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We present a simple connection between differential Harnack in-
equalities for hypersurface flows and natural concavity properties
of their time-of-arrival functions. We prove these concavity prop-
erties directly for a large class of flows by applying a concavity
maximum principle argument to the corresponding level set flow
equations. In particular, this yields a short proof of Hamilton’s
differential Harnack inequality for mean curvature flow and, more
generally, Andrews’ differential Harnack inequalities for certain “α-
inverse-concave” flows.

1. Concavity maximum principles

Our goal is to deduce concavity properties for the time-of-arrival functions
of a large class of geometric flow equations using the concavity maximum
principle. The main idea, due to Korevaar [20] and later extended by Ken-
nington [19] and Kawohl [18] is summarized in the following theorem.

Theorem 1.1. Let Ω ⊂ R
n be a bounded, convex, open set and suppose that

u ∈ C1(Ω) is twice differentiable in Ω and satisfies the equation

−f(Du(x), D2u(x)) = b(x, u(x), Du(x)) in Ω

with f : Rn × Γ → R, Γ ⊂
convex,open

Symn×n, satisfying

(i) Weak ellipticity:

r ≥ s =⇒ f(p, r) ≥ f(p, s) .

(ii) Concavity:

f(p, λr + (1− λ)s) ≥ λf(p, r) + (1− λ)f(p, s) .

and b : Ω× R× R
n → R satisfying
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(iii) Monotonicity:

z > w =⇒ b(x, z, p) < b(x,w, p) .

(iv) Joint concavity:

b(λ(x, z) + (1− λ)(y, w), p) ≥ λb(x, z, p) + (1− λ)b(y, w, p) .

If the graph of u lies below its boundary tangent hyperplanes, then u is con-
cave.

Proof. The argument is essentially that of Korevaar [20]: Consider Kore-
vaar’s “concavity function” Z : [0, 1]× Ω× Ω → R, defined by [20]

(1) Z(r, x, y) := u(rx+ (1− r)y)−
(

ru(x) + (1− r)u(y)
)

.

This function measures how far the point
(

rx+ (1− r)y, u(rx+ (1− r)y)
)

in Ω× R lies above the line joining the points (x, u(x)) and (y, u(y)). We
need to prove that Z ≥ 0.

Choose the triple (r0, x0, y0) so that

Z(r0, x0, y0) = min
[0,1]×Ω×Ω

Z(r, x, y) .

If r0 = 0 or r0 = 1, then Z(r0, x0, y0) = 0, which implies the claim. So we
may assume that r0 ∈ (0, 1). Suppose that x0 ∈ ∂Ω. If Z(r0, x0, y0) < 0, then,
since the graph of u lies below its boundary tangent hyperplanes, it would be
possible to find a point (r1, x1, y1) with Z(r1, x1, y1) < Z(r0, x0, y0) by mov-
ing x0 a small amount inwards along the line joining x0 and y0, contradicting
minimality of (r0, x0, y0) [20]. Indeed, consider the function

f(ε) := Z(xε, y0, rε) ,

where xε := x0 + ε(y0 − x0) and rε := r0/(1− ε). Since

rεxε + (1− rε)y0 ≡ z0 ,

the boundary condition implies that

d

dε

∣

∣

∣

∣

ε=0

f = − r0
(

u(y0)− u(x0)−Du(x0) · (y0 − x0)
)

< 0 ,

in contradiction with the fact that f(ε) is minimized at ε = 0.
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A similar argument applies at y0. So we may assume that x0 and y0 are
interior points.

Let us abuse notation by writing Z(x, y) := Z(r0, x, y). Then (x0, y0) is
a stationary point of Z and hence, setting z0 := r0x0 + (1− r0)y0,

(2a) 0 = ∂xiZ(x0, y0) = r0(ui(z0)− ui(x0))

and

(2b) 0 = ∂yiZ(x0, y0) = (1− r0)(ui(z0)− ui(y0)) .

So

(3) Du(z0) = Du(x0) = Du(y0) =: p0 .

Since (x0, y0) is a local minimum,

0 ≤ (∂xi + ∂yi)(∂xj + ∂yj )Z(x0, y0)

= uij(z0)− r0uij(x0)− (1− r0)uij(y0) .

