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In this article, we use the Bergman function, which is introduced
by the second author in [Ya], to study the equivalence problem
of bounded complete Reinhardt domains in the singular variety
V = {(u1,uz,u3,us) € C* | uyug = usus}.
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In several complex variables, one of the most fundamental question asks
that whether there is a biholomorphic map between two given domains in
C™. When n = 1, the Riemann mapping theorem tells us that any simply
connected domain in C is holomorphically equivalent to either C or the unit

disk. However, in higher dimension case, there are lots of domains which
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is topologically equivalent to the ball but not holomorphic equivalent to
the ball, for example, A" = {(z1, -+ ,2yn) | |zi| < 1}. About 100 years ago,
Poincaré observed that the interior complex structure of a domain D in
C"™ is close related to the partial complex structure of its boundary 9D,
which is called the CR structure. This structure was studied systematically
by Cartan [Ca] and later by Chern and Moser [CM], Tanaka [Ta], Webster
[We], etc. A fundamental result by the work of Fefferman [Fe| asserts that a
biholomorphic mapping between two bounded smooth strictly pseudoconvex
domains induces a CR~equivalence between their boundaries. Therefore, two
bounded smooth strongly pseudoconvex domains in C™ are holomorphic
equivalent if and only if their boundaries are CR equivalent.

However, the fundermental question that whether two given strictly
pseudoconvex CR manifolds are CR equivalent is still unsolved. In 1974,
Boutel de Monvel [Bo| (see also Kohn [Ko]) proved that any compact strictly
pseudoconvex CR manifold of dimension > 5 can be embedded in CN for
N large enough. A beautiful result by Harvey-Lawson [HL] asserts that any
embeddable strongly pseudoconvex CR manifold is the boundary of a com-
plex variety with only isolated normal singularity, which is called the Stein
filling of the CR manifold. One can use the structures of singularities in the
Stein fillings to distinguish the structures of the CR manifolds (see Theorem
3.1 of [Ya]). Hence if two CR manifolds bound non-isomorphic singularities,
then they are not CR equivalent. However, when two CR manifolds bound
isomorphic singularities, i.e. they lie on the same variety V, it is difficult
to distinguish them, or equivalently, distinguish the singular domains they
bound. If V' is smooth, this difficult problem is just the classical problem
mentioned above and has been considered by many leading mathematicians.
On the other hand, if V' is singular, the CR equivalence problem is wide open.
In [Yal, the second author introduced a novel method, the so called Bergman
function, to attack this problem. This is a new biholomorphic invariant for
singular varieties, which puts lots of restrictions on bioholomorphic maps.
We can use Bergman functions to construct many numerical invariants and
determine the automorphism groups of the singular varieties. Using this
new technique, Du and the second author [DY] solved the biholomorphic
equivalence problem for bounded complete Reinhardt domains in the two
dimensional A,,-variety. This technique can also be used to attack the equiv-
alence problem for smooth complete Reinhardt domains in C" (see [DGY]).

In this paper, we use Bergman functions to solve the equivalence prob-
lem for bounded complete Reinhardt domains in the 3-dimensional singular
variety V = {(uy, ua,u3,us) € C* | uguy = ugusz}. Biholomorphic maps be-
tween two such domains not only have to preserve Bergman functions, but
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also have to leave the variety 1% invariant, thus the set of biholomorphic
maps is dramatically small (see Theorem 3.5 and Theorem 3.7). Indeed, we
prove that any biholomorphic map between two such domains in V' must
be the restriction of a linear automorphism of C*. This is an analogue of
Cartan’s well known result that any automorphism of a bounded circular
domain in C™ which fixes 0 must be linear.

We construct a numerical invariant vy for any bounded complete Rein-
hardt domain V' in the singular variety V. If V; is biholomorphic to Vs, we
show in Theorem 4.3 that vy, = vy, or vy,vy, = 1. This invariant reflects
the symmetry of the domain. We say V is asymmetric if vy # 1. In this
case the set of biholomorphic maps is much smaller. Indeed, we prove that
any biholomorphic map between two asymmetric domains must be of the
special form: permutation of coordinate modulo scalar multiplication (see
Theorem 4.2). Using this theorem we construct lots of numerical invariants
for asymmetric domains and give a sufficient and necessary condition for the
equivalence of two such domains (see Theorem 4.4).

As an application, in Theorem 5.2 and 5.4 we solve the equivalence prob-
lem of two four parameter families V(f’b#d = {(u1,uz2,uz,us) € C* | uqug =
ugug, alu|?F + blug|?* + clu1|?* + d|u1|** < €}, where a,b,c,d >0, ¢ is a
fixed positive constant and k& = 1,2. We show that

Vi = Va]j,bl,cl,dl ~V = Vakiyb17cl,d1 < Vy, = Vy, O Vy,Vy, = 1
aidy  asdy ardy  bacy

bici  baca bict  aads

for k=1,2.

Let ]\Zbe the total space of the vector bundle Op:i(—1) & Opi(—1) on
P!, then M is a open Calabi-Yau manifold of three dimension (i.e. the canon-
ical bundle is trivial). It is well known that if we blow down the 0-section in
M to a point then we obtain the singulagvvariety V= {ujug = ugug}. That
is to say, there is a resolution map 7 : M — V such that the O-section in
M is the exceptional set. A biholomorphism between 7~ 1(V3) and 7~1(V3)
will induce a biholomorphism between V; and V5 (see the end of Section
4). Therefore we obtain a necessary condition for the equivalence problem
of a class of open Calabi-Yau manifolds of three dimension. However, the
equivalence of Vi and V5 may not imply that of 7-1(V;) and 7 1(V3) (see
Counter-Example 4.9). Thus this is not a sufficient condition.

Remark 1.1. Our Counter-Example 4.9 says that in general for 1-convex
manifold M, there may exist two strictly pseudoconvex open subsets U; and
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Uj containing the maximal compact analytic subset of M such that U; and
U, are not biholomorphic equivalent although the boundaries of U; and Us
are CR biholomorphic equivalent.

Our paper is organized as follows. In Section 2, we recall some basic def-
initions and results about Bergman functions in [Ya] and [DY]. In Section 3,
we write down explicitly the k-th order Bergman functions for bounded com-
plete Reinhardt domains in V' = {ujuy = ugug}. In Section 4, we introduce
the definition of asymmetric domains and determine all possible biholomor-
phisms between two asymmetric domains. Then we give a sufficient and
necessary condition for the equivalence of two such domains. In Section 5,
as an application, we solve the equivalence problem of two concrete four
parameter families.

2. Bergman function

In this section, we will recall some basic definitions and results about
Bergman functions in [Ya] and [DY].

We first recall the definition of the Bergman kernel. Let M be a complex
manifold of dimension n. Let Fys be the set of all L? integrable holomorphic
n-forms on M. Then F); is a separable complex Hilbert space under the
inner product

(61, b2 = (V=I)™ /M é1 A n.

The corresponding norm +/{¢, @) will be denote by ||¢||as. Let {w;} be a
complete orthonormal basis for F;. Then

KM:ZW]' A wj

converges uniformly on compact subsets to a 2n-form on M, which is in-
dependent of the choice of the orthonormal basis of Fy; (see [Kr]). Ky is
called the Bergman kernel of M.

Definition 2.1. ([Ya] ,}DY]) Let M be a complex manifold with a reduced
divisor E. Denote by FJ)E the set of all L? integrable holomorphic n-forms
on M vanishing as least the k-th order on each irreducible component of E.

Let {w§k)} be a complete orthonormal basis of F ﬁ)E' The Bergman kernel
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vanishing on E of k-th order is defined to be

(k) _ (k) (k)
KM,E = Z w; AW
And the k-th order Bergman function B](\EI)E on M is defined to be

o ®)
B(k) _ "ME

M,E — KM :

The proof of the following two lemmas can be found in [Ya]. For the
convenience of readers, we will give a proof here.

