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This paper studies cohomogeneity one Ricci solitons. If the isotropy
representation of the principal orbit G/K consists of two inequiv-
alent AdK-invariant irreducible summands, the existence of con-
tinuous families of non-homothetic complete steady and expand-
ing Ricci solitons on non-trivial bundles is shown. These examples
were detected numerically by Buzano-Dancer-Gallaugher-Wang.
The analysis of the corresponding Ricci flat trajectories is used
to reconstruct Einstein metrics of positive scalar curvature due to
Böhm. The techniques also apply to m-quasi-Einstein metrics.
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Introduction

A Riemannian manifold (M, g) is called Ricci soliton if there exists a smooth
vector field X on M and a real number ε ∈ R such that

Ric+
1

2
LXg +

ε

2
g = 0,

where LXg denotes the Lie derivative of the metric g with respect to X.
Ricci solitons are generalisations of Einstein manifolds and will be called
non-trivial if X is not a Killing vector field. If X is the gradient of a smooth
function u : M → R then it is called a gradient Ricci soliton. It is called
shrinking, steady or expanding depending on whether ε < 0, ε = 0 or ε > 0.
Ricci solitons were introduced by Hamilton [31] as self-similar solutions to
the Ricci flow and play an important role in its singularity analysis.

This paper studies the Ricci soliton equation under the assumption of
a large symmetry group. For example, Lauret [38] has constructed non-
gradient, homogeneous expanding Ricci solitons. However, Petersen-Wylie
[45] have shown that any homogeneous gradient Ricci soliton is rigid, i.e. it
is isometric to a quotient of N × Rk, where (N, gN ) is an Einstein manifold
with Ric(gN ) = − ε

2gN and Rk is equipped with the Euclidean metric and
soliton potential − ε

4 |x|2.
Therefore it is natural to assume that the Ricci soliton is of cohomogene-

ity one. That is, a Lie group acts isometrically on (M, g) and the generic
orbit is of codimension one. This will be the setting of this paper. A system-
atic investigation was initiated by Dancer-Wang [24] who set up the general
framework. Previous examples include the first non-trivial compact Ricci
soliton due to Cao [15] and Koiso [37] or the examples of Feldman-Ilmanen-
Knopf [27], which include the first non-Gaussian, non-compact shrinking
Ricci solitons. It is worth noting that all of these examples, as well as their
generalisations due to Dancer-Wang [24], are Kähler. In fact, all currently
known non-trivial compact Ricci solitons are Kähler. On the other hand,
Angenent-Knopf [1] constructed non-compact, non-Kähler shrinking Ricci
solitons.

Hamilton’s cigar is also Kähler, whereas its higher dimensional analogue,
the Bryant soliton, is non-Kähler. Generalizing these examples, Dancer-
Wang and their coauthors Gallaugher and Buzano constructed steady and
expanding Ricci solitons of multiple warped product type [11, 13, 22, 23].
They also numerically investigated the case where the isotropy representa-
tion of the principal orbit G/K consists of two inequivalent AdK-invariant
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irreducible real summands and found numerical evidence for the existence
of continuous families of complete steady and expanding Ricci solitons on
certain non-trivial vector bundles in [11, 12]. This paper gives a rigorous
construction thereof.

Let G be a compact Lie group and let K ⊂ H ⊂ G be closed subgroups
such that H/K = SdS . Then H acts linearly on RdS+1 and the associ-
ated vector bundle G×H RdS+1 is a cohomogeneity one manifold. Exam-
ples where the Lie algebra of G/K decomposes into two inequivalent AdK-
invariant irreducible real summands include the triples

(G,H,K) = (Sp(1)× Sp(m+ 1), Sp(1)× Sp(1)

× Sp(m), Sp(1)× Sp(m)),

(G,H,K) = (Sp(m+ 1), Sp(1)× Sp(m), U(1)× Sp(m)),(1)

(G,H,K) = (Spin(9), Spin(8), Spin(7)).

These examples come from the Hopf fibrations, cf. [6]. In the first and third
case, the associated vector bundle is diffeomorphic to HPm+1 \ { point }
and CaP 2 \ { point } , respectively. The main Theorem is the following:

Theorem A. On CaP 2 \ { point } , HPm+1 \ { point } for m ≥ 1 and
on the vector bundle associated to (G,H,K) = (Sp(m+ 1), Sp(1)×
Sp(m), U(1)× Sp(m)) for m ≥ 3, there exist a 1-parameter family of non-
homothetic complete steady and a 2-parameter family of non-homothetic
complete expanding Ricci solitons.

The steady Ricci solitons are asymptotically paraboloid and thus non-
collapsed. The expanding Ricci solitons are asymptotically conical.