The ellipticity and concavity of f and the joint-concavity of b then imply

b(z0, u(z0), p0) = − f(p0, D
2u(z0))

≤ − f(p0, r0D
2u(x0) + (1− r0)D

2u(y0))

≤ − r0f(p0, D
2u(x0))− (1− r0)f(p0, D

2u(y0))

= r0b(x0, u(x0), p0) + (1− r0)b(y0, u(y0), p0)

≤ b(z0, r0u(x0) + (1− r0)u(y0), p0) .

The claim now follows from the monotonicity of b. □

Remark 1.2. Note that in Theorem 1.1, although the solution u is required
to be twice differential in Ω and C1 up to the boundary, no regularity hy-
potheses are needed for the functions f and b.

Remark 1.3. In the quasi-linear setting, Theorem 1.1 recovers the orig-
inal result of Korevaar [20]. It also immediately recovers a special case of
an important refinement observed by Kennington [19] (see also Kawohl [18,
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Theorem 3.13]). Indeed, if b > 0, then we may rewrite the quasi-linear equa-
tion

−aij(Du(x))uij(x) = b(x, u(x), Du(x))

as

−f(Du(x), D2u(x)) = b∗(x, u(x), Du(x)) ,

where

f(p, r) := −(aij(p)rij)
−1 and b∗(x, z, p) := −b−1(x, z, p) .

If a and b satisfy the conditions of [19, Theorem 3.1] (see also [18, Theorem
3.13]), then f is weakly elliptic and concave, and b∗ is decreasing and joint-
concave. So the equation is of the form allowed by Theorem 1.1. It is worth
noting that, by allowing the left hand side to depend nonlinearly on the sec-
ond derivatives, the proof is actually simplified compared to the arguments
presented in [18] and [19].

Remark 1.4. Theorem 1.1 can be almost immediately applied (cf. [20]) to
the nonlinear capillary problem

F (A[u]) = κu+ λ in Ω

ν|graphu = ν|Ω on ∂Ω ,
(4)

where κ > 0 and F is a non-decreasing, concave function of the second funda-
mental form A[u] of graphu. Indeed, the function v := C − u, C > maxΩ u,
satisfies an equation of the form

−f(Dv,D2v) = κv−1 in Ω

ν|graph v = ν|Ω on ∂Ω ,

where f is nondecreasing and concave in its second argument. Although Dv
blows-up at the boundary of Ω, Theorem 1.1 applies when we restrict to
domains Ω′ ⋐ Ω which are sufficiently close to Ω. So the conclusion holds in
all Ω′ ⋐ Ω and we conclude that u is convex in Ω.

In some cases, a perturbation argument (cf. [20, Lemma 1.5]) can be used
to weaken Condition (iii) to weak monotonicity, in which case the theorem
can be used to study certain nonlinear Weingarten problems (κ = 0 in (4))
and certain nonlinear eigenvalue problems. We will not explore such appli-
cations here, since they have been developed elsewhere (see [1, 17–20, 22]).
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In Section 3, we apply this simple and elegant idea to certain degenerate
fully nonlinear equations (namely, level set flows of convex hypersurfaces).

Let us begin our investigation within the simpler context of mean cur-
vature flow, where our main result follows more or less as in Theorem 1.1.
(A more subtle argument will be required when we consider more general
flows.)

2. Mean curvature flow

Let {Mn
t }t∈[t0,T ) be a family of smooth, strictly convex boundaries Mn

t =
∂Ωt moving with normal velocity −Hν, where ν(x, t) is the outward pointing
unit normal to Mn

t at x and H = div ν is the corresponding mean curvature.
Recall that the arrival time u : ∪t∈[t0,T )Mn

t → R of the family {Mn
t }t∈[t0,T )

is defined by

u(p) = t ⇐⇒ p ∈ Mn
t .

Note that u is well-defined since the hypersurfaces move monotonically.
Let X : Mn × [t0, T ) → R

n+1 be a smooth family of parametrizations
X(·, t) of Mn

t . Then

(5) u(X(x, t)) = t .

