Hence this case will not occur. □

4. Asymmetric domains

We introduce a numerical invariant for a bounded complete Reinhardt do-
main in Ṽ which reflects the symmetry of the domain.

Definition 4.1. Let V be a bounded complete Reinhardt domain in Ṽ =
{(u1, u2, u3, u4) ∈ C4 | u1u4 = u2u3}. We define

νV =
φ1
V φ

4
V

φ2
V φ

3
V

.

We say V is asymmetric if νV ̸= 1.
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By the definition of φiV (see (3.12),(3.14) and (3.16)), we have

νV =
ψV[0,1,0,0]ψ

V
[0,0,1,0]

ψV[1,0,0,0]ψ
V
[0,0,0,1]

=
||ϕ001||2M ||ϕ110||2M
||ϕ010||2M ||ϕ101||2M

.(4.1)

The set of biholomorphic morphisms between two asymmetric domains
is dramatically small and we can determine all possible biholomorphisms.
Let G be the subgroup of the symmetric group S4 generated by three element
(1, 4), (2, 3) and (1, 2)(3, 4). Then G has eight elements:

1234, 4231, 1324, 4321, 2143, 3142, 2413, 3412,

here abcd means the element σ in G such that σ(1) = a, σ(2) = b, σ(3) =
c, σ(4) = d.

Theorem 4.2. Let V1 and V2 be two bounded Reinhardt domains in Ṽn =
{u1u4 = u2u3}. If νV1

̸= 1, then the biholomrphic map Ψ : V1 → V2 must be
of the following form

Ψ(u1, u2, u3, u4) = (c1uσ(1), c2uσ(2), c3uσ(3), c4uσ(4))(4.2)

where σ ∈ G and such that

c1c4 = c2c3(4.3)

and

φ
σ(i)
V1

= φiV2
|ci|2(4.4)

for i = 1, 2, 3, 4.

Proof. By Theorem 3.7, Ψ is given by

Ψ(u1, u2, u3, u4) = (

4∑

i=1

a1iui,

4∑

i=1

a2iui,

4∑

i=1

a3iui,

4∑

i=1

a4iui)

such that one of the following cases occurs:
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(1) A = (aij) =

(
a1 a2
a3 a4

)
⊗
(
b1 b2
b3 b4

)
. By (3.17), we have

(
|a1|2 |a3|2
|a2|2 |a4|2

)(
φ1
V2

φ2
V2

φ3
V2

φ4
V2

)(
|b1|2 |b2|2
|b3|2 |b4|2

)
=

(
φ1
V1

φ2
V1

φ3
V1

φ4
V1

)
.(4.5)

As νV1
̸= 1, we have φ1

V1
φ4
V1

− φ2
V1
φ3
V1

̸= 0. Hence φ1
V2
φ4
V2

− φ2
V2
φ3
V2

̸= 0,
|a1|2|a4|2 − |a2|2|a3|2 ̸= 0 and |b1|2|b4|2 − |b2|2|b3|2 ̸= 0.

By (3.18) we have

(
|a1|2 |a3|2
|a2|2 |a4|2

)(
φ1
V2

φ2
V2

φ3
V2

φ4
V2

)(
b1b2
b3b4

)
=

(
0
0

)
(4.6)

and

(
a1a2 a3a4

)(φ1
V2

φ2
V2

φ3
V2

φ4
V2

)(
|b1|2 |b2|2
|b3|2 |b4|2

)
=
(
0 0

)
.(4.7)

Since φ1
V2
φ4
V2

− φ2
V2
φ3
V2

̸= 0, |a1|2|a4|2 − |a2|2|a3|2 ̸= 0 and |b1|2|b4|2 −
|b2|2|b3|2 ̸= 0, we have

a1a2 = a3a4 = b1b2 = b3b4 = 0.

Hence
(
a1 a2
a3 a4

)
=

(
a1 0
0 a4

)
or

(
0 a2
a3 0

)
,(4.8)

(
b1 b2
b3 b4

)
=

(
b1 0
0 b4

)
or

(
0 b2
b3 0

)
.(4.9)

Therefore, we have

A =




a1b1 0 0 0
0 a1b4 0 0
0 0 a4b1 0
0 0 0 a4b4


 or




0 0 a2b1 0
0 0 0 a2b4

a3b1 0 0 0
0 a3b4 0 0




or




0 a1b2 0 0
a1b3 0 0 0
0 0 0 a4b2
0 0 a4b3 0


 or




0 0 0 a2b2
0 0 a2b3 0
0 a3b2 0 0

a3b3 0 0 0


 .
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(2) A = (aij) =

(
a1 a2
a3 a4

)
⊗
(
b1 b2
b3 b4

)
∗




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1.


