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We introduce real structures on L-twisted Higgs pairs over a
compact connected Riemann surface X equipped with an anti-
holomorphic involution, where L is a holomorphic line bundle on
X with a real structure, and prove a Hitchin–Kobayashi correspon-
dence for the L-twisted Higgs pairs. Real GR-Higgs bundles, where
GR is a real form of a connected semisimple complex affine alge-
braic group G, constitute a particular class of examples of these
pairs. In this case, the real structure of the moduli space of G-Higgs
pairs is defined using a conjugation of G that commutes with the
one defining the real form GR and a compact conjugation of G pre-
serving GR. We establish a homeomorphism between the moduli
space of real GR-Higgs bundles and the moduli space of representa-
tions of the fundamental group of X in GR that can be extended to
a representation of the orbifold fundamental group of X into a cer-
tain enlargement of GR with quotient Z/2Z. Finally, we show how
real GR-Higgs bundles appear naturally as fixed points of certain
anti-holomorphic involutions of the moduli space of GR-Higgs bun-
dles, constructed using the real structures on G and X. A similar
result is proved for the representations of the orbifold fundamental
group.
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1. Introduction

In recent years, much attention has been paid to the theory of Higgs pairs.
The study of these objects is primarily motivated by various moduli prob-
lems arising from gauge theory, algebraic geometry, symplectic geometry,
topology and mathematical physics. To recall the definition of a Higgs pair,
let X be a compact connected Riemann surface, G a connected reductive
complex affine algebraic group, V a complex vector space, ρ : G −→ GL(V)
a holomorphic representation and L a holomorphic line bundle over X. A L-
twisted Higgs pair (E, φ) of type ρ is a pair consisting of a holomorphic
principal G-bundle E over X and a holomorphic section φ of V ⊗ L, where
V := E(V) is the holomorphic vector bundle over X associated to E via
ρ. In [GGM1], the notion of α-polystability for these pairs was introduced,
where α is an element of the center of the Lie algebra k of a fixed maximal
compact subgroup K ⊂ G. The Hitchin–Kobayashi correspondence in
this context, also proved in [GGM1], has the following formulation:

Once we fix a Kähler form ω of X, a L-twisted Higgs pair (E,φ) of type
ρ is α-polystable if and only if there is a reduction h of structure group of
the principal G-bundle E, to the maximal compact subgroup

K ⊂ G ,

that satisfies the Hermite–Einstein–Higgs equation

(1.1) ΛFh + µh(φ) = −
√
−1α ,

where Fh is the curvature of the unique connection, on the principal K-
bundle EK ⊂ E corresponding to the reduction h, which is compatible with
the holomorphic structure of E, while Λ denotes the contraction of differ-
ential forms on X using the Kähler form ω, and µh is a moment map that
depends on h.
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The construction of the above-mentioned moment map µh requires fixing
a bi-invariant inner product B on the Lie algebra

k = Lie(K),

a K-invariant Hermitian product ⟨ , ⟩ on V as well as a Hermitian metric hL
on L. Examples of twisted Higgs pairs are quiver bundles, Higgs bundles and
Hodge bundles among other objects (see [ABG, BrGP, BGGH, GGM1, GR]
and references therein for examples and more on Higgs pairs).

One of the main goals of this paper is to extend the above correspondence
to the context where all the objects are equipped with real structures. By this
we mean anti-holomorphic involutions σX and σG on X and G, respectively,
an anti-linear involution σV on V such that the holomorphic representation
ρ is compatible with respect to σG and σV, as well as an anti-holomorphic
involution σL on L over σX , which is anti-linear on the fibers. A (σX , σG, c)-
real structure on a holomorphic principal G-bundle E over X is an anti-
holomorphic automorphism σE of E over the involution σX of X, such that
σE(eg) = σE(e)σG(g) and σ2E(e) = e c, for all e ∈ E and g ∈ G, where
c ∈ ZσG

2 ∩Ker(ρ) with ZσG

2 being the subgroup of the center Z(G) of G
consisting of all the elements of order two invariant under the involution
σG. With these real structures in place, set

σσσ = (σX , σG, c, σL, σV, ±) .

A σσσ-real L-twisted Higgs pair of type ρ is a triple of the form (E, φ, σE),
where

• (E, φ) is a L-twisted Higgs pair of type ρ,

• σE is a (σX , σG, c)-real structure on E, and

• φ satisfies the condition (σV ⊗ σL)(φ) = ±σ∗Xφ, with σV being the
involution of V = E(V) induced by σE and σV.

A reduction of structure group EK ⊂ E of E to the maximal compact
subgroup K is said to be σE-compatible if it is preserved by the self-map
σE of E. We prove the following Hitchin–Kobayashi correspondence (see
Theorem 4.1):

Theorem 1.1. A σσσ-real L-twisted Higgs pair (E, φ, σE) of type ρ is
polystable if and only if there is a σE-compatible reduction h of the structure
group of E, from G to K, that satisfies equation (1.1).
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In order to prove Theorem 1.1, we first adapt the arguments in [GGM1]
to reduce the proof to the case of stable Higgs pairs. The main difficulty
here is to characterize the space of infinitesimal automorphisms for a stable
σσσ-real L-twisted Higgs pair (E, φ, σE), taking into account our stability
condition that involves a condition on the adjoint bundle Ad(E). Once that
is achieved, we adapt the arguments in [BGM] to prove the above theorem
in the stable case. This approach involves finding a minimizing sequence of
σE-compatible metrics for the integral of the moment map (1.1), converging
weakly to the solution we are seeking.

Now, let GR be a real form of a connected semisimple complex affine
algebraic group G. Let

HR ⊂ GR

be a maximal compact subgroup, and gR = hR ⊕mR be the Cartan decom-
position of gR, the Lie algebra of GR, where hR is the Lie algebra of HR and
mR is its orthogonal complement with respect to the Killing form on gR. Let
H and m be the complexifications of HR and mR respectively.

A particular class of L-twisted Higgs pairs are the GR-Higgs bundles.
For aGR-Higgs bundle, the above line bundle L is the holomorphic cotangent
bundle KX of X, the structure group is H, while ρ is the adjoint representa-
tion ι : H −→ GL(m). In other words, a GR-Higgs bundle is a pair (E,φ),
where E is a holomorphic principal H-bundle on X and φ is a holomorphic
section of the holomorphic vector bundle E(m)⊗KX . We recall that the
non-abelian Hodge correspondence for GR-Higgs bundles produces a homeo-
morphism between the moduli spaceM(GR) of polystable GR-Higgs bundles
on X and the character variety R(GR) of equivalence classes of reductive
representations of the fundamental group of X in GR (see [GGM1]).

Another main result of this paper is the extension of the non-abelian
Hodge correspondence to the context of real GR-Higgs bundles, where
GR is, as above, a real form of a connected semisimple complex affine al-
gebraic group G. For this set-up, we need to consider a real structure σG
on G which satisfies the condition that it commutes with a fixed compact
conjugation τ and the conjugation µ of G defining the real form GR. Then
σG preserves H while dσG preserves m. Moreover, ι is a representation com-
patible with σG and dσG. Real GR-Higgs bundles are σσσ-real KX -twisted
Higgs pairs of type ι, where σV = dσG, while σL = σKX

is the natural anti-
holomorphic involution of L = KX induced by σX . Note that the case of real
GR-Higgs bundles generalizes the case of real Higgs bundles for a complex
group studied in [BGH1], [BGH3] and [BHu], since a complex semisimple Lie
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group G can be viewed as a real form of G×G, where the anti-holomorphic
involution is (x, y) 7−→ (y, x).

To describe the other side of the non-abelian Hodge correspondence,
let Γ(X, x) be the orbifold fundamental group of (X, σX) for a base point
x ∈ X. Let

c ∈ ZσG

2 (H) ∩Ker(ι) ∩ Z(GR) ,

where Z(H) and Z(GR) are the centers of H and GR respectively, and
ZσG

2 (H) is the subgroup of elements of order 2 in Z(H) invariant under
σG. Also, let

ĜR

± = ĜR

±(σG, c)

be the group whose underlying set is GR × (Z/2Z) and the group operation
is given by the rule

(g1, e1)(g2, e2) = (g1(σGτ
1

2
∓ 1

2 )e1(g2)c
e1+e2 , e1 + e2) .

A representation

ρ̂ : Γ(X, x) −→ ĜR

±

is called (σX , σG, c,±)-compatible if it is an extension of a representation
ρ : π1(X, x) −→ GR fitting in a commutative diagram of homomorphisms

(1.2) 0 // π1(X, x)
i

//

ρ

��

Γ(X, x)
q

//

ρ̂
��

Z/2Z //

Id

��

0

0 // GR i′
// ĜR

±
q′

// Z/2Z // 0 ,

where i and i′ are the inclusion maps and q and q′ are the corresponding
projections.

LetR(GR, σX , σG, c,±) be the variety consisting of GR-conjugacy classes
of (σX , σG, c,±)-compatible representations

ρ̂ : Γ(X, x) −→ ĜR

±

whose restriction to π1(X, x) is reductive, that is, its conjugacy class is an
element in R(GR).

We prove the following (see Theorem 5.6):

Theorem 1.2. There is a canonical homeomorphism between
R(GR, σX , σG, c,±) and the moduli space M(GR, σX , σG, c,±) of polystable
(σX , σG, c,±)-real GR-Higgs bundles.
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The proof of Theorem 1.2 crucially uses Theorem 1.1 together with an
appropriate version of the Donaldson–Corlette theorem on the existence
of harmonic metrics. It may be mentioned that Theorem 1.2 could be the
starting point to identify higher Teichmüller spaces in this real context, as
it is done in the usual theory of GR-Higgs bundles (see [GP] for a review).

We note that real GR-Higgs bundles appear in a natural way as fixed
points of the involutions — of the moduli space M(GR) of GR-Higgs bundles
— defined by

(1.3)
ιM(σX , σG)

± : M(GR) −→ M(GR)
(E, φ) 7−→ (σ∗XσGE,±σ∗XσGφ) .

The obvious forgetful map induces a map from M(GR, σX , σG, c,±) to
M(GR), and we prove the following (see Proposition 6.1):

Proposition 1.3. The image of M(GR, σX , σG, c,±) in M(GR) is
contained in the fixed point set M(GR)ιM(σX ,σG)±. Furthermore, if
we restrict the involution ιM(σX , σG)

± in (1.3) to the subvariety of
Mss(G

R) ⊂ M(GR), consisting of stable and simple GR-Higgs bundles, then
Mss(G

R)ιM(σX ,σG)± is contained in the image in M(GR) of the union of mod-
uli spaces M(GR, σX , σG, c,±) parameterized by elements c ∈ ZσG

2 (H) ∩
Ker(ι), where Z(H) is the center of H and ZσG

2 (H) is the subgroup of ele-
ments of order two in Z(H) invariant under σG.

We also prove a similar result for R(GR, σX , σG, c,±), where the involu-
tions of the character variety R(GR) of the fundamental group of X in GR

are given by

(1.4)
ιR(σX , σG)

± : R(GR) −→ R(GR)

ρ 7−→ σG ◦ τ 1

2
∓ 1

2 ◦ ρ ◦ (σX)∗ .

(See Proposition 6.2.)
When the group GR is complex, the moduli space M(GR) is a hyper-

Kähler manifold and the fixed point sets of the involutions in (1.3) and
(1.4) define branes, in the sense of [KW]. These branes have been studied in
[BS], [BCFG], [BG], [FGOP], [GR], [GW] and [BGH2]. We note that their
importance stems from their close relation with mirror symmetry and the
Langlands correspondence.

In some sense, in this paper, we are considering doubly real Higgs bundles
since we are studying real structures on Higgs bundles whose structure group
is already real. This is perfectly possible since, although the group GR is a
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real form of a complex group G, GR-Higgs bundles are holomorphic objects
on X even if GR does not have a complex structure, and hence the reality
conditions can be defined by choosing another conjugation of G preserving
GR as well as a conjugation of X. As we have explained above, in the paper
we go beyond Higgs bundles, studying real structures on more general Higgs
pairs.

The article is organized as follows. First, we review in Section 2 the
notions of real structures for the main objects that will be used in the sub-
sequent sections, and we also analyze the Chern correspondence between
holomorphic structures and connections in the presence of real structures.
In Sections 3 and 4 we prove a Hitchin–Kobayashi correspondence for σσσ-real
L-twisted Higgs pairs (here we follow [GGM1] closely). Firstly, after defining
these pairs, we give some examples and recall the Hermite–Einstein–Higgs
equation. We then prove that a polystable σσσ-real L-twisted Higgs pair that
is not stable admits a Jordan–Hölder reduction and, as a consequence of it,
we reduce the proof to the stable case. Following that, we reformulate our
problem in terms of finding a metric on which the integral of the moment
map attains a minimum. Finally, we prove the converse which says that
the existence of solutions of the Hermite–Einstein–Higgs equation implies
polystability. In Section 5, we prove the non-abelian Hodge correspondence
for real GR-Higgs bundles, where GR is a real form of a connected semisim-
ple complex Lie group G. We start by proving a bijective correspondence
between M(GR, σX , σG, c,±) and the moduli space of triples consisting of a
real structure on a C∞ principal HR-bundle, a compatible connection, and
a real Higgs field satisfying the Hitchin equations. We also prove an appro-
priate Donaldson–Corlette correspondence, showing the bijection between
the moduli space of solutions to Hitchin equations and the moduli space of
compatible reductive flat GR-connections, which in turn is in bijective cor-
respondence with R(GR, σX , σG, c,±). Finally, in Section 6, we describe the
relationship between the fixed-point of the involutions in (1.3) and the mod-
uli spaces M(GR, σX , σG, c,±), where c varies in ZσG

2 (H) ∩Ker(ι). By the
non-abelian Hodge correspondence, proved in the previous section, with the
additional condition that c ∈ ZσG

2 (H) ∩Ker(ι) ∩ Z(GR), we obtain a similar
description for the fixed points of the involutions in (1.4) in terms of the
moduli spaces R(GR, σX , σG, c,±).
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2. Real structures

2.1. Real structures on complex Lie groups and their
representations

We recall that a real structure or conjugation on a reductive complex
affine algebraic group G is an anti-holomorphic involution of G. We denote
by Conj(G) the set of conjugations on G, and also denote by Aut2(G) the set
of holomorphic automorphisms of G of order two (and the identity map). In
Aut2(G) and Conj(G) we define the equivalence relation σ∼σ′ if and only if
there is some α ∈ Aut(G) with the property that σ′ = α−1 ◦ σ ◦ α. Cartan
proved in [Ca] that there is a bijection

(2.1)
Conj(G)/∼ −→ Aut2(G)/∼

[σ] 7−→ [θ] ,

which is constructed as follows: Fix a compact conjugation τ of G; now given
any

σ ∈ Conj(G) ,

there is an element σ′ ∈ Conj(G) such that σ′ ∼ σ and the inclusion θ :=
σ′ ◦ τ ∈ Aut2(G) holds.