Notice that non-trivial gradient steady and expanding Ricci solitons
must be non-compact. Furthermore, due to Perelman’s [44] no local col-
lapsing Theorem, blow up limits of finite time Ricci flow singularities are
necessarily non-collapsed.

The construction of the Ricci solitons in Theorem A partially carries over
to the case of complex line bundles over Fano Kähler-Einstein manifolds,
where Cao [15] and Feldman-Ilmanen-Knopf [27] previously constructed
Kähler Ricci solitons. In contrast, Theorem B exhibits continuous families
of complete non-Kähler steady and expanding Ricci solitons.

Theorem B. Let (V, J, g) be a Fano Kähler-Einstein manifold of real di-
mension d. Suppose that the first Chern class is given by c1(V, J) = pρ for
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an indivisible class ρ ∈ H2(V, J) and Ricg = pg. For q ∈ Z let π : Pq → V be
the principal circle bundle with Euler class qπ∗ρ and let Lq be the total space
of the associated complex line bundle.

If 2p2 > (d+ 2)q2 > 0 there exist a 1-parameter family of non-
homothetic complete steady Ricci solitons and a 2-parameter family of non-
homothetic complete expanding Ricci solitons on Lq. In particular there exist
non-Kähler Ricci solitons on Lq.

In the steady case these Ricci solitons were independently discovered by
Stolarski [46] and Appleton [2], who use different techniques.

The proof of Theorem A establishes that the Ricci soliton metrics cor-
respond to trajectories in a bounded region of a phase space, which implies
completeness. This also applies to Einstein metrics. In particular, in the
situation of Theorem A, the methods of this paper provide an alternative
construction of Ricci flat metrics and Einstein metrics with negative scalar
curvature due to Böhm [8].

The associated coordinate change moreover allows good control on the
trajectories close to the singular orbit, in particular in the limit as the vol-
ume of the singular orbit tends to zero. In the Einstein case it follows that
the metrics converge to explicit solutions with conical singularities, a result
originally due to Böhm [7, 8]. Moreover, an analysis of the Ricci flat tra-
jectories is used to reconstruct Einstein metrics of positive scalar curvature
due to Böhm [7].

In comparison to Böhm’s work, the methods in this paper do not use the
Poincaré-Bendixson theorem. In fact, the Ricci soliton potential introduces
an extra degree of freedom and the Ricci soliton equations do not reduce to
a planar system in the non-Einstein case. On the other hand, the Lyapunov
function (24), which is used to control the trajectories, goes back to Böhm’s
work [7].

The vector bundles associated to the two families of group diagrams
in (1) also admit explicit Ricci flat metrics in the lowest dimensional case
m = 1. These are in fact of special holonomy G2 and Spin(7), respectively,
and were discovered earlier by Bryant-Salamon [9] and Gibbons-Page-Pope
[29]. However, it is worth noting that these metrics correspond to linear
trajectories in the above phase space, see Theorem 3.14.

The techniques in this paper moreover apply if the Bakry-Émery-Ricci
tensor Ric+Hessu is replaced with the more general version Ric+Hessu−
1
mdu⊗ du. For any m ∈ (0,∞] this leads to the notion of m-quasi-Einstein
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metrics, i.e. Riemannian manifolds which satisfy the curvature condition

Ric+Hessu− 1

m
du⊗ du+

ε

2
g = 0

for u ∈ C∞(M) and ε ∈ R. These metrics play an important role in the study
of Einstein warped products, cf. [18] or [33] and references therein.

The initial value problem for cohomogeneity one m-quasi-Einstein man-
ifolds will be discussed in the spirit of Eschenburg-Wang [26] and Buzano
[10], see Theorem 5.5, and the m-quasi-Einstein analogue of Theorem A is
proven in Theorem 5.7.

Furthermore, the setting of m-quasi Einstein metrics allows a unified
proof of the existence of Einstein metrics and Ricci soliton metrics on
Rd1+1 ×M2 × . . .×Mr, for d1 ≥ 1, where (Mi, gi) are Einstein manifolds
with positive scalar curvature. This summarizes earlier work due to Böhm
[8], Dancer-Wang [22, 23] for d1 > 1 and Buzano-Dancer-Gallaugher-Wang
[11, 13] for d1 = 1 :

Theorem C. Let M2, . . . ,Mr be Einstein manifolds with positive scalar
curvature and let d1 ≥ 1 and m ∈ (0,∞].

Then there is an (r − 1)-parameter family of non-trivial, non-
homothetic, complete, smooth Bakry-Émery-Ricci flat m-quasi-Einstein
metrics and an r-parameter family of non-trivial, non-homothetic, com-
plete, smooth m-quasi-Einstein metrics with quasi-Einstein constant ε

2 > 0
on Rd1+1 ×M2 × . . .×Mr.