Lemma 2.2. K](\?E and B](\Ij[)E are independent of the choice of the complete

orthonormal basis of Fﬁ)E.

Proof. Let {w;} and {w;} be two complete orthonormal bases of F]Ef)E.

Let {a;} be a complete orthonormal base of (}*”]Ef)E)L in Fjy, then both
{a;} U {w;} and {a;} U {&;} are complete orthonormal bases of Fy;. Since
the Bergman kernel Kj; is independent of the choice of the complete or-
thonormal basis, we have

Zai/\oTiJr Zwi/\@:Zai/\Wi—l—Zﬁi/\E.

Thus > w; Aw; = > w; A @;, which implies that K](\f,)E and B](\f[)E are inde-
pendent of the choice of the complete orthonormal basis. O

Lemma 2.3. If f: My — My is boholomorphic and f(E1) = Ea, where E;
s a reduced divisor on M; for i = 1,2, then

- k
f (BM,EJ = BM,EI'

Proof. Let {w](-k)} be a complete orthonormal basis of F ng? g, Since f is

biholomorphic, {f *(w](k))} is a complete orthonormal basis of Fjﬁ/];)’ ,» Which

implies that f* (K](\ZEz) = K](\EII)EI As a consequence, f*(BJ(\ZE2> = B](\If[lEl.

Let V be a Stein variety with only one normal isolated singularity p. Let
7: M — V be a divsorial resolution of p (i.e. the exceptional set 7—1(p) is
a divisor on M). Denote the exceptional divisor by E, then E is connected
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since (V,p) is normal. For convenience, we denote K](V[)E (resp. B( ) ) by

KJ(\? (resp. BJ(\/I)) in the following. Since F is compact and connected, using
(k)

the maximum principle for harmonic functions we conclude that B, is a
constant function on F.

Definition 2.4. ([Ya],[DY]) In the above notation, the k-th order Bergman
function B‘(/k) on V is defined to be the push forward of BJ(\? by the map =.

The argument in the proof of [LYY], Theorem 1] can be used to prove
the following lemma.

Lemma 2.5. Let M be a complex manifold with a reduced divisor E. Let
A be a submanifold of codimension > 2 which is contained in E. Let T :
M — M be the blow up of M along A. Then we have K(N) = (Kj(\fj))

Consequently, J(\A? = ﬂ*(B](\?).

Proof. Since 7 is birational, the map 7* : Fiy — Fy; is injective and pre-
serves inner product. Take w € Fy7, then w defines a n-form w on M \ A.
Since A is a submanifold of codimension > 2, w extends to a holomorphic
n-form on M. Clearly 7*(w) = W, hence 7* is surjective.

Next we prove that W*(F]Ej)) = F%). It is clear that W*(F]EZ;)) - F%).

fweFy\F ](;), then there exists a irreducible component E; of E such
that the vanishing order of w on Fj; is less than k. Let E be the strict
transformation of E;, then the vanishing order of 7*(w) on E; is less than k,
which implies that 7*(w) ¢ F]%). Therefore, 7* (F]g;)) = F]%f).

Let {w;} be a complete orthonormal basis of F]Ef), then {7*(w;)} is a
k)

complete orthonormal basis of F’ ;7 . Hence

k * Ry — E =7 k
KE]\Z) = E s wj/\ﬂ' w; =T ( wj/\wj) =m (KJ(\/[))
]

Let M; — V be two divisorial resolutions of the singularity of V. By Hiron-
aka’s theorem [Hi|, there exists a resolution 7 : M — V such that M can be
obtained from M;,7 = 1,2, by successive blowing up along submanifolds in
the exceptional set. In view of Lemma, 2.5, B‘(/k ) is independent of the choice
of resolutions.
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Theorem 2.6. ([Yal,[DY]) Let V' be a Stein variety with only one nor-
mal isolated singularity p. The k-th order Bergman function B‘(,k) onV is
mwvariant under biholomorphic maps.

Proof. Let f: Vi — V5 be a biholomorphic morphism. Let mo : My — V5 be
a divisorial resolution of V5 with the exceptional divisor F5. Consider the
base change of my : My — V5 by f

M14g>M2 .

lﬂ'l O \Lﬂ'Q
/

Vi——V,

Denote g~ !(Es) by Ej. Then 71 : My — Vi is also a divisorial resolution
of V; with the exceptional divisor F;. Since f is biholomorphic, g : M; —
Ms> is also biholomorphic. By Lemma 2.3, we have g*(B](\Z) = B](\flz Hence

(B = f*(m)-(Byy) = (m)g"(By) = By O
3. Bounded complete Reinhardt domains

In this section, we will use Bergman functions to study the equivalent prob-
lem for bounded complete Reinhardt domains in the singular variety

V= {(Ul,’LLQ,’LLg,U4) € (C4 ‘ Uiug = U3U4}.

An explicit resolution 7 : M — V can be given in terms of coordinate
charts and transition functions as follows: N
Coordinates charts: Uy = C3 = {(,y1,92)} and Uy = C? = {(w, 21, 22) }.

21 = Ty Y1 = wz
Transition functions: Z9g = XYz  Or Yo = W22 .
w=1/x x=1/w

Resolution maps: 7(z,y1,y2) = (Y1, Y2, Ty1, xy2) and 7(w,z1,22) =
(’LUZl,WZQ,Zl,ZQ). - .

Exceptional set E=7"1(0): ENU; ={y1 =y =0} and ENUs =
{21 = 29 = O}. _

It is easy to see that M is the total place of the vector bundle Op:(—1) @
Opi(—1) on P! and the exceptional set F is the 0-section. However, since
E has codimension 2, 7 : M — V is not a divisorial resolution. So we need
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to consider the blow up of M along F

Then Top: W — V is a divisorial resolution of V.

An open subset D C C" is called a complete Reinhardt domain if, when-
ever (21, ,2,) € D, then (1121, ,Th2,) € D for any complex numbers
7; with |7 < 1.

Definition 3.1. An open subset V in the singular variety V=
{(u1,uz,us,us) € C*| uyug = ugus} is called a bounded complete Reinhardt
domain if there exists a bounded complete Reinhardt domain D in C* such
that V=V ND.

From now on, we always suppose V' to be a bounded complete Reinhardst
domainin V.Let M =7 Y(V), W =p Y (M), U; = M NU; fori=1,2, 7 =
Tl : M —Vand p=plw: W — M.

Next we will calculate the k-th Bergman function for V. In term of the
transition functions, we have

2 8ySdx A dyy A dys = —wPTe702825dw A dzy A dzs.

Hence for any non-negative integers a, b and ¢, the 3-form x“yll’ygdx Adyr A
dyo is holomorphic on M if and only if b 4+ ¢ > a. Thus

(3.1) {z%ybySdx A dyy Adys | a,b,c € Zso,b+ ¢ > a}
is a complete basis of F)y.

Proposition 3.2. In the above notation, let ¢pgpe = xayll’ygd:c A dyr A dyoa,

a,b,c € Z>o. Then
{7%“ |b+c> a}
HQZ)abc”M
is a complete orthonormal basis of Fyr. As a result,

p*(¢abc)
D Gabe) 1,
{10 +e2a}

is a complete orthonormal basis of Fyy .

Proof. We only need to prove that (Pabe, Pdef)m = 0 for any (a,b,c) #
(d,e, f). Suppose V.= DNV, where D is a bounded Reinhardt domain in



Bergman functions and the equivalence problem 457

C*. Then (u1,us,us,uq) € D if and only if (|uy, |ual, |us|, |us]) € D. Recall
that the resolution map is given by 7(z,y1,¥y2) = (y1, Y2, TY1, Ty2), so the
chart Uy = M N U, is given by

{(@,y1,92) € C* | (lysl lyel. [l llly2]) € D}.