 . By using a

similar argument in case (1), we can prove that

A =




a1b1 0 0 0
0 0 a1b4 0
0 a4b1 0 0
0 0 0 a4b4


 or




0 a2b1 0 0
0 0 0 a2b4

a3b1 0 0 0
0 0 a3b4 0




or




0 0 a1b2 0
a1b3 0 0 0
0 0 0 a4b2
0 a4b3 0 0


 or




0 0 0 a2b2
0 a2b3 0 0
0 0 a3b2 0

a3b3 0 0 0


 .

Therefore, there exists a σ ∈ G such that

Ψ(u1, u2, u3, u4) = (a1σ(1)uσ(1), a2σ(2)uσ(2), a3σ(3)uσ(3), a4σ(4)uσ(4)).

and a1σ(1)a4σ(4) = a2σ(2)a3σ(3). By (3.17), it is easy to see that φ
σ(i)
V1

=

φiV2
|aiσ(i)|2 for i = 1, 2, 3, 4. □

Theorem 4.3. Let V1 and V2 be two bounded complete Reinhardt domains
in Ṽ = {(u1, u2, u3, u4) ∈ C4 | u1u4 = u2u3} such that V1 is biholomorphic
to V2. Then νV1

= νV2
or νV1

νV2
= 1.

Proof. There are three following cases:
(1) νV1

= νV2
= 1, then the conclusion holds.

(2) νV1
̸= 1. Take a biholomorphic map Ψ : V1 → V2, then Ψ has the form

in Theorem 4.2. By (4.3) and (4.4), we have

(4.10)

φ1
V2
φ4
V2

φ2
V2
φ3
V2

=
|c1|2|c4|2
|c2|2|c3|2

φ1
V2
φ4
V2

φ2
V2
φ3
V2

=
(|c1|2φ1

V2
)(|c4|2φ4

V2
)

(|c2|2φ2
V2
)(|c3|2φ3

V2
)

=
φ
σ(1)
V1

φ
σ(4)
V1

φ
σ(2)
V1

φ
σ(3)
V1

,
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If σ = (1, 4) or (2, 3), then

φ
σ(1)
V1

φ
σ(4)
V1

φ
σ(2)
V1

φ
σ(3)
V1

=
φ1
V1
φ4
V1

φ2
V1
φ3
V1

.

If σ = (1, 2)(3, 4), then

φ
σ(1)
V1

φ
σ(4)
V1

φ
σ(2)
V1

φ
σ(3)
V1

φ1
V1
φ4
V1

φ2
V1
φ3
V1

= 1.

Since G is generated by these three elements, by the definition of νV1
and

νV2
we have

νV1
= νV2

or νV1
νV2

= 1.

(3) If νV2
̸= 1, then take a biholomorphic map Ψ′ : V2 → V1. Using a

similar argument in case (2), we obtain the conclusion. □

Next we give a criteria to see whether two asymmetric domains in Ṽ are
biholomorphic.

Theorem 4.4. Let V1 and V2 be two bounded complete Reinhardt domains
in Ṽ = {(u1, u2, u3, u4) ∈ C4 | u1u4 = u2u3} such that νV1

or νV2
̸= 1.

(1) If V1 ≃ V2, then there exists σ ∈ G such that

φ1
V2
φ4
V2

φ2
V2
φ3
V2

=
φ
σ(1)
V1

φ
σ(4)
V1

φ
σ(2)
V1

φ
σ(3)
V1

(4.11)

and

φV2

[i1,i2,i3,i4]

(φ1
V2
)i1(φ2

V2
)i2(φ3

V2
)i3(φ4

V2
)i4

(4.12)

=
φV1

[iσ−1(1),iσ−1(2),iσ−1(3),iσ−1(4)]

(φ1
V1
)iσ−1(1)(φ2

V1
)iσ−1(2)(φ3

V1
)iσ−1(3)(φ4

V1
)iσ−1(4)

for any i1, i2, i3, i4 ∈ Z4
≥0.