Proposition 2.1. Given any σ ∈ Conj(G), there is a maximal compact
subgroup

K ⊂ G

such that σ(K) = K.

Proof. Given a compact conjugation τ , by the bijection in (2.1) there is a
conjugation

σ′ := α−1 ◦ σ ◦ α ,
for some α ∈ Aut(G), such that the equality σ′ ◦ τ = (σ′ ◦ τ)−1 holds, and
therefore we have

(2.2) τ ◦ σ′ = σ′ ◦ τ ,

because τ and σ′ are both involutions. Consider τ ′ := α ◦ τ ◦ α−1; then
K := Gτ

′

is a maximal compact subgroup of G. For any x ∈ Gτ
′

, we have

τ ′(σ(x)) = α ◦ τ ◦ α−1 ◦ α ◦ σ′ ◦ α−1(x) = α ◦ τ ◦ σ′ ◦ α−1(x)
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= α ◦ σ′ ◦ α−1 ◦ α ◦ τ ◦ α−1(x) = σ(τ ′(x))

using Equation (2.2). This implies that σ(Gτ
′

) = Gτ
′

.
An alternative proof: Using the involution σ of G, construct the semi-

direct product G⋊ (Z/2Z). Let K̃ be a maximal compact subgroup of G⋊
(Z/2Z). Then K̃ ∩G is a maximal compact subgroup of G which is preserved
by σ. □

Let G be a complex reductive affine algebraic group equipped with a
real structure σG, and let V be a complex vector space equipped with a real
structure σV : V −→ V, that is, an anti-linear involution. A holomorphic
representation ρ : G −→ GL(V) is (σG, σV)-compatible if for every g ∈ G
and v ∈ V, we have

σV( ρ(g)(v)) = ρ(σG(g))(σV(v)) .

Example 2.2 (The adjoint representation). Let G be a complex group
equipped with a real structure σG. Then the corresponding R–linear auto-
morphism dσG : g −→ g is evidently a real structure on the Lie algebra g

of G. Since the adjoint action Ad : G −→ Aut(G) commutes with the auto-
morphism σG, it follows that Ad : G −→ GL(g) is a (σG, dσG)-compatible
representation.

Example 2.3 (The isotropy representation). Let GR be a real form
of a connected reductive Lie group G, and let τ ∈ Conj(G) be a compact
conjugation. Denote Gτ by K. Let µ ∈ Conj(G) be a conjugation such that
the fixed point set (G)µ is GR. A conjugation σ ∈ Conj(G) is called (µ, τ)-
compatible if

1) σ ◦ µ = µ ◦ σ , and
2) σ ◦ τ = τ ◦ σ .

If σ is a (µ, τ)-compatible conjugation, then HR = GR ∩K is a maximal
compact subgroup of GR , whose complexification H is preserved by σ.
Moreover, the Cartan decomposition gR = hR ⊕ mR and its complexifica-
tion g = h ⊕ m are preserved by dσ. The adjoint action of HR on mR (the
isotropy representation) extends to the complexification, giving a represen-
tation ι : H −→ GL(m) which is (σ, dσ)-compatible.
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2.2. Real structures on Riemann surfaces and holomorphic
bundles

We recall that a real structure on a compact Riemann surface X is an
anti-holomorphic involution

σX : X −→ X .

The pair (X, σX) sometimes will be referred to as a Klein surface. We
note that such pairs were first studied in [Kl] and [We]. A morphism of
Klein surfaces

f : (X, σX) −→ (X ′, σX′)

is a holomorphic map f : X −→ X ′ , such that f ◦ σX = σX′ ◦ f . A Kähler
form ω on a compact Klein surface (X, σX) is called real if σ∗Xω = −ω. If
ω is a Kähler form on X, then ω − σ∗Xω is a real Kähler form on (X, σX)
(see [BGH1, p. 4]).

Let (X, σX) be a Klein surface, and let V −→ X be a holomorphic
vector bundle. A σX -real structure on V is a C∞ isomorphism σV : V −→
V such that the following conditions hold:

1) σV lifts σX , meaning that the diagram

V

��

σV
// V

��

X
σX

// X

is commutative,

2) σV is anti-holomorphic,

3) σV is C-anti-linear on the fibers of V , and

4) σ2V = IdV .

Such a pair (V, σV ) will sometimes be referred to as a real holomorphic
vector bundle. A homomorphism of real holomorphic vector bundles

f : (V, σV ) −→ (V ′, σV ′)

is an OX–linear homomorphism f : V −→ V ′ satisfying the condition that

f ◦ σV = σV ′ ◦ f .
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Real holomorphic vector bundles were introduced by Atiyah in [At2], and
they were subsequently studied in [BCFG], [BG], [BHH], [LS], [Sc1] and
[Sc2]. The topological classes of these real bundles are described in [BHH,
Section 4].

Let G be a reductive complex affine algebraic group equipped with a
real structure σG, and let (X, σX) be a Klein surface. The center of G will
be denoted by Z. Let

ZσG

2 ⊂ Z

be the subgroup of Z consisting of elements of Z of order two (and the
identity element) that are invariant under the involution σG. Take any

c ∈ ZσG

2 .

Let E be a holomorphic principal G-bundle over X.
A (σX , σG, c)-real structure is a C∞ diffeomorphism σE : E −→ E

such that the following four conditions holds:

1) the diagram

E

��

σE
// E

��

X
σX

// X,

is commutative, or in other words σE is a lift of σX ,

2) σE is anti-holomorphic,

3) σE(eg) = σE(e)σG(g), for all e ∈ E, g ∈ G , and

4) σ2E(e) = ce .

A pair (E, σE) satisfying the above four conditions will sometimes be
referred to as a (σX , σG, c)-real holomorphic G-bundle.

A morphism of (σX , σG, c)–real holomorphic G-bundles

f : (E, σE) −→ (E′, σE′)

is a holomorphic isomorphism of principal G-bundles f : E −→ E′ such
that

f ◦ σE = σE′ ◦ f .
In the literature, such bundles are known as pseudo-real principal bundles
(see [BGH1], [BGH3] and [BHu] and references therein). In [BGH3, Theorem
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3.9], there is a detailed description of all the topological classes of pseudo-real
principal bundles.

2.3. Chern correspondence and real structures

It will be of importance for us to think of a holomorphic principal bundle as
a C∞ principal bundle equipped with a complex structure. To explain this
in detail, let G be a reductive complex affine algebraic group equipped with
a real structure σG, and let (X, σX) be a Klein surface. Take any c ∈ ZσG

2 ,
and let π : E −→ X be a C∞ principal G-bundle overX. A (σX , σG, c)-real
structure σE on E is a lift of σX to E

σE : E −→ E

satisfying the conditions (1), (3) and (4) in the definition of a real structure
of a holomorphic G-bundle given above. An almost complex structure
on E is a G-invariant smooth section J of End(TE), where TE denotes the
real tangent bundle of the total space of E, such that

• J2 = −Id ,

• dπ ◦ J = JX ◦ dπ, where JX is the complex structure of X, and

• the map E×G −→ E giving the action of G on E is almost holo-
morphic. This means that the differential of this map E×G −→ E
commutes with the almost complex structures; the almost complex
structure of E×G is given by J and the almost complex structure of
G.

It can be shown that an almost complex structure on E is automatically a
complex structure. Indeed, the obstruction to integrability of an almost
complex structure on E is an element of Ω0,2

X (ad(E)), and it vanishes iden-

tically due to the fact that Ω0,2
X = 0 as the complex dimension of X is one.

Let C (E) be the space of all complex structures on E. A complex structure
JE ∈ C (E) is called σE-real if

(2.3) JE ◦ dσE = −dσE ◦ JE .

We shall denote by C (E, σE) the space of all complex structures on E that
are σE-real. The following proposition is a straightforward fact.

Proposition 2.4. There is a bijection between C (E, σE) and the space of
all equivalence classes of (σX , σG, c)-real holomorphic principal G-bundles
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(E, σE) whose underlying smooth principal G-bundle is E, such that the
C∞ isomorphism between E and E takes σE to σE. Two such (σX , σG, c)-
real holomorphic principal G-bundles (E, σE) and (E′, σ′E) are called equiv-
alent if the C∞ isomorphism of principal G-bundles E −→ E′ given by the
identity map of E is holomorphic and takes σE to σ′E.

Complex structures on E are closely related to connections on E. Let
π : E −→ X be a C∞ principal G-bundle (here G could be any Lie group).
Recall that a connection on E is a horizontal distribution H ⊂ TE such
that, for all e ∈ E,

TeE = (V E)e ⊕He ,

where V E := kernel(dπ) is the vertical tangent bundle for the projection π,
and the subbundle H ⊂ TE is preserved by the action of the group G on
TE given by the action of G on E. This is equivalent to having a g-valued
1-form A on E (with values in g), that is, a smooth section of the bundle
T ∗E⊗ g; again we require this A to be invariant under the action of G,
acting by a combination of the given action on E and the adjoint action on
g (equivalently, the map TE −→ g given by A is G-equivariant). Also, A
should restrict to the canonical right-invariant g-valued 1-form on the fibers
of π. For details, see [KN, Ch. II].

Let now

ρ : G −→ GL(V)

be a holomorphic representation of G on a complex vector space V, and let
V = E(V) be the associated smooth complex vector bundle. Recall that a
connection A on E defines a covariant derivative on V , that is a C–linear
map

dA : Ω0(X,V ) −→ Ω1(X,V )

that satisfies the Leibniz rule; here Ωp(X,V ) denotes the space of all smooth
sections of V ⊗∧p T ∗X.

Now, take G to be a reductive complex affine algebraic group equipped
with a real structure σG, and let (X, σX) be a Klein surface; also fix an
element c ∈ ZσG

2 .
Given a smooth principal G-bundle E on X equipped with a (σX , σG, c)-

real structure σE, we can impose a reality condition for a connection on
E. A connection A on E is said to be σE-compatible if the horizontal
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distribution H ⊂ TE corresponding to A satisfies the condition

d(σE)(He) = HσE(e) , for all e ∈ E .

This is equivalent to the condition that the corresponding g-valued one-form
A : TE −→ g is (dσE, dσG)-real, meaning

dσG ◦A ◦ dσE = A .

Let A (E) be the set of all connections on E. We shall denote by

A (E, σE) ⊂ A (E)

the subset consisting of all σE-compatible connections.
Let

K ⊂ G

be a maximal compact subgroup of G preserved by the involution σG (see
Proposition 2.1). Therefore, the involution σE of E defines an involution
of the quotient space E/K. A C∞ reduction of structure group h : X −→
E/K of the principal G-bundle E, from G to K, is called σE-compatible
if the image of h is preserved by this involution of E/K. Note that h is
σE-compatible if and only if the reduction of structure group of E to the
subgroup K

EK ⊂ E

corresponding to h satisfies the condition σE(EK) = EK .
Let

EK ⊂ E

be a σE-compatible reduction of structure group to the maximal compact
subgroup K of G. We denote by σEK

the restriction of the involution σE
to EK . The space of all connections on the principal K-bundle EK will be
denoted by A (EK). Let

A (EK , σEK
) ⊂ A (EK)

be the subset consisting of all σEK
-compatible connections. Recall that a

connection ∇ ∈ A (EK) lies in A (EK , σEK
) if and only if the horizontal

distribution H(A) ⊂ TEK for A is preserved by the involution of TEK given
by σEK

.
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There is a natural bijection between the space of complex structures
C (E) on E and the space of connections A (EK) on EK . This bijection is
given by the Chern map

(2.4) C : C (E) −→ A (EK)

which is constructed in the following way. For a complex structure J ∈
C (E), the horizontal distribution on EK defined by the connection C(J) is
given by

J(TEK)) ∩ TEK ⊂ TEK .

For details see [At1, pp. 191–192, Proposition 5] and [Sin, p. 586].
If now E has a σE-real structure, and EK is a σE-compatible reduction

of structure group, we have the following.

Proposition 2.5. The Chern map defines a bijection between C (E, σE) and
A (EK , σEK

).

Proof. Let J be a σE-real complex structure on E. Let C̃(J) ⊂ TEK be the
horizontal distribution for the connection C(J) on EK , where C is the map

in (2.4). So C̃(J) is the unique subbundle of TEK satisfying the following
three conditions:

1) J(C̃(J)) = C̃(J), and

2) C̃(J)⊕ kernel(dπ′) = TEK , where π′ : EK −→ X is the natural pro-
jection, and

3) C̃(J) is preserved by the action of K on EK .

For any e ∈ EK , if Y ∈ C̃(J)e, then Y = J(Z), for some Z ∈ C̃(J)e.
By (2.3) we have

dσE(Y ) = dσE(J(Z)) = J(dσE(−Z)) ∈ J(TσE(e)(EK)) ,

but we also have dσE(Y ) ∈ TσE(e)(EK). So dσE(C̃(J)e) is also preserved by
J(σE(e)) ∈ GL(TσE(e)E). Consequently, from the above uniqueness property

of C̃(J) it follows that

dσE(C̃(J)) = C̃(J) ;

recall that J is preserved by the action of G on E. Therefore, we conclude
that C(J) ∈ A (EK , σEK

).
The converse is proved similarly. □



✐

✐

“9-Garcia-Prada” — 2023/11/29 — 23:48 — page 500 — #16
✐

✐

✐

✐

✐

✐

500 I. Biswas, L. A. Calvo, and O. Garćıa-Prada

Let X be a Riemann surface with complex structure JX and equipped
with a real structure σX . Let G be a reductive complex affine algebraic
group equipped with real structure σG, and let V be a complex vector
space equipped with real structure σV. Let ρ : G −→ GL(V) be a (σG, σV)-
compatible holomorphic representation. Let E be a C∞ principal G-bundle
over X equipped with a (σX , σG, c)-real structure σE as well as a complex
structure J . The associated vector bundle V = E(V) is equipped with the
following structures:

• an involution σV , induced by σE and σV, and

• a complex structure JV whose Dolbeault operator is given by

∂JV
φ :=

dφ+ JV ◦ dφ ◦ JX
2

for all φ ∈ Ω0(X,V ) (considered as a map φ : X −→ V between
complex manifolds).