Structure of the paper. Section 1 reviews the Ricci soliton equation on
cohomogeneity one manifolds and recalls some structure results. The new
examples of complete Ricci solitons are constructed in Section 2. Specifically,
Theorem A is proven in Section 2.2 and Theorem B in Section 2.3. The
asymptotic behaviour of the metrics is studied in Section 3. Applications to
convergence to cone solutions and Böhm’s Einstein metrics of positive scalar
curvature follow in Section 4. Finally, Section 5 discusses m-quasi-Einstein
metrics and the proof of Theorem C.

Acknowledgements. I wish to thank my PhD advisor Prof. Andrew
Dancer for constant support, helpful comments and numerous discussions.
I would like to thank the referees for detailed comments that improved the
exposition of the paper.
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1. The cohomogeneity one Ricci soliton equation

1.1. The general set-up

The general framework for cohomogeneity one Ricci solitons has been set
up by Dancer-Wang [24]: Let (M, g) be a Riemannian manifold and let G
be a compact connected Lie group which acts isometrically on (M, g). The
action is of cohomogeneity one if the orbit space M/G is one-dimensional.
In this case, choose a unit speed geodesic γ : I → M that intersects all prin-
cipal orbits perpendicularly. Let K = Gγ(t) denote the principal isotropy
group. Then Φ: I ×G/K → M0, (t, gK) 7→ g · γ(t) is a G-equivariant dif-
feomorphism onto an open dense subset M0 of M and the pullback metric
is of the form Φ∗g = dt2 + gt, where gt is a 1-parameter family of metrics on
the principal orbit P = G/K. Let N = Φ∗( ∂

∂t) be a unit normal vector field
and let Lt = ∇N denote the shape operator of the hypersurface Φ({t} × P ).
Via Φ, Lt can be regarded as a one-parameter family of G-equivariant, gt-
symmetric endomorphisms of TP which satisfies ġt = 2gtLt. Similarly, let
Rict be the Ricci curvature corresponding to gt. According to Eschenburg-
Wang [26] the Ricci curvature of the cohomogeneity one manifold (M, g) is
given by

Ric(X,N) = −gt(δ
∇t

Lt, X)− d(tr(Lt))(X),

Ric(N,N) = − tr(L̇)− tr(L2
t ),

Ric(X,Y ) = −gt(L̇(X), Y )− tr(Lt)gt(Lt(X), Y ) + Rict(X,Y ),

where X,Y ∈ TP, δ∇
t

: T ∗P ⊗ TP → TP is the codifferential, and Lt is re-
garded as a TP -valued 1-form on TP. Dancer-Wang [24] observed that, since
G is compact, any cohomogeneity one Ricci soliton induces a Ricci soliton
with a G-invariant vector field. Hence, in the case of gradient Ricci solitons,
the soliton potential can be assumed to be G-invariant. The gradient Ricci
soliton equation Ric+Hessu+ ε

2g = 0 then takes the form

−(δ∇
t

Lt)
♭ − d(tr(Lt)) = 0,(2)

− tr(L̇t)− tr(L2
t ) + ü+

ε

2
= 0,(3)

−L̇t − (−u̇+ tr(Lt))Lt + rt +
ε

2
I = 0,(4)

where rt = gt ◦ Rict is the Ricci endomorphism, i.e. gt(rt(X), Y ) =
Rict(X,Y ) for all X,Y ∈ TP. Conversely, the above system induces a gra-
dient Ricci soliton on I × P provided that the metric gt is defined via
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ġt = 2gtLt. The special case of constant u recovers the cohomogeneity one
Einstein equations.

From now on, for simplicity, the t-dependence may not be stated explic-
itly.

It is an immediate consequence of (3) that the mean curvature with
respect to the volume element e−udVolg is a Lyapunov function if ε ≤ 0.

Proposition 1.1. Fix ε ≤ 0. Then the generalised mean curvature −u̇+
tr(L) is monotonically decreasing along the flow of the cohomogeneity one
Ricci soliton equation.

If the Ricci soliton metric is at least C3-regular, then the second Bianchi
identity implies that the conservation law

(5) ü+ (−u̇+ tr(L))u̇ = C + εu

has to be satisfied for some constant C ∈ R. Using the equations (3) and (4)
it can be reformulated as

(6) tr(r) + tr(L2)− (−u̇+ tr (L))2 + (n− 1)
ε

2
= C + εu.

Recall that the scalar curvature R of a cohomogeneity one Riemannian
manifold (Mn+1, g) is given by R = tr(r)− tr(L2)− tr(L)2 − 2 tr(L̇). In
combination with equation (4) this shows that the conservation law (6)
is just the cohomogeneity one version of Hamilton’s [32] general identity
R+ |∇u|2 + εu = C for gradient Ricci solitons (where C = −C − n+1

2 ε).
This also provides a formula for the scalar curvature in terms of the soliton
potential:

(7) R = −C − εu− u̇2 − (n+ 1)
ε

2
.