(2) Suppose Vi is strictly pseudoconvex with smooth boundary or pseudo-
convex with analytic boundary for i = 1, 2, then the converse of the statement
in (1) holds.
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Proof. (1) In the proof of Theorem 4.3 we have already proved (4.11) (see
(4.10)). Let Ψ : V1 → V2 be a boholomorphic map. Then Ψ must be of the
form in Theorem 4.2. By (3.15), (4.2) and (4.4), we have

(4.13)

Ψ∗(ψV2

[0,0,0,0]Θ
(2)
V2

) = Ψ∗


 ∑

[i1,i2,i3,i4]∈S2

φV2

[i1,i2,i3,i4]

4∏

k=1

|uk|2ik



=
∑

[i1,i2,i3,i4]∈S2

φV2

[i1,i2,i3,i4]

4∏

k=1

(
|ck|2ik ||uσ(k)|2ik

)

=
∑

[i1,i2,i3,i4]∈S2

φV2

[i1,i2,i3,i4]

4∏

k=1

(φ
σ(k)
V1

)ik

(φkV2
)ik

4∏

k=1

|uσ(k)|2ik

=
∑

[i1,i2,i3,i4]∈S2

φV2

[i1,i2,i3,i4]

4∏

k=1

(φkV1
)iσ−1(k)

(φkV2
)ik

4∏

k=1

|uk|2iσ−1(k) ,

(4.14)

ψV1

[0,0,0,0]Θ
(2)
V1

=
∑

[i1,i2,i3,i4]∈S2

φV1

[i1,i2,i3,i4]

4∏

k=1

(
|uk|2ik

)

=
∑

[i1,i2,i3,i4]∈S2

φV1

[iσ−1(1),iσ−1(2),iσ−1(3),iσ−1(4)]

4∏

k=1

|uk|2iσ−1(k) .

By using Proposition 3.4 and comparing the coefficients, we obtain (4.12).
(2) If there is a σ such that (4.11) and (4.12) hold. Define a automor-

phism of C4 as follows:

Ψ(u1, u2, u3, u4) =




√√√√φ
σ(1)
V1

φ1
V2

uσ(1),

√√√√φ
σ(2)
V1

φ2
V2

uσ(2),

√√√√φ
σ(3)
V1

φ3
V2

uσ(3),

√√√√φ
σ(4)
V1

φ4
V2

uσ(4)


 .

By (4.11), we have

√√√√φ
σ(1)
V1

φ1
V2

√√√√φ
σ(4)
V1

φ4
V2

=

√√√√φ
σ(2)
V1

φ2
V2

√√√√φ
σ(3)
V1

φ3
V2

.
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Denote the value of the above equality by c. Then

Ψ∗(u1u4 − u2u3) = (

√√√√φ
σ(1)
V1

φ1
V2

√√√√φ
σ(4)
V1

φ4
V2

uσ(1)uσ(4) −

√√√√φ
σ(2)
V1

φ2
V2

√√√√φ
σ(3)
V1

φ3
V2

uσ(2)uσ(3))

= c(u1u4 − u2u3).

Hence Ψ induce a automorphism of Ṽ . It follows from (4.12), (4.13)

and (4.14) that ψV1

[0,0,0,0]Θ
(2)
V1

= Ψ∗(ψV2

[0,0,0,0]Θ
(2)
V2

). Then by (3.13), we have

B
(2)
V1

(u1, u2, u3, u4) = B
(2)
V2

(Ψ(u1, u2, u3, u4)).(4.15)

Next we will prove that V1 is biholomorpohic to V2 by using a similar
argument in the proof of Theorem B in [DY]. By Fornaess’s Lemma (See
Lemma 4.7 below), there exists a dense set in the boudary of Mi such that
the Bergman kernel blows up at the points in this dense set. Hence the

Bergman function B
(2)
Vi

is equal to 1 in a dense subset of ∂Vi. Since B
(2)
Vi

< 1
in interior of Vi and Ψ preserve the level set of Bergman functions, Ψ sends
a dense sunset of ∂V1 to a dense subset of ∂V2. By continuity, Ψ sends ∂V1
to ∂V2, thus it induces a biholomorphic map from V1 to V2. □

One can find the proof of the following two lemmas for dimension 2 case
in [DY]. After small modifications we can generalize it to higher dimension
case.