If the complex structure J on E is σE-real, then ∂JV
anti-commutes with

JV , which is equivalent to the condition that (V, σV ) is a real holomorphic
vector bundle; see Proposition 2.4. If E is equipped with a σE-compatible
reduction of structure group EK ⊂ E to the maximal compact subgroup
K, then A := C(J) is a σEK

-compatible connection, defining a covariant
derivative dA on V which is related to the Dolbeault operator by

∂JV
φ = ∂Aφ := π0,1dAφ

for φ ∈ Ω0(X,V ), where π0,1 is the projection of complex 1-forms to (0, 1)-
forms.

Example 2.6 (Compatible Hermitian metric). Let E be a C∞ princi-
pal GL(n,C)-bundle, and let V := E(Cn) be the associated complex vector
bundle of rank n on X for the standard representation of GL(n,C) on Cn.
Let σGL(n,C) be the real structure on GL(n,C) that sends any matrix A to

its conjugate matrix A. Then a (σX , σGL(n,C), c)-real structure σE on E cor-
responds to a σX -real structure σV on V . Giving a σE-compatible reduction
on E to U(n) is equivalent to giving an Hermitian structure h : V −→ V

∗
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on V such that the diagram

(2.5) V

σV

��

h
// V

∗

σV ∗

��

V
h

// V
∗

commutes, where σV ∗ is the transpose of the conjugate of σV . This condition
is equivalent to the condition that fiberwise σV is an isometry.

In this situation, the Chern correspondence defines a bijection between
the set of σV -compatible Dolbeault operators on V and the set of all σV -
compatible unitary connections on (V, h).

3. Real twisted Higgs pairs, stability and equations

3.1. Real twisted Higgs pairs

Let X be a compact connected Riemann surface, and let G be a connected
reductive complex affine algebraic group. Let V be a complex vector space
and ρ : G −→ GL(V) a holomorphic representation. Let E be a holomor-
phic principal G-bundle on X. We denote by V the holomorphic vector
bundle E(V) associated to E via ρ. Let L be a holomorphic line bundle
over X.

A L-twisted Higgs pair of type ρ is a pair (E, φ) consisting of a
holomorphic principal G-bundle E over X and a holomorphic section φ of
the holomorphic vector bundle V ⊗ L, where the holomorphic vector bundle
V is defined above.

Let σX and σG be real structures on X and G, respectively. Let σV be a
real structure on V and ρ : G −→ GL(V) a (σG, σV)-compatible holomor-
phic representation. This means that

(3.1) ρ(g)(σV(v)) = (ρ(σG(g)))(v)

for all g ∈ G and v ∈ V. Let σE be a real structure on E.
Let Z be the center of G, and let

ZσG

2 ⊂ Z

be the subgroup consisting of all t ∈ Z, such that

• the order of t is two (if t is not the identity element), and
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• σG(t) = t.

Take any c ∈ ZσG

2

⋂
ker ρ. Let (E, σE) be a (σX , σG, c)-real principal G-

bundle over (X, σX).
Consider the map E × V −→ E × V that sends any (e, v) to

(σE(e), σV(v)). This map descends to an anti-holomorphic map

σV : V −→ V ,

because ρ satisfies (3.1). This map σV defines a real structure on the vector
bundle V , because c ∈ Ker(ρ). Let (L, σL) be a real holomorphic line bundle
over (X, σX). The tensor product σV ⊗ σL : V ⊗ L −→ V ⊗ L is clearly a
real structure on V ⊗ L.

A (σX , σG, c, σL, σV,±)-real structure on a L-twisted Higgs pair (E, φ)
of type ρ is an anti-holomorphic map σE : E −→ E such that (E, σE)
is a (σX , σG, c)-real holomorphic principal G-bundle over (X,σX), and the
section φ ∈ H0(X, V ⊗ L) satisfies the equation

(3.2) σV ⊗ σL(φ) = ±φ ◦ σX =: ±σ∗Xφ .

Denote by σσσ = (σX , σG, c, σL, σV,±). The triple (E,φ, σE) will sometimes
be referred to as a σσσ-real twisted Higgs pair of type ρ.

We give some concrete examples of real Higgs pairs.

Example 3.1. Let (G, σG) be a reductive complex affine algebraic group
equipped with an anti-holomorphic involution. Let (L, σL) = (KX , σKX

)
be the canonical line bundle of X equipped with the anti-holomorphic invo-
lution induced by σX . Set (V, σV) = (g, dσG). The adjoint representation
Ad : G −→ GL(g) is (σG, σV)-real. In this case, σσσ-real KX -twisted Higgs
pairs of type Ad are known in the literature as pseudo-real G-Higgs bun-
dles (see [BGH1], [BGH3] and [BHu]).

Example 3.2. Let G = GL(n,C), V = Sym2(Cn) and ρ the representa-
tion on V induced by the standard representation of GL(n,C) on Cn. Let L
be a holomorphic line bundle over the Riemann surfaceX. A L-twisted Higgs
pair of type ρ is an L-quadratic pair. They are also known in the literature
as conic bundles or quadric bundles (see, for example, [GGM2, Ol]). If we
equip G and V with complex conjugations σG(A) = A and σV(v) = v re-
spectively, for all A ∈ GL(n,C) and v ∈ V, then ρ is a (σG, σV)-compatible
representation, thus defining a real structure σV on V . Let σL be a real struc-
ture on L. Then σσσ-real L-twisted Higgs pairs of type ρ are real L-quadratic
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pairs (V, φ, σV ); by this we mean that (V, σV ) is a real holomorphic vector
bundle of rank n, and φ : V −→ V ∗ ⊗ L is a real section, meaning that
φ ◦ σV = σtV ⊗ σL ◦ φ.

Example 3.3. Let G = GL(n1,C)×GL(n2,C), V = Hom(Cn2 , Cn1), ρ
is the representation of G given by ρ(A,B)(T ) = A ◦ T ◦B−1, and L is the
trivial holomorphic line bundle OX over X. The L-twisted Higgs pairs of
type ρ are known in the literature as holomorphic triples (see, for exam-
ple, [BrGP]). We equip G and V with real structures σG, σV respectively,
defined by σG(A×B) = A×B and σV(T )v = Tv, for all A ∈ GL(n1,C),
B ∈ GL(n2,C), T ∈ Hom(Cn2 , Cn1) and v ∈ Cn2 . Then ρ is a (σG, σV)-
compatible representation. We equip the trivial line bundle OX with the
real structure induced by a real structure σX on X. The σσσ-real OX -twisted
Higgs pairs of type ρ are real holomorphic triples, that consist of two
real holomorphic vector bundles (V1, σV1

), (V2, σV2
) and a real morphism

ϕ : (V1, σV1
) −→ (V2, σV2

).

3.2. Stability

LetK be a σG-invariant maximal compact subgroup of a connected reductive
complex affine algebraic group G, and let

B ∈ Sym2(g∗)G

be aK-invariant non-degenerate bilinear form on the Lie algebra g = Lie(G)
which is positive on k = Lie(K). Let s be an element of

√
−1 · k; we note

that the following objects are associated to s:

• Ps := {g ∈ G | etsge−ts is bounded when t→ ∞} is a parabolic
subgroup of G,

• Ls := {g ∈ Ps | Ad(g)s = s} is a Levi subgroup of the parabolic
subgroup Ps, where Ad : G −→ Aut(g) is the Adjoint representation,

• ps := {x ∈ g | Ad(ets)x is bounded when t→ ∞} is the Lie algebra
of Ps,

• ls := {x ∈ g | [x, s] = 0} is the Lie algebra of Ls,

• Vs := {v ∈ V | ρ(etsv) is bounded when t→ ∞},
• V0

s := {v ∈ V | ρ(etsv) = v for all t}, and
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• χs is the dual of s with respect to B, meaning that B induces an
isomorphism B : k −→ k∗, using which we have χs := B(s)|ps∩k.

Remark 3.4. A character of ps is a complex linear map ps −→ C that
factors through the quotient ps/[ps, ps]. Since B(s, [ps, ps]) = 0, the above
defined homomorphism χs produces a strictly anti-dominant character of
ps. Conversely, given an anti-dominant character χ of ps, we have χ ∈
(ps/[ps, ps])

∗ ∼= (zLs
)∗, where zLs

is the center of the Levi subalgebra ls.
For sχ = B−1(χ), we have sχ ∈ zLs

⊂
√
−1 · k.

We now recall the definition of the degree of a principal G-bundle E
with respect to an element s ∈

√
−1 · k and a holomorphic reduction σ of

the structure group of E from G to Ps. Let EPs
⊂ E be the holomorphic

principal Ps-bundle corresponding to σ. By [GGM1, Lemma 2.4], there is a
rational number q such that (χs)

q lifts to a character χ̂s of Ps. Then EPs
(χ̂s)

is a line bundle. Now define the degree

(3.3) degE(σ, s) :=
1

q
degEPs

(χ̂s) .

Let σG be a conjugation on G, and let (E, σE) be a (σX , σG, c)-real
holomorphic principal G-bundle over X. We denote by Ad(E) the group
scheme E ×Ad G over X, which is associated to E via the adjoint action of
G on itself. The real structures σE and σG together define a real structure
σAd(E) on Ad(E), because the homomorphism Ad : G −→ Aut(G) given
by the adjoint action is compatible with σG (see Example 2.2).

The main change in the definition of stability for σσσ-real L-twisted Higgs
pairs vis-à-vis the definition of stability of the underlying Higgs pairs is that
we must consider only holomorphic reductions EPs

⊂ E of E from G to Ps
such that

(3.4) σAd(E)(Ad(EPs
)) = Ad(EPs

) .

More specifically, for any α ∈ z(k), a σσσ-real L-twisted Higgs pair (E,φ, σE)
is

• α-semistable if for every s ∈
√
−1k and for every holomorphic re-

duction of structure group σ of E to Ps such that
1) the holomorphic principal Ps-bundle EPs

⊂ E corresponding to σ
satisfies the equation in (3.4), and

2) φ ∈ H0(X, EPs
(Vs)⊗ L),
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the following inequality holds:

degE(s, σ)−B(s, α) ≥ 0 ;

• α-stable if for every s ∈
√
−1k \Ker(dρ) and for every reduction σ

of structure group of E to Ps satisfying (3.4) as well as the condition
φ ∈ H0(X, EPs

(Vs)⊗ L), the inequality

degE(s, σ)−B(s, α) > 0

holds;

• α-polystable if it is α-semistable and furthermore, for every reduction
σ of structure group of E to a parabolic subgroup Ps satisfying (3.4)
as well as the two conditions φ ∈ H0(X, EPs

(Vs)⊗ L) and

degE(s, σ)−B(s, α) = 0 ,

there is a holomorphic reduction of structure group

(3.5) ELs
⊂ EPs

of EPs
to the Levi subgroup Ls ⊂ Ps such that

σE(ELs
) = ELs

and φ ∈ H0(X, ELs
(V0

s)⊗ L).

Remark 3.5. If the condition in (3.4) is dropped, then we obtain the usual
definition of stability for the L-twisted Higgs pair (E, φ) underlying the
triple (E, φ, σE). The naive condition for σσσ-real L-twisted Higgs pairs, con-
sidering only those parabolic subgroups Ps such that σG(Ps) = Ps , is not
the right one for stability, since there are some cases (such as the compact
real form of G) for which there are no σG-invariant parabolic subgroups and,
therefore, such a stability condition would be trivially satisfied.

Remark 3.6. Let (E, φ, σE) be a σσσ-real L-twisted Higgs pair. If the
underlying Higgs pair (E, φ) is α-stable (respectively, α-semistable), then
(E, φ, σE) is obviously α-stable (respectively, α-semistable).
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3.3. Hermite–Einstein–Higgs equation

Let G be a connected reductive complex affine algebraic group equipped
with a real structure σG . Let K ⊂ G be a maximal compact Lie subgroup
preserved by the involution σG (see Proposition 2.1). Fix a non-degenerate
G-invariant bilinear form

B ∈ Sym2(g∗)G

which is

• positive on k = Lie(K), and

• compatible with dσG, meaning that (dσG)
∗B = B.

Let (X, σX) be a compact Klein surface, and let ω be a σX -real Kähler form
on X. Let (L, σL) be a real holomorphic line bundle over (X, σX). Fix a
σL–compatible Hermitian metric hL on L. We denote by FL the curvature of
the corresponding Chern connection on L. Let V be a complex vector space
equipped with a real structure σV, and let

(3.6) ρ : G −→ GL(V)

be a (σG, σV)-real holomorphic representation. Let hV be a K-invariant Her-
mitian inner product on the vector space V compatible with σV, meaning
hV(σV(v), σV(v

′)) = hV(v, v
′) for all v, v′ ∈ V .

As above, take a holomorphic principal G-bundle E on X equipped with
a real structure σE . Let h be a σE–compatible reduction of the structure
group of E from G to the subgroup K (see Section 2.3). The resulting real
K-bundle will be denoted by (EK , σEK

). Let

Ah ∈ A (EK , σEK
)

be the unique σEK
-connection on EK compatible with the holomorphic

structure of E (see Proposition 2.5). Let Fh ∈ Ω1,1((EK(k)) be the cur-
vature of Ah.

The associated holomorphic vector bundle V := E(V) has a Hermitian
structure hV which is constructed using the reduction h and the Hermitian
structure hV on V. Since hV is K-invariant and compatible with σV, this
Hermitian metric hV is in fact σV –compatible, where σV is the real structure
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on V defined by σG and σV. Note that the Hermitian structure

hV⊗L := hV ⊗ hL

on V ⊗ L is compatible with the involution σV ⊗ σL. The representation ρ
in (3.6) induces a linear map

u(V)∗

Q

  (dρ)∗
// k∗

B
// k ,

where u(V) ⊂ End(V) is the subalgebra consisting of the skew-Hermitian
endomorphisms. This homomorphism Q produces a homomorphism of vec-
tor bundles associated to the principal K-bundle EK

Q̃ : EK(u(V))∗ −→ EK(k) .