1.2. Ricci solitons with a singular orbit

From now on, assume that there is a singular orbit Q = G/H at t = 0. That
is, the orbit at t = 0 is of dimension strictly less than the dimension of the
principal orbit, and let H = Gγ(0) denote its isotropy group.

Building up on an idea of Back [3], see also [26], Dancer-Wang [24]
have shown that in the presence of a singular orbit, equation (4) implies (2)
automatically, provided that the metric is at least C2-regular and the soliton
potential is of class C3. Moreover, if in this case the conservation law (5) is
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satisfied, then equation (3) holds as well. Conversely, any trajectory of the
Ricci soliton equations (3), (4) that describes a C3-regular metric with a
singular orbit has to satisfy the conservation law (6).

The initial value problem for gradient cohomogeneity one Ricci solitons
has been considered by Buzano [10]. Extending Eschenburg-Wang’s work
[26] in the Einstein case, under a simplifying, technical assumption, the
initial value problem can be solved close to a singular orbit regardless of the
soliton being shrinking, steady or expanding. However, the solution may not
be unique. For a precise statement, see Theorem 5.5.

Notice that u(0) = 0 can be assumed, as the Ricci soliton equation is in-
variant under changing the potential by an additive constant. Furthermore,
the existence of a singular orbit at t = 0 imposes the smoothness condition
u̇(0) = 0 on the soliton potential u. If dS denotes the dimension of the col-
lapsing sphere at the singular orbit, then the trace of the shape operator
grows like tr(L) = dS

t +O(t) as t → 0. Therefore the conservation law (5)
implies ü(0) = C

dS+1 . To summarize:

(8) u(0) = 0, u̇(0) = 0, ü(0) =
C

dS + 1
.

The existence of a singular orbit has consequences for the behaviour of
the soliton potential. Proposition 1.2 below follows from [13, Propositions 2.3
and 2.4] and [11, Proposition 1.11]. It should be emphasised that the prop-
erties hold along the flow of the Ricci soliton equation and completeness of
the metric is not required.

Proposition 1.2. Consider a trajectory of the cohomogeneity one Ricci
soliton equations corresponding to a cohomogeneity one manifold of dimen-
sion n+ 1 with a singular orbit at t = 0.

Suppose that ε ≥ 0 and C < 0 in (8). For t > 0 and as long as the solu-
tion exists, the soliton potential satisfies u(t), u̇(t) < 0. If in addition ε > 0
or ε = 0 and Lt ̸= 0, then also ü(t) < 0.

Furthermore, if ε = 0 and C ≤ 0 it follows that tr(Lt) ≤ n
t for t > 0 and

as long as the solution exists.

Remark 1.3. The quantity tr(L)
−u̇+tr(L) will appear frequently in later calcu-

lations. It is useful to note that it satisfies the differential equation

d

dt

tr(L)

−u̇+ tr(L)
=

1

−u̇+ tr(L)

{(
tr(L)

−u̇+ tr(L)
− 1

)(
tr(L2)− ε

2

)
+ ü

}
.
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In particular, in the steady case, Proposition 1.2 shows that tr(L)
−u̇+tr(L) is

monotonically decreasing as long as −u̇+ tr(L) > 0. According to Proposi-
tion 1.4 below, this is always true if the metric corresponds to a complete
steady Ricci soliton. In this case, moreover, it follows that tr(L)

−u̇+tr(L) → 0 as
t → ∞.

1.3. Consequences of completeness

If the solution corresponds to a non-trivial complete Ricci soliton metric,
further restrictions on the asymptotics of the soliton potential and the metric
are known.

In the steady case, according to a result of Chen [20], the ambient scalar
curvature of steady Ricci solitons satisfies R ≥ 0 with equality if and only if
the metric is Ricci flat. Then (7) implies that C ≤ 0 is a necessary for com-
pleteness and C = 0 precisely corresponds to the Ricci flat case. Munteanu-
Sesum [41] have shown that non-trivial complete steady Ricci solitons have
at least linear volume growth and Buzano-Dancer-Wang used this to show
in [13, Proposition 2.4 and Corollary 2.6]:

Proposition 1.4. Along any trajectory which corresponds to a non-trivial
complete steady cohomogeneity one Ricci soliton of dimension n+ 1 with a
singular orbit at t = 0 and integrability constant C < 0, the estimates

0 < tr(L) ≤ n

t
and 0 < −u̇ tr(L) < R < 2

√
−C

n

t
+

n2

t2

hold for t > 0 and the soliton potential satisfies

−u̇(t) →
√
−C and ü(t) → 0

as t → ∞.