Lemma 4.5. (Henkin [He], Ramirez [Ra]) Let D be a bounded strictly
pseudoconvex domain in Cn. Let p be a point in the boundary of D. Then
there exists an L2 holomorphic function on D which blows up only at p.

Proof. There exists a holomorphic function f defined on a neighborhood of
D such that f(p) = 0 and |f(q)− f(p)| ≥ |q − p|2 for any q ∈ D ([He],[Ra]).
Let F = 1

f
2n−1

4

, then

∫

D

|F |2 =
∫

D

1

|f | 2n−1

2

≤
∫

D

1

|z − p|2n−1
<∞

and F blow ups only at p. □

Remark 4.6. To find such function f as in the proof of the previous lemma,
all we need are that p is a strictly pseudoconvex boundary point and that
D has a Stein neighborhood basis.
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Lemma 4.7. (Fornaess) Let D be a pseudoconvex domain with real ana-
lytic boundary in Cn. Let E = {p ∈ ∂D | there exists g ∈ L2(D) that blows
up only at p}. Then E is dense in the boundary of D, and the Bergman
kernel of D blows up at points in E.

Proof. SinceD has a real analytic boundary, strictly pseudoconvex boundary
points are dense in ∂D. Moreover D has a Stein neighbourhood basis (see
[DF]). Therefore the lemma follows from the previous lemma and remark.

□

By Theorem 4.4, we can construct many invariants for V such that
νV ̸= 1. Define an action of G on Z4

≥0 as follows:

σ(i1, i2, i3, i4) = (iσ−1(1), iσ−1(2), iσ−1(3), iσ−1(4))

for any σ ∈ G. The action of G on Z4 naturally induces an action of G on
the ring C[xs | s ∈ Z4

≥0]:

σ(xs) = xσ(s)

for any σ ∈ G and any s ∈ Z4
≥0.

Theorem 4.8. Let V a bounded complete Reinhardt domain in Ṽ =
{(u1, u2, u3, u4) ∈ C4 | u1u4 = u2u3} such that νV ̸= 1. Let f be an invariant
polynomial in C[xs | s ∈ Z4

≥0] under the action of G. If we replace each xs
(s = (i1, i2, i3, i4) ∈ Z4

≥0) in the expression of f by

φV[i1,i2,i3,i4]

(φ1
V )

i1(φ2
V )

i2(φ3
V )

i3(φ4
V )

i4
,

then we obtain an invariant for asymmetric domains.

Proof. It follows from Theorem 4.4 directly. □

For example,

(1)
φV[1,1,1,1]

φ1
V φ

2
V φ

3
V φ

4
V

, (2)
φV[1,0,0,1]

φ1
V φ

4
V

+
φV[0,1,1,0]

φ2
V φ

3
V

,

(3)
φV[1,1,0,0]

φ1
V φ

2
V

+
φV[1,0,1,0]

φ1
V φ

3
V

+
φV[0,1,0,1]

φ2
V φ

4
V

+
φV[0,0,1,1]

φ3
V φ

4
V

are invariants for asymmetric domains.
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Recall that π̃ : M̃ → Ṽ is a resolution of Ṽ , where M̃ is the total space
of the vector bundle OP

1(−1)⊕OP
1(−1) on P1 and Ṽ = {(u1, u2, u3, u4) ∈

C4 | u1u4 = u2u3}. Denote the exceptional set in M̃ by E. Let Mi, i = 1, 2
be the pull back by π̃ of a bounded complete Reinhardt domain Vi, i = 1, 2
in Ṽ such that νV1

or νV2
̸= 1. If f :M1 →M2 is biholomorphic, then f

induces a biholomorphism between M1\E and M2\E, therefore induces a
biholomorphism between V1\0 and V2\0. Since V1 and V2 are normal and 0
has codimension 3, this biholomorphism can be extended to an isomorphism
between V1 and V2. Therefore, the condition in Theorem 4.4(1) is a necessary
condition of the equivalence between M1 and M2. However, this is not a
sufficient condition. There exists a counter example in which V1 ∼= V2 but
M1 ≇M2.