Since M \ Uj is of measure zero, we may compute integrals on M using the
(x,y1,y2) coordinate on the chart U; alone. Hence

(32) /M ¢abc¢d76f =

/ x“yll’ygxdyfyg dxdyy dysdzdy, dys.
(ly1llyzls|zllysl, |zl |lys) €D

Write 2 = se, y = et and yy = roe?2. Then dxdr = (—21)sdsdd,
dy1dy; = (—2i)r1dridf; and dyadys = (—2i)radradfs (here i = /—1). Hence

(33) / ¢abc¢def = (_Qi)S/ Sa+d+1’l“l1)+e+1’l°g+f+1deTldTQ~
M (r1,r2,871,8m2)ED

21 2 27
/ gila—d)s g5 / b= g, / Gile=1)0: g,
0 0 0

Since fo% emdxr =0 for any integer number n # 0, the above integral is
equal to 0 for any (a, b, c) # (d, e, f). O

Since p : W — M is the blow up of M along the submanifold {y; = y, =
0} U {z1 = 22 = 0} of codimension 2, p*(dz A dyi A dyz) vanishes on the ex-
ceptional divisor in W of order 1. Thus p*(¢ap.) vanishes on the exceptional
divisor in W of order b + ¢ + 1. By Proposition 3.2, the Bergman kernel van-
ishing on the exceptional divisor of k-th order K‘(,I; and the Bergman kernel
Ky are given by

(3.4) K = pr©Wda A dyr A dys A dT A dyr A dyz)
and
(3.5) Ky = p*(©Dda A dyy A dya A dT A dii A d)
where

k |[**[y1 |**y2|*
(3.6) ol = 3 L 21 s £

2
b+c>max{k—1,a} | ’Qbabc‘ |M



458 B. Chen and S. S.-T. Yau

Therefore, the k-th order Bergman function on W is given by

o®

(3.7) B = p* | AL ).
NG
M

Recall that the 7 is given by (u1,ug, us, us) = (y1,y2, TY1, xy2). Hence

i1, 02,13 i3+ 11413, ta+14

(3.8) T (U1 Uy Us u4 )= Y1 Yo

If d3+ig=ygs+js, d1+iz=j1+J3 and ds+i4=7J3+7js, then

T (uzllulju?%) T (u{luézuégui“) on M, which implies that
1,02, 13 Ji, J2, Js, Ja

uuguuy = uptuy wswy' on V. For example, ujuy = ugug on V.
Define a equivalence relation on Z4 :

(i1,142,13,14) ~(J1, J2, J3, J4) <=
13 + 14 = J3 + Ja, i1 + 13 = J1 + j3 and iz + 14 = j3 + J4.

Denote by [i1,1i9,13,14] the equivalence class of (i1,1i9,13,14).

Theorem 3.3. In the above notations, the k-th order Bergman function for
V' is given by

o)
(3.9) BY = @(‘VE),
where
(k) |u1|2i1|u2’2i2|U3’2i3|U4‘2i4
(10 o [i1 ,izgl}esk [‘i/lvizvis,id 7
(3.11) Sy = {[i1,i2, 13, 14) € ZL/ ~| i1 + iz + iz +ig > k — 1},
(3.12) U imigia] = | Biatinsia-tiintial 1

Proof. Recall that 7 is given by (u1,u2,us,us) = (y1,y2, Y1, xy2). The con-
clusion follows from ({3.6]) and ( . O

In particular, for £ = 2, using the above theorem, we have

2
@(5) _ Yhoon®

2 _
(3.13) By’ = @ = (2).
+ 0y 1+ [0,0,0 o]

w[o 0,0,0]
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Proposition 3.4. w[‘(/)o 00}(9&/2) 1s tnvariant under biholomorphic maps.

Proof. The proposition follows from Theorem 2.6 and the equation (3.13)).

O

Denote

T/JV

v [0,0,0,0]

(314) (p[i17i27i37i4] -

[i1,82,73,14]
Then

2 i1 2 i i

(3.15) ¢[‘6,0,0,0]9§/) = > Pl il a2 g [P g

[i1,92,03,04) €S2

where Sy = {[il,ig,ig,u] S Zéo/ N| 11+ 10+ i3+ 14 > 1}.
For short, we denote

1 1% 2
Yv = ¥1,000 Pv = ¥0,1,0,0]

(3.16) .o )
v = Plo,0,1,00 PV = %0,00,1]

Theorem 3.5. Let V;,i = 1,2 be two bounded complete Reinhardt domains
in V= {(u1,uz,u3,us) € C* | uyuy = ugus}. Suppose that ¥ :Vy — Vs is a
biholomorphic map, then U is the restriction of a linear map ¢ : C* — C*4,
that is to say, ¥ is given by

4 4 4 4
U(up, u2, us, us) = (g a1, E a2iU;, E as;i;, § aq;u;).
=1 i1 i=1 i=1

Moreover, the linear map £ satisfies the following conditions

4
(3.17) > ol lawil® = ¢y, fori=1,2,3,4,
k=1
4 .
(3.18) D ol akiarg =0 fori#je{1,2,3,4},
k=1

(3.19) det(aij) 7& 0.
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Proof. Write ¥ = (\Ifl, Uy, U, \If4) and

U, (ur, ug, us, uq) = (w1, ug, us, ua) + fi(ui, u2, us, us),

where /¢; is a linear function and f; is the nonlinear part for i = 1,2, 3,4. By

Proposition 3.4, we have 1/1[‘610 0 0]@91) = \IJ*(@ZJ[%O 0 0}@%)) on V1, i.e.,

4
Z @ [u;|* + higher order terms
i=1
4 .
(3.20) = Z @4, 6 + fil> + higher order terms
i=1
4
= ot (I61* + | £l + £ifi + L f) + higher order terms
i=1

modulo ujuy — uguz. Comparing (1, k)-terms for k > 2 (here (p,q)-term
means a,b; where a, is a monomial of degree p and b, is a monomial of
degree ¢q), we have

4
(3.21) > ltifi=0.
=1

Write Ei(ul, U9, U3, U4) = ajiu1 + a;ous + a;3ug + aquy  for i=1,2,3,4.
Since ¥ is isomorphic, we have ¢ = ({1, s, {3, ¢4) induces a isomorphism be-
tween the Zariski tangent spaces of V; and V5 at 0, which implies A = (a;;)
is invertible. (3.21]) implies that

Hence Z?zl aijgp"éﬁ =0 for j =1,2,3,4. Since A = (a;) is invertible, we
have go%'/zﬁ:O for all 4. By the definition of <p§'/2, we know that gp@z # 0, which
implies that f; = 0 for ¢ = 1,2, 3,4. Hence ¥ is induced by a linear map.
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Since f; = 0 for all 4, (3.20) implies that

4
(3.22) Z @4, [ui* + higher order terms
i=1

4
= Z 90%/2 Mi|2 + higher order terms.
i=1

Substitute ¢; by a;1u1 + ajous + a;zus + ajqug, then by comparing the coef-
ficients of terms |u;|? for i = 1,2,3,4 and terms w;u; for i # j € {1,2,3,4}
in (3.22)), we obtain (3.17) and (3.18]). O

Lemma 3.6. Let V;,i = 1,2 be two bounded complete Reinhardt domains in
V = {(u1,uz2,uz,us) € C* | ugug = ugus}. Suppose that ¥ : Vi — Va is a bi-
holomorphic map, then U is the restriction of a linear map £ = ({1, 02, 03,4y) :
C* — C* such that

6164 — 5263 = C(U1U4 — UQU,g),

where ¢ is a nonzero constant. That is to say, ¥ is given by

4 4 4 4
U(u,ug,us, uq) = (g aiiu;, E agiu;, g asit;, E aqiu;)
=1 i=1 i=1 i=1
such that

(3.23) a1;04; — A3;492; — 0 fO’I“i = 1, 2, 3, 4,
(3.24) (1045 — (2035 — A3;02; + Q43015 = 0

fori,j€{1,2,3,4} such that {i,j} # {1,4},{2,3},
(3.25)  arias4 — a1a34 — aziazy + ag1a14+

12043 — (22033 — A32023 + Q42013 = 0.

