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This paper studies embedded totally geodesic surfaces in fully aug-
mented link complements. Not surprisingly, there are no closed
embedded totally geodesic surfaces. Non-compact surfaces disjoint
from crossing disks are seen to be punctured spheres orthogonal to
the standard cell decomposition, while those that intersect cross-
ing disks do so in very restricted ways. Finally we show there is
an augmentation of any checkerboard surface in which that surface
becomes totally geodesic.
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1. Introduction

The process of augmenting a link, introduced in [2], consists of placing a
trivial component around two twisted strands in the link. Fully augmenting
a link starts with a twist-reduced diagram, augments every twist region and
removes all full twists. The complement of a fully augmented link (FAL)
admits a standard cell decomposition that allows it to be realized as two
right-angled, ideal polyhedra (see Section 2). The relatively straightforward
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geometry of FALs, then, makes them an appealing class of links to study.
Additionally, general hyperbolic links can be retrieved from FALs through
Dehn filling the added trivial components. As a consequence, the relatively
transparent geometry of fully augmented links can be used to study that of
hyperbolic links in general (see [19]).

Normal surface theory has been successfully applied to FAL comple-
ments, obtaining results on hyperbolic links. Blair, Futer and Tomova use
normal surface theory to bound the genera of certain surfaces in highly
twisted link complements (see [7]). Futer and Purcell, in [11], apply normal
surface theory and combinatorial arguments to show highly twisted links
admit no exceptional surgeries, while Kalfagianni and Lee use normal sur-
faces to bound crosscap numbers of alternating links (see [13]). In each of
these contexts the authors topologically “straighten” surfaces relative to a
polyhedral decomposition of the link complement. The polyhedra then de-
compose the surface into a collection of normal disks that glue together to
form the original surface.

In addition to topological considerations, it is natural to study surface
geometry in the context of hyperbolic three manifolds. The purpose of this
paper is to study embedded totally geodesic surfaces in FAL complements.
A geometric version of normal surface theory is used, the main tool being
geodesic disks which are geometric analogues of the normal disks of [7], [11],
and [13]. These are defined in Section 4, where properties are also developed
which greatly restrict how such surfaces can intersect crossing disks (see
Proposition 4.3).

Much work has been done on the (non-)existence of totally geodesic sur-
faces in hyperbolic three-manifolds. Moreover, various properties of geodesic
surfaces are frequently compared: immersed vs. embedded, closed vs. non-
compact, orientable vs. non-orientable, etc.

One need look no farther than the figure-eight knot to see that the dis-
tinction between immersed and embedded is significant. The figure-eight
knot complement is an arithmetic manifold containing infinitely many im-
mersed closed totally geodesic surfaces (see [21]). At the other end of the
spectrum, Menasco and Reid, in [17], proved there are no embedded closed
geodesic surfaces in the complement of hyperbolic alternating links in S3.
Therefore, none of those infinitely many surfaces are embedded!

It seems that closed embedded totally geodesic surfaces are rare. In
fact, Menasco and Reid conjectured that knots in S3 never contain such
a surface. This conjecture has been proven for a range of knot families,
including closed four braids ([16]), 3-bridge and double-torus knots ([12]),
and almost-alternating links ([4]). In contrast to knots, Menasco and Reid
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provide an example of a link complement containing a genus two closed
embedded totally geodesic surface (see [17, Section 2.3]). Our first result
shows that while some links do contain surfaces that are closed, embedded
and geodesic, FAL complements do not. More formally, we prove

Theorem 3.1. There are no closed, embedded, totally geodesic surfaces in
an FAL complement.

The proof relies on the standard decomposition of FAL complements into
two right-angled, ideal polyhedra (described in Section 2), together with how
embedded, totally geodesic surfaces can intersect thrice-punctured spheres.

Although FAL complements contain no closed embedded totally geodesic
surfaces, they do contain non-compact ones. Both the reflection surface and
crossing disks of the standard cell decomposition provide examples of em-
bedded totally geodesic surfaces (see [19] and [14]). These will be referred
to as standard geodesic surfaces. In general, FAL complements contain non-
standard embedded totally geodesic surfaces as well. Non-standard surfaces
are characterized by their intersections with the standard ones. Such an
analysis on surfaces disjoint from crossing disks proves

Theorem 3.3. Let S be a non-standard surface in an FAL complement that
is connected and disjoint from the crossing disks. Then S is an n-punctured
sphere orthogonal to the reflection surface.

Technical results regarding geodesic disks are developed in Section 4,
and used to characterize embedded, totally geodesic surfaces that intersect
crossing disks:

Theorem 5.1. Let S be a connected, non-standard surface in an FAL com-
plement that intersects at least one crossing disk. Then either

i. S meets crossing disks only in separating geodesics and is orthogonal
to the standard cell decomposition, or

ii. S meets crossing disks only in non-separating geodesics and is nowhere
orthogonal to C.

Several examples are given as applications of these results. In particular,
Example 5.2 classifies embedded, totally geodesic surfaces in flat FALs that
come from augmenting two-bridge links. Given a two-bridge link with n twist
regions, its corresponding flat FAL contains 3n+ 2 or 3n+ 3 embedded,
totally geodesic surfaces if n is even or odd, respectively. These FALs are
octahedral, and so arithmetic by [9, Proposition 6.3]. Thus these are also
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examples of manifolds containing infinitely many closed, but only finitely
many embedded, totally geodesic surfaces.

All examples of orientable, embedded, totally geodesic surfaces we have
constructed that are orthogonal to the standard cell decomposition have
been punctured spheres. Thus we conjecture

Conjecture 1.1. Any orientable, embedded, totally geodesic surface in an
FAL complement that is orthogonal to the standard cell decomposition has
genus zero.

After analyzing non-standard surfaces, we turn our attention to stan-
dard ones. In particular, we are interested in the types of surfaces that
can be reflection surfaces in an FAL complement. Surfaces such as Seifert
surfaces, checkerboard surfaces, and state surfaces, arise naturally when con-
sidering links in S3, and several authors have studied the geometry of such
surfaces. Adams and Schoenfeld, in [5], constructed the first examples of to-
tally geodesic Seifert surfaces, as well as proving that hyperbolic two-bridge
knot complements contain no orientable totally geodesic surfaces. More to-
tally geodesic Seifert surfaces were found in [3], where the authors also show
that if both checkerboard surfaces of an alternating link diagram contain
bigons, then neither are totally geodesic. Futer, Kalfagianni and Purcell, in
[10], showed that state surfaces, and in particular checkerboard surfaces, of
alternating diagrams are always quasi-Fuchsian. A quasi-Fuchsian surface is
one covered by a topological plane with limit set a topological circle that
bounds two disks. A totally geodesic (or Fuchsian) surface satisfies this def-
inition, since the limit set of a hyperbolic plane is a geometric circle, which
is certainly a topological circle.