Fix a point q = X(x, t) in Mn
t and local orthonormal coordinates {xi}ni=1

for Mn about x (with respect to the induced metric at time t). Choose the
basis {ei}n+1

i=1 for R
n+1 so that en+1 = ν(x, t) and ei = ∂iX(x, t) for each

i = 1, . . . , n. Differentiating (5) yields the identities

(6) Du · ∂iX = 0 and −HDu · ν = 1

and hence

(7) Du = − ν

H
.

Since H = div ν, we deduce that u satisfies the level set (mean curvature)
flow

(8) −|Du| div
(

Du

|Du|

)

= 1 .

Moreover, differentiating (6) at the point (x, t), we obtain

(9) D2u =

(

−A/H ∇H/H2

∇H/H2 −∂tH/H3

)

.
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It follows that w :=
√

2(u− t0) satisfies

(10) D2w = w−1

(

−A/H ∇H/H2

∇H/H2 −(∂tH +H/w2)/H3

)

.

This is equivalent to the bilinear form studied by Hamilton in his derivation
of the differential Harnack inequality [13] (and later by Chow–Chu [10],
Kotschwar [21], and Helmensdorfer–Topping [14], who formulated “space-
time” approaches to differential Harnack inequalities).

Recall that the differential Harnack inequality asserts that

(11) ∂tH + 2∇V H +A(V, V ) +
H

2(t− t0)
≥ 0 for all V ∈ TMt, t > t0.

It is easy to see that local concavity of w is equivalent to (11): Fix p ∈ Mn
t

and any V ∈ TpR
n+1. Then, either V is tangent to Mn

t , in which case

wD2w(V, V ) = −A(V, V )

H
,

or V = λ(V ⊤ −Hν) for some λ ∈ R and V ⊤ ∈ TpMn
t , in which case

(12) wD2w(V, V ) = −λ2

H

(

∂tH +
H

2(t− t0)
+ 2∇V ⊤H +A(V⊤, V⊤)

)

.

Since the Harnack inequality is saturated by self-similarly expanding
solutions, so is local concavity of the square root of the arrival time. In fact,
this is readily deduced directly: if Mn

t =
√
tMn

1 , for t > 0, defines a self-

similarly expanding solution, then w = u
1

2 is homogeneous of degree 1 since
√

t/sX ∈ Mn
t if and only if X ∈ Mn

s . But then D2w is degenerate in radial
directions.

For ancient solutions {Mn
t }t∈(−∞,T ), the Harnack inequality becomes

(13) ∂tH + 2∇V H +A(V, V ) ≥ 0 for all V ∈ TMt, t > −∞ ,

which, by the same argument, is seen to be equivalent to local concavity of
u itself.

Theorem 2.1. Let Ω ⊂ R
n+1 be a bounded, convex, open set with smooth

boundary. Given u0 ∈ R, suppose that u ∈ C1(Ω) has a single critical point,
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p ∈ Ω, is twice differentiable in Ω \ {p}, and satisfies

(14)







−|Du| div
(

Du

|Du|

)

= 1 in Ω \ {p}

u ≡ u0 on ∂Ω .

Then
√

2(u− u0) is concave.
If we no longer assume that Ω is bounded, but require instead that u0 =

−∞ and that the level sets of u are bounded and convex, then u is concave.

Proof. Set w :=
√

2(u− u0). Then

Dw =
Du

w

and hence

−
n
∑

i,j=1

(

δij −
wiwj

|Dw|2
)

wij = −|Dw| div
(

Dw

|Dw|

)

= w−1

in Ω \ {p}. Observe that the tangent hyperplanes to the graph of w are
vertical at the boundary. Indeed, the normal to the graph of w is given by

N =
(−Dw, 1)

√

1 + |Dw|2
=

(ν,Hw)√
H2w2 + 1

.

The concavity maximum principle now implies that w is concave. We proceed
as in the proof of Theorem 1.1: Let (r0, x0, y0) attain the minimum of the
concavity function Z (defined in (1)). Since graphw lies below its boundary
tangent hyperplanes (see Remark 1.4), we may assume that (r0, x0, y0) is
an interior point. So we obtain the gradient identities (2a)-(2b) and hence
p0 := Du(x0) = Du(y0). If p0 is not zero, the argument given in Theorem
1.1 implies that Z(r0, x0, y0) ≥ 0. On the other hand, if p0 = 0, then x0 = y0
(since, by hypothesis, u has but one critical point) and hence

Z(r0, x0, y0) = 0.