The pairing

trace : EK(u(V))⊗ EK(u(V)) −→ X × C ,

being nondegenerate, identifies EK(u(V)) with the dual vector bundle
EK(u(V))∗. Using this identification, the above homomorphism Q̃ would
be considered as a homomorphism

(3.7) Q̃ : EK(u(V)) −→ EK(k) .

Now take any L-twisted Higgs field

φ ∈ H0(X, V ⊗ L)

on E. It produces a C∞ section

φ̂ ∈ C∞(X, EK(u(V)))

as follows: Consider the C∞ section

φ ∈ C∞(X, V ⊗ L) = C∞(X, V ⊗ L) .

Note that

φ⊗ φ ∈ C∞(X, V ⊗ L)⊗ C∞(X, V ⊗ L)
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produces a C∞ section

(3.8) φ′ ∈ C∞(X, (V ⊗ V )⊗ (L⊗ L)) .

Now, the Hermitian structure hL on L identifies L with L∗ (it is a C∞

isomorphism), and the Hermitian structure hV on V identifies V with V ∗.
Therefore, using the natural pairing L⊗ L∗ −→ OX , the C∞ section φ′

in (3.8) produces a C∞ section

(3.9) φ′′ ∈ C∞(X, V ⊗ V ∗) .

It is straightforward to check that the section φ′′ is pointwise Hermitian
(same as self-adjoint), meaning φ′′(x) ∈ End(Vx) is Hermitian for all x ∈
X.

To see that the section φ′′ is pointwise Hermitian, let W be a finite
dimensional complex vector space equipped with a Hermitian structure hW.
Take any v ∈ W. Note that v produces an endomorphism

Fv ∈ End(W) = W⊗W∗

defined by

Fv(z) := hW(z, v) · v
for all z ∈ W. Now for all z, w ∈ W, we have

hW(Fv(z), w) = hW(hW(z, v) · v, w) = hW(z, v) · hW(v, w)

= hW(w, v) · hW(z, v) = hW(z, hW(w, v) · v) = hW(z, Fv(w)) .

Consequently, Fv ∈ End(W) is in fact Hermitian. This immediately implies
that the section φ′′ in (3.9) is pointwise Hermitian, and therefore we conclude
that

(3.10) φ̂ :=

√
−1

2
φ′′ ∈ C∞(X, EK(u(V))) .

To describe φ̂ in (3.10) more concretely, if φ is locally of the form φV ⊗
φL, where φV and φL are locally defined C∞ sections of V and L respectively,
then

φ̂(s) :=

√
−1

2
hV (s, φV )hL(φL, φL) · φV ,

where s is any locally defined C∞ section of V . It is straight-forward to
check that the above expression of φ̂ does not depend on the choice of the
local decomposition φ = φV ⊗ φL.
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Note that

(3.11) ĉφ = |c|2φ̂

for all c ∈ C.
Now define

(3.12) µh(φ) := Q̃(−φ̂) ∈ C∞(X, EK(k)) ,

where Q̃ is the homomorphism in (3.7). From (3.11) it follows that

µh(cφ) := |c|2µh(φ)

for all c ∈ C.
Let (E, φ, σE) be a σσσ-real L-twisted Higgs pair of type ρ. The center of

the Lie algebra k is denoted by z(k). Take a central element α ∈ z(k) such
that dσG(α) = −α. A σE-compatible reduction h of the structure group
of E from G to K is called Hermite–Einstein–Higgs if it satisfies the
equation

(3.13) ΛFh + µh(φ) = −
√
−1α ,

where Λ denotes the contraction of differential forms on X with ω, and
µh is the function in (3.12). Note that we have Λ(Fh) ∈ Ω0(EK(k)), since
Fh ∈ Ω1,1(EK(k)).

4. Hitchin–Kobayashi correspondence for real Higgs pairs

The main result of the section, that we prove in the subsequent subsections,
is the following.

Theorem 4.1 (Hitchin–Kobayashi correspondence). A σσσ-real L-
twisted Higgs pair (E, φ, σE) is α-polystable if and only if (E, φ, σE) admits
a σE-compatible Hermite–Einstein–Higgs reduction.

Corollary 4.2. A σσσ-real L-twisted Higgs pair (E, φ, σE) is α-polystable if
and only if the underlying Higgs pair (E, φ) is α-polystable.

Proof of Corollary 4.2. If a L-twisted Higgs pair (E, φ) is α-polystable then
(E, φ, σE) is α-polystable for any σσσ-real structure σE (see Remark 3.6).

For the opposite direction, in view of Theorem 4.1, it follows that the
α-polystability of a σσσ-real L-twisted Higgs pair (E,φ, σE) is equivalent to
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the existence of a σE-compatible solution of the Hermite–Einstein–Higgs
equation (3.13). The existence of a solution of the Hermite–Einstein–Higgs
equation implies the polystability of the underlying L-twisted Higgs pair, by
the Hitchin–Kobayashi correspondence proved in [GGM1, Theorem 2.24].

□

4.1. Jordan–Hölder reduction

Let G be a connected reductive complex affine algebraic group, V a complex
vector space and

(4.1) ρ : G −→ GL(V)

a holomorphic representation. Let G′ ⊂ G be a complex algebraic subgroup.
Let V′ be a complex linear subspace of V such that the action of G′ on V,
obtained by restricting the action of G on V, preserves this subspace V′. Let

ρ′ : G′ −→ GL(V′)

be the restriction of ρ.
Take any holomorphic reduction of structure group E′ ⊂ E to the sub-

group G′. Note that the two holomorphic vector bundles E(V) and E′(V)
are canonically identified. Therefore, E′(V′) is a holomorphic subbundle of
E(V).

Let (E, φ) be a L-twisted Higgs pair of type ρ. A reduction of struc-
ture group of (E, φ), from (G, ρ) to (G′, ρ′) is a L-twisted Higgs pair
(E′, φ′) of type ρ′, where

• E′ is a reduction of structure group of E, from G to G′, and

• φ′ ∈ H0(X, E′(V′)⊗ L) is sent to φ by the homomorphism

H0(X, E′(V′)⊗ L) −→ H0(X, E(V)⊗ L)

induced by the above mentioned vector bundle injection
E′(V′) �

�

// E(V) .

Let σE be a (σX , σG, c, σL, σV,±)-real structure on a L-twisted
Higgs pair (E, φ). A reduction of structure group (E′, φ′) of (E, φ),
from (G, ρ) to (G′, ρ′), is σE-compatible if the restriction σE |E′ is a
(σX , σG|G′ , c, σL, σV|V′ ,±)-real structure on (E′, φ′).

The main result of this subsection is the following:
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Theorem 4.3 (Existence of a Jordan–Hölder reduction). Given a α-
polystable σσσ-real L-twisted Higgs pair (E, φ, σE) that is not α-stable, there
is a σE-compatible reduction of structure (E′, φ′) of (E, φ) from (G, ρ) to
(G′, ρ′), such that G′ ⊂ G is a reductive complex algebraic subgroup, and
(E′, φ′, σE |E′) is α-stable.

Theorem 4.3 will be proved after proving Proposition 4.7.
To prove Theorem 4.3 we shall follow the approach in [GGM1, Sections

2.9, 2.10, 2.11], checking that every construction done there is compatible
with real structures. First, we establish a relation between polystable σσσ-real
L-twisted Higgs pairs, that are not stable, and a certain space of automor-
phisms. This will be elaborated below.

Let

ad(E) = E(g) = E ×G g −→ X

be the holomorphic vector bundle associated to E for the adjoint action of
G on its Lie algebra g; so ad(E) is the adjoint vector bundle for E. Note
that the fibers of ad(E) are Lie algebras isomorphic to g. More precisely, any
fiber E(g)x is identified with g uniquely up to an inner automorphism of g.
Since the fibers of ad(E) are Lie algebras, the vector space H0(X, ad(E))
has the structure of a complex Lie algebra.

The involution σE of E and the involution dσG of g together define an
anti-holomorphic involution

(4.2) σad(E) : ad(E) −→ ad(E) .

The space of infinitesimal automorphisms of a principal G-bundle EG
is given by H0(X, ad(E)). In other words, H0(X, ad(E)) is the Lie alge-
bra of the group of all holomorphic automorphisms of E. Hence the set of
infinitesimal automorphism of a L-twisted Higgs pair (E, φ) is given by

aut(E, φ) := {s ∈ H0(X, ad(E)) | ((dρ)⊗ IdL)(s)(φ) = 0}
⊂ H0(X, ad(E)) ,

where dρ is the homomorphism of Lie algebras associated to ρ in (4.1); note
that dρ induces a homomorphism of associated bundles. It is straightforward
to check that aut(E, φ) is a complex Lie subalgebra of H0(X, ad(E)).

Let

(4.3) σaut : aut(E, φ) −→ aut(E, φ)
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be the conjugate linear involution defined by

σaut(s)(σX(x)) := σad(E)(s(x))

for every s ∈ aut(E, φ) and x ∈ X, where σad(E) is the anti-holomorphic
involution of the adjoint bundle ad(E).

Note that given a section s ∈ H0(X, ad(E)), there is a unique Jordan
decomposition

(4.4) s = sss + sn ,

where

• sss(x) ∈ ad(E)x is semisimple for all x ∈ X while sn(x) is nilpotent,
and

• sss(x) and sn(x) commute for all x ∈ X.

(See [BBN1], [BBN2]). Let

autss(E, φ) ⊂ aut(E, φ)

be the subspace consisting of all s1 ∈ aut(E, φ) such that s1(x) ∈ ad(E)x
is semisimple for all x ∈ X. Therefore, we have

sss ∈ autss(E, φ) ,

where sss is the section in (4.4). In fact, if s ∈ aut(E, φ) with σaut(s) = s,
then we have sss ∈ autss(E, φ) with σaut(s

ss) = sss.
Consider the Lie algebra aut(E, φ). Let

(4.5) C ⊂ aut(E, φ)

be a Cartan subalgebra such that

σaut(C) = C ,

where σaut is constructed in (4.3). Note that we have C ⊂ autss(E, φ).
This complex subalgebra C in (4.5) produces a Levi subgroup L(P ) ⊂ P

of a parabolic subgroup P ⊂ G, together with a holomorphic reduction of
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structure group of E

EL(P ) ⊂ E

to the Levi subgroup L(P ) [BP, p. 55, Proposition 1.2] (see also [BBN1],
[BBN2]). We briefly recall below the construction of the above pair
(L(P ), EL(P )).

Take any element s ∈ C such that the complex subgroup of Aut(E)
generated by {exp(ts)}t∈C coincides with the subgroup generated by C; ele-
ments of C satisfying this condition form a nonempty Zariski open subset of
C. Since the conjugacy classes of semisimple elements in g is an affine vari-
ety, and X is compact, the condition that s(x) ∈ ad(E)x is semisimple for
all x ∈ X implies that the conjugacy class in g determined by the element
s(x) ∈ ad(E)x is independent of x. Fix an element s0 ∈ g in this conjugacy
class. Then L(P ) ⊂ is the centralizer, in G, of s0 for the adjoint action of
G. Let

(4.6) C(s) ⊂ Ad(E)

be the sub-group scheme whose fiber over any point x ∈ X is the centralizer,
in Ad(E)x, of the element s(x) for the adjoint action on the Lie algebra; since
the conjugacy class of s(x) is independent of x ∈ X, it follows that C(s) is
indeed a sub-group scheme of Ad(E). Also, recall that Ad(E) is a quotient
of E ×G, where two points (z1, g1), (z2, g2) ∈ E ×G are identified if there
is g ∈ G such that z2 = z1g and g2 = g−1g1g. The complex submanifold

(4.7) EL(P ) ⊂ E

is the locus of all point z ∈ E such that the image of (z, g) ∈ E × L(P ) in
the quotient space Ad(E) lies in C(s).

Now choose s ∈ C as above satisfying the extra condition that σaut(s) =
s (as before, impose the condition that the subgroup of Aut(E) generated by
{exp(ts)}t∈C coincides with the subgroup generated by C); since the subspace
Cσaut ⊂ C fixed by σaut is Zariski dense in C, such an element s exists. Choose
the above element s0 ∈ g such that dσG(s0) = s0. This condition implies
that σG(L(P )) = L(P ) (the parabolic subgroup P associated to L(P ) is not
unique, and P need not be preserved by σG). The antiholomorphic involu-
tion σE of E and the antiholomorphic involution σG of G together produce
an antiholomorphic involution of E ×G. This involution descends to an an-
tiholomorphic involution of Ad(E). Since σaut(s) = s, the sub-group scheme
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C(s) in (4.6) is preserved by this antiholomorphic involution of Ad(E). Con-
sequently, EL(P ) in (4.7) is preserved by the antiholomorphic involution σE
of E.

We note that the condition that (dρ⊗ IdL)(s)(φ) = 0, for all s ∈ C,
implies that (EL(P ), φ) is, in fact, a reduction of the structure group of
(E, φ).

Let

z ⊂ g

be the center of g, so z is the Lie algebra of Z. Let

E(z) := E ×G z

be the vector bundle associated to E for the adjoint action of G on z. Since
the adjoint action of G on z is trivial, we have E(z) := X × z. Also, note
that

E(z) ⊂ ad(E)

is the fiberwise center of the Lie algebra bundle ad(E).
While the infinitesimal automorphisms of (E, φ) are parameterized by

aut(E, φ), the infinitesimal automorphisms of the triple (E, φ, σE) consti-
tute the subspace

aut(E, φ, σE) = aut(E, φ)σaut := {s ∈ aut(E, φ) | σaut(s) = s} ,

where σaut is the real involution of the Lie algebra aut(E, φ) in (4.3). There-
fore, we have

H0(X, E(z))σad(E) = H0(X, E(z)) ∩ aut(E, φ, σE) ;

note that the involution σad(E) in (4.2) induces an involution of
H0(X, ad(E)) (also denoted by σad(E)), and the subspace H0(X, E(z)) ⊂
H0(X, ad(E)) is preserved by σad(E).

Proposition 4.4. Let (E, φ, σE) be a σσσ-real L-twisted Higgs pair. If
(E, φ, σE) is α-stable then

(4.8) aut(E, φ, σE) = H0(X, E(z))σad(E) .

Assume that (E, φ, σE) is α-polystable. Then (E,φ, σE) is α-stable if
and only if

(4.9) autss(E, φ, σE) = H0(X, E(z))σad(E) .
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Proof. We will start proving the second part, assuming the first part. The
first part will be proved subsequently.