While not all checkerboard surfaces are totally geodesic, we define an
augmentation AR of a checkerboard surface R in which it becomes totally
geodesic. The following theorem is proven using Purcell’s classification of
hyperbolic FALs (restated as Theorem 2.1 in this paper for convenience),
together with a diagrammatic analysis of related links:

Theorem 6.2. Let R be a checkerboard surface for a nonsplittable, prime,
twist-reduced diagram D with at least two twist regions. Then R is an em-
bedded totally geodesic surface in the complement of the hyperbolic link AR.

The present work restricts its attention to the study of embedded totally
geodesic surfaces. Fully augmented links are reviewed in Section 2. Section 3
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contains Theorems 3.1 and 3.3, while Section 4 develops the necessary struc-
ture of geodesic disks. Section 5 characterizes non-standard surfaces that in-
tersect crossing disks, and classifies embedded, totally geodesic surfaces for
an infinite family of links. The paper concludes in Section 6 by showing that
the correct augmentation of a checkerboard surface results in it becoming
totally geodesic.

We remark that these results have been used in [18] to classify thrice-
punctured spheres in FAL complements and analyze their belted-sum decom-
positions. Further, there are potential applications to arithmetic invariants,
which are well-behaved under such cut-and-paste operations (see [15]).

Acknowledgements. We are very grateful to the anonymous referees for
their careful reading and valuable suggestions that resulted in a significantly
improved version of this paper. This research was supported in part by
NSF-REU Grant DMS-1461286, as well as California State University, San
Bernardino.

2. Fully augmented links

This section introduces fully augmented links, their standard cell decompo-
sition and associated ideal polyhedra. These tools form the foundation for
our analysis of embedded totally geodesic surfaces in FAL complements. The
reader is referred to Purcell’s paper [19] for a thorough discussion of these
ideas.

Fully augmented links are obtained from alternating diagrams of links
in the three-sphere, so before continuing we briefly recall the definitions of
some diagrammatic properties.

A diagram is nonsplittable if every disk whose boundary is disjoint from
the diagram contains either all or none of the diagram. To define prime,
recall that an m-tangle in a diagram is a disk whose boundary intersects
the diagram in exactly m points, none of which are crossings (see [8]). A
trivial 2-tangle is one that contains either all or none of the crossings in the
diagram (see Figure 1(a)). A diagram is prime if every 2-tangle is trivial.
Finally, a prime diagram is twist-reduced if for each pair S and T of 4-tangles
whose complement contains two crossings as in Figure 1(b), either S or T
contains a (possibly empty) twist.

We now describe how to construct an FAL. Given a twist-reduced alter-
nating link diagram L in S3 one forms its associated fully augmented link
AL by inserting a trivial component, called a crossing circle, around each
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TS

twist 

(a) Non-trivial 2-tangles (b) Twist-reduced implies
either S or T is a twist

Figure 1: Diagrammatic properties.

twist region and removing all full twists (see Figure 2). The components
remaining from the original link are called knot circles.

Two remarks are in order. First, note that if a twist region contains a
single crossing there are two choices for crossing circles, as is the case for the
central crossing of Figure 2(a). A multiple-crossing twist region, however,
determines a unique crossing circle. Second, observe that each crossing circle
bounds a crossing disk that is punctured twice by knot circles, so that each
crossing disk is a thrice-punctured sphere. A crossing circle is flat if the knot
circles through it do not cross, and it is called twisted if they do. The left
two crossing circles of Figure 2(b) are twisted while the right two are flat.

(a) Alternating link (b) Fully augmented

Figure 2: Fully augmenting a link.

Purcell gives a diagrammatic interpretation of when the associated FAL
complement admits a hyperbolic structure. This theorem is included here
for reference.
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Theorem 2.1 ([19, Theorem 2.5]). A fully augmented link is hyperbolic
if and only if the associated knot or link diagram is nonsplittable, prime,
twist-reduced, with at least two twist regions.

Each hyperbolic fully augmented link, or FAL, admits a standard cell-
decomposition first introduced in the appendix of [14], which allows one to
realize the complement M = S3 \ AL as two right-angled ideal polyhedra
(see [19]). We let C denote the standard cell decomposition, and describe it
now.

The standard cell decomposition is most easily seen when all crossing
circles are flat, so we begin with this case. There are two kinds of 2-cells in
C: the regions of the projection plane (e.g. U and V in Figure 3(a)) and the
crossing disks. We refer to the projection plane 2-cells as reflection 2-cells
since reflection across the plane of projection is a symmetry of the link AL.
Note that the crossing disks are preserved under this reflective symmetry.
The 2-cells from crossing disks are crossing 2-cells. The projection plane
cuts through the middle of each crossing disk, and the curves of intersection
are the 1-cells of the standard cell decomposition (see the line segments of
Figure 3(a)). Crossing disks are cut into two triangles by the 1-cells, one
above and one below the plane of projection (e.g. A,A′ in Figure 3(a)) .

There are no 0-cells in the standard cell decomposition as all 1-cells have
“endpoints” on the link AL, which is absent from M . The two 3-cells B3

±

correspond to the regions of M above and below the projection plane.
To realize the hyperbolic structure on M , first slice along the reflection

2-cells in C. This separates M into the two 3-cells with boundary, which
are reflections of each other. Cutting along the projection plane slices each
crossing disk in half, so each crossing disk contributes one triangle in each
3-cell. Since the 3-cells are reflections of each other, we focus on the portion
above the reflection plane in Figure 3(a).