To prove the second claim, fix any point p ∈ Ω and any t < u(p). Then
p ∈ Ωt := {q ∈ Ω : u(q) > t}. The hypotheses on u imply that Ωt is bounded
and hence, by the first part of the theorem, the function w : Ωt → R given
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by w(q) = (2(u(q)− t))
1

2 is concave. Thus,

D2u(p) = w−1(p)D2w(p) +
Du(p)⊗Du(p)

w2(p)
≤ Du(p)⊗Du(p)

2(u(p)− t)
.

Taking t → −∞ yields the claim. □

Note that, for an initial hypersurface which bounds a bounded convex
body, the corresponding solution to mean curvature flow remains smooth
until it contracts to a single point, p say. It follows that the arrival time is
smooth away from its only critical point, p, and C1 at p. In fact, Huisken
[15] proved that the solution becomes ‘asymptotically round’ near p, which
actually implies that the arrival time is of class1 C2 [16]. In any case, The-
orem 2.1 provides a rather simple proof of Hamilton’s differential Harnack
inequality.

Corollary 2.2. Let {Mn
t }t∈[t0,T ) be a smooth family of boundaries Mn

t =
∂Ωt of bounded convex bodies Ωt evolving by mean curvature. Suppose that
the boundaries Mn

t contract to a point at time T . Then the square root
w := (2(u− t0))

1

2 of the arrival time u : Ωt0 → R is concave. Equivalently,

∂tH + 2∇V H +A(V, V ) +
H

2(t− t0)
≥ 0 for all V ∈ TMt , t ∈ (t0, T ) .

If the solution is ancient, then u is concave. Equivalently,

∂tH + 2∇V H +A(V, V ) ≥ 0 for all V ∈ TMt , t ∈ (t0, T ) .

Proof. By (7), we find that u has a single critical point and is differentiable
everywhere. It follows that the arrival time u of the family satisfies the
hypotheses of Theorem 2.1, and we conclude that its square root w := (2(u−
t0))

1

2 is concave. The differential Harnack inequality then follows from (10)
as in (12). The remaining claim is proved similarly. □

Remark 2.3. Note that, since the level-set flow equation is not defined
when Du = 0, a separate argument in Theorem 2.1 was necessary at such
points.

1Colding and Minicozzi [11] proved that the arrival time of a general compact,
mean convex mean curvature flow is twice differentiable. But this result requires
the full force of the structure theory for singularities in mean curvature flow. We
only require here that the hypersurfaces shrink to a (not necessarily round) point.
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After we completed this work, we learned that Trudinger had essentially
pointed out the proof of Theorem 2.1 in the concluding remarks to [23], and
that Evans and Spruck [12, Theorem 7.6] had proved a stronger version of
Theorem 2.1 by applying the concavity maximum principle to approximating
solutions to the (non-singular) ε-regularized level-set flow and taking a limit
as ε → 0. Notably, both of these works preceded Hamilton’s paper [13].

Xu-Jia Wang [24, Lemma 4.1] observed that the logarithm of u− t0 is
concave (in general), and used this to deduce that u is concave for an ancient
solution. His argument seems to implicitly make use of the assumptions in
Theorem 2.1 and was one of the motivations for this work.

3. Flows by nonlinear functions of curvature

We now consider a much larger class of evolutions. Let {Mn
t }t∈[t0,T ) be a

family of smooth, convex boundaries Mn
t = ∂Ωt moving with normal veloc-

ity −Fν, where ν(x, t) is the outward pointing unit normal to Mn
t at x. We

consider speeds F (·, t) : Mn
t → R given by

(15) F (x, t) = fα
(

ν(x, t), [A(x,t)]
)

for some α > 0, where A(x,t) is the second fundamental form of Mn
t at x

and [A(x,t)] its component matrix with respect to an orthonormal frame
for TxMn

t , and f : Sn × Γn×n
+ → R is a smooth, positive function which is

SO(n)-invariant2 and monotone non-decreasing in its second entry, where
Γn×n
+ is the cone of positive definite, symmetric n× n matrices.