Assume that (E, φ, σE) is α-polystable. If (E, φ, σE) is α-stable, then
the first part of the proposition implies that

autss(E, φ, σE) = H0(X, E(z))σad(E) ,

since any section s ∈ H0(X, E(z)) is pointwise semisimple. Note that
H0(X, E(z)) = z, because H0(X, E(z)), as noted before, is the trivial
holomorphic vector bundle on X with fiber z. The σad(E)-invariant part

H0(X, E(z))σad(E) ⊂ H0(X, E(z)) coincides with zdσG , where dσG is, as
above, the involution of g induced by σG.

On the other hand, if (E, φ, σE) is not α-stable, then for any reduction

ELs
⊂ EPs

⊂ E

as in (3.5), consider the subbundle

Z(ELs
) ⊂ ad(ELs

)

defined by the centers of the fibers of the adjoint bundle ad(ELs
) of ELs

;
so for any point x ∈ X, the fiber Z(ELs

)x is the center of the Lie algebra
ad(ELs

)x. Note that Z(ELs
) is a trivial vector bundle over X whose fibers

are identified with the center zLs
of the Lie algebra of the Levi subgroup Ls.

Moreover, we have

zLs
= H0(X, Z(ELs

)) ⊂ H0(X, ad(ELs
)) ⊂ aut(E, φ) ,

and the automorphism σaut of aut(E, φ) preserves the above subspaces
H0(X, ad(ELs

)) and H0(X, Z(ELs
)); in fact, the action of σaut on

H0(X, Z(ELs
)) coincides with the action of dσG on zLs

. The vector
space H0(X, Z(ELs

)) is strictly larger than H0(X, E(z)), because Ps is
a proper parabolic subgroup of G (recall that (E, φ, σE) is α-polystable
but not α-stable). Also, every element s ∈ Z(ELs

) is pointwise semisim-
ple. These together imply that H0(X, Z(ELs

))σad(E) is strictly larger than
H0(X, E(z))σad(E) . This proves the second part of the proposition assuming
the first part.

To prove the first part of the proposition, we first note that

H0(X, E(z))σad(E) ⊂ aut(E, φ, σE) ,

because H0(X, E(z)) ⊂ aut(E, φ).
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Let (E, φ, σE) be a σσσ-real L-twisted Higgs pair which is α-stable.
First, assume that

(4.10) autss(E, φ, σE) \H0(X, E(z))σad(E) ̸= ∅ .

Take an element s ∈ autss(E, φ, σE) that generates a Cartan subalgebra
of autss(E, φ). As we saw in (4.7), this section s produces a reduction of
structure group

E(Ls) ⊂ E

of E to a Levi subgroup Ls ⊂ G which satisfies the following two conditions:

1) E(Ls) is a reduction of structure group of (E, φ), and

2) σE(E(Ls)) = E(Ls).

From the assumption in (4.10) it follows that the conjugacy class in g de-
termined by s does not lie in z. Consequently, Ls ⊊ G is a proper parabolic
subgroup.

The reduction E(Ls) ⊂ E thus contradicts the given condition that
(E, φ, σE) is α-stable. In view of this contradiction, we conclude that

autss(E, φ, σE) = H0(X ,E(z))σad(E) .

To complete the proof we need to show that aut(E, φ, σE) does not have
any nonzero nilpotent element.

Let s ∈ aut(E, φ, σE) be a nonzero nilpotent element. This defines a
parabolic subalgebra bundle

(4.11) P ⊂ ad(E)

constructed as follows. Since there are only finitely many conjugacy classes
of nilpotent elements of g, there is a open subset U ⊂ X such that

• X \ U is a finite subset, and

• the conjugacy class in g determined by s(x) ∈ ad(E)x is independent
of x ∈ U .

Take any x ∈ U . Let n1 ⊂ ad(E)x be the normalizer of C · s(x), and
let r1 be the nilpotent radical of n1. Now inductively define ni+1 to be the
normalizer of ri in ad(E)x and define ri+1 to be the nilpotent radical of
ni+1. Now {nj}j≥1 is an increasing sequence of subspaces that converges to
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a parabolic subalgebra of ad(E)x (see [AB, p. 340, Lemma 3.7]). This way
we obtain a parabolic subalgebra bundle

P ′ ⊂ ad(E)|U

over U . Since the conjugates of a parabolic subalgebra in a complex reductive
algebra are parameterized by a complete variety (conjugates of a parabolic
subalgebra Lie(P ) ⊂ g are parameterized by G/P which is a complete va-
riety), the above subalgebra bundle P ′ actually extends to a parabolic sub-
algebra bundle P over X (as in (4.11)); see the proof of Proposition 3.9 in
[AB]. It is straight-forward to check that this subalgebra bundle P contra-
dicts the given condition that (E, φ, σE) is α-stable. This completes the
proof of the proposition. □

The following two lemmas correspond to [GGM1, Lemma 2.16] and
[GGM1, Lemma 2.17] respectively. Note that here we only consider reduc-
tions of structure groups that are compatible with the real structure.

Lemma 4.5. Let (E, σE) be a (σX , σG, c)-real G-bundle over (X, σX). Let
G′ be a Lie subgroup of G such that the Lie algebra g′ = Lie(G′) has the
following property: The normalizer NG(g

′) ⊂ G for the adjoint action of G
on g is G′ itself. The reductions EG′ ⊂ E of structure group of E from G
to G′ such that

(4.12) σAd(E)(Ad(EG′)) = Ad(EG′) ,

are in one-to-one correspondence with subbundles F ⊂ ad(E) of Lie algebras
satisfying the following two conditions:

1) σad(E)(F ) = F , and

2) for any x ∈ X and any trivialization Ex ≃ G of the fiber Ex (ob-
taining by fixing an element of Ex), the subalgebra Fx ⊂ ad(E)x is
conjugate to g′, via the trivialization ad(E)x ≃ g induced by the triv-
ialization of Ex.

Proof. It is a consequence of [GGM1, Lemma 2.16] and the fact that equa-
tion (4.12) is equivalent to the above condition (1) on F . □

Let P ⊂ G be a parabolic subgroup. Let EP ⊂ E be a holomorphic
reduction of structure group such that

(4.13) σAd(E)(Ad(EP )) = Ad(EP ) .
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Let LP ⊂ P be a Levi subgroup of P , and let U ⊂ P be the unipotent
radical. The Lie algebras of LP , P and U will be denoted by l, p and u

respectively. Let

EL ⊂ EP

be a holomorphic reduction of the structure group of EP from P to LP , such
that

(4.14) σAd(E)(Ad(EL)) = Ad(EL) .

Conditions (4.13) and (4.14) imply that σad(E) = d(σAd(E)) preserves
all three subbundles EP (u), EP (p) and EP (l) of ad(E). Denote by σEP (u),
σEP (p) and σEP (l) the real structures on EP (u), EP (p) and EP (l) respectively
induced by σad(E). There is a short exact sequence of holomorphic vector
bundles with real structure
(4.15)

0 // (EP (u), σEP (u)) // (EP (p), σEP (p)) // (EP (l), σEP (l)) // 0.

Note that (4.15) is a short exact sequence of Lie algebra bundles, and all the
homomorphisms in (4.15) are in fact Lie algebra structure preserving. A Lie
algebra bundle (right) splitting of (4.15) is a homomorphism of Lie algebra
bundles f : EP (l) −→ EP (p) such that the composition of homomorphisms

EP (l)
f−→ EP (p) −→ EP (l)

coincides with the identity map of EP (l), where EP (p) −→ EP (l) is the
projection in (4.15). If

f ◦ σEP (l) = σEP (p) ◦ f ,

then the splitting f is called (σEP (l), σEP (p))-real.

Lemma 4.6. Let EP ⊂ E be a holomorphic reduction of structure group to
P satisfying (4.13). Reductions EL of the structure group of EP from from
P to LP satisfying (4.14) are in a natural bijective correspondence with the
holomorphic Lie algebra bundle (right) splittings of the exact sequence in
(4.15) that are (σEP (l), σEP (p))-real.

Proof. Setting G = P and G′ = LP in Lemma 4.5, we conclude that the
space of reductions of structure group of EP from P to LP satisfying
(4.14) is in bijective correspondence with subbundles F ⊂ EP (p) such that
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σad(E)(F ) = F and Fx is conjugate to l , once we identify EP (p)x with p for
any x ∈ X, by fixing an element of (EP )x. □

Let (E,φ, σE) be a α-polystable σσσ-real L-twisted Higgs pair that is
not α-stable. From Proposition 4.4 it follows that there exists a non-central
element η ∈ aut(E,φ, σE), in other words there exists η ∈ H0(X, E([g, g]))
such that

σaut(η) = η .

There is an element

u := ur +
√
−1ui ∈ [g, g] ,

where ur, ui ∈ k = Lie(K) and [ur, ui] = 0, such that η(x) ∈ E([g, g])x
lies in the conjugacy class of u for every x ∈ X; as before, K is a maximal
compact subgroup of G preserved by σG (see Proposition 2.1). This element
u := ur +

√
−1ui satisfies the equation dσG(u) = u. Let a ∈ [k, k] be an

infinitesimal generator of the torus generated by ui and ur. Then, a also
satisfies the equation dσGa = a. Furthermore, the subgroup

K1 := ZK(a) = {h ∈ K | Ad(h)a = a}

is preserved by σG, because K is preserved by σG. We denote by G1 the
complexification KC

1 and by σG1
the restriction σG|KC

1
. The section η ∈

H0(X, ad(E)) induces a G-equivariant map

ϕη : E −→ g

which is also (σE , dσG)-real, because σaut(η) = η. Therefore, we conclude
that

E1 := { e ∈ E | ϕη(e) = u}
is preserved by σE , and E1 is a (σX , σG1

, c)-real principal G1-bundle. Since
ρ is a (σG, σV)-compatible representation, the complex vector subspace

V1 := {v ∈ V | ρ(a)v = 0}

is equipped with a real structure σV1
= σV|V1

, and

ρ1 := ρ|K1

is a (σG1
, σV1

)-compatible representation.
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Proposition 4.7. The above (σX , σG1
, c, σL, σV1

,±)-real L-twisted Higgs
pair

(E1, φ1 := φ|E1
, σE1

:= σE |E1
)

is α-polystable.

Proof. First, we shall prove that (E1, φ1, σE1
) is α-semistable. We denote by

k1 the Lie algebra of K1. For s ∈
√
−1 k1, consider the parabolic subgroup

P1,s := {g ∈ G1 | etsge−ts is bounded when t→ ∞} ,

and the Levi subgroup

L1,s := {g ∈ P1,s | Ad(g)s = s} .

Any holomorphic reduction of structure group σ1 of E1 to P1,s such that

σAd(E)(AdEP1,s
) = AdEP1,s

can be extended to a real reduction of structure group σ to Ps such that

σAd(E)(AdEPs
) = AdEPs

.

Moreover, we have

degE(σ, s) = degE1(σ1, s) .

Therefore, using the given condition that (E, φ, σE) is α-semistable it is
deduced that (E1, φ1, σE1

) is also α-semistable.
From Lemma 4.6, it follows that (E1, φ1, σE1

) is α-polystable if for every
s ∈

√
−1k, and for every holomorphic reduction of structure group σ of E1

to Ps that satisfies the two conditions σAd(E1)(AdEP1,s
) = AdEP1,s

and

degE1(σ1, s)−B(s, α) = 0 ,

there is a real splitting ω1 of the following exact sequence of real vector
bundles

0 // (E1σ1
(u1), σE1σ1

(u1))
// (E1σ1

(p1), σE1σ1
(p1))

// (E1σ1
(l1), σE1σ1

(l1))
// 0 .

The argument for the existence of the splitting is identical to the argument
for the non-real case. (See [GGM1, Proposition 2.18] for details).
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On the other hand, we have φ ∈ H0(X, ELs
(V0

s)⊗ L) if and only if

ρ(ω(ψσ,s(φ))) = 0 ,

where ω is a splitting of (4.15) and ψσ1,s ∈ H0(X, Eσ(p)) is the sec-
tion which is equal to s on the fibers. For the same reason, φ1 ∈
H0(X, E1L1,s

(V1)⊗ L) if and only if

(4.16) ρ(ω1(ψσ1,s(φ))) = 0 ,

where ψσ1,s ∈ H0(X, E1σ1
(p1)) is the section which is equal to s on the

fibers. If we decompose p and l, using characters η ∈ Hom(T, S1), where
T ⊂ H is a maximal torus, then ω1 is the restriction of ω, which corresponds
to setting η = 1.

Since (E, φ) is α-polystable, we have φ ∈ H0(X, ELs
(V0

s)⊗ L). As
noted before, this implies that ρ(ω(ψσ,s(φ))) = 0 and hence (4.16) holds.
It was observed earlier that

φ1 ∈ H0(X, E1L1,s
(V1)⊗ L)

if (4.16) holds. □

Proof of Theorem 4.3. From Proposition 4.7, we obtain a σE-compatible
reduction of structure group of a polystable σσσ-real L-twisted Higgs pair
(E, φ, σE) from (G, ρ) to a subgroup (KC

1 , ρ1) with real structure, where
KC

1 ⊊ G.We can iterate this process and finally, within a finite number n of
steps, we obtain a σE-compatible holomorphic reduction of structure group
(En, φn) of (E, φ) from (G, ρ) to (KC

n , ρn), where K
C
n is a Levi subgroup

of G and (En, φn, σE |En
) is α-stable. This proves Theorem 4.3. □

Remark 4.8. The uniqueness of the Jordan–Hölder reduction (up to con-
jugation) follows immediately from the uniqueness of the usual (with no real
structures) case (see [GGM1, Proposition 2.20]).

4.2. Stability implies the existence of solution

In this section, we prove one implication of Theorem 4.1 for σσσ-real L-twisted
G-Higgs pairs (E, φ, σE) that are α-stable.

Let E be a C∞ principal G-bundle over X equipped with a (σX , σG, c)-
real structure σE (see Section 2.2). Let h be a σE-compatible C∞ reduction
of structure group of E from G to the maximal compact subgroup K. By
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Proposition 2.5, there is a bijective correspondence between σE-compatible
connections on EK and σE-real complex structures on E. As a consequence,
after fixing a σL-compatible U(1)-connection on L, we conclude that the
space of all σσσ-real L-twisted Higgs pairs (E, φ, σE) such that the underlying
C∞-bundle to E is E is in bijective correspondence with the space of all
triples (σE, A, φ) such that

• σE is a (σX , σG, c)-real structure on E,

• A is a σE-compatible connection on EK , and

• φ is a holomorphic section of E(V)⊗ L satisfying

σV ⊗ σL(φ) = ±σ∗X(φ) ,

where σV is the involution of V = E(V) induced by σE and σV, and σL
is the fixed involution on L. Here, abusing notation, we are denoting
L and its underlying smooth line bundle in the same way.