Now slice along the half-crossing disks, and flatten the result. This yields
a three ball B3

+, whose boundary sphere (viewed from “inside” B3
+) is pic-

tured in Figure 3(b).
Arcs from the original link remain in ∂B3

+, which are those arcs of Fig-
ure 3(b) that do not come from edges in the standard cell decomposition.
Since these arcs correspond to part of the link they are not part of M and
can be shrunk to points. The result is a cell decomposition on the bound-
ary of B3

+. This cell decomposition can be checkerboard colored so that the
unshaded faces correspond to reflection 2-cells, while shaded faces are all
triangular and copies of crossing 2-cells.
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A

A'

BB'

U

V

WG

A

A

BB

U

V

WG

A

A

BB

U

Vp

q W

G

(a) Cell decomposition (b) After slicing 2-cells (c) Circle packing

Figure 3: The standard cell decomposition C and circle packing.

A consequence of Andreev’s Theorem [6] is that the unshaded faces can
be isotoped to form a circle packing. Two circles are tangent in the circle
packing if the corresponding regions in the plane share a knot circle or are
both punctured by the same crossing circle. Thus the circles corresponding
to regions U and W are tangent at the vertex q corresponding to the crossing
circle bounding A (see Figure 3(c)).

Moreover, the ideal polyhedron is right-angled. This follows from the fact
that reflection across the plane of projection is an involution that preserves
crossing disks. The involution is isotopic to an isometry fixing the plane
of projection pointwise, and one consequence of Mostow-Prasad rigidity is
that such a fixed point set is totally geodesic. Since the crossing disks are
preserved under reflection, reflection 2-cells must meet crossing 2-cells at
right angles.

By reflective symmetry, the analogous operations on the region below
the plane yields an ideal right-angled polyhedron P− which is the reflection
of P+. To find a fundamental domain for M , let P− be the reflection of P+

across an unshaded face G. Then F = P+ ∪ P− is a fundamental domain
for M , which we call a standard domain since is comes from the standard
cell decomposition. Figure 4(a) illustrates a standard domain F for the Bor-
romean rings of Figure 3(a). This is obtained by reflecting P+ across the
face labeled G in Figure 3(c) and applying a Móbius transformation that
maps the vertex labeled p to infinity. Note that standard domains are not
unique because of the choice of unshaded face used to create P−, as well as
choosing which vertex of F to map to a convenient position.

The gluing maps on the faces of F are quite explicit. To describe the
gluings between unshaded faces we refer to faces, edges and vertices of F
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that are reflections of each other as corresponding faces, edges or vertices,
respectively. If F and F ′ are corresponding unshaded faces, then they are
glued by identifying corresponding edges and vertices. This is realized by
the isometry rG ◦ rF : F → F ′, where rF and rG represent reflections across
the respective faces (recall that G is the shared face of P±). Indeed, reflec-
tion in F fixes F point-wise while reflection in G identifies corresponding
components of F and F ′.

For a flat FAL, each shaded triangle on P+ will be glued to an adjacent
shaded triangle by the parabolic isometry that fixes their shared point (for
example, the point q between the triangles labeled A in Figure 3). Shaded
triangles on P− are identified in similar fashion.

A

A

A'

A'

U

U

B B

B' B'

P+

P-

A

A

A'

A'

U

U

B B

B' B'

P+

P-

A

A

A'

A'

U

U

B

BB'

B'

P+

P-

(a) Borromean Rings (b) Twisted A (c) Both twisted

Figure 4: Comparing flat and twisted gluing patterns.

To see how twisted crossing circles change the above description, note
that a twisted crossing circle can be obtained from a flat one by slicing
along the crossing disk and regluing with a half-twist. This glues the top
and bottom of one copy of the crossing disk to the bottom and top of the
other. Carrying the projection plane along in the process yields the reflection
2-cells which form a reflection surface for the twisted disk. The reflection is
the homeomorphism defined by reflecting in the plane of projection followed
by full twists inside each twisted crossing circle.

Note that the polyhedra P± are the same for the half-twist, but shaded
triangles in opposite polyhedra are identified. For example, the gluing pat-
tern on the standard domain of Figure 4(b) results from twisting crossing
disk A. Shaded triangles corresponding to crossing disk A are identified
across P± while those corresponding to disk B are glued within each poly-
hedron. Figure 4(c) is a standard domain for the Borromean rings with both
crossing disks twisted.
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As mentioned above (or see [19, Lemma 2.1]) the 2-cells of C are pieces of
embedded totally geodesic surfaces in the FAL complement. For this reason
we call the crossing disks and reflection surfaces standard geodesic surfaces
in M .

3. Embedded geodesic surfaces

This section begins our study of embedded totally geodesic surfaces in FAL
complements. The standard cell decomposition C of Section 2 is used to
prove that FAL complements contain no closed, embedded, totally geodesic
surfaces in Theorem 3.1. Embedded, totally geodesic surfaces that are dis-
joint from crossing disks are then considered. Analyzing intersections in a
standard domain proves that such surfaces are always punctured spheres
orthogonal to C (see Theorem 3.3).

A surface S in a hyperbolic FAL complement M is totally geodesic if its
preimage S̃ in the universal cover M̃ = H

3 is a union of hyperbolic planes.
If in addition S is embedded, then the planes of S̃ are pairwise disjoint.
Observe that the intersection of two distinct, embedded, totally geodesic
surfaces is a union of pairwise disjoint, simple geodesics which can be either
closed or non-compact. To see this merely note that the intersection of two
such surfaces is transverse, so the local picture near any point of intersection
is two planes intersecting along a line. This observation will be particularly
useful when analyzing the intersection of embedded, totally geodesic surfaces
with crossing disks.

Since crossing disks in FAL complements are embedded thrice punc-
tured spheres, we review these now. Adams proved, in [1], that all embedded
thrice-punctured spheres in orientable hyperbolic 3-manifolds are isotopic to
totally geodesic ones. For this reason we always assume our thrice-punctured
spheres are totally geodesic. Furthermore, thrice-punctured spheres contain
exactly six simple geodesics (see Figure 5(a)). The geodesics labeled a, b, c
will be called non-separating geodesics since the thrice-punctured sphere is
still connected after slicing along one, and those labeled x, y, z are separating
geodesics (these are also commonly known as seams and waves, respectively).

In particular, note that closed geodesics on a thrice-punctured sphere
are not simple. Thus if an embedded, totally geodesic surface intersects an
embedded thrice-punctured sphere non-trivially, it is not closed. This helps
in proving the following theorem.
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A B

C

a

c

b
x y

z

P+ P-

a' b'
z' z'

c'

D'

(a) Geodesics on D (b) A standard domain F

Figure 5: Thrice-punctured spheres and standard domains.

Theorem 3.1. There are no closed, embedded, totally geodesic surfaces in
an FAL complement.