Counter-Example 4.9. Let

V1 = Ṽ ∩ {|u1|2 + 2|u2|2 + |u3|2 + |u4|2 + ϵ|u21u2|2 + ϵ|u33u4|2 < 1}

and

V2 = Ṽ ∩ {|u1|2 + 2|u2|2 + |u3|2 + |u4|2 + ϵ|u24u2|2 + ϵ|u33u1|2 < 1}.

where ϵ is sufficiently small positive number. Let V0 = Ṽ ∩ {|u1|2 + 2|u2|2 +
|u3|2 + |u4|2 < 1}. In next section we will see that νV0

̸= 1. By continuity it
follows that νV1

̸= 1 and νV2
̸= 1. Theorem 4.2 tells us that any biholomor-

phism between V1 and V2 is of the special form: permutation of coordinate
modulo scalar multiplication. Then by the definitions of V1 and V2 we can
see that the unique biholomorphism from V1 to V2 is

f(u1, u2, u3, u4) = (u4, u2, u3, u1).

Suppose there is a biholomorphism g from M1 to M2, then π̃ ◦ g = f ◦ π̃.
Recall that M̃ has two charts (x, y1, y2) and (w, z1, z2) with transition
functions y1 = wz1, y2 = wz2 and x = 1/w. π̃ is given by π̃(x, y1, y2) =
(y1, y2, xy1, xy2) and π̃(w, z1, z2) = (wz1, wz2, z1, z2). Therefore we have

g∗(x) = g∗π̃∗(u3/u1) = π̃∗f∗(u3/u1) = π̃∗(u3/u4) = (xy1)/(xy2) = y1/y2.

Note that the set of indeterminacy of x = 1/w is empty while that of y1/y2
is not empty. Thus g is not a biholomorphism, which leads to a contradition.
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5. Application

As an application, in this section we will study the equivalence problem for
two four parameter families

V k
a,b,c,d = {(u1, u2, u3, u4) ∈ C4 |

u1u4 = u2u3, a|u1|2k + b|u2|2k + c|u3|2k + d|u4|2k < ε},

where a, b, c, d > 0, ε is a fixed positive constant and k = 1, 2.

Case k = 1:
Let V = V 1

a,b,c,d ⊆ Ṽ , using formula (3.3) we have

||ϕαβγ ||2M = (
√
−1)9

∫

M

ϕαβγϕαβγ

= 23(2π)3
∫

ar21+br
2
2+c(sr1)

2+d(sr2)2<ε
s2α+1r2β+1

1 r2γ+1
2 dsdr1dr2

= 64π3
∫

(a+s2c)r21+(b+s2d)r22<ε
s2α+1r2β+1

1 r2γ+1
2 dsdr1dr2.

Wirte r̃1 = (
√
a+ s2c)r1 and r̃2 = (

√
b+ s2d)r2, then

||ϕαβγ ||2M = 64π3
∫

s≥0

∫

r̃1
2+r̃2

2<ε

s2α+1

(
r̃1√

a+ s2c

)2β+1( r̃2√
b+ s2d

)2γ+1

·

ds
dr1√
a+ s2c

dr2√
b+ s2d

= 64π3
∫ ∞

0

s2α+1

(a+ s2c)β+1(b+ s2d)γ+1
·

ds

∫

r̃1
2+r̃2

2<ε

r̃1
2β+1r̃2

2γ+1dr̃1dr̃2.

Write s̃ = s2 then

||ϕαβγ ||2M = 32π3
∫ ∞

0

s̃α

(a+ s̃c)β+1(b+ s̃d)γ+1
·

ds̃

∫

r̃1
2+r̃2

2<ε

r̃1
2β+1r̃2

2γ+1dr̃1dr̃2.

Denote

Aαβγ =

∫ ∞

0

s̃α

(a+ s̃c)β+1(b+ s̃d)γ+1
ds̃
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and

Bβγ =

∫

r̃1
2+r̃2

2<ε

r̃1
2β+1r̃2

2γ+1dr̃1dr̃2,

then ||ϕαβγ ||2 = 32π3AαβγBβγ . By calculation, we have

A000 =
1

bc− ad
ln(

bc

ad
),

A010 =

(
1

a(bc− ad)
− d

(bc− ad)2)
ln(

bc

ad
)

)
,

A001 =

(
1

b(ad− bc)
− c

(ad− bc)2)
ln(

ad

bc
)

)
,

A110 =
1

c
A000 −

a

c
A010,

A101 =
1

d
A000 −

b

d
A001.