Proof. By Theorem 3.5, ¥ is induce by a linear map £ = (£1, {2, {3, £4) : C* —
C*. Since /¢ induce a isomorphic from Vi to Vs, we have

(3.26) O (uug — ugug) = (urug — ugus)g

where ¢ is an invertible element in the ring of convergent power series
C{uq,ug,us,us}. Denote the constant term of g by ¢, then ¢ # 0. By looking
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at the quadratic part of (3.26)), we obtain
0" (urug — ugug) = c(ujug — ugus).

Thus
6164 - 5263 = C(U1U4 — 'LLQU3).

Substitute ¢; by a;1u1 + a;oue + a;3us + a;4uq and compare the coefficients,

we obtain (3:23), (3:24) and (3:25). O

rI‘heorem 3.7. Let Vi and V5 be two bounded Reinhardt domains in
V = {(u1, ug,uz,us) € C* | uyug = uguz}. The biholomrphic map ¥ : Vi —
Vo must be of the following form

4 4 4 4
W (ug, ug, uz, ug) = ( E aiiu;, E ag;ui, E as;u;, E a4;U;)
=1 =1 =1 i1

and there exist complex numbers ay,--- ,aq4 and by, --- , by such that

a1b1 a1b2 a2b1 agbg
. N a1b3 a1b4 agb3 a2b4 . ar a9 bl bg
(3'27) A= (a”) o a3b1 CL3b2 a4bl a4b2 o <a3 a4> ® <bg b4>
a3b3 a3b4 a4b3 a4b4

or

a1b1 CLle ale a2b2
. N a1b3 CLng a1b4 a2b4 o
(3.28) A= (aw) - a3b1 a4b1 a3b2 a4b2 -

a3b3 a4bg a3b4 a4b4
ap az b1 b
(ol )

where ® means the Kronecker product of two matrices and * means the
matriz multiplication.

oS O O
o= O O
o O =

— o O O
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Proof. By (3.23), we have aj;a4; — as;az; = 0 for i = 1,2,3,4. Hence there
exist (b1, b2;) and s;,t; such that

(3.29) (@14, a2i) = si(b1is b2:),  (asi, asi) = ti(b1s, ba;)

for i =1,2,3,4. Note that (s;,t;) # (0,0) since A = (a;;) is invertible. For
i,7 €{1,2,3,4} such that {i,5} # {1,4},{2, 3}, by (3.24])) we have

(330) alia4j - agiagj - a3ia2j + a4ia1j =0.

Equations (3.29)) and (3.30) imply that

(3.31) (Sitj — Sjti)<b1i52j — bQiblj) =0
for i,j € {1,2,3,4} such that {3, j} # {1,4},{2,3}.

Claim 3.8. (a) There do not exist mutually distinct i, j, k € {1,2,3,4} such
that [Si : ti] = [Sj : tj] = [Sk : tk].

(b) There do not exist mutually distinct i,j,k € {1,2,3,4} such that [s; :
ti], [s; : tj] and [sy : tg] are mutually distinct.

Here [ay : 1] = [ag : B2] means a1 = aaf.

Proof of claim 3.8. (a) Assume that there exist mutually distinct i, 7,k
such that [s; : t;] = [sj : t;] = [sg : tx]. Then there exist ¢;, ¢, ¢, such that
(Civ Gy, Ck) 7& (07 07 0) and

cisi(bi1, bi2) + ¢js;j(bj1, bj2) + crsp(bri, bra) = 0,

3.32
(3.32) citi(bit, bio) + ¢t (b1, bj2) + citr(bgi, brz) = 0.

Equations (3.29) and (3.32)) imply that

ci(ai1, a2, a;3, aia) + cj(aji, ajo, a3, aja)

+ cp(ak1, aka, ags, ags) =0,

which contradicts the fact that A = (a;;) is invertible.

(b) Assume that there exist mutually distinct 4, j, k such that [s; : t;],
[sj : t;] and [sy, : t] are mutually distinct. Since i, j, k are mutually distinct,
there must be two distinct pairs {aq, 51} and {ao, B2} C {i,7,k} (a1 # B,
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vy # fB2) which are not equal to {1,4} or {2,3}. By (3.31)), we have
[bia, : b2a,] = [b1g, : bog,] and  [bia, : b2ay] = [b1g, : b2g.],
which implies that
[b1; @ b)) = [b1j : baj| = [bug : bag).
Thus there exists ¢;, ¢, ¢ such that (¢;, ¢j, cx) # (0,0,0) such that

Cibli(5i7ti) + Cjb1j<sj,tj) + Ckblk(sk,tk) =0,
cibai(si, i) + cjbaj(s),t5) + crbap(sg, tx) = 0.

Equations (3.29) and (3.33]) imply that

ci(a, iz, ai3, aia) + cj(aji, ajo, a3, aja)

+ cp(ak, ag2, ags, ags) = 0,

(3.33)

which contradicts the fact that A = (a;;) is invertible. 0

Returning to the proof of Theorem 3.7. By the above claim, there are three
following cases:

(1) [s1:t1] = [s2:ta] # [s3:t3] = [sa:ts]. Then there exist (s,t) and
c1,c2 such that such that (s1,t1) = c1(s,t), (s2,t2) = ca(s,t) and there ex-
ists (5,¢) and ¢;,¢ such that (s3,t3) = i (5,1), (s4,ts) = c2(3,t). Since
[s9 : ta] # [s3 : t3], we have

(3.34) st — 5t # 0.

By (3.31)), we have [b11 : ba1] = [b13 : bes] and [bya : baa] = [b14 : b24]. Then
there exists (p,q) and di,dz such that such that (bi1,b21) = di(p,q),
(b13,b23) = d2(p, ¢) and there exists (p,q)) and di, dz such that (bi2, b)) =
d1 (ﬁ,@, (51471)24) = dQ(ﬁ,E]). Since [bn . le] 7& [blg : b22] (if not then A =
(aij) is not invertible), we have

(3.35) P — g # 0.
Then we have

cidysp cadisp Gidedp  Gada3p
(836) A= (ay) = |80 st abse dos
Cldltp Cletp Cldgtp nggtp

crditq  coditq  Gidatq  Cadatq
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Equations (3.25) and (3.36]) imply that

c1dyspéadalq — c1dysqeadatp — c1ditpéadadq + c1ditqcadaSp
+ cody sperdatq — cad15GC1datp — codytpeida3q + Cidatqcidadp
= (st — 3t)(pq — pq)(c1d16ady — cadic1d2) = 0.

By (3.34)) and (3.35)), we have
c1dyGady — cadyérda = 0.

Hence there exists (a,3) and 71,72 such that (cldl,@dvl) =1 (a, f) and
(c1dz, cad2) = y2(a, B). Hence

nasp  y1Bsp yaasp Y205p
A= (ay) = | 715 MNBsq 1205q 12859
matp nptp yotp  y25tp
notq Pt yeatq Y2p6q,

_ (715 72% . <ap 8D
Mt et aq Bq)’
Therefore, (3.27)) holds.