Proof. Let S be an embedded totally geodesic surface in an FAL comple-
ment. We use its intersection with the standard cell decomposition C to show
that it is not closed.

If S intersects a crossing disk, it does so in complete simple geodesics
which are not closed, so S is non-compact.

Before continuing with the proof we make some observations about the
intersection S ∩ C. An embedded totally geodesic surface must intersect C,
otherwise it is contained in a three-ball and is inessential. Moreover, since
S is essential and the 2-cells of C are topological disks, S cannot intersect a
2-cell in a closed geodesic. Finally, each edge of C is contained in a crossing
disk, so if S intersects (or contains) an edge, then it intersects a crossing
disk.

Now suppose S is disjoint from crossing disks. Then it must intersect
only reflection 2-cells in non-closed geodesics that are disjoint from the edges
of C. Thus the intersection S ∩ C consists of open geodesics in reflection 2-
cells, and S is non-compact. □

Given the result of Theorem 3.1, we turn our attention to non-compact,
embedded, totally geodesic surfaces in FAL complements. Recall that the
2-cells of C glue together to form standard geodesic surfaces in FAL comple-
ments. We make the following definition.
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Definition 3.2. A non-standard surface is an embedded, totally geodesic
surface in an FAL complement that is not a component of C.

We first characterize non-standard surfaces that do not intersect crossing
disks.

Theorem 3.3. Let S be a non-standard surface in an FAL complement that
is connected and disjoint from the crossing disks. Then S is an n-punctured
sphere orthogonal to the reflection surface.

Proof. Let M be an FAL complement and S be a surface in M that satisfies
the hypotheses of the theorem. Since S misses all crossing disks, it intersects
only reflection 2-cells of C in open geodesics, as in the proof of Theorem 3.1,.

To see that S is orthogonal to the reflection surface we show that if S is
not orthogonal to it, then S intersects a crossing disk. Let p be a cusp of M
that is also a puncture of S, and choose F to be a standard domain of M
for which infinity projects to the cusp p. Then there is a vertical geodesic
γ′ in an unshaded vertical face of F that projects to one component of S
intersected with the reflection surface (see Figure 6). Let S∗ be the plane
containing γ′ that projects to S.

P+

S*
γ'

Figure 6: An elevation S∗ when S is not orthogonal to the reflection surface.

Then S∗ is not orthogonal to the unshaded face of F , as S is not orthog-
onal to the reflection surface. This implies S∗ intersects the plane containing
vertical shaded faces of F (although the intersection is not necessarily in F
as it is in Figure 6), and S intersects a crossing disk in M .

Thus if S is disjoint from crossing disks, it must be orthogonal to the
reflection surface.

It remains to show that S is an n-punctured sphere. Now let S∗ denote
a vertical plane in H

3 that covers S and intersects F non-trivially. Note that
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S′
+ = S∗ ∩ P+ is an ideal n-gon. Moreover, since S∗ is perpendicular to the

unshaded faces of P+, it is preserved under reflection across them. Thus the
intersection S′

− = S∗ ∩ P− is the reflection of S′
+ across the face shared by

P±.
Since unshaded faces of ∂P± glue to their reflections, so do the bound-

aries of S′
±. Thus projection of S′

± to M is an embedded totally geodesic
surface obtained by gluing the boundaries of two ideal n-gons in cyclic or-
der, which is an n-punctured sphere. Since S is connected, it equals this
surface. □

Figure 7 illustrates examples of totally geodesic punctured spheres that
are disjoint from crossing disks. Applying the techniques of Section 2 to
the twelve-link chain yields the circle packing of Figure 7(b), which is the
footprint of P+. The labeled curves are disjoint from shaded triangles, and
represent the boundaries of hyperbolic planes S∗

1 , S
∗
2 in the universal cover

which project to embedded totally geodesic surfaces in the FAL complement.

S1

*S2
*

(a) All six punctures (b) Planes S∗
1 , S

∗
2 , (c) Sphere with four

along crossing circles intersecting P+ knot circle punctures

Figure 7: Embedded, totally geodesic surfaces that are disjoint from crossing
disks.

The plane S∗
1 projects to the six-punctured sphere of Figure 7(a). All

six punctures are longitudes of crossing circles, so the sphere is disjoint from
crossing disks. The plane S∗

2 projects to the four-punctured sphere of Figure
7(c). This sphere separates three crossing disks from the other three, and is
punctured four times by knot circles.
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4. Geodesic disks

This section introduces geodesic disks and uses them to analyze how non-
standard surfaces in FAL complements can intersect crossing disks and the
reflection surface. The ways in which a non-standard surface meets crossing
disks are summarized in Proposition 4.3. Further, Proposition 4.4 shows that
a non-standard surface orthogonal to one 2-cell in C is orthogonal to every
2-cell that it meets. We begin with a definition.

Definition 4.1. Let M be an FAL complement and S an embedded totally
geodesic surface in M with preimage S̃ in the universal cover. A geodesic
disk is a connected component of S̃ ∩ P+, or of S̃ ∩ P−.

Faces of the polyhedra P± are standard geodesic disks since they project
to the standard cell decomposition of M .

Geodesic disks, then, are obtained by intersecting P± with special planes.
The planes must project to embedded totally geodesic surfaces in the FAL
complement. The ideal polygons S′

± in the proof of Theorem 3.3 are examples
of geodesic disks.

The following figure illustrates these concepts. The surface S of Fig-
ure 8(a) is an embedded thrice-punctured sphere, so it is an embedded
geodesic surface (see [1]). Thus its preimage S̃ in the universal cover is a
union of disjoint planes, some of which are displayed in Figure 8(b) together
with the standard domain F . Two of the planes in S̃ actually intersect F ,
and the corresponding geodesic disks are depicted in Figure 8(c).

S

(a) 3-punctured sphere (b) S̃ with F (c) Geodesic disks

Figure 8: A geodesic surface S, its S̃, and geodesic disks.

Theorem 3.3 characterizes embedded, totally geodesic surfaces in FAL
complements that are disjoint from crossing disks. We must now analyze
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how these surfaces can intersect crossing disks. To do so we relate crossing
disks and their simple geodesics to shaded triangular faces of a standard
domain.