Since f is positive, the hypersurfaces move monotonically inwards, so
the arrival time u : ∪t∈[t0,T )Mn

t → R, which we recall is given by

u(p) = t ⇐⇒ p ∈ Mn
t ,

is well-defined. If the boundaries contract to a point, then the arrival time
is well-defined on all of Ωt0 and of class C1(Ω). If F is isotropic and the
boundaries contract smoothly to a ‘round’ point, then the arrival time is of
class C2(Ω). Indeed, the same calculations as in the preceding section reveal

2I.e. invariant under conjugation of its second factor by special orthogonal ma-
trices.
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that

(16) Du = − ν

F

and

(17) D2u =

(

−A/F ∇F/F 2

∇F/F 2 −∂tF/F
3

)

.

Since, in the isotropic case,

∂tF = Ḟ (∇2F + FA2) ,

where Ḟ := Df |[A], the claims follow similarly as in [16]. Moreover, u satisfies
the level set flow

|Du|fα

(

− Du

|Du| ,−D
Du

|Du|

)

= 1 .

Set

w := ((1 + α)(u− t0))
1

1+α .

Then, away from the final point,

Dw = w−αDu ,

wαD2w = D2u− α
Du⊗Du

w1+α

=

(

−A/F ∇F/F 2

∇F/F 2 −(∂tF + αF/w1+α)/F 3

)

(18)

and

|Dw|fα

(

− Dw

|Dw| ,−
1

|Dw|

[

I − Dw ⊗Dw

|Dw|2
]

·D2w

)

= w−α .

As in [5], let us call a function f : Sn × Γn×n
+ → R inverse-concave if the

dual function f∗ : S
n × Γn×n

+ → R defined by

f−1
∗ (p, r) = f(p, r−1)

is concave.
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Theorem 3.1. Let Ω ⊂ R
n+1 be a bounded, convex, open set with smooth

boundary. Given u0 ∈ R and α > 0, suppose that u ∈ C1(Ω) has a single
critical point, p ∈ Ω, is smooth in Ω \ {p}, and satisfies

{

|Du|fα
(

− Du
|Du| ,−

1
|Du|

[

I − Du⊗Du
|Du|2

]

·D2u
)

= 1 in Ω \ {p}
u = u0 on ∂Ω ,

where f : Sn × Γn×n
+ → R is monotone non-decreasing and inverse-concave.

Then w := ((1 + α)(u− u0))
1

1+α is concave.
If we no longer assume that Ω is bounded, but require instead that u0 =

−∞ and that the level sets of u are bounded, then u is concave.

Proof. Consider the concavity function Z : [0, 1]× Ω× Ω → R, which we re-
call is defined by

Z(r, x, y) := w(rx+ (1− r)y)−
(

rw(x) + (1− r)w(y)
)

.

Choose the triple (r0, x0, y0) so that

Z(r0, x0, y0) = min
[0,1]×Ω×Ω

Z(r, x, y) .

As before, it suffices to assume that r0, x0 and y0 are interior points. Let us
abuse notation by writing Z(x, y) := Z(r0, x, y). Then (x0, y0) is a stationary
point of Z and hence, setting z0 := r0x0 + (1− r0)y0,

0 = ∂xiZ(x0, y0) = r0(wi(z0)− wi(x0))

and

0 = ∂yiZ(x0, y0) = (1− r0)(wi(z0)− wi(y0)) .

So

Dw(z0) = Dw(x0) = Dw(y0) =: p0 .

We may also assume that p0 ̸= 0 since if p0 = 0, we would have x0 = y0 = z0,
and hence Z(x0, y0) = 0.

At this point, the proof differs from that of previously known results.
In order to obtain the best possible result, we need to optimize the second
variation inequality for Z (cf. [5–7]). Since (x0, y0) is a local minimum, we
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obtain, for any pair of endomorphisms a and b of Rn+1,

0 ≤ d2

ds2

∣

∣

∣

∣

s=0

Z(x0 + sa · ei, y0 + sb · ej)

= (api ∂xp + bpi ∂yp)(aqj∂xq + bqj∂yq)Z(x0, y0)

= (r0a+ (1− r0)b)
p
i (r0a+ (1− r0)b)

q
jwpq(z0)

− r0a
p
i a

q
jwpq(x0)− (1− r0)b

p
i b

q
jwpq(y0) .