We will denote by T the set of triples (σE, A, φ) satisfying the above con-
ditions.

Let A be the space of connections on EK . Let S be the space of all C∞

sections of V ⊗ L. The product space

X := A × S

is an infinite-dimensional Kähler manifold equipped with a Hamiltonian ac-
tion of the gauge group

(4.17) K = Ω0(EK(K)) .

Take any

α ∈ z(k) ⊂ Lie(K ) .

In this case, the moment map is given by

(4.18) µα(A,φ) := ΛFA + µ(φ)−
√
−1α

for every (A, φ) ∈ X , where µ(φ) is defined as in Equation (3.12). As
before,

B ∈ Sym2(g∗)G

is a K-invariant non-degenerate bilinear form on the Lie algebra g = Lie(G)
which is positive on k. Let ⟨ , ⟩ be the bilinear form on Lie(K ) induced by
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B, where K is constructed in (4.17). The maximal weight of the action of
s ∈ Lie(K ) on (A, φ) ∈ X is defined as follows:

(4.19) λα((A, φ), s) := lim
t→∞

λαt ((A,φ), s) ,

where

(4.20) λαt ((A,φ), s) :=
〈
µα(e

√
−1t sA , e

√
−1t sφ) , s

〉
.

The limit in (4.20) exists by Lemma 2.1.2 of [Mu2]. The integral of the
moment map in (4.18) is defined by

(4.21) Ψα((A, φ), e
√
−1s) :=

∫ 1

0
λαt ((A,φ), s) dt .

Remark 4.9. If we fix the pair (A, φ) in (4.21), then e
√
−1s ∈ H is a

critical point of Ψα if and only if e
√
−1s(A, φ) is a solution of µα(A, φ) = 0,

where µα is defined in (4.18).

Definition 4.10. Let E be a holomorphic principal G-bundle X, and let h
be a C∞ reduction of structure group of E from G to K. Let A be the Chern
connection on the principal K-bundle Eh, given by h, corresponding to the
holomorphic structure on E. Take s ∈

√
−1k, and let σ be a holomorphic

reduction of structure group of E from G to Ps, where Ps is the parabolic
subgroup of G defined by s. The section ψh,σ,s ∈ Ω0(Eh(

√
−1k)) is defined

as follows: the reduction σ defines a holomorphic map

(4.22) ξ : Eh −→ G/Ps .

If e ∈ Eh, then ξ(e) = P is a parabolic subgroup of G conjugate to Ps. From
[GGM1, Lemma 2.6], using the antidominant character χs, it follows that
there exists sξ(e) ∈

√
−1k, such that P = Psξ(e) . The map

(4.23)
ψ : Eh −→

√
−1k

e 7−→ sξ(e)

induces a section ψh,σ,s ∈ Ω0(Eh(
√
−1k)).

Proposition 4.11. Let (E, φ, σE) be a σσσ-real Higgs pair. Let h be a
σE-compatible C∞ reduction of structure group of E from G to K. Let
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(σE, A, φ) ∈ T be the triple corresponding to (E, φ, σE). Let σ be a holo-
morphic reduction of structure group of E from G to Ps. Then

degE(σ, s)−B(s, α) = λα((A, φ),
√
−1ψh,σ,s) ,

where ψh,σ,s ∈ Ω0(Eh(
√
−1k)) is constructed above.

Proof. First, recall that the degree of a σσσ-real Higgs pair is equal to the
degree of its underlying Higgs pair (see (3.3)); also recall that the maximal
weight of (σE, A, φ) is the maximal weight of (A, φ). Therefore, it suffices
to prove the proposition by forgetting real structures.

In [Mu2, Section 2.1.6] it is proved that there is a bijective correspon-
dence between pairs (σ, s) and filtrations

(4.24) V (ψh,σ,s)

of V = E(V) constructed as follows: let λ1, . . . , λr be the eigenvalues of
ρ(−

√
−1ψh,σ,s); then E(V)λk =

⊕
j≤k E(V)(λj), where E(V)(λj) are the

eigenbundles of eigenvectors λj .
From [Mu1, Lemma 4.2] we know that for the Hamiltonian action of K

on A , the maximal weight λ(A, −
√
−1ψσ,s) is equal to

(4.25) λr deg(E(V)) +
r−1∑

k=1

(λk − λk−1) deg(E(V)λk).

Equation (4.25) coincides with one of the different ways to calculate
degE(σ, s) defined in equation (3.3) (see [GGM1, Lemma 2.12 (3)]).

Now, in a similar way, we can extend the Hamiltonian action of K on
A × S to prove the proposition (see [Mu1, Lemma 4.3]). □

Let G = Ω0(E(G)) be the gauge group of the principal G-bundle E.
The real structures σX and σG together induce an involution σG on the
group G . Since σG preserves the subgroup K, it follows that σG restricts to
an involution σK on K . By abuse of notation, we denote also by σG the
involution on G /K and the involution on Lie(G ).

A triple (σE, A, φ) ∈ T is called simple if there is no semisimple ele-
ment u ∈ Lie(G ) such that

• u is invariant under σLie(G , and

•
〈
⟨dµα(A,φ), u⟩ , −

√
−1u

〉
= 0.
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Theorem 4.12. Take any α ∈ z(k). Fix a simple σσσ-real triple (σE, A, φ).
There is an element s ∈ G /K such that

1) σG (s) = s, and

2) the function Ψα in (4.21) attains its minimum at s.

Theorem 4.12 will be proved after proving Proposition 4.14.
Fix from now on p > 2. Let (σE, A, φ) be a simple triple whose corre-

sponding σσσ-real Higgs pair is α-stable. We define

Metp2 := Lp2(E(
√
−1 k)

to be the completion of Ω0(E(
√
−1 k)) with respect to the Sobolev norm

∥s∥Lp
2
= ∥s∥Lp + ∥dAs∥Lp + ∥∇dAs∥Lp ,

where dAs is the covariant derivative of s with respect to A, and

∇ : Ω0(T ∗X ⊗ ad(E)) −→ Ω1(T ∗X ⊗ ad(E))

is the tensor product of the Levi–Civita connection and dA. Note that
Ω0(E(

√
−1 k)) is actually isomorphic to G /K using the exponential map.

Let C be a positive real number. Consider the bounded metric space

Metp2C := {s ∈ Metp2 | ∥µα(es(A,φ))∥pLp ≤ C} .

Proposition 4.13. If a metric minimizes Ψα in Metp2C , then it also min-
imizes Ψα in Metp2.

Proof. Suppose that s ∈ Metp2C is a minimum of Ψα. Let B = es(A) and
Θ = es(φ). We define the differential operator

L(u) :=
√
−1

∂

∂t
µ(etu(B,Θ))

∣∣
t=0

,

for every u ∈ Lp2(E(
√
−1k)).

By [Br, Lemma 3.4.2], it suffices to prove that Ker(L) = 0, because if s
minimizes Ψα and Ker(L) = 0, then µ(B,Θ) = 0, and by Remark 4.9, one
has that s minimizes Ψα on Metp2.
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We prove that Ker(L) = 0, by contradiction. Let 0 ̸= u ∈ Ker(L).

Therefore, the element
u+σLie(G )(u)

2 also lies in Ker(L). Then we have

〈
−
√
−1L

(
u+ σLie(G )(u)

2

)
,
u+ σLie(G )(u)

2

〉
= 0 .

From [Mu2, Equation 2.13] it follows that u+σG (u)
2 leaves (B, Θ) invariant.

Consequently, (σE, B, Θ) is not simple and hence (σE, A, φ) is not simple.
In view of this contradiction, we conclude that Ker(L) = 0. □

Proposition 4.14. There exist positive constants C1 and C2 such that

sup |s| ≤ C1Ψ
α((A,φ), es) + C2

for every s ∈ Metp2C .

Proof. The given condition that p > 2 implies that Lp2 →֒ C0, which follows
from the Sobolev embedding theorem, and it makes sense to consider sup |s|.
Repeating the same arguments as in [Mu1, Section 6], it suffices to prove
that

(4.26) ∥s∥L1 ≤ C1Ψ
α((A,φ), es) + C2 .

To prove (4.26) by contradiction, suppose that C1, C2 satisfying (4.26)
do not exist. Then it can be shown that there is a sequence {ui} ∈ Metp2C
converging weakly to some

u∞ ∈ Metp2C ,

such that

(4.27) λα((A,φ), u∞) ≤ 0 .

Indeed, following [Mu2, Lemma 2.5.4], if C1, C2 do not exist, then there is
a sequence of real numbers {Cj} and a sequence {sj} of metrics in Metp2B
such that

lim
j→∞

Cj = ∞ and ∥sj∥L1 ≥ CjΨ
α((A,φ), esj ) .

Let lj := ∥sj∥L1 and uj := sj
lj
; then ∥uj∥L1 = 1 and sup |uj | ≤ Cj .
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Passing to a subsequence if necessary, we can suppose that {uj} con-
verge to an u∞ , weakly on L2

1(E(
√
−1k)), and λα((A,φ), u∞) ≤ 0. From

the definition of the integral of the moment map we have the following:

1

Cj
≥ Ψα((A,φ), esj )

∥sj∥

≥ lj − t

lj
λαt ((A,φ),−

√
−1uj) +

1

lj

∫ t

0
λαt ((A,φ),−

√
−1uj)dt

=
lj − t

lj
(λαt (A,−

√
−1uj) + λαt (φ,−

√
−1uj))

+
1

lj

∫ t

0
(λαl (A,−

√
−1uj) + λαl (φ,−

√
−1uj))dl .

These inequalities together imply that ∥∂A(uj)∥ is bounded, so there is a
subsequence {uj} converging to u∞. In addition, we have

λα((A,φ), u∞) ≤ lim
t→∞

λαt ((A,φ),−
√
−1uj) ≤ 0 .

The subsequence {σG (ui)} ∈ Metp2C converges weakly to σGu∞ ∈ Metp2C ,
and

(4.28) λα((A,φ), σG (u∞)) ≤ 0 .

The partial sums of subsequences {ui+σG (ui)
2 } converge to

u′∞ =
u′∞ + σG (u

′
∞)

2
∈ Metp2C

and this element is invariant under σG . Then ρ(u′∞) has real constant
eigenvalues. The filtration V (u′∞) induces a holomorphic reduction of
structure group σ from G to P such that EP = σE(EP ), and therefore
σAd(E)(AdEPs

) = AdEPs
. Since by hypothesis (E,φ) is α-stable, it follows

that

degE(σ, s) +B(α, s) > 0 .

In view of Proposition 4.11, this inequality contradicts (4.27), completing
the proof. □
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Proof of Theorem 4.12. To prove Theorem 4.12, let {si} be a minimizing
sequence for Ψα, then

{s′i} = {si + σG (si)

2
}

is a σG -invariant minimizing sequence for Ψα. From Proposition 4.14, after
passing to a suitable subsequence, we can suppose that {s′i} converges weakly
to some s′, invariant under σG , that minimize Ψα. □

Theorem 4.15. Let (E, φ, σE) be a α-stable σσσ-real L-twisted G-Higgs pair.
Then there is a σE-compatible C∞ reduction of structure group h from G to
K satisfying (3.13).

Proof. Fix a σE-compatible C∞ reduction of structure group of E from G
to K. Let

(σE, A, φ) ∈ T

be the triple associated to (E, φ, σE). The existence of a σE-compatible
C∞ reduction of structure group h of E from G to K satisfying (3.13) is
equivalent to the existence of a σE-compatible pair (A′, φ′) satisfying the
equation

(4.29) µα(A′, φ′) = 0 ,

where µα is defined in (4.18).
From Remark 4.9 we know that fixing a σE-compatible pair (A, φ) in

equation (4.21),

e
√
−1s ∈ H

is a critical point of Ψα if and only if e
√
−1s(A, φ) is a solution of (4.29).

Finally, since (E, φ, σE) is α-stable, it follows that (σE, A, φ) is simple
(see Proposition 4.4 and [Mu1, Definition 3.8]), and hence we can apply
Theorem 4.12 to complete the proof. □

4.3. Polystability implies the existence of a solution

In this section, and in the next one we prove Theorem 4.1.
Let (E, φ, σE) be a α-polystable σσσ-real L-twisted Higgs pair.

If (E, φ, σE) is α-stable then it admits a σE-compatible Hermite–
Einstein–Higgs reduction (see Theorem 4.15). If (E, φ, σE) is not α-
stable, by the Jordan-Hölder reduction (Theorem 4.3) we obtain a
(σX , σG|G′ , c, σL, σV|V′ ,±)-real Higgs pair (E′, φ′, σE |E′) that is α-stable,
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then, by the previous case, it admits a σE′-compatible reduction of structure
of (E′

K′ , φ′
K′) from (G′, ρ′) to (K ′, ρ|K ′) satisfying (3.13). This reduction de-

fines another reduction (EK , φK) of (E,φ) from (G, ρ) to (K, ρ|K), that,
with respect to the structure group, is given by

EK = EK′ ×K′ K = E′
K′ ×K′ K

and with respect to the Higgs field, φK is the image of φ′
K′ under the ho-

momorphism

H0(X,E′
K(V′

K)⊗ L) −→ H0(X,EK(VK)⊗ L)

induced by the injection E′
K′(VK′) �

�

// EK(VK) , where V′
K and VK are

complex vector spaces such that ρ(K ′) = GL(VK′) and ρ(K) = GL(VK),
respectively. Since the reduction (E′

K , φ
′
K′) is σE′-compatible and it is Her-

mite Einstein Higgs, then one can see that the reduction (EK , φK) is also
σE-compatible and it is Hermite-Einstein-Higgs, in other words, it satisfies
Equation (3.13).

4.4. Existence of a solution implies polystability

Proposition 4.16 (Existence of a solution implies semistability).
Assume that there exist a σE-compatible Hermite–Einstein–Higgs reduc-
tion h of a σσσ-real L-twisted Higgs pair (E, φ, σE). Then (E, φ, σE) is α-
semistable.

Proof. Suppose that (E, φ, σE) is not α-semistable. Then, there is a holo-
morphic reduction σ of structure group of E from G to Ps such that
σAd(E)(AdEPs

) = AdEPs
and

(4.30) degE(s, σ)−B(s, α) < 0 .