The preimage in a standard domain of a crossing disk D, and of its
geodesics, is very specific. A longitude of the crossing circle is one puncture
of D, while the other two punctures correspond to meridians of knot circles
(see Figure 3(a)). The 1-cells of C, then, connect distinct punctures and
are the non-separating geodesics of the crossing disks. Thus the edges of the
shaded triangles in ∂P± project to non-separating geodesics of crossing disks
(e.g. the geodesics labeled a′, b′, c′ in Figure 5(b) project to a, b, c on D).

We now describe the preimage in F of separating geodesics on cross-
ing disks. Recall that an altitude of an ideal triangle is the result of drop-
ping a perpendicular from one vertex to the opposite side. Since separating
geodesics are perpendicular to their opposite non-separating geodesic, we see
that altitudes of the shaded triangles of F project to separating geodesics of
D. For example, the rays labeled z′ in Figure 5(b) glue together and project
to form z in D.

These observations reveal some of the structure of geodesic disks. In
particular, if S is an embedded, totally geodesic surface in an FAL comple-
ment, then it intersects crossing disks in a union of disjoint separating and
non-separating geodesics. The preimages of these geodesics in F are edges
or altitudes of shaded triangles. Thus if a geodesic disk intersects a shaded
triangle it does so along an edge or an altitude.

The next lemma describes the angles at which geodesic disks can inter-
sect shaded triangles. Since the covering projection preserves angles, they
also determine angles between embedded, totally geodesic surfaces and cer-
tain 2-cells in C.

Lemma 4.2. Let S be a non-standard surface in an FAL complement M ,
and let F be a standard domain for M . If S′ is a non-standard geodesic disk
for S that intersects a shaded triangular face T of F , then

i. If S′ ∩ T is an altitude z′ of T , then S′ is orthogonal to both T and
the unshaded face R at the base of z′.

ii. If S′ ∩ T is an edge a′ of T , then S′ is not orthogonal to either face of
F adjacent at a′.

Proof. Let S′ be a geodesic disk containing the altitude z′ of T , say in P+,
and assume the ideal point of z′ is at infinity. Let R be the unshaded face
at the finite endpoint of z′ (see Figure 9).
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T

S'

R

z'

R*
G

Figure 9: S′ when S ∩D is separating in D.

Since S′ is a vertical plane containing z′, it contains the center of the
Euclidean hemisphere containing R. Thus S′ is orthogonal to R.

We will show that if S′ is not orthogonal to T , then S̃ contains inter-
secting planes–a contradiction since S is embedded.

Let G be the face shared by P± that contains an edge of T , and let R∗

be the reflection of R across G. The isometry ϕ gluing R to R∗ is realized
by first reflecting in R, then reflecting in G. Since S′ is a vertical plane
through the Euclidean center of the hyperbolic plane containing R, it is
(set-wise) invariant under reflection in R. The image S∗ = ϕ(S′) is therefore
the reflection of S′ across G.

If S′ is not orthogonal to T , then it intersects G in the universal cover
of M (although not necessarily in F). The vertical line S′ ∩G is invariant
under reflection in G, so S′ ∩ ϕ(S) = S′ ∩ S∗ is non-empty. This contradicts
the fact that embedded totally geodesic surfaces lift to a union of disjoint
planes in the universal cover. This completes the proof of the first statement.

Now suppose S′ ∩ T is an edge a′ of T , and let R be the unshaded face
of P+ sharing a′ with T . Since S′ is non-standard it cannot be either T or
R. Since R and T are orthogonal at a′, S′ cannot be perpendicular to either
of them. □

Lemma 4.2 can be used to describe the intersection of embedded totally
geodesic surfaces with crossing disks. The following proposition summarizes
this. Part (i) is a restatement of the observation that embedded, totally
geodesic surfaces intersect in a union of disjoint simple geodesics. Parts (ii)
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and (iii) follow directly from Lemma 4.2 and the fact that geodesic disks
project to embedded totally geodesic surfaces.

Proposition 4.3. Let S be a non-standard surface in an FAL complement
that intersects the crossing disk D nontrivially. Then

i. S ∩D is a collection of pairwise disjoint separating and non-separating
geodesics on D.

ii. S meets D orthogonally along any separating geodesic in S ∩D.

iii. At non-separating geodesics in S ∩D, S is not orthogonal to D.

The final result of this section shows that if a geodesic disk meets one
face of ∂P± orthogonally, then it is orthogonal to every face it meets. To see
this we first discuss the boundary of a geodesic disk. The arguments given
for P+ also apply to geodesic disks in P−.

First recall that the midpoint of an edge in an ideal triangle is the foot
of the perpendicular from the opposite vertex. Since each edge of P+ bounds
a shaded ideal triangle on one side, it has a well-defined midpoint.

Let S′ be a non-standard geodesic disk, so it is a hyperbolic polygon
with boundary curve γ that can have both finite and ideal vertices. The
boundary curve γ intersects shaded triangles along edges or altitudes, so all
finite vertices of γ are midpoints.

Proposition 4.4. If a non-standard geodesic disk S′ meets one face of
∂P+ orthogonally, then S′ is orthogonal to every face of ∂P+ that it meets.
In particular, if S′ contains an altitude it is orthogonal to every face it meets.

Proof. Let S′ be a non-standard geodesic disk in P+ and let the edges of
γ = ∂S′ be labeled γ1, . . . , γn in cyclic order. Let γi be an edge along which
S′ meets ∂P+ at right angles. We wish to prove that S′ is orthogonal to ∂P+

along γi+1 as well. The proof will follow by applying this argument cyclically
around γ.

If γi and γi+1 share a finite vertex, then one of the edges is an altitude
and Lemma 4.2(i) proves that S′ is orthogonal to ∂P+ along both edges.

If γi and γi+1 share an ideal vertex, map it to infinity via a Möbius
transformation. Since S′ is orthogonal to ∂P+ along γi, and P+ is right
angled, the geodesic disk S′ meets the face of P+ opposite γi orthogonally
as well. The face opposite γi contains γi+1, so S′ meets ∂P+ orthogonally
along γi+1, finishing the induction. □
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5. Non-standard surfaces intersecting crossing disks

Theorem 3.1 shows there are no closed, embedded, totally geodesic surfaces
in FAL complements. Theorem 3.3 nicely characterizes embedded, totally
geodesic surfaces in an FAL complement that are disjoint from crossing
disks. This section completes the picture by considering embedded, totally
geodesic surfaces that intersect crossing disks.