In the case of expanding Ricci solitons, a similar result of Chen [20] im-
plies that the scalar curvature R of a non-trivial, complete expanding Ricci
soliton satisfies R > − ε

2(n+ 1). It follows from (7) that 0 ≥ −u̇2 > C + εu
holds on any complete expanding Ricci soliton. The smoothness condition
(8) at the singular orbit therefore requires C < 0 as a necessary condition
to construct non-trivial, complete expanding Ricci solitons. Conversely, Ein-
stein metrics with negative scalar curvature correspond to trajectories with
C = 0.
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Once the Ricci soliton is shown to be complete, it follows from results of
Buzano-Dancer-Gallaugher-Wang [11] that any non-trivial, complete, gradi-
ent expanding Ricci soliton has at least logarithmic volume growth. This has
consequences for the asymptotic behaviour of the soliton, see [11, Equation
(1.10) and Proposition 1.18]: There exists constants a0, a1 > 0 and a time
t0 > 0 such that for all t > t0

(9) | tr(Lt)| <
√

n

2
ε and a1t+ a0 < −u̇(t) <

ε

2
t+

√
−C

i.e. −u̇ growths approximately linearly for t large enough.

1.4. The Böhm functional

Böhm [8] introduced the functional F0 to the study of Einstein manifolds
of cohomogeneity one. Subsequently it was considered by Dancer-Wang and
their collaborators Buzano, Gallaugher and Hall in the context of cohomo-
geneity one Ricci solitons [11, 13, 21]. The significance of F0 lies in the fact
that it is monotonic under mild assumptions.

To define it, let v(t) =
√
det gt denote the relative volume of the principal

orbits and let L(0) = L− 1
n tr(L)I denote the trace-free part of the shape

operator. Then the Böhm functional is given by

(10) F0 = v
2

n

(
tr(rt) + tr((L(0))2)

)
.

The following Proposition is due to Dancer-Hall-Wang [21, Proposi-
tion 2.17].

Proposition 1.5. Along the flow of a C3-regular cohomogeneity one gra-
dient Ricci soliton the Böhm functional F0 satisfies

(11)
d

dt
F0 = −2v

n

2 tr((L(0))2)

(
−u̇+

n− 1

n
tr(L)

)
.

Remark 1.6. The C3-regularity condition guarantees that the conserva-
tion law (5) is satisfied. On the other hand the existence of a singular orbit
along the trajectory is not required to prove (11).
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2. New examples of Ricci solitons

2.1. The geometric set-up

Let (Mn+1, g) be a Riemannian manifold and suppose that G is a compact
connected Lie group which acts isometrically on (M, g). Assume that the
orbit space is a half open interval and let K ⊂ H denote the isotropy groups
of the principal and singular orbit, respectively. It follows that M is diffeo-
morphic to the open disc bundle G×H DdS+1 → G/H, where DdS+1 denotes
the normal disc to the singular orbit G/H and SdS = H/K is the collaps-
ing sphere. Conversely, let G be a compact connected Lie group and let
K ⊂ H be closed subgroups such that H/K is a sphere. Then G×H RdS+1

is a cohomogeneity one manifold with principal orbit G/K. Suppose that
the non-principal orbit G/H is singular, i.e. of dimension strictly less than
G/K.

Choose a bi-invariant metric b on G which induces the metric of constant
curvature 1 on H/K. The two summands case assumes that the space of G-
invariant metrics on the principal orbit is two dimensional: Let g = k⊕ p be
an Ad(K)-invariant decomposition of the Lie algebra of G and suppose fur-
thermore that p decomposes into two inequivalent, b-orthogonal, irreducible
K-modules, p = p1 ⊕ p2. In fact, p1 can be identified with the tangent space
to the collapsing sphere SdS = H/K and p2 with the tangent space of the
singular orbit Q = G/H. Let gS = b|p1

and gQ = b|p2
denote the induced

metrics. Then, away from the singular orbit Q, the metric on M is given by

(12) gM\Q = dt2 + f1(t)
2gS + f2(t)

2gQ

and the shape operator of the principal orbit takes the form

Lt =

(
ḟ1
f1

Id1
,
ḟ2
f2

Id2

)
,

where d1 = dS is the dimension of the collapsing sphere and d2 is the di-
mension of the singular orbit. Furthermore, it follows from the theory of
Riemannian submersions and the O’Neill calculus, cf. [7], that the Ricci
endomorphism takes the form

rt =

({
A1

d1

1

f2
1

+
A3

d1

f2
1

f4
2

}
Id1

,

{
A2

d2

1

f2
2

− 2A3

d2

f2
1

f4
2

}
Id2

)
.(13)
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Here the constants Ai ≥ 0 are defined as follows: A1 = d1(d1 − 1), A2 =
d2Ric