Hence by (4.1)

νV =
||ϕ001||2M ||ϕ110||2M
||ϕ010||2M ||ϕ101||2M

=
A001A110

A010A101

=
bc(ad

bc
− 1− ln(ad

bc
))2

ad( bc
ad

− 1− ln( bc
ad
))2

.

Denote

f(x) =

{
x( 1

x
−1−ln 1

x
)2

(x−1−lnx)2 , if x ̸= 1

1, if x = 1

then νV = f( bc
ad
). It is easy to see that f(x)f(1/x) = 1 for any x > 0 and f

is continuous.

Lemma 5.1. f(x) is a strictly decreasing function when x > 0.

Proof. As f(x)f(1/x) = 1, it is enough to check that f(x) is strictly decreas-
ing when x > 1. By calculation,

f ′(x) =
( 1
x
− 1 + lnx)(−6 + 3x+ 3

x
− x lnx+ lnx

x
− (lnx)2)

(x− 1− lnx)3
.

Let

g(x) = −6 + 3x+
3

x
− x lnx+

lnx

x
− (lnx)2.
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We claim that g(x) < 0 if x > 1. Indeed, g′(x) =
(
2(x−1)
x+1 − lnx

)
(x+1)2

x2 < 0

if x > 1 and g(1) = 0. Hence g(x) < 0 for x > 1, which implies that f ′(x) < 0
if x > 1. □

Theorem 5.2. Let V1 = V 1
a1,b1,c1,d1

and V2 = V 1
a2,b2,c2,d2

. The followings are
equivalent.

(1) V1 ≃ V2;
(2) νV1

= νV2
or νV1

νV2
= 1;

(3) a1d1
b1c1

= a2d2
b2c2

or a1d1
b1c1

= b2c2
a2d2

.

Proof. (1) ⇒ (2): it follows from Theorem 4.3.
(2) ⇒ (3): If νV1

= νV2
then f( b1c1

a1d1
) = f( b2c2

a2d2
), which implies that

b1c1
a1d1

= b2c2
a2d2

since f(x) is strictly decreasing. If νV1
= 1/νV2

, then f( b1c1
a1d1

) =

1/f( b2c2
a2d2

) = f(a2d2
b2c2

), which implies that b1c1
a1d1

= a2d2
b2c2

.

(3) ⇒ (1): If a1d1
b1c1

= a2d2
b2c2

, then a1d1
a2d2

= b1c1
b2c2

. Denote p = a1d1
a2d2

= b1c1
b2c2

. Let

Ψ = (

√
a1
a2
u1,

√
b1
b2
u2,

√
c1
c2
u3,

√
d1
d2
u4).

Then

Ψ∗(u1u4 − u2u3) =

√
a1
a2

√
d1
d2
u1u4 −

√
c1
c2

√
b1
b2
u3u4 =

√
p(u1u4 − u2u3)

and

Ψ∗(a2|u1|2 + b2|u2|2 + c2|u3|2 + d2|u4|2) = a1|u1|2 + b1|u2|2 + c1|u3|2 + d1|u4|2.

Hence Ψ is a biholomorphic map from V1 to V2.
If a1d1

b1c1
= b2c2

a2d2
, then let

Ψ = (

√
b1
a2
u2,

√
a1
b2
u1,

√
d1
c2
u4,

√
c1
d2
u3).

Using a similar argument in the previous case, we can prove that Ψ is a
biholomorphic map from V1 to V2. □

Case k = 2:
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Let V = V 2
a,b,c,d ⊆ Ṽ , using formula (3.3) we have

||ϕαβγ ||2M = (
√
−1)9

∫

M

ϕαβγϕαβγ

= 23(2π)3
∫

ar41+br
4
2+c(sr1)

4+d(sr2)4<ε
s2α+1r2β+1

1 r2γ+1
2 dsdr1dr2

= 64π3
∫

(a+s4c)r41+(b+s4d)r42<ε
s2α+1r2β+1

1 r2γ+1
2 dsdr1dr2.

Write r̃1 = ( 4
√
a+ s4c)r1 and r̃2 = ( 4

√
b+ s4d)r2, then

||ϕαβγ ||2M = 64π3
∫

s≥0

∫

r̃1
4+r̃2

4<ε

s2α+1

(
r̃1

4
√
a+ s4c

)2β+1( r̃2
4
√
b+ s4d

)2γ+1

·

ds
dr1

4
√
a+ s4c

dr2
4
√
b+ s4d

= 64π3
∫ ∞

0

s2α+1

√
a+ s4c

β+1√
b+ s4d

γ+1
·

ds

∫

r̃1
4+r̃2

4<ε

r̃1
2β+1r̃2

2γ+1dr̃1dr̃2.