Recall that an embedded totally geodesic surface S intersects a cross-
ing disk in a collection of disjoint separating and non-separating geodesics
(Proposition 4.3(i)). Theorem 5.1 strengthens this to show that if S is con-
nected, then all intersections with crossing disks are of the same type–either
all are separating or all non-separating.

Theorem 5.1. Let S be a connected, non-standard surface in an FAL com-
plement that intersects at least one crossing disk. Then either

i. S meets crossing disks only in separating geodesics and is orthogonal
to the standard cell decomposition, or

ii. S meets crossing disks only in non-separating geodesics and is nowhere
orthogonal to C.

Proof. We begin by showing that if S meets one crossing disk in a separating
geodesic then S satisfies case (i), starting with the orthogonality condition.
Since S contains a separating geodesic of some crossing disk, then some
geodesic disk S′ for S contains an altitude. Proposition 4.4 then implies S′ is
orthogonal to ∂P . Now S is totally geodesic, so any geodesic disk glued to S′

is also orthogonal to ∂P . Since S is connected, repeating this argument shows
all geodesic disks for S meet the standard cell decomposition orthogonally.
To finish the proof that S satisfies case (i), observe that Proposition 4.3(iii),
combined with the fact that S is perpendicular to C, implies it can only meet
crossing disks in separating geodesics.

If S intersects a crossing disk D in a non-separating geodesic, then
Proposition 4.3(iii) shows S is not orthogonal to D there. Proposition 4.4
produces a geodesic disk S′ which is not perpendicular to ∂P , and a similar
gluing argument to case (i) shows S is never perpendicular to C. Of course,
this implies that S cannot meet a crossing disk in a separating geodesic, and
case (ii) holds. □

We remark that Figure 8 illustrates the first case of Theorem 5.1. The
thrice-punctured sphere S of Figure 8(a) intersects the bottom crossing disk
along a separating geodesic. Figure 8(c) illustrates that S is orthogonal
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to standard geodesic surfaces in the Borromean rings. In this example the
altitudes in a geodesic disk glue to each other. We now sketch an example
where distinct geodesic disks glue along altitudes.

A

B

A

B

S' S''

P+

B-

A-A-

B-

S'- S''-

P-

C C

C- C-

S'-S'-

A B

S'

C

(a) Geodesic disks in F (b) Projection of S′ ∪ S′
−, or back half of S

Figure 10: S intersects crossing disks A,B in separating geodesics.

Figure 10(a) depicts a fundamental region for a FAL in which P+ con-
tains two geodesic disks S′ and S′′. The polyhedron P− contains their re-
flections S′

−, S
′′
−. The prescribed gluing results in the six-component link of

Figure 10(b) with crossing disks A,B,C (which are not pictured). Included
in Figure 10(b) is the image of S′ ∪ S′

−, which comprises the back half of
S. The front half of S is obtained by reflecting across the plane containing
the crossing disks. Note that S intersects both crossing disks A and B in
separating geodesics with “endpoints” on the component through A and B.
The component through A and B corresponds to two punctures on S, one
above and one below the projection plane. Further, the cusp corresponding
to infinity in Figure 10(a) is the puncture corresponding to crossing circle
C pictured in Figure 10(b).

We conclude this section with examples of embedded totally geodesic
surfaces that are not orthogonal to the standard cell decomposition (the
second case of Theorem 5.1). Figure 11(a) illustrates two geodesic disks in
the fundamental domain for the Borromean rings. One can verify that these
project to one of the checkerboard surfaces in the alternating diagram of the
Borromean rings (the second checkerboard surface comes from the geodesic
disks in P± with slope one).
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A

A

A'

A'

B B

B' B'

S'

S''

A

A

A'

A'

B

BB'

B'S
~

S
 ~

(a) Borromean rings (b) Twisted B-rings (c) Gluing on S̃

Figure 11: Intersecting crossing disks in non-separating geodesics.

The fundamental domain in Figure 11(b) is for the Borromean rings
with a half-twist in each crossing circle (compare gluing patterns with Fig-
ure 11(a)). The geodesic disk S̃ is an ideal square whose edges are identified
as in Figure 11(c), which yields a thrice-punctured sphere in the twisted
Borromean rings.

The final example is rather lengthy, but supplies a complete classifi-
cation of embedded, totally geodesic surfaces in an infinite family of link
complements.

Example 5.2. The classification of embedded, totally geodesic surfaces in
two-bridge, flat fully augmented links.

Let Bn be a two-bridge link with n twist regions, and an even number of
crossings in each twist region. Fully augmenting Bn results in a flat FAL An

which is one of two types, depending on whether n is even or odd. Figure 12
illustrates An for n = 4, 5, and can be easily generalized to arbitrary n. This
section concludes by classifying embedded, totally geodesic surfaces in the
complements of the flat FALs An.

The techniques of Section 2 demonstrate that the circle packing in Fig-
ure 13(a) is associated to A4 (see [20, Section 6.4] for a thorough discussion).
The reader can confirm that the circle packing for A5 is that of Figure 12(a)
with five, rather than four, middle circles. The top of Figure 13(b) is P+ for
A5 after mapping vertex p to infinity via a Möbius transformation. Through-
out this example the standard domain F will be obtained by letting P−

be the reflection of P+ across its bottom vertical face (see bottom of Fig-
ure 13(b)).
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31

2 4

1

2

3

4

5

(a) The link A4 (b) The link A5

Figure 12: FALs coming from two-bridge links.

1

1
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p

1
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3 3

2 2 4 4

5

5

1

1

3 3

2 2 4

4

1

1

3 3

2 2 4

4P+

P-

(a) Circle packing forB4 (b) Odd P+ and even F

Figure 13: P+ and F for two-bridge flat FALs.

Note that the left and right sides are not identified for this choice of P+,
which is perhaps atypical. The polyhedron P+ for general An is in the form
of Figure 13(b), with n− 2 full circles in the middle. The left vertical shaded
triangle in P+ is always glued to the top adjacent triangle, as depicted. The
right vertical shaded triangle glues to the bottom or top adjacent triangle
depending on whether n is even or odd, respectively.

Before classifying surfaces, we limit the types of disks we must consider,
taking advantage of the orthogonality restrictions given in Theorem 3.3 and
Theorem 5.1.

By Theorem 3.3, geodesic disks that meet only unshaded faces must be
contained in planes orthogonal to ∂P+. It is not difficult to check that the
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only hyperbolic planes orthogonal to ∂P+ only along unshaded faces are
depicted in Figure 14(a).