Q, where RicQ is the Einstein constant of the isotropy irreducible space
(Q, gQ), and A3 = d2||A||2, where ||A|| ≥ 0 appears naturally in the theory
of Riemannian submersions, cf. [7]: Fix the background metric gP = gS + gQ
on the principal orbit P and let ∇gP be the corresponding Levi-Civita con-
nection. If H1, . . . , Hd2

is an orthonormal basis of horizontal vector fields
with respect to the Riemannian submersion (G/K, gP ) → (G/H, gQ), then

||A||2 =
∑d2

i=1 gS((∇
gP
H1

Hi)|v, (∇gP
H1

Hi)|v) is the norm of an O’Neill tensor as-
sociated to the above Riemannian submersion, where (·)|v denotes the pro-

jection onto the tangent space of the fibre Sd1 = SdS .
Warped product metrics with two homogeneous summands provide ex-

amples with ||A|| = 0. Examples with ||A|| > 0 are given by the total spaces
of non-trivial disc bundles which are induced by the Hopf fibrations, cf.
[6]. The following table, which lists the corresponding group diagrams and
associated constants, is taken from [7, Table 1].

CPm+1 HPm+1 Fm+1 CaP 2

G U(m+ 1) Sp(1)× Sp(m+ 1) Sp(m+ 1) Spin(9)
H U(1)× U(m) Sp(1)× Sp(1)× Sp(m) Sp(1)× Sp(m) Spin(8)
K U(m) Sp(1)× Sp(m) U(1)× Sp(m) Spin(7)
d1 1 3 2 7
d2 2m 4m 4m 8
||A||2 1 3 8 7

RicQ 2m+ 2 4m+ 8 4m+ 8 28

Table 1: Group diagrams associated to Hopf fibrations.

The soliton potential u will be assumed to be invariant under the action
of G, u = u(t), and u(0) = 0 will be fixed. If u satisfies the smoothness
conditions (8) and the functions f1, f2 satisfy

(14) f1(0) = 0, ḟ1(0) = 1 and f2(0) = f̄ > 0, ḟ2(0) = 0,

then the work of Buzano [10] implies that there is a unique local solution of
the Ricci soliton equations with these initial conditions, and it extends the
soliton potential and the metric smoothly over the singular orbit.

Recall that the two summands case is also the set-up for Böhm’s work
[7, 8] on Einstein manifolds.
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2.2. Qualitative ODE analysis

The Ricci soliton equations for the two summands system can be read off
from the discussion in Section 2.1 and equations (3) and (4). However, in
this form, the equations become singular at the singular orbit. Therefore,
a rescaling will be introduced which smooths the Ricci soliton equation
close to the initial value. It was used effectively by Dancer-Wang [23] and is
motivated by Ivey’s work [34]. Notice that under the coordinate change

Xi =
1

−u̇+ tr(L)

ḟi
fi
, Yi =

1

−u̇+ tr(L)

1

fi
, for i = 1, 2,(15)

L =
1

−u̇+ tr(L)
,

d

ds
=

1

−u̇+ tr(L)

d

dt

the cohomogeneity one two summands Ricci soliton equations reduce to the
ODE system

X
′

1 = X1

(
2∑

i=1

diX
2
i − ε

2
L2 − 1

)
+

A1

d1
Y 2
1 +

ε

2
L2 +

A3

d1

Y 4
2

Y 2
1

,(16)

X
′

2 = X2

(
2∑

i=1

diX
2
i − ε

2
L2 − 1

)
+

A2

d2
Y 2
2 +

ε

2
L2 − 2A3

d2

Y 4
2

Y 2
1

,

Y
′

j = Yj

(
2∑

i=1

diX
2
i − ε

2
L2 −Xj

)
,

L′

= L
(

2∑

i=1

diX
2
i − ε

2
L2

)
.

Here and in the following, the d
ds derivative is denoted by a prime ′. On the

other hand, the d
dt derivative will always correspond to a dot ˙ .

To establish some basic properties of this ODE system, it will be enough
to assume that d1, d2 > 0, A1, A2 > 0 andA3 ≥ 0.However, in the main body
of the paper d1 > 1 and A1, A2, A3 > 0 will be assumed.

Remark 2.1. (a) The case A3 = 0 is already well understood from works
on multiple warped products, see [1, 11, 13, 22, 23, 28, 34].

(b) The case d1 = 1 implies A1 = 0 in geometric applications. In this case
Cao-Koiso [15, 37] and Feldman-Ilmanen-Knopf [27] found explicit solutions
to the associated Kähler Ricci solitons equations. Non-Kähler steady and
expanding Ricci solitons will be constructed in Section 2.3. In the steady
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case these were independently found by Appleton [2] and Stolarski [46], who
use different techniques.