Write s̃ = s2 then

||ϕαβγ ||2M = 32π3
∫ ∞

0

s̃α
√
a+ s̃2c

β+1√
b+ s̃2d

γ+1
·

ds̃

∫

r̃1
4+r̃2

4<ε

r̃1
2β+1r̃2

2γ+1dr̃1dr̃2.

Denote

Aαβγ =

∫ ∞

0

s̃α
√
a+ s̃2c

β+1√
b+ s̃2d

γ+1
ds̃

and

Bβγ =

∫

r̃1
4+r̃2

4<ε

r̃1
2β+1r̃2

2γ+1dr̃1dr̃2,

then ||ϕαβγ ||2 = 32π3AαβγBβγ . By calculation, there are the following three
cases:
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(1) bc > ad, then

A010 =
1√

a
√
bc− ad

(
arctan

√
bc− ad√
ad

)
,

A001 =
1√

b
√
bc− ad

(
arctanh

√
bc− ad√
bc

)
,

A110 =
1√

c
√
bc− ad

(
arctanh

√
bc− ad√
bc

)
,

A101 =
1√

d
√
bc− ad

(
arctan

√
bc− ad√
ad

)
,

νV =
||ϕ001||2M ||ϕ110||2M
||ϕ010||2M ||ϕ101||2M

=
A001A110

A010A101

=

√
ad

(
arctanh

√
1− ad

bc

)2

√
bc

(
arctan

√
bc
ad

− 1

)2 .

(2) bc = ad, then

A010 =
1

a
√
d
, A001 =

1

b
√
c
,

A110 =
1

c
√
b
, A101 =

1

d
√
a
,

νV =
||ϕ001||2M ||ϕ110||2M
||ϕ010||2M ||ϕ101||2M

=
A001A110

A010A101
=

(
ad

bc

) 3

2

= 1.

(3) bc < ad, then

A010 =
1√

a
√
ad− bc

(
arctanh

√
ad− bc√
ad

)
,

A001 =
1√

b
√
ad− bc

(
arctan

√
ad− bc√
bc

)
,

A001 =
1√

c
√
ad− bc

(
arctan

√
ad− bc√
bc

)
,

A010 =
1√

d
√
ad− bc

(
arctanh

√
ad− bc√
ad

)
,
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νV =
||ϕ001||2M ||ϕ110||2M
||ϕ010||2M ||ϕ101||2M

=
A001A110

A010A101

=

√
ad

(
arctan

√
ad
bc

− 1

)2

√
bc

(
arctanh

√
1− bc

ad

)2 .

Define function

f(x) =





(arctanh
√

1− 1

x
)
2

√
x(arctan

√
x−1)

2 , if x > 1

1, if x = 1

(arctan
√

1

x
−1)

2

√
x(arctanh

√
1−x)2

, if x < 1

then νV = f( bc
ad
). It is easy to see that f(x)f(1/x) = 1 for any x > 0 and f

is continuous.

Lemma 5.3. f(x) is a strictly decreasing function when x > 0.

Proof. As f(x)f(1/x) = 1, it is enough to check that f(x) is strict decreasing
when x > 1. By calculation, when x > 0, we have

f ′(x) =

(
arctan

√
x−1√

1− 1

x

− 1
2arctanh

√
1− 1

x
arctan

√
x− 1− arctanh

√
1− 1

x√
x−1

)
·

arctanh
√

1− 1
x

x
√
x(arctan

√
x− 1)3

.

Let

g(x) =

(
arctan

√
x−1√

1− 1

x

− 1
2arctanh

√
1− 1

x
arctan

√
x− 1− arctanh

√
1− 1

x√
x−1

)
.

We claim that g(x) < 0 if x > 1. Indeed,

g′(x) =
(x+ 1)

√
x− 1

4(x− 1)2
√
x

(
− arctan

√
x− 1 +

1√
x
arctanh

√
1− 1

x

)
< 0

for x > 1 and g(1) = 0. Hence g(x) < 0 if x > 1, which implies that f ′(x) < 0
if x > 1. □
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Theorem 5.4. Let V1 = V 2
a1,b1,c1,d1

and V2 = V 2
a2,b2,c2,d2

. The followings are
equivalent.