S'
S'

S''

(a) Disk missing shaded faces (b) Vertical disks with altitudes

S'

S''

S''

S'

a b

c d

e

(c) Disks with altitudes (d) Disks with edges of ∂P+

Figure 14: Potential geodesic disks in P+.

There is a unique hyperbolic plane orthogonal to a shaded triangle along
any altitude. In general these are not orthogonal to every face of ∂P+; how-
ever, for our P+ every altitude determines a hyperbolic plane intersecting
∂P+ orthogonally. Vertical planes determined by altitudes yield the disks
of Figure 14(b) and some representative disks coming from hemispherical
planes are pictured in Figure 14(c). Note that the disk S′ of Figure 14(c)
also contains an altitude of the vertical shaded triangle on the left of P+.

The final case to consider are geodesic disks that share an edge with ∂P+.
These are nowhere orthogonal to ∂P+, which implies they do not contain an
altitude and so must be an ideal n-gon.

Suppose S′′ shares an edge with ∂P+ and is contained in a vertical plane.
The only such ideal n-gons, that are not orthogonal to ∂P+, have boundary
lines with slope ±1 or they would have finite vertices. Hence S′′ is of the
form in Figure 14(d).

Now suppose S′ is a geodesic disk in a hemispherical plane that contains
the edge of ∂P+ with endpoints a, b. As S′ is an ideal n-gon, it must also
contain the geodesic between b and one of the ideal vertices c, d or e of
Figure 14(d). The disk containing a, b, c is standard, and a quick check shows
that the disk containing a, b, d has finite vertices. Thus the only possibility
for S′ is the one pictured. A similar analysis shows a geodesic disk through
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a point of tangency between middle circles (like c or d) must be contained
in a vertical plane.

We now show that the disks of Figure 14(b) are not geodesic disks. To
do so, note that the triangles labeled 1 in Figure 13(b) are identified. If the
horizontal disk S′ in Figure 14(b) projected to a totally geodesic surface,
then S′ would glue to another geodesic disk as in Figure 15(a) and the
surface would not be embedded.

S'
S'

(a) No horizontal S′ (b) No vertical S′

Figure 15: Ruling out potential geodesic disks.

Similarly, a disk like S′′ of Figure 14(b) is not a geodesic disk. If it were,
the gluing pattern would require that each vertical pair of shaded triangles
have such a disk. Again, the triangles labeled 1 are identified forcing the
addition of another disk as in Figure 15(b). The new disk intersects an
existing one, making the projection non-embedded.

At this point we restrict our attention to the disks of Figure 14 parts
(a), (c) and (d). It turns out that, with the right circumstances, each can
project to embedded, totally geodesic surfaces.

Each disk of Figure 14(a) glues to its reflection to form a thrice punctured
sphere inAn. These can be visualized in the link complement using Figure 12
as follows. Imagine each crossing disk as lying in a vertical plane. The region
of the plane outside the disk is also a thrice punctured sphere.

The left- and right-most of these “outer” thrice-punctured spheres are
isotopic to the crossing disks themselves, so there are a total of n− 2 thrice-
punctured spheres that miss crossing disks.

Both types of disks in Figure 14(c) can be geodesic disks. In either
type of disk, one can readily verify that if all ideal vertices correspond to
crossing circle punctures, then they and their reflections project to embed-
ded, totally geodesic surfaces. Figure 16 illustrates this phenomenon for A4,
where dots indicate ideal vertices that correspond to crossing circle punc-
tures. The geodesic disks of Figure 16(a) project to thrice-punctured spheres,
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while those of 16(b) to four-punctured spheres. This results in n more non-
standard surfaces in An, resulting in a total of 2n− 2 thus far.

1

1

3 3

2 2 4

4

1

1

3 3

2 2 4

4

1

1

3 3

2 2 4

4

1

1

3 3

2 2 4

4

(a) 3-punctured spheres (b) 4-punctured spheres

Figure 16: Geodesic disks that project to embedded, totally geodesic sur-
faces in A4.

The disks of Figure 14(c) are not geodesic disks if they have ideal vertices
corresponding to knot circles. In this situation, the gluing patterns generate
self-intersection as in the case of Figure 14(b) disks.

It is interesting to see this directly from Figure 12, at least for two of the
three types of knot circles in the links An. A disk from Figure 14(c) would
project to a surface S of the type described in Theorem 5.1(i). If a crossing
disk D is punctured twice by the same knot circle then S would intersect
D in two separating geodesics, and hence have self-intersection. Two of the
three types of knot circles in An puncture a crossing disk twice, and can
therefore not be punctures for the surfaces of Theorem 5.1(i).

Finally we consider which disks containing edges of ∂P+ project to em-
bedded, totally geodesic surfaces. Conveniently, all such disks meet ∂P+ at
an angle of π/4 (see Figure 14(d)). They project to a surface whose local pic-
ture along an edge f is shown in Figure 17(a), which indicates how geodesic
disks must be positioned to glue together. The portion of S pictured will be
covered by geodesic disks S′

± in P± that glue along copies of f which are
not reflections of each other. This observation allows use to create two more
embedded, totally geodesic surfaces in the complement of An.
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f

S

a

a

b

b

c
c

d

d

e

e

f

f
g

g

h
h

(a) Local picture of S ∩ C (b) Geodesic disks for S

Figure 17: Geodesic disks that project to a non-standard surface in A4.

Figure 17(b) indicates how to construct the surfaces. Edges of P± with
the same label are ones identified under gluing that give the local picture in
Figure 17(a). Note that the labels a in the top left and h in the middle right
refer to vertical edges on P±. Also the label c in P± indicates a geodesic disk
in that polyhedron meeting the edge c. The parabolic isometry gluing the
shaded faces along c results in the desired local picture. It’s a tedious exercise
to confirm the remaining edges glue appropriately, resulting in an embedded,
totally geodesic surface. This surface and its reflection across the plane of
projection constitute the two non-standard surfaces in An-complements that
are not orthogonal to C.

Thus there are a total of 2n non-standard surfaces in an An complement:
(n− 2) satisfying Theorem 3.3, n which satisfy Theorem 5.1(i) and 2 that
satisfy Theorem 5.1(ii). Of course, there are a total of n crossing disks, and
either 2 or 3 reflection surface components, depending on if n is even or odd.
In total, then, the complement of An has 3n+ 2 embedded, totally geodesic
surfaces if n is even, and 3n+ 3 if n is odd.