(2) [s1:t1] = [s3: t3] # [s2: ta] = [s4 : t4]. Using a similar argument in
the case (1), we can prove that holds.

(3) [s1:t1] =[s4:ta] # [s2:t2) = [s3:t3]. Then [sy:t1] # [s2: t2] and
[51 : tl] 7& [83 : tg]. By we obtain [bn : b21] == [blg . bgg] == [b13 : bgg],
which contradicts the fact that A = (a;;) is invertible (see the argument
in the proof of Claim 3.8(b)). Hence this case will not occur. O

4. Asymmetric domains

We introduce a numerical invariant for a bounded complete Reinhardt do-
main in V' which reflects the symmetry of the domain.

Definition 4.1. Let V be a bounded complete Reinhardt domain in V=
{(u1,u2,uz,us) € C* | uyug = uguz}. We define

_ vy

vy = 5 3 -
PvPv

We say V' is asymmetric if vy # 1.
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By the definition of ¢!, (see (3.12),(3.14) and (3.16)), we have

1% Vv
~ Yo000Y0010 oot e0ll3,

a ¢H,0,070]¢%70,071] a ||¢010H?\/j||¢101”?\/f

(4.1) vy

The set of biholomorphic morphisms between two asymmetric domains
is dramatically small and we can determine all possible biholomorphisms.
Let G be the subgroup of the symmetric group S4 generated by three element
(1,4), (2,3) and (1,2)(3,4). Then G has eight elements:

1234,4231,1324, 4321, 2143, 3142, 2413, 3412,

here abcd means the element o in G such that o(1) = a,0(2) =b,0(3) =
c,o0(4) =d.

Theorem 4.2. Let Vi and V5 be two bounded Reinhardt domains in f/\; =

{uiug = ugus}. If vy, # 1, then the biholomrphic map V : Vi — Vo must be
of the following form

(4.2) W (ug, ug, ug, us) = (C1ug(1), Collg(2); C3Uqg(3)s Calc(4))

where o € G and such that

(4.3) C1C4 = C2€3
and

(4.4) 7D = g leif?
fori=1,2,3,4.

Proof. By Theorem 3.7, ¥ is given by

4 4 4 4
U(uy, ug, ug, uq) = (E ai;u;, § a2, E as;u;, § @4iU;)
i1 i1 i1 i1

such that one of the following cases occurs:
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oy [ a2 by by
O (e Y (o B
(4.5) <\a1\z \a3!z> <90§/2 S"i@) <bl\z M;) _ <<P§/1 ‘Pia)_
laz|®  |aal v, Py, |b3]* |ba] v, Py

As vy, #1, we have ga%/lcp%/l — ap%/lgo%/l # 0. Hence go%/zgo%é — @%/290?{,2 # 0,
|a1[*]as|? — |as|?|as|? # 0 and [b1]?|ba|? — [b2|*|bs|* # 0.

w

.17)), we have

By (3.18]) we have
(4.6) <|a1’z ’a3|z> (@%/2 ‘104%1/2) <b1b2>:<0>
lazl* faa?) \@¥, v,/ \bsba 0
and
1 2 2 2
et e (] bz\>_
4.7 ajas as3a 2 2 = (0 0).
wn (e e (5 7) (e ) =0 0

Since ol g%, — @, 0% £ 0, |arlas? — [aalPlasP £0 and  [byloal? -
|ba|2|bs3|? # 0, we have

a1az = agag = biby = bzby = 0.

by b\ (b1 O 0 by
(1.9) (bs b4)_(0 b4) or (b3 0).

Therefore, we have

aby 0 0 0 0 0 axy O
A— 0 aby O 0 or 0 0 0 agby

0 0 a4b1 0 as b1 0 0 0

0 0 0 aqby 0 asbs O 0

0 al bQ 0 0 0 0 0 as bQ
or aq b3 0 0 0 or 0 0 a b3 0
0 0 0 a4bg 0 as bg 0 0
0 0 a4 bg 0 a3b3 0 0 0
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1 00 O
. N ap a2 b1 b2 0 0 1 0 .
(2) A=(ay) = <a3 a4> @ <b3 b4> *1o 1 0 ol- By using a
0 0 0 1.
similar argument in case (1), we can prove that
a1b1 0 0 0 0 a2b1 0 0
A= 0 0 a1b4 0 or 0 0 0 a2b4
- 0 a4bl 0 0 a3b1 0 0 0
0 0 0 aqby 0 0 azby 0
0 0 aibs O 0 0 0  agby
or arbs 0 0 0 or 0 agbs O 0
0 0 0 aybsy 0 0 azby 0
0 a4bs 0 0 asbs 0 0 0

Therefore, there exists a o € G such that

W (w1, ug, us, ug) = (ala(l)ua(l)a A25(2)Uo(2)) @35 (3) U (3)> a40(4)ua(4))'

and a14(1)040(4) = A25(2)035(3)- By (3.17), it is easy to see that gp‘{/fi) =

@b, |@ig i) |* for i =1,2,3,4. O

Thgorem 4.3. Let Vi and V5 be two bounded complete Reinhardt domains
in V = {(u1,u2,us,us) € C* | uyug = ugusg} such that Vi is biholomorphic
to Vo. Then vy, = vy, or vy, vy, = 1.

Proof. There are three following cases:
(1) vy, = vy, = 1, then the conclusion holds.
(2) vy, # 1. Take a biholomorphic map ¥ : V; — V5, then ¥ has the form

in Theorem 4.2. By (4.3)) and (4.4)), we have

Pvey,  lelPlel e,
oy v, lealles|? o3, 03,
10 _ (lerPeovy)(lealev,)
(4.10) (a2, ) (Jes 207,
o(1) o(4)
_ Vi

AR
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If o =(1,4) or (2,3), then

o(l) o(4
Phent _ eheh
AP s
If 0 = (1,2)(3,4), then
o() o(4) 1

Vi S0V1 80‘/1%0%/1 -1
2,3 = =
soU(Q)QO“T,fg) VP

1

Since G is generated by these three elements, by the definition of vy, and
vy, we have

vy, = vy, Oor uvyuvy, =L
(3) If vy, # 1, then take a biholomorphic map ¥’ : V5 — V;. Using a

similar argument in case (2), we obtain the conclusion. O

Next we give a criteria to see whether two asymmetric domains in V are
biholomorphic.

Thgorem 4.4. Let Vi and V5 be two bounded complete Reinhardt domains
in V = {(u1,ua,us,us) € C* | uyug = uguz} such that vy, or vy, # 1.
(1) If Vi ~ V,, then there exists o € G such that

o(1) o(4)
(4 11) (‘0%/290%/2 _ v, Py
) @2 (103 = a(2) a(3)
Vat'Ve S&V1 S0V1
and
Vs
(412) So[i177;277;377;4]

(01,)1 (0%, )22 (93, ) e (o, )4
Vi

_ [ic771(1)7i071(2)’i071(3)71:071(4)]

(o1) o ()@ (3, )t ()t

for any i1,10,13,14 € Zéo-

(2) Suppose V; is strictly pseudoconvex with smooth boundary or pseudo-
convex with analytic boundary fori = 1,2, then the converse of the statement
in (1) holds.
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Proof. (1) In the proof of Theorem 4.3 we have already proved (4.11)) (see
(4.10). Let ¥ : V; — V5 be a boholomorphic map. Then ¥ must be of the

form in Theorem 4.2. By (3.15)), (4.2)) and (4.4), we have

4
x (1 Vo 2)\ _ g+ Va 2i
U (¥100,0,00v,) = ¥ Z Pli iz, is,ia] H k™
k=1

[i1,i2,i3,54] €S2

4
— Z ‘P&,iz,ig,u] H (lex ™ oy ™)