From Proposition 4.11, one has that

(4.31) λα( (A,φ) ,
√
−1ψh,σ,s ) < 0 .

By hypothesis h is Hermite-Einstein-Higgs, then λα0 ( (A, φ) ,
√
−1ϵh,σ,s ) =

0. (See Equation 4.19). Since λαt ( (A,φ) ,
√
−1ψh,σ,s ) is a non decreasing
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sequence, it follows that

λα( (A,φ) ,
√
−1ψh,σ,s ) ≥ 0

and this contradicts (4.31). □

Proposition 4.17 (Existence of solutions implies polystability). As-
sume that there exist a σE-compatible Hermite–Einstein–Higgs reduction h
of a σσσ-real L-twisted Higgs pair (E, φ, σE). Then (E, φ, σE) is α-polystable.

Proof. Let h be a σE-compatible Hermite–Einstein–Higgs reduction. Take
s ∈

√
−1k, and let σ be any reduction of structure group from G to Ps, such

that σAd(E)(AdEPs
) = AdEPs

. Since h is σE-compatible,

σE(Eh) = Eh ,

where Eh is the reduced K-bundle. We define ξ′ as the map such that the
following diagram

(4.32) Eh

σE

��

ξ
// G/Ps

σG

��

Eh
ξ′

// G/PdσG(s) ,

commutes, where ξ is defined in (4.22). Analogously, we define ψ′

(4.33) Eh

σE

��

ψ
//
√
−1k

dσG

��

Eh
ψ′

//
√
−1k ,

where ψ is defined in (4.23). The maps ψ and ψ′ define sections ψh,σ,s and
ψ′
h,σ,σGs

in Eh(
√
−1k) such that the associated reductive filtrations V (ψh,σ,s)

and V (ψ′
h,σ,σGs

) (see equation (4.24)) are related in the following way: they
define reductions EP and σE(EP ) that satisfy σAd(E)(AdEPs

) = AdEPs
.

The σσσ-real Higgs pair (E,φ, σE) is α-semistable by Proposition 4.16.
Let σ be a reduction of structure group of E from G to Ps such that
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σAd(E)(AdEPs
) = AdEPs

as well as

(4.34) degE(s, σ)−B(s, α) = 0 .

LetA be the connection on Eh that corresponds to the holomorphic structure
on E. From Proposition 4.11 and (4.34), it follows that

(4.35) λα( (A,φ) ,
√
−1ψh,σ,s ) = 0 .

Since h is an Hermite-Einstein-Higgs reduction, then
λα0 ( (A,φ) ,

√
−1ψh,σ,s ) = 0 and since λαt ( (A,φ) ,

√
−1ψh,σ,s ) is a non-

decreasing sequence, then λαt ( (A,φ) ,
√
−1ψh,σ,s ) = 0, for all t. This implies

that etψh,σ,s fix A, for any t. Therefore, the filtration V (ψh,σ,s) induces
a reduction of the structure group of EPs

from Ps to Ls. Analogously,
etψ

′
h,σ,σGs fixes σAA, for any t, where σA is the real structure induced in

the space of connections by σE and σX . The filtration V (ψ′
h,σ,σGs

) induce
a reductions of the structure group of σE(EPs

) from σGPs to σGLs. Both
reductions are related by

σAd(E)(Ad(ELs
)) = Ad(ELs

) .

The element etϵh,σ,s fixes also φ for any t. This implies that φ ∈
H0(X, ELs

(V0
s)⊗ L). This completes the proof. □

5. Real Higgs bundles and the non-abelian Hodge

correspondence

Let GR be a semisimple real form of a connected complex semisimple
Lie group G defined by a conjugation µ ∈ Conj(G). Let τ ∈ Conj(G),
commuting with µ and defining a compact real form K ⊂ G. The sub-
group HR := K ∩GR defines a maximal compact subgroup of GR. Let
gR = hR ⊕mR be the Cartan decomposition of gR, the Lie algebra of GR,
where hR is the Lie algebra of HR and mR is its orthogonal complement with
respect to the Killing form. Let H and m be the complexifications of HR and
mR, respectively. Let σG be a (µ, τ)-compatible conjugation of G (see Exam-
ple 2.3). By abuse of notation, we denote by σG the restriction to H and the
restriction of dσG to m. Then the isotropy representation ι : H −→ GL(m)
is (σG, σG)-compatible (see Example 2.3).

Let (X, σX) be a compact Klein surface, and let KX be the canonical
bundle of X. The anti-holomorphic involution σX induces a real structure
σKX

on KX .
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5.1. Real GR-Higgs bundles and Hitchin equations

Let Z(H) be the centers H and Z(H)σG

2 be the subgroup of elements of
Z(H) of order two that are invariant under σG. Set

(5.1) ZσG

ι := Z(H)σG

2 ∩ ker(ι)

and let c ∈ ZσG
ι . A (σX , σG, c, ±)-real GR-Higgs bundle is a

(σX , σG, c, dσG, σKX
,±)-real KX -twisted HC-Higgs-pair of type ι. Set σσσ =

(σX , σG, c,±). Sometimes we will refer to these objects as σσσ-real G-Higgs
bundles.

Let z(h) be the center of h and α ∈
√
−1h ∩ z(h). The notions of α-

stability, α-semistability and α-polystability in Section 3.2 apply to σσσ-real
GR-Higgs bundles. Since we are mostly interested in the relation of these
objects to representations of the fundamental group of X we will take α = 0
and will refer to 0-stability simply as stability (the same for semistability
and polystability).

Denote by M(GR, σX , σG, c,±) the moduli space of isomorphism
classes of polystable (σX , σG, c, ±)-real GR-Higgs bundles. We may fix
the topological type d ∈ π1(H) ∼= π1(H

R), and consider the subvariety
Md(G

R, σX , σG, c,±).
Let (E, φ, σE) be a σσσ-real GR-Higgs bundle over (X, σX). Let h be a

σE-compatible reduction of the structure group of E from H to HR, and let

(5.2) τh : Ω1,0(E(m)) −→ Ω0,1(E(m))

be the map defined by the compact conjugation τ in the fibers induced by
h combined with complex conjugation on complex 1-forms.

Choose a σX -compatible Kähler form on X as defined in Section 2.2.
This defines a σKX

-compatible metric on KX . Taking α = 0, one can show
that the Hermite–Einstein–Higgs equation (3.13) coincides in this particular
case with the Hitchin equation

(5.3) Fh − [φ, τh(φ)] = 0 .

As a particular case of Theorem 4.1 one thus has the following.

Theorem 5.1. A σσσ-real GR-Higgs bundle (E,φ, σE) is polystable if and
only if there exists a σE-compatible reduction h of the structure group of E
from H to HR satisfying (5.3).
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And Corollary 4.2 gives now the following.

Corollary 5.2. A σσσ-real GR-Higgs bundle (E, φ, σE) is polystable if and
only if the underlying GR-Higgs bundle (E, φ) is polystable.

From the point of view of moduli spaces, it is convenient to look at the
Hitchin equation from a different but equivalent point of view (see [GGM1]).
To explain this, we fix a C∞ principal H-bundle EH and a reduction of
structure group h to a HR-bundle EHR ⊂ EH . We are then looking for
a connection A on EHR and a smooth section φ ∈ Ω1,0(X, EH(m)). The
Hitchin equations become then

(5.4)
FA − [φ, τh(φ)] = 0

∂Aφ = 0 .

Here dA is the covariant derivative associated to A, and ∂A is the (0, 1) part
of dA.

Let Mgauge(GR) be the space of solutions (A,φ) to (5.4) modulo the
gauge group H R of EHR . Recall (see [GGM1]) that, if d ∈ π1(H) is the
topological class of EH , and Md(G

R) is the moduli space of GR-Higgs bun-
dles, then there is a homeomorphism

(5.5) Mgauge(GR) ∼= Md(G
R).

Now, if we are equipped with conjugations σX and σG and c ∈ ZσG
ι , as

at the beginning of Section 5, we can consider a (σX , σG, c)-real structure
σEH

on EH , which, if the reduction h is chosen to be σEH
-compatible, it will

restrict to σE
HR

on EHR .
Let T ± be the set triples (σEH

, A, φ), where A is σE
HR

-compatible and
φ satisfies (3.2), which in this case is

(5.6) σV ⊗ σKX
(φ) = ±σ∗Xφ ,

where V = EH(m). The action of the gauge group H R of EHR preserves T ±

and we define the moduli space Mgauge(GR, σX , σG, c,±) of (σX , σG, c, ±)-
real solutions to (5.4) on EHR as the set of triples (σEH

, A, φ) ∈ T ± with
(A, φ) satisfying (5.4) modulo the gauge group H R.

Theorem 5.1 can now be reformulated as follows.
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Theorem 5.3. Fix the topological class of EH to be d ∈ π1(H), then (5.5)
restricts to give a homeomorphism

Md(G
R, σX , σG, c,±) ∼= Mgauge(GR, σX , σG, c,±) .

5.2. Real Higgs bundles and compatible representations of the
orbifold fundamental group

Let x ∈ X and π1(X, x) be the fundamental group of X. A represen-
tation of π1(X, x) in GR is a homomorphism ρ : π1(X, x) −→ GR. The
group GR acts on the set Hom(π1(X, x), G

R) of all such homomorphisms
by conjugation:

(g · ρ)(γ) = gρ(γ)g−1

for g ∈ GR, ρ ∈ Hom(π1(X, x), G
R) and γ ∈ π1(X, x). If we restrict the

action to the subspace Hom+(π1(X, x), G
R) consisting of reductive repre-

sentations, the orbit space is Hausdorff. By a reductive representation
we mean one that is composed with the adjoint representation in the Lie
algebra of GR decomposes as a sum of irreducible representations. Define
the moduli space of representations or character variety of π1(X, x)
in GR to be the orbit space

R(G) = Hom+(π1(X, x), G)/G .

The moduli space R(GR) is independent of the choice of base point
x ∈ X and has the structure of an algebraic variety [Ri].

Given a representation ρ ∈ Hom(π1(X, x), G
R) there is an associated

flat GR-bundle on X, and conversely, the holonomy of a flat GR-bundle over
X produces a representation ρ ∈ Hom(π1(X, x), G

R). More precisely, there
is a natural bijection between the set of equivalence classes of representations
Hom(π1(X, x), G

R)/GR and the set of equivalence classes of flatGR-bundles,
which in turn is parameterized by the cohomology set H1(X, GR).

Given a representation ρ ∈ Hom(π1(X, x), G
R) there is a topological in-

variant taking values in π1(G
R) = π1(H

R). Fixing d ∈ π1(G
R) we can con-

sider the subvariety Rd(G
R) ⊂ R(GR) consisting of those representations

with topological class d.
The non-abelian Hodge correspondence states that there is a home-

omorphism

(5.7) Rd(G
R) ∼= Md(G

R) .
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The proof of (5.7) is given by combining (5.5) and Donaldson–Corlette’s
existence theorem of harmonic metrics. To explain this, let EGR be a
C∞ principal GR-bundle over X with fixed topological class d ∈ π1(G

R) =
π1(H

R). Fix a reduction EHR of the structure group h of EGR to HR. We
have that

EGR(gR) = EHR(hR)⊕ EHR(mR) .

The covariant derivative D on EGR(gR) of a connection on EGR decom-
poses uniquely as

(5.8) D = dA + ψ ,

where A is a connection on EHR and dA is its covariant derivative, and
ψ ∈ Ω1(X, EHR(mR)). Let FA be the curvature of A. Consider the following
set of equations for the pair (A, ψ):

(5.9)
FA + 1

2 [ψ, ψ] = 0
dAψ = 0
d∗Aψ = 0 .

These equations are invariant under the action of H R, the gauge group of
EHR . The theorem of Corlette [Co] (see Donaldson [Do] for GR = SL(2,C)),
says that there is a homeomorphism

{Reductive flat connections D on EGR}/G R(5.10)

∼= {(dA, ψ) satisfying (5.9)}/H R.

Recall that a flat connection is said to be reductive if the holonomy repre-
sentation is reductive.

To complete the argument, leading to (5.7), we just need (5.5) and the
simple fact that the correspondence (A, φ) 7−→ (A, ψ := φ− τ(φ)) defines
a homeomorphism

(5.11) {(A,φ) satisfying (5.4)}/H R ∼= {(A, ψ) satisfying (5.9)}/H R .

The first two equations in (5.9) are equivalent to the flatness of D =
dA + ψ, and (5.10) simply says that in the G R-orbit of a reductive flat con-
nection D0 on EGR we can find a flat connection D = g(D0) with g ∈ G R

such that if we write D = dA + ψ, the additional condition d∗Aψ = 0 is sat-
isfied, where the operator d∗A is defined using the Hodge ∗-operator given by
the complex structure of X. This can be interpreted more geometrically in
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terms of the reduction g(h) of EGR to an HR-bundle obtained by the action
of g on the initial reduction h. The equation d∗Aψ = 0 is equivalent to the
harmonicity of the section of the GR/HR-bundle EGR(GR/HR) defined by
g(h).

If, as in Section 5.1, we are equipped with conjugations σX and σG, c ∈
ZσG
ι , and EH is a C∞ H-bundle, we can consider a (σX , σG, c)-real structure

σEH
on EH . If we fix also a reduction h of structure group EHR chosen to

be σEH
-compatible, then σEH

will restrict to σE
HR

on EHR , and since σG
preserves mR, we also have a restriction σE

HR (mR) : EHR(mR) −→ EHR(mR).

Let EGR the GR-bundle obtained from EHR by extension of structure group.
Since σG preserves GR, we can extend σE

HR
to a map σE

GR
: EGR −→ EGR ,

and we also have σE
GR (gR) : EGR(gR) −→ EGR(gR).