(1) V1 ≃ V2;
(2) νV1

= νV2
or νV1

νV2
= 1;

(3) a1d1
b1c1

= a2d2
b2c2

or a1d1
b1c1

= b2c2
a2d2

.

Proof. (1) ⇒ (2): it follows from Theorem 4.3.
(2) ⇒ (3): If νV1

= νV2
then f( b1c1

a1d1
) = f( b2c2

a2d2
), which implies that

b1c1
a1d1

= b2c2
a2d2

since f(x) is strictly decreasing. If νV1
= 1/νV2

, then f( b1c1
a1d1

) =

1/f( b2c2
a2d2

) = f(a2d2
b2c2

), which implies that b1c1
a1d1

= a2d2
b2c2

.

(3) ⇒ (1): If a1d1
b1c1

= a2d2
b2c2

, then a1d1
a2d2

= b1c1
b2c2

. Denote p = a1d1
a2d2

= b1c1
b2c2

. Let

Ψ =

(
4

√
a1
a2
u1,

4

√
b1
b2
u2, 4

√
c1
c2
u3,

4

√
d1
d2
u4

)
.

Then

Ψ∗(u1u4 − u2u3) = 4

√
a1
a2

4

√
d1
d2
u1u4 − 4

√
c1
c2

4

√
b1
b2
u3u4 = 4

√
p(u1u4 − u2u3)

and

Ψ∗(a2|u1|4 + b2|u2|4 + c2|u3|4 + d2|u4|4)
= a1|u1|4 + b1|u2|4 + c1|u3|4 + d1|u4|4.

Hence Ψ is a biholomorphic map from V1 to V2.
If a1d1

b1c1
= b2c2

a2d2
, then let

Ψ =

(
4

√
b1
a2
u2, 4

√
a1
b2
u1,

4

√
d1
c2
u4, 4

√
c1
d2
u3

)
.

Using a similar argument in the previous case, we can prove that Ψ is a
biholomorphic map from V1 to V2. □

Corollary 5.5. Let Mk
a,b,c,d = {(x, y1, y2) ∈ C3 | a|y1|2k + b|y2|2k +

c|xy1|2k + d|xy2|2k < ε} ∪ {(w, z1, z2) ∈ C3 | a|wz1|2k + b|wz2|2k + c|z1|2k +
d|z2|2k < ε} where z1 = xy1, z2 = xy2 and w = 1/x. Then Mk

a,b,c,d is a four
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parameter family of open Calabi-Yau manifolds. We have

Mk
a1,b1,c1,d1

≃Mk
a2,b2,c2,d2

⇐⇒ a1d1
b1c1

=
a2d2
b2c2

or
a1d1
b1c1

=
b2c2
a2d2

for k = 1, 2.

Proof. =⇒: Mk
a,b,c,d is the pull back of V k

a,b,c,d by π̃ : M̃ → Ṽ . Since a biholo-

morphism betweenMk
a1,b1,c1,d1

andMk
a2,b2,c2,d2

induces a biholomorphism be-

tween V k
a1,b1,c1,d1

and V k
a2,b2,c2,d2

, it follows from Theorem 5.2 and Theorem
5.4.

⇐=: If a1d1
b1c1

= a2d2
b2c2

or a1d1
b1c1

= b2c2
a2d2

, from the proof of Theorem 5.2
and Theorem 5.4 we see that there is a biholomorphism Ψ between
V k
a1,b1,c1,d1

and V k
a2,b2,c2,d2

of the form Ψ(u1, u2, u3, u4) = (u1, u2, u3, u4) or
Ψ(u1, u2, u3, u4) = (u2, u1, u4, u3) modulo scalar multiplication. So we only
need to check that Ψ(u1, u2, u3, u4) = (u2, u1, u4, u3) induces a automor-

phism of M̃ . Indeed, it induces the following automorphism:




x = x

y1 = y2

y2 = y1

and





w = w

z1 = z2

z2 = z1

.

where (x, y1, y2) and (z, w1, w2) are two charts of M̃ with transition functions
z1 = xy1, z2 = xy2 and w = 1/x. □
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