[i1,d2,i3,i4] €S2
(4.13) .y
21
- Z (‘0[11712713724] H zk H ’u k)‘ "
[i1,02,i3,4] €S2 k=1 SOVz k=1

" RO
_ § : H Cle H ‘u ‘21 71(,6)
B [11712713724] 90 1k
k=1 Vz

[i1,92,03,04) €S2

4

(2) — 21
1/}[0 0,0 0] - Z 11,12,13,14 H |uk| k

[i17i27’i37i4]652 k=1

_ Vi 2i__1
= Z Plis 1101 (21 (311 ]H Jug| ™ ®.
o (1)% (2)% (3)2%c (4) Pt}

[i1,i2,13,14) €S2

(4.14)

By using Proposition 3.4 and comparing the coefficients, we obtain (4.12)).
(2) If there is a o such that (4.11)) and (4.12) hold. Define a automor-
phism of C* as follows:

a(1) a(2) a(3) a(4)
U (g, ug, ug, ug) = v Ug (1 LA Ug (2 L Uy (3 Vi Uy (4
) ) ) 90‘1/2 o(1)» @%/2 o(2)» 80?\’/2 o(3)» ()04‘1/2 o(4)

By (4.11]), we have

o(1l o(4 o(2 o(3
e len” _ en? en”

1 4 - 2 3
v, v, v, v,
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Denote the value of the above equality by ¢. Then

90V1 ‘Pvl ‘Pvl @Vl
U (urug — ugug) Ug(4) o(2)Uo(
v, 90\/2 7,

=cC u1u4 — UQ’U,3

Hence ¥ induce a automorphism of V. It follows from (4.12]), (4.13)

and (4.14) that gy o 1O = U (Y7, o O\7)- Then by (3.13), we have
41 B = B (v
(4.15) v (U1, ug, uz, ug) = By (W (ur, ug, us, ug)).

Next we will prove that V; is biholomorpohic to V5 by using a similar
argument in the proof of Theorem B in [DY]. By Fornaess’s Lemma (See
Lemma 4.7 below), there exists a dense set in the boudary of M; such that
the Bergman kernel blows up at the points in this dense set. Hence the
Bergman function B‘(/) is equal to 1 in a dense subset of dV;. Since B( ) <1
in interior of V; and W preserve the level set of Bergman functions, \IJ sends
a dense sunset of V] to a dense subset of dV5. By continuity, ¥ sends 0V}
to dVh, thus it induces a biholomorphic map from Vi to Va. O

One can find the proof of the following two lemmas for dimension 2 case
in [DY]. After small modifications we can generalize it to higher dimension
case.

Lemma 4.5. (Henkin [He], Ramirez [Ra]) Let D be a bounded strictly
pseudoconver domain in C". Let p be a point in the boundary of D. Then
there exists an L? holomorphic function on D which blows up only at p.

Proof. There exists a holomorphic function f defined on a neighborhood of
D such that f(p) = 0 and |f(q) — f(p)| > |g — p|* for any ¢ € D ([He],[Ral).

LetF:%,then
f P
1
b1z —pl2- ool <

[ e

and F' blow ups only at p. O

Remark 4.6. To find such function f as in the proof of the previous lemma,
all we need are that p is a strictly pseudoconvex boundary point and that
D has a Stein neighborhood basis.
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Lemma 4.7. (Fornaess) Let D be a pseudoconver domain with real ana-
lytic boundary in C*. Let E = {p € OD | there exists g € L*(D) that blows
up only at p}. Then E is dense in the boundary of D, and the Bergman
kernel of D blows up at points in E.

Proof. Since D has a real analytic boundary, strictly pseudoconvex boundary
points are dense in dD. Moreover D has a Stein neighbourhood basis (see
[DE]). Therefore the lemma follows from the previous lemma and remark.

O

By Theorem 4.4, we can construct many invariants for V such that
vy # 1. Define an action of G on Zéo as follows:

o(i1,12,13,14) = (ig-1(1)sGg—1(2)> Io—1(3), lo—1(4))
for any ¢ € G. The action of G on Z* naturally induces an action of G on
the ring Clzs | s € Zéo]:
0(s) = To(s)

for any ¢ € G and any s € Zéo.

Theorem 4.8. Let V a bounded complete Reinhardt domain in V=
{(u1,u2,usz,us) € C*| uyug = ugus} such that vy # 1. Let f be an invariant
polynomial in Clxs | s € Zéo] under the action of G. If we replace each
(s = (i1,142,13,14) € Zéo) in the expression of [ by
1%
Plia ia iz ia]

(1)1 (93 )22 (93 )2 (7, )i

then we obtain an invariant for asymmetric domains.

Proof. Tt follows from Theorem 4.4 directly. O

For example,

1% 1% 1%

1 S0[1717171] 2 S0[1707071] s0[0717170]
(1) 1,23 4° (2) T 4 2 3
Py PPV Py PyPyv Py Py
|4 |4 |4 |4
3 11,100 . P,01,0 . Y0101 . P0,0,1,1]
( ) 1,2 + 1,3 + 2 4 3 4

Py Py Py Py Py Py PvPv

are invariants for asymmetric domains.
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Recall that 7 : M — V is a resolution of 17, where M is the total space
of the vector bundle Op:(—1) @ Op1(—1) on P! and V' = {(u1,u2,us,uq) €
C* | uyug = ugus}. Denote the exceptional set in M by E. Let M;,i = 1,2
be the pull back by 7 of a bounded complete Reinhardt domain V;,i = 1,2
in V such that vy, or vy, # 1. If f: My — My is biholomorphic, then f
induces a biholomorphism between Mj;\E and Ms\FE, therefore induces a
biholomorphism between V3\0 and V52\0. Since V; and V5 are normal and 0
has codimension 3, this biholomorphism can be extended to an isomorphism
between Vi and V. Therefore, the condition in Theorem 4.4(1) is a necessary
condition of the equivalence between M; and Ms. However, this is not a
sufficient condition. There exists a counter example in which V; £ V5 but
My 2 M.

Counter-Example 4.9. Let

Vi =V 0 {Jur? + 2fual® + Jus? + |ug|? + elufusl® + eluiua|® < 1}
and

Vo =V N {Jur |+ 2Jual? + |us|? + [ual? + eludua|? + e|udu|? < 1}.
where e is sufficiently small positive number. Let Vg = V N {|u1|? 4 2Jug|? +
luz|? + |ug|? < 1}. In next section we will see that vy, # 1. By continuity it
follows that vy, # 1 and vy, # 1. Theorem 4.2 tells us that any biholomor-
phism between Vi and V5 is of the special form: permutation of coordinate

modulo scalar multiplication. Then by the definitions of V; and V5 we can
see that the unique biholomorphism from V; to V5 is

fur, ug, uz, ug) = (ug, ug, us, uy).

Suppose there is a biholomorphism g from M; to My, then Tog = fom.
Recall that M has two charts (x,y1,y2) and (w,z1,22) with transition
functions y; = wz1, y2 = wze and x = 1/w. 7 is given by 7(z,y1,y2) =
(y1, Y2, Ty1, vy2) and T(w, 21, z2) = (wz1, w22, 21, 22). Therefore we have

g9 (@) = g"7" (uz/ur) = 7" f*(uz/u1) = 7 (uz/ua) = (xy1)/(xy2) = y1/y2.

Note that the set of indeterminacy of = 1/w is empty while that of y; /yo
is not empty. Thus g is not a biholomorphism, which leads to a contradition.
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5. Application

As an application, in this section we will study the equivalence problem for
two four parameter families

k _ 4
Va,b,c,d - {(u17u27u37u4) eC |

uruy = ugus, alug|?F + blug|** + clug|* + djuq|** < €},
where a,b,c,d > 0, € is a fixed positive constant and k£ =1, 2.