Let D be a connection on EGR . Recall that this can be regarded as a map
D : TEGR −→ gR. The compact conjugation τ : g −→ g preserves gR and
hence we can consider the connection τ(D) := τ ◦D. Let P± be the set of
pairs (σE

GR
, D), where σE

GR
is as above and D is a connection on EGR such

that the connection τ
1

2
∓ 1

2 (D) is σE
GR
-compatible. Abusing notation, let D

denote also the covariant derivative defined by D on EGR(gR). From (5.8)
we have the decomposition D = dA + ψ, where A is a connection on EHR

and ψ ∈ Ω1(X,EHR(mR)). Since τ(A) = A and τ(ψ) = −ψ, the set of pairs
P± can be identified with the set of triples (σE

GR
, A, ψ), where A is σE

HR
-

compatible and σE
GR (mR)(ψ) = ±σ∗X(ψ). Setting ψ := φ− τ(φ), it is imme-

diate that P± is then in bijection with the set of triples (σEH
, A, φ) ∈ T ±

considered in Section 5.1. The uniqueness of the harmonic section provided
by the Donaldson–Corlette theorem (5.10) (recall that GR is semisimple) im-
plies that this section is fixed by σE

GR
, or more precisely, by the correspond-

ing map defined on the space of sections of EGR(GR/HR). As a consequence
of this and (5.11) we have the following.

Proposition 5.4. The bijection (5.10) restricts to give a bijection

{(σE
GR
, D) ∈ P

± with D reductive flat}/G R ∼= Mgauge(GR, σX , σG, c,±).

We now need to identify {(σE
GR
, D) ∈ P± with D reductive flat}/G R

in terms of representations of the fundamental group of X. To do this, fix
a point x ∈ X, such that σX(x) ̸= x. The orbifold fundamental group
Γ(X, x) of (X, σX) is, as a set, the disjoint union of π1(X,x) and

Path(X, x) := {Homotopy classes of paths γ : [0, 1] −→ X |
γ(0) = x, γ(1) = σX(x)},
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with the composition defined by γ2γ1 = σqX(γ2) ◦ γ1 , where

q =

{
0 if γ1 ∈ π1(X, x)

1 if γ1 ∈ Path(X, x) .

The function q induces the short exact sequence

(5.12) 0 // π1(X, x)
i

// Γ(X, x)
q

// Z/2Z // 0 ,

where i denotes the inclusion of groups.
Let c ∈ ZσG

2 (H) ∩Ker(ι) ∩ Z(GR), where recall Z(H) and Z(GR) are
the centers of H and GR respectively, and ZσG

2 (H) is the subgroup of ele-
ments of order 2 in Z(H) invariant under σG.

Let ĜR
± = ĜR

±(σG, c) be the group whose underlying set is GR × (Z/2Z)
and the group operation on it is given by

(g1, e1)(g2, e2) = (g1(σGτ
1

2
∓ 1

2 )e1(g2)c
e1+e2 , e1 + e2) .

A representation ρ̂ : Γ(X, x) −→ ĜR
± is called (σX , σG, c, ±)-

compatible if it is an extension of a representation ρ : π1(X, x) −→ GR

fitting in a commutative diagram of homomorphisms

(5.13) 0 // π1(X, x)
i

//

ρ

��

Γ(X, x)
q

//

ρ̂
��

Z/2Z //

Id

��

0

0 // GR i′
// ĜR

±
q′

// Z/2Z // 0 ,

where i, i′ are the inclusion maps and q and q′ are the corresponding pro-
jections.

Let R(GR, σX , σG, c, ±) be the variety consisting of GR-conjugacy
classes of (σX , σG, c, ±)-compatible representations ρ̂ : Γ(X, x) −→ ĜR

±
whose restriction to π1(X, x) is reductive, that is, its conjugacy class is
an element in R(GR). We have the following.

Proposition 5.5. The holonomy representation defines a bijection

{(σE
GR
, D) ∈ P

± with D reductive flat }/G R ∼= Rd(G
R, σX , σG, c,±).

Proof. Recall that the holonomy representation ρ : π1(X,x) −→ GR in-
duced by a flat connection D on EGR is defined as follows: let γ ∈ π1(X,x),
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there is a lift γ̃ : [0, 1] −→ EGR of γ such that D(γ̃∗
∂
∂t
) = 0. Let e = γ̃(0).

If γ̃(1) = eg, then ρ(γ) := g.
Let (σER

G
, D) ∈ P± where D is reductive flat connection. We de-

fine a homomorphism ρ̂ = hol(D) : Γ(X,x) −→ ĜR
± in the following way:

ρ̂|π1(X,x) := ρ. Let γ ∈ Γ(X, x) \ π1(X, x), and let e be an element in the
fiber EGR at x. Let e′ ∈ EGR be the point obtained by parallel transport by
D of e along γ. Let gγ ∈ GR be the element of the group such that

(5.14) e = f(e′)σG(gγ) ,

where f : EGR −→ σ∗XσG(EGR) is the isomorphism of principal GR-bundles
induced by σE

GR
. We define

ρ̂(γ) := gγ ,

for every γ ∈ Γ(X, x) \ π1(X, x). Following the same arguments as
in the proof of [BGH1, Proposition 4.4], one shows that ρ̂ is a
(σX , σG, c, ±)-compatible representation. Equivalence classes of (σER

G
, D) ∈

P± where D is reductive flat connection correspond to equivalence
classes of (σX , σG, c,±)-compatible representations since hol(D) satisfies
that hol(D)(eg) = ghol(D)(e)g−1 for all g ∈ GR and for all e in the fiber
of EGR at the point x.

Conversely, let ρ̂ : Γ(X, x) −→ ĜR
± be a (σX , σG, c,±)-compatible rep-

resentation. The induced representation ρ : π1(X, x) −→ GR corresponds
to a flat GR-bundle (EGR , D). A map f : EGR −→ σ∗XσG(EGR) can be con-
structed using (5.14) and it can be extended to the other fibers as is done
in [BGH1, p. 18]. From [BGH1, Proposition 4.3], the morphism f defines a
pair (σE

GR
, D) ∈ P±. The σE

GR
-compatibility of τ

1

2
∓ 1

2 (D) follows from the
(σX , σG, c, ±)-compatibility of ρ̂. □

Combining Propositions 5.5 and 5.4 and Theorem 5.3 we have now the
following non-abelian Hodge correspondence for real GR-Higgs bundles.

Theorem 5.6. There is a homeomorphism

Rd(G
R, σX , σG, c, ±) ∼= Md(G

R, σX , σG, c, ±) .

Remark 5.7. Theorem 5.6 generalizes the result in [BGH3] for a complex
reductive Lie group G, since G can be viewed as a real form of G×G, as
mentioned in the introduction.



✐

✐

“9-Garcia-Prada” — 2023/11/29 — 23:48 — page 539 — #55
✐

✐

✐

✐

✐

✐

Real Higgs pairs and non-abelian Hodge correspondence 539

6. Involutions of moduli spaces

Consider the same setup and notation of Section 5.

6.1. Involutions of Higgs bundle moduli spaces

LetM(GR) be the moduli space of polystable GR-Higgs bundles overX. The
(σX , σG, c,±)-real GR-Higgs bundles studied in Section 5 appear in a natural
way as fixed points of certain involutions on the moduli space M(GR), in a
similar way as they do in the case when GR is complex, as studied in [BG],
whose approach we follow closely. Recall that σX is a conjugation of X,
σG is a conjugation of G satisfying the conditions given at the beginning of
Section 5, and c ∈ ZσG

ι , where ZσG
ι is defined by (5.1).

Let (E, φ) be a GR-Higgs bundle on X. Let σG(E) be the C∞ princi-
pal H-bundle on X obtained by extending the structure group of E using
the conjugation σG : H −→ H. Since σX is antiholomorphic, the pullback
σ∗XσG(E) is a holomorphic H-bundle over X.

Let

σ̃G : E(m) −→ E(m)

be the conjugate linear isomorphism that sends the equivalence class of any
(e , v) ∈ E ×m to the equivalence class of (e , σG(v)). Let σG(φ) be the C

∞

section of E(m)⊗KX defined by σ̃G and the antiholomorphic involution
σKX

: KX −→ KX induced by σX . We have the following involutions.

(6.1)
ιM(σX , σG)

± : M(GR) −→ M(GR)
(E,φ) 7−→ (σ∗XσG(E),±σ∗XσG(φ)) .

As a consequence of Corollary 5.2, there is a forgetful map

fM : M(GR, σX , σG, c,±) −→ M(GR)
(E,φ, σE) 7−→ (E,φ) .

We denote by M̃(GR, σX , σG, c,±) the image of fM.

Proposition 6.1. The fixed points of ιM(σX , σG)
± and the moduli spaces

of polystable (σX , σG, c, ±)-real GR-Higgs bundles are related as follows.

1)

M(GR)ιM(σX ,σG)± ⊇
⋃

c∈ZσG
ι

M̃(GR, σX , σG, c,±) .
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2) For g(X) ≥ 2 and if we restrict the involution to the subvariety
Mss(G

R) ⊂ M(GR) of stable and simple GR-Higgs bundles, then

M(GR)ιM(σX ,σG)±

ss ⊆
⋃

c∈ZσG
ι

M̃(GR, σX , σG, c,±) .

Proof. (1) If (E,φ) is the image of (E,φ, σE) ∈ M(GR, σX , σG, c,±), then
there is a holomorphic isomorphism of bundles f : E −→ σ∗XσG(E) induced

by σE , and this defines a map f̃ : E(m)⊗KX −→ σ∗XσG(E)(m)⊗KX . We
thus have

ιM(σX , σG)
±(E,φ) ∼= (f(E),±f̃(φ)) ∼= (E,φ) .

(2) Let (E, φ) ∈ M(GR)
ιM(σX ,σG)±

ss . There is an isomorphism f : E −→
σ∗XσG(E) , such that (f(E), ±f̃(φ)) ∼= (E, φ) . The composition σ∗XσG(f) ◦
f belongs to the group Aut(E, φ) of automorphisms of (E, φ). Since (E, φ)
is assumed to be simple, this group coincides with Z(H) ∩Ker(ι). Let
c := σ∗XσG(f) ◦ f ∈ Z(H) ∩Ker(ι). Since f commutes with σ∗XσG(f) ◦ f ,
we have that σG(c) = c. Therefore, c ∈ ZσG

2 ∩ ker(ι), and f defines a
(σX , σG, c)-real structure σE on E. For the real structure σE(m) ⊗ σKX

in-
duced by σE and σX we have that σE(m) ⊗ σX(φ) = ±φ, since by hypothesis

φ ∼= ±f̃(φ). □

6.2. Involutions of character varieties

We study now the involutions of the character variety R(GR) corresponding
to the involutions (6.1) ofM(GR) via the non-abelian Hodge correspondence
(5.7). This generalizes the case in whichGR is complex treated in [BG], which
again we follow closely.

Fix a point x ∈ X. The involution σX of X produces an involutive
isomorphism

(σX)∗ : π1(X,x) −→ π1(X,σX(x)) .

This in turn gives an involution
(6.2)

(σX)∗ : Hom+(π1(X,x), G
R)/GR −→ Hom+(π1(X,σX(x)), G

R)/GR ,

which, abusing notation, we are also denoting by (σX)∗. As mentioned above,
R(GR) = Hom+(π1(X,x), G

R)/GR is independent of the choice of the base
point.
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Let σ be an involution of GR. This defines an involution (denoted also
by σ)

σ : R(GR) −→ R(GR)

given by ρ 7−→ σ ◦ ρ. In other words, σ sends a homomorphism ρ :
π1(X,x) −→ GR to the composition

π1(X,x)
ρ−→ GR σG−→ GR .

Clearly, this involution commutes with the involution (σX)∗ in (6.2). There-
fore, σ ◦ (σX)∗ is also an involution.

One has the following.

Proposition 6.2. Let ιR(σX , σG)
± be the map given by

ιR(σX , σG)
± : R(GR) −→ R(GR)

ρ 7−→ σG ◦ τ 1

2
∓ 1

2 ◦ ρ ◦ (σX)∗
.

Then ιR(σX , σG)
± is an involution of R(GR) and the following diagram

commutes:

M(GR)
∼=

//

ιM(σX ,σG)±

��

R(GR)

ιR(σX ,σG)±

��

M(GR)
∼=

// R(GR).

Proof. The fact that ιR(σX , σG)
± is an involution follows from the previ-

ous discussion. The commutativity of the diagram follows immediately from
the construction of the non-abelian Hodge correspondence map M(GR) →
R(GR). Recall from Section 5.1 that if (E,φ) is a polystable GR Higgs bun-
dle, one associates to it the flat GR-connection D = dA + φ− τ(φ), where
the pair (A, φ) solves the Hitchin equations (5.4). The result follows now
from the properties of the holonomy map associating to D a representation
of π1(X, x) in G

R. □

Let R̃(GR, σX , σG, c,±) be the image in R(G) of the map de-
fined by restricting ρ̂ ∈ R(GR, σX , σG, c,±) to π1(X, x). Notice that
the homeomorphism in Theorem 5.6 defines a homeomorphism between
R̃(GR, σX , σG, c, ±) and M̃(GR, σX , σG, c,±), which is indeed the restric-
tion of the homeomorphism R(GR) ∼= M(GR) given by the non-abelian
Hodge correspondence. As a corollary of Propositions 6.2 and 6.1, and The-
orem 5.6 we have the following.
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Proposition 6.3. The fixed points of ιR(σX , σG)
± and the moduli spaces

of (σX , σG, c, ±)-compatible representations of Γ(X, x) in ĜR
± are related

as follows.

1)

R(GR)ιR(σX ,σG)± ⊇
⋃

c∈ZσG
ι ∩Z(GR)

R̃(GR, σX , σG, c,±) .

2) For g(X) ≥ 2 and if we restrict the involution to the subvariety
Rirr(G

R) ⊂ R(GR) of irreducible representations, then

Rirr(G
R)ιR(σX ,σG)± ⊆

⋃

c∈ZσG
ι ∩Z(GR)

R̃(GR, σX , σG, c,±) .

Remark 6.4. Recall that a representation in R(GR) is said to be irre-
ducible if the centralizer of the image of ρ in GR coincides with the center
of GR. Under the non-abelian Hodge correspondence (5.7) the subvariety of
irreducible representations is in bijection with the subvariety of stable and
simple Higgs bundles (see [GGM1]).

Acknowledgements

We thank the referees for their helpful comments to improve the exposition.
The first author is supported by a J. C. Bose Fellowship. The third author
was partially supported by the Spanish MINECO under ICMAT Severo
Ochoa project No. SEV-2015-0554, and under grant No. MTM2013-43963-P

References
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[Ca] É. Cartan, Les groupes réels simples, finis et continus, Ann. Éc.
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[GGM1] O. Garćıa-Prada, P. B. Gothen, and I. Mundet i Riera, The
Hitchin-Kobayashi correspondence, Higgs pairs and surface group
representations, version 3: 2012, arXiv:0909.4487.
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