6. Standard surfaces

There is considerable structure enjoyed by non-standard surfaces in FAL
complements. Surfaces disjoint from crossing disks are very well understood,
while those that intersect them are rather restricted in how they do so. It
is natural to ask how complicated standard surfaces in FAL complements
can be. Of course, crossing disks are standard and always thrice-punctured
spheres, so the goal is to determine how complicated reflection surfaces can
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be. If all crossing circles are flat, a picture will convince the reader that each
connected component of the reflection surface is a punctured sphere. This
observation, however, is deceptive. The purpose of this section is to construct
very general reflection surfaces in FAL complements. More precisely, we
will show that almost every checkerboard surface is totally geodesic in the
appropriate augmentation of its boundary link.

The process of augmenting a checkerboard surface, which we now define,
is key to understanding this result. Let R be a shaded checkerboard surface
associated with a diagram D of a link L. If the bigons of a maximal twist
region T of D are all part of R, we call T an R-twist (see Figure 18(a)).
Alternatively, an R-twist is a maximal twist region of D in which the bigons
are not in R, as in Figure 18(b).

If T is an R-twist, augment it in the usual way by introducing a single
crossing circle and removing full twists. If T is an R-twist, place a crossing
circle that is disjoint from R around each crossing in T (see Figure 18(b)).

(a) T an R-twist (b) T an R-twist

Figure 18: R-augmenting twist regions in D.

Definition 6.1. Let R be a checkerboard surface for a diagram D of the
link L. The R-augmentation of L is the link AR obtained by augmenting
each maximal twist region as in Figure 18.

Note that the number of crossing circles in AR is at least the number
of twist regions in D, with equality if and only if every twist region in D
is an R-twist. In this case the R-augmentation is the fully augmented link
associated with D. This occurs, for example, when every twist region of D
consists of a single crossing. Further note that the shaded surface in AR

is homeomorphic to R since the only difference is (possibly) removing full
twists in bands. Both surfaces will be referred to as R, an abuse of notation
that hopefully causes no confusion.
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Of particular interest are those checkerboard surfaces whose augmenta-
tions are hyperbolic, and it turns out most of them will be. It may be helpful
to review the diagrammatic properties described in Section 2, as well as the
statement of Theorem 2.1.

Theorem 6.2. Let R be a checkerboard surface for a nonsplittable, prime,
twist-reduced diagram D with at least two twist regions. Then R is an em-
bedded totally geodesic surface in the complement of the hyperbolic link AR.

Proof. As R is a checkerboard surface for D, it is a reflection surface for
AR. It is enough to show that AR is hyperbolic, which will follow from
demonstrating that it results from augmenting a diagram D′ that satisfies
the hypotheses of Theorem 2.1.

If all twist regions in D are R-twists then AR is the result of fully
augmenting D, which is assumed to satisfy the hypotheses of Theorem 2.1,
and we are done. We turn our attention to checkerboard surfaces with at
least one R-twist.

If D contains R-twists, then AR is not the result of fully augmenting
the diagram D. Nonetheless, we will show that AR is the result of fully aug-
menting a related diagram D′ that satisfies the hypotheses of Theorem 2.1,
thereby proving that it is hyperbolic.

Choose Dehn fillings for the crossing circles of AR so that the resulting
diagram D′ is alternating, agrees with D on R-twists, and filling each cross-
ing circle from an R-twist yields 3-crossings (compare Figure 19 parts (a)
and (c)). Thus each R-twist T of D corresponds to parallel 3-crossing twist
regions in D′, one 3-crossing twist region for each crossing in T .

Constructing L′ in this manner ensures that AR is the result of fully
augmenting D′. To conclude that AR is hyperbolic, then, it suffices to verify
that D′ is non-split, prime, twist-reduced and has at least two twist regions.

Now D′ has as many twist regions as AR has crossing circles, which is
more than the number of twist regions in D since D contains at least one
R-twist. Hence the diagram D′ has more than two twist regions.

The diagrams D and D′ agree on R-twists of D. If T is an R-twist in D,
one obtains D′ by replacing each crossing of T with a three-crossing twist
region that cuts “orthogonally” across T . Reversing this process, removing a
full twist from the appropriate three-crossing twist regions inD′, one obtains
D. This observation will be useful in proving the remaining properties of D′.

A splitting disk for D′ is one whose boundary is disjoint from D′ and
which divides the plane into two pieces, both of which contain non-trivial
portions of D′. Note that a splitting disk for D′ would, after removing the
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(a) Diagram D with R (b) The link AR (c) The diagram D′

Figure 19: Augmenting a checkerboard surface and Dehn filling to get D′.

necessary full twists, also split D. Since D is nonsplittable the diagram D′

must be as well.
To see that D′ is prime we must show that every 2-tangle is trivial. If

there were a 2-tangle inD′ containing some (but not all) crossings inD′, then
the tangle would contain (at least) an entire twist region of D′. Retrieving D
from D′ always replaces three-crossing twist regions with one-crossing ones.
Thus a non-trivial 2-tangle for D′ would produce a non-trivial 2-tangle in
D as well, a contradiction. Every 2-tangle in D′ is trivial, as desired.

Finally we must show that D′ is twist-reduced. Suppose the diagram
D′ admits a decomposition into two 4-tangles S and T with two exterior
crossings as in Figure 1(b). We will show that one of the 4-tangles contains
a twist. Note that the same S and T can be chosen to give such a decom-
position of diagram D as well. Even if the exterior crossings are part of
a three-crossing twist region in D′ that reduces to a single crossing in D,
simply choose the exterior crossing to be the one that remains.

T TS

D D'

Figure 20: Constructing D′ if S an R-twist of D.

Since D is twist reduced one of the tangles, say S, must be a twist. In
this case the exterior crossings are part of the same maximal twist region
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T . If T were an R-twist, then creating D′ results in twist regions outside
S and T that cannot be absorbed into either tangle (see Figure 20). This
contradicts the fact that S and T decompose D′ into the form of Figure 1(b).
Hence T must be an R-twist in D which implies that D and D′ agree outside
tangle T . The tangle S is then a twist in D′, as desired.

The diagram D′, then, satisfies the hypotheses of Theorem 2.1, and AR

is hyperbolic, completing the proof. □
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