Case k£ =1: B
Let V = Va{b7 ed V', using formula 1} we have

[bapy2r = (V=T)? / Sasn By
M

26+1 2y+1
s2°‘+1r15+ 3 dsdrydrs

23(2m)3 /
ar?+bri+c(sri)2+d(sra)?<e

2 1 2v+1
= 64773/ 32°‘+17’15+ 7’27+ dsdrydrs.
(a+s2e)ri+(b+s2d)ri<e

Wirte 71 = (Va + s?¢)r1 and r2 = (Vb + s2d)ra, then

|pas \I?\4:647r3/ / G20+l <7“1> <r2) |
’ 5§20 J7i? 4757 <e Va + s2c Vb + s2d
d drl dTg

S
Va+ s2¢ b+ s2d
g20+1

— 6475 .
i /0 (a+ s20)PH (b + s2d) 1

ds / 7 2P 2 g drs.
12 +ra’<e

Write § = s2 then
gﬂé

2 3
fe) - 32 ~ P °
16asllhs m /0 (a + 5¢)B+1(b + sd)v+1

ds / A2 2 g drs,.
2 +ra’<e

Denote
’S“a

Anpy = — — ds
By /0 (a + 5c)PH1(b + sd)r ! y
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and

Bﬁfy _ / ﬂ2ﬁ+lrf,v22’y+1dﬂd,ff27
12 +ra’<e

then [[¢apy||* = 327%Anp,Bsy. By calculation, we have

Hence by (4.1))

Denote

1 be
be — ad ln(@),

Agoo =

1 d be
Ap1o = <a(bc — ad) N (bc — ad)?) ln(ad)> )

1 c ad
Aoor = (b(ad —be)  (ad — be)?) ln(bc)> )

1 a
A110 = —Aooo — —Aoro,
C C
1 b
Ato1 = =Ao000 — =401 -
101 = Ao — —Aoor

_ oo ll34lI9110[13; _ AoorAiro
l|¢o10l3/]|#101113;  AotoAior
B bc(%—g — —ln(%—f))2

ad(¥ —1—1n(be))?’

z(2—1-In 1)? .
f(.’I/') — (z—1—Inz)? > if ?é 1
1, if =1
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then vy = f(%). It is easy to see that f(x)f(1/x) =1 for any x > 0 and f

is continuous.

Lemma 5.1. f(x) is a strictly decreasing function when x > 0.

Proof. As f(x)f(1/x) = 1, it is enough to check that f(z) is strictly decreas-
ing when x > 1. By calculation,

() =

Let

(2 —1+mz)(—6+32+2 —zlnz+ 22— (Inz)?)
(x—1—1Inzx)3 '
3 |

g(zr) =—6+3x+ . —zlnz+ % — (Inx)%
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2(z—1) (a:+1)

We claim that g(z) < 0 if @ > 1. Tndeed, ¢/(z) = (22 mx) <0
ifx > 1and g(1) = 0. Hence g(x) < 0 for x > 1, which implies that f’( ) <0
ifx>1. O
Theorem 5.2. Let V] = Va1 by c1.ds and Vo = Va2 b cands” The followings are
equivalent.

(1) Vi = Vy;

(2) vy, = vy, orvyvy, = 1;
(3) ardy _ aqds or ard; _ bacy

bici — baco bici T aqds”

Proof. (1) = (2): it follows from Theorem 4.3.

(2) = (3): If vy, =1y, then f(blcl) :f(g"‘%), which implies that
% = 222"; since f(x) is strictly decreasing. If vy, = 1/vy,, then f(blc1 ) =
1/f (22222 (azdz) which implies that blzll = %.

(3) = (1): If aiil = Z2g2, then Zlgl = blcl . Denote p = Z;g; = 2;—2. Let

( al b1 C1 d1 )
= (y/ —u1, 4/ U2, [ —u3, [ 5 us).
as 1, bQ 2 Co 3 dQ 4
Then

. fa1 |d fer [b
)\ (’LL1U4 — ’LLQU3) = ;; £U1U4 — é F;U3U4 = \/]3(U1U4 — UQU3)

and
\I/*(CLQ”U1|2 + bg|U2‘2 + CQ|U3|2 + d2|U4|2) = a1|u1\2 + 51IUQ|2 + 01|U3’2 + d1|U4|2.

Hence ¥ is a biholomorphic map from Vi to V5.
If i — baCa then Jet

b]Cl - agdz’
C1
= UQ, ula 'LL4, 'LL3

Using a similar argument in the previous case, we can prove that ¥ is a
biholomorphic map from V; to V5. ([

Case k = 2:
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Let V = Vfb ed S 17, using formula (3.3) we have

ol = (VI)? / Doy baiy
M

1
— 23(277)3/ §20 2L 2 gy diry
art+bri+c(sry)*+d(sra)t<e

6473 52a+1T%ﬁ+1T§’Y+1deT1dT2.
(a+stc)ri+(b+std)ri<e

Write 11 = (Va + s*c)r; and 75 = (Vb + s*d)ry, then

> a3 st (71 N\ om N\
||bapy|las = 64m s . — '
s>0 Jrtrmt<e va+ stc Vb + std
d d?“l d’r'g

s
Vva + ste Vb + std

3 [e'e] S2a+1
= 647 / .
0 Va+ s4cﬁ+1\/b+ sta

ds / 28 2 g drs.
Mt rat<e

Write § = s2 then

ga

||¢0</37||%\/[ = 327°

o0
/0 Va+ §205+1\/b + f§2d7+1

d3 / A 2 2 g drs,
mitrt<e

Denote

’gOé

Aas —/ a3
Tl vaxrd M rrsza !

and
~ 2041 2941 5 g
BB’y :/ 1 A ) g dT'ldT’Q,
Fitrat<e

then ||¢qap,||? = 3273 Aup, Bay. By calculation, there are the following three
cases:
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(1) bc > ad, then
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—ad
arctan ——— |,
fm < Jad >
<arctanh ad>
\[\/ bc —ad \/ be ’
arctanh—— |,
\f\/ bc — ad Vbe
( m)
= arctan ———— |,
\/&\/ bc — ad Vad
_ [ po01| 131911013, _ Ao Ano
[poroll3;]|P101113;  AoroAror

(2) bc = ad, then

2
vad <arctanh\ /1 — %?)

3
Vbe (arctan\/bd 1)

1 1
Aoto = ——,  Agpt = ——
010 PV 001 NG
1 1
Aijo=——=, A
110 VA 101 N
_ ool l34l16110/13, _ AvorAiro _ (ad
|[po1oll3;]|o101113;  AoroAror be
(3) bc < ad, then
Aoio = ! (arctanh\/m
010 = 7a Fd— - —~
A <arctan —be
T Vbvad — be W_ be Ve
Agpr = ——— <arctanad_bc
001 = ﬁ\/ad be N
A <arctanhad_bc
" Vivad = e m Vad

>2:1.
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oo |34 llé110ll5  AoorAiro

V = g
o0l 31| @101113;,  AoroAior

2
vad (arctan % - >

5 -
Vbe <arctanh. /1 — 23)

Define function

(arctanh 1— §)2

s, if 1
ﬁ(arctan\/:c—l) x>
flz) =41, ifex=1
(arctan i—l)2 .
\/E(arctanhx/lfx)% if 7 <1

then vy = f(%). It is easy to see that f(x)f(1/x) =1 for any = > 0 and f
is continuous.

Lemma 5.3. f(x) is a strictly decreasing function when x > 0.