Notice that the time, the metric and the soliton potential can be recov-
ered from the ODE via

t(s) = t(s0) +

∫ s

s0

L(τ)dτ and fi =
L
Yi

, for i = 1, 2,

and u̇ =

∑2
i=1 diXi − 1

L .

In the new coordinate system, the smoothness conditions for the metric
in (14) and the soliton potential in (8) correspond to the stationary point

X1 = Y1 =
1

d1
and X2 = Y2 = 0 and L = 0.(17)

Trajectories emanating from (17) will be parametrised so that (17) corre-
sponds to s = −∞.

The conservation law (6) takes the form

(18)

2∑

i=1

diX
2
i +

2∑

i=1

AiY
2
i −A3

Y 4
2

Y 2
1

+ (n− 1)
ε

2
L2 = 1 + (C + εu)L2.

Consider the functions

S1 =

2∑

i=1

diX
2
i +

2∑

i=1

AiY
2
i −A3

Y 4
2

Y 2
1

+ (n− 1)
ε

2
L2 − 1,

S2 =

2∑

i=1

diXi − 1.

Notice that S1 occurs in the conservation law and S2 =
u̇

−u̇+tr(L) encodes
the derivative of the soliton potential in the rescaled coordinates.

Fix ε ≥ 0 and recall from Section 1.3 that C ≤ 0 is a necessary condition
to obtain trajectories that correspond to complete steady or expanding Ricci
solitons and that C = 0 is the Einstein case. Due to the initial conditions
(8) and Proposition 1.2, the soliton potential satisfies u, u̇ ≤ 0 if C ≤ 0, and
away from the singular orbit equality can only occur in the Einstein case.
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Therefore, any trajectory with ε ≥ 0 and C ≤ 0 satisfies S1,S2 ≤ 0.
Equality occurs at the initial stationary point (17) and then Einstein tra-
jectories lie in the locus

(19) {S1 = 0} ∩ {S2 = 0}

whereas trajectories of complete non-trivial Ricci solitons are contained in
the locus

(20) {S1 < 0} ∩ {S2 < 0} .

Conversely, trajectories in these loci correspond to Einstein metrics and
non-trivial Ricci solitons.

The invariance of the above loci for ε ≥ 0 follows from the Ricci soliton
ODE, as a direct calculation verifies

1

2

d

ds
S1 =

(
2∑

i=1

diX
2
i − ε

2
L2

)
S1 +

ε

2
L2 · S2,

d

ds
S2 = S1 +

(
2∑

i=1

diX
2
i − ε

2
L2 − 1

)
S2.

Now the existence of trajectories which lie in one of the above loci and
in the unstable manifold of the critical point (17) will be discussed. Differ-
ent trajectories will correspond to non-homothetic Einstein or Ricci soliton
metrics.

The linearisation of the Ricci soliton ODE at the initial stationary
point (17) is given by




3
d1

− 1 0 2(d1−1)
d1

0 0

0 1
d1

− 1 0 0 0
1
d1

0 0 0 0

0 0 0 1
d1

0

0 0 0 0 1
d1




.

The corresponding eigenvalues are hence 2
d1
, 1

d1
− 1, 1

d1
− 1 and 1

d1
, 1

d1
.

In particular, the critical point is hyperbolic if d1 > 1. The corresponding
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eigenspaces are given by

E 2

d1

= span {(2, 0, 1, 0, 0)} ,
E 1

d1
−1 = span {(0, 1, 0, 0, 0), (d1 − 1, 0,−1, 0, 0)} ,

and E 1

d1

= span {(0, 0, 0, 1, 0), (0, 0, 0, 0, 1)} .

Notice that the stationary point (17) lies in the set {S1 = 0} ∩ {S2 = 0} .
Furthermore, {S1 = 0} is a submanifold of R5 if Y1 ̸= 0 and its tangent space
at (17) is span {(1, 0, d1 − 1, 0, 0)}⊥ . Similarly, {S2 = 0} is a submanifold
with tangent space span {(d1, d2, 0, 0, 0)}⊥ at (17). Notice that both tangent
spaces contain E 1

d1

but not E 2

d1

and that E 1

d1

⊕ E 2

d1

is the tangent space to

the unstable manifold.
According to the above discussion, trajectories in the unstable mani-

fold of (17) that either remain in the set {S1 = 0} ∩ {S2 = 0} or flow into
{S1 < 0} ∩ {S2 < 0} need to be considered. Notice, however, that if ε = 0
the ODE for L decouples. Hence, the soliton system effectively reduces to
a system in Xi, Yi for i = 1, 2. Counting trajectories with respect to the
possibly reduced system then gives the following result.

Proposition 2.2. Suppose that d1 > 1. If ε ̸= 0, then there exists a 1-
parameter family of trajectories lying both in the unstable manifold of (17)
and the Einstein locus (19) and a 2-parameter family of trajectories lying
both in the unstable manifold of (17) and the Ricci soliton locus (20).