The endomorphisms a and b will be chosen in order to optimize this inequal-
ity. Denote by

π0 := I − p0 ⊗ p0
|p0|2

the projection onto the orthogonal complement of p0. Since the equation is
degenerate in the direction of Du, we consider only those endomorphisms of
the form

a = â ◦ π0 and b = b̂ ◦ π0 ,
where â and b̂ are endomorphisms of π0 · Rn+1. Then

ĉpi ĉ
q
j(Az0)pq ≤ r0â

p
i â

q
j(Ax0

)pq + (1− r0)b̂
p
i b̂

q
j(Ay0

)pq ,(19)

where ĉ := r0â+ (1− r0)b̂ and

Ax := − 1

|Dw(x)|

(

I − Dw(x)⊗Dw(x)

|Dw(x)|2
)

·D2w(x) .

Setting â = A−1
x0

and b̂ = A−1
y0

, we find

r0A
−1
x0

+ (1− r0)A
−1
y0

≤ A−1
z0

.

The monotonicity and concavity of f∗ then yield

w(z0) = |p0|−
1

α f−1

(

p0
|p0|

, Az0

)

= |p0|−
1

α f∗

(

p0
|p0|

, A−1
z0

)

≥ |p0|−
1

α f∗

(

p0
|p0|

, r0A
−1
x0

+ (1− r0)A
−1
y0

)

≥ r0|p0|−
1

α f∗

(

p0
|p0|

, A−1
x0

)

+ (1− r0)|p0|−
1

α f∗

(

p0
|p0|

, A−1
y0

)

= r0w(x0) + (1− r0)w(y0) .

The first claim is proved. The second follows as in Theorem 2.1. □



✐

✐

“1-Langford” — 2023/12/18 — 16:33 — page 559 — #13
✐

✐

✐

✐

✐

✐

Concavity of the arrival time 559

As a corollary, we obtain differential Harnack inequalities for flows by
positive powers of inverse-concave speeds which contract convex hypersur-
faces to points. Such inequalities were already observed by Andrews [2,
Corollary 5.11] and Chow [9].

Corollary 3.2. Let {Mn
t }t∈[t0,T ) be a smooth family of boundaries Mn

t =
∂Ωt of bounded convex bodies Ωt moving with inward normal speed

F (x, t) = fα
(

ν(x, t), [A(x,t)]
)

for some α > 0, where f : Sn × Γn×n
+ → R+ is a smooth function which is

SO(n)-invariant, monotone non-decreasing and inverse-concave in its sec-
ond entry. Suppose that the hypersurfaces Mn

t contract to a point at time

T . Then the (1 + α)-th root w := ((1 + α)(u− t0))
1

1+α of the arrival time
u : Ωt0 → R is concave. Equivalently,

∂tF + 2∇V F +A(V, V ) +
αF

(1+α)(t−t0)
≥0 for all V ∈ TMt, t ∈ (t0, T ) .

If the solution is ancient, then u is concave. Equivalently,

∂tF + 2∇V F +A(V, V ) ≥ 0 for all V ∈ TMt , t ∈ (t0, T )

Proof. The proof is similar to that of Corollary 2.2. □

Remark 3.3. Corollary 3.2 assumes that the solution contracts to a single
point at the singular time. This is known to be the case for solutions to
isotropic flows satisfying only slightly stronger conditions than α-inverse-
concavity [8, Theorem 5]. (The proof of this fact does not require differential
Harnack inequalities). Moreover, examples are given in [8] of speeds which
do not preserve convexity of the level sets Mn

t , and hence cannot admit
power concave arrival times.

We do not require that the limiting shape is round. Indeed, in many
situations where Harnack inequalities are known, this will not be the case
[3, 4].

In contrast to the known approaches to differential Harnack inequalities,
Theorem 3.1 does not require any regularity hypotheses for the speed.
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