Proof. As f(x)f(1/x) = 1, it is enough to check that f(z) is strict decreasing
when z > 1. By calculation, when x > 0, we have

t —1 1 1 arctanh 1—%

1
arctanh,/1 — <

x+/x(arctan v/ — 1)3°

- hy/1-1%
g(z) = (% — Zarctanhy/1 — 2 arctanv/z — 1 — _ama\/n; \/1 : )

We claim that g(x) < 0 if > 1. Indeed,

g/(a;) = m (— arctan vz — 1 + %arctanh@) <0

for z > 1 and g(1) = 0. Hence g(x) < 0if z > 1, which implies that f'(z) <0
if x> 1. O
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Theorem 5.4. Let V] = Va1 byicrods and Vo = Vaz b,
equivalent.

(1) VI ‘/27

(2) vy, = vy, or vyvy, = 1;

(3) a1dy _ apdy ardy _ boco
b161 bQCQ blCl a2d2 :

4,- The followings are

Proof. (1) = (2): it follows from Theorem 4.3.

(2) = (3): If vy, = vy, then f(fl’l—fill) —f(g"‘%), which implies that
% = 22222 since f(x) is strictly decreasing. If vy, = 1/vy,, then f(blc1 ) =
1/f(2%) = f(pL )d, Wth}llj implies t};at 31{;& = gk L

(3) = (1): If 271 = 9272, then 217 = 322 Denote p = @17t = 2. Let

— | 4 Eu 4/b71u 4 C—lu 4/@u
- a9 1, b2 2, Co 3 d2 4 | -

Then
. a1 ,/d c ,/b
U (urug — ugug) = ¢ *1\/ Ly — \/ *1\/ Luguy = Vp(ui1ug — ugus)
as dQ (6] bg
and

T* (aglug|? + bolua|* + coluz|? + daofus|*)

= CL1’U1‘4 -+ bl‘u2’4 + 01IU3‘4 + d1’IL4’4.

Hence V¥ is a biholomorphic map from Vi to Vs.

If b — 28 then let

./ b1 a; L, ldy c1
V= —u2, {/ 7-U1, —U4, 4 U3 | -
a9 b2 C2 dg

Using a similar argument in the previous case, we can prove that ¥ is a
biholomorphic map from V; to V5. O

Corollary 5.5. Let Mkbcd {(z,y1,2) € C? | aly1|?* + blya|** +
clzyr |2 4 d|xyz|*F < e} U {(w, 21, 22) € C? | alwz1|?* + b\wle% + c|z1]?F +
d|zo|?* < €} where z1 = xy1, 20 = xy2 and w = 1/x. Then M bcd is a four
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parameter family of open Calabi- Yau manifolds. We have

ardy  asds ardr  baca

MFE ~ MF = =
ay,by,c1,dy az,ba,c2,d2 bicy bocs bicy asds

fork=1,2.

Proof. = Mf’b’c’d is the pull back of Valfb,c,d by 7 : M — V. Since a biholo-
morphism between Ma’fl,bl,cl,d1 and MF

4y ba.cy.d, i¥UCES a biholomorphism be-
tween V7 and VF

it follows from Theorem 5.2 and Theorem

a1,b1,c1,d1 a2,b2,C2,d2?
5.4.
. ardy _ axdy ardy _ bacs
—: If ber = e Or P =24 .from ‘Fhe proof 9f Theorem 5.2
and Theorem 5.4 we see that there is a biholomorphism W between
k k _
Vo s, and VI, of the form U (uy,ug, usg, uq) = (u1, ug, us, ug) Or

U (uy, ug, us, uq) = (ug, u1, uq, uz) modulo scalar multiplication. So we only
need to check that W(ui,us,us,us) = (uz,u1,us,u3) induces a automor-
phism of M. Indeed, it induces the following automorphism:

r =2 w=w
y1=y2 and z21 =22 .
Y2 = Y1 22 =2

where (2, y1,12) and (z, wy, wy) are two charts of M with transition functions
21 = xy1, 22 = xy2 and w = 1/z. O

References

[Bo] Boutet De Monvel, Integration des equation de Cauchy-Riemann,
Seminaire Goulaouic-Lions-Schwartz, Ex ré IX, 1974-1975.

[Ca] E. Cartan, Sur la g ‘eometrie pseudo-conforme des hypersurfaces de
deux variables complexes, I-II, Ann. Math. Pura Appl. (4) 11 (1932),
17-90; and Ann. Scuola Norm. Sup. Pisa (2) 1 (1932), 333-354.

[CM] S.S. Chern and J. Moser, Real hypersurfaces in complex manifolds,
ActaMath. 133 (1974), 219-271.

[DF] K. Diederich and J.E. Fornaess, Pseudoconvex domains with real an-
alytic boundary, Ann. of Math. 107 (1978), 371-384.

[DGY] R. Du, Y. Gao and S. S.-T. Yau, Explicit construction of moduli
space of bounded complete Reinhardt domains in C™, Comm. Anal.
Geom., Vol. 18, No. 3(2010), 601-626.



482 B. Chen and S. S.-T. Yau

[DY] R. Du and S.S.-T. Yau, Higher order Bergman functions and explicit
construction of moduli space for complete Reinhardt domains, J. Diff.
Geom. 82(3) (2009), 567-610.

[Fe] C. Fefferman, The Bergman kernel and biholomorphic mappings of
pseudoconver domains, Invent. Math. 26 (1974), 1-65.

[He] G. M. Henkin, Integral representations of functions holomorphic in
strictly pseudo-conver domains and some applications, Math. USSR
Sb. 11 (1969), 597-616.

[Hi] H. Hironaka, Resolution of singularities of an algebraic variety over
a field of characteristic zero: I, II, Ann. of Math. 79 (1964), 109-326.

[HL] R. Harvey and B. Lawson, On boundaries of complex analytic vari-
eties I, Ann. of Math. 102 (1975), 233-290.

[Ko] J. Kohn, The range of the tangential Cauchy-Riemann operator,
Duke Math. J. 53 (1986), 525-545.

[Kr] S. Krantz, Function Theory of Several Complex Variables, John Wi-
ley & Sons, New York, 1982.

[LYY] H.-S. Luk, S.S.-T. Yau and L.-Y. Leh, Bergman kernels on resolu-
tions of isolated singularities, Math. Res. Lett. 8 (2001), 303-319.

[Ra] E. Ramirez, Fin Divisionsproblem und Randintegraldarstellungen in
der kom- plexen Analysis, Math. Ann. 184 (1970), 172-187.

[Ta] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie alge-
bras and Cartan connections, Japan J. Math. 2 (1976), 131-190.

[We] S. M. Webster, Pseudohermitian structures on a real hypersurface,
J. Diff. Geometry 13 (1978), 25-41.

[Ya] S. S.-T. Yau, Global invariants for strongly pseudoconvex varieties
with isolated singularities: Bergman functions, Math. Res. Lett. 11
(2004), 809-832.



Bergman functions and the equivalence problem 483

YAU MATHEMATICAL SCIENCES CENTER, TSINGHUA UNIVERSITY
BEUING, 100084, P. R. CHINA

E-mail address: bychen@mail .tsinghua.edu.cn

DEPARTMENT OF MATHEMATICAL SCIENCES, TSINGHUA UNIVERSITY

BEUING, 100084, P. R. CHINA

YANQI LAKE BEIJING INSTITUTE OF MATHEMATICAL SCIENCES AND APPLICA-
TIONS

BEDLING, 101408, P. R. CHINA

E-mail address: yau@uic.edu

RECEIVED JUNE 27, 2020
ACCEPTED SEPTEMBER 23, 2020






	Introduction
	Bergman function
	Bounded complete Reinhardt domains
	Asymmetric domains
	Application
	References