If ε = 0, then the unstable manifold of (17) with respect to the reduced
two summands ODE in X1, X2 and Y1, Y2 contains a unique trajectory lying
in the Einstein locus (19) and a 1-parameter family of trajectories lying in
the Ricci soliton locus (20). These give rise to an (up to scaling) unique Ricci
flat metric and a 1-parameter family of Ricci solitons with soliton potential
u = 0 at the singular orbit.

Proposition 2.2 is in agreement with the theory of solutions to the initial
value problem for cohomogeneity one Ricci solitons and Einstein metrics
developed by Buzano [10] and Eschenburg-Wang [26], respectively. Their
methods also carry over to the case d1 = 1.

Notice that the ODE system (16) and the initial stationary point (17)
are invariant under changing the signs of Y2, L. Since L−1 = −u̇+ tr(L) →
+∞ as t → 0, L > 0 will be assumed along the trajectories. The choice
f2(0) = f̄ > 0 in (14) implies f2(t) > 0 for small t > 0 and thus Y2 > 0 will be
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assumed. Recall that lims→−∞ Y1(s) = 1/d1. The ODEs for Y1, Y2,L imply
that positivity of the variables is preserved along the flow.

The following lemma shows a basic dynamical property of the Ricci
soliton ODE and sets up the discussion of the long time behaviour.

Lemma 2.3. Let ε ≥ 0 and consider a trajectory of the two summands
Ricci soliton ODE that emanates from (17) at s = −∞ and enters either
(19) or (20).

Then there holds X1 > 0 for all finite s and X2 is positive for sufficiently
negative s. Moreover, suppose there is an s0 ∈ R such that X2(s0) < 0. Then
X2(s) < 0 for all s ≥ s0.

Proof. Recall that lims→−∞X1 = 1/d1 > 0 and in particular X1 is positive
initially. If there is an s ∈ R such that X1(s) = 0, then X

′

1(s) > 0. By con-
tinuity this implies X1 > 0 everywhere.

The conservation law (18) implies that
∑2

i=1 diX
2
i − 1 ≤ A3

Y 4
2

Y 2
1

−∑2
i=1AiY

2
i < 0 close to (17) as Y1 → 1

d1
and Y2 → 0. Similarly, A2

d2
Y 2
2 −

2A3

d2

Y 4
2

Y 2
1

> 0 for sufficiently negative times. If X2(s0) < 0 in this region, then
the ODE

X
′

2 = X2

(
2∑

i=1

diX
2
i − ε

2
L2 − 1

)
+

A2

d2
Y 2
2 +

ε

2
L2 − 2A3

d2

Y 4
2

Y 2
1

implies that X
′

2(s0) > 0 as ε ≥ 0. In particular X2(s) ≤ X2(s0) < 0 for all
s ≤ s0. This contradicts X2 → 0 as s → −∞.

If the last statement is not true, then there exist s∗ < s∗ such thatX2 < 0
on (s∗, s∗) and

X2(s∗) = 0 and X
′

2(s∗) ≤ 0,

X2(s
∗) = 0 and X

′

2(s
∗) ≥ 0.

It follows that A2

d2
Y 2
2 (s∗) +

ε
2L2(s∗)− 2A3

d2

Y 4
2

Y 2
1

(s∗) ≤ 0 which is equivalent to

A2

d2
≤
[
2
A3

d2

(
Y2
Y1

)2

− ε

2

( L
Y2

)2
]
(s∗).
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Similarly, the second condition implies the reverse inequality at s∗. There-
fore,

0 ≤
[
2
A3

d2

(
Y2
Y1

)2

− ε

2

( L
Y2

)2
]
(s∗)−

[
2
A3

d2

(
Y2
Y1

)2

− ε

2

( L
Y2

)2
]
(s∗)

=
d

ds

[
2
A3

d2

(
Y2
Y1

)2

− ε

2

( L
Y2

)2
]
(ξ) · (s∗ − s∗)

for some ξ ∈ (s∗, s∗). On the other hand, observe that

d

ds

Y2
Y1

=
Y2
Y1

(X1 −X2) and
d

ds

L
Y2

=
L
Y2

X2.

Therefore, X2(ξ) < 0, ε ≥ 0 and s∗ < s∗ imply

0 ≤ d

ds

[
2
A3

d2

(
Y2
Y1

)2

− ε

2

( L
Y2

)2
]
(ξ) · (s∗ − s∗)

= 2

[
2
A3

d2

(
Y2
Y1

)2

(X1 −X2)−
ε

2

( L
Y2

)2

X2

]
(ξ) · (s∗ − s∗) < 0,

which is a contradiction. □

Remark 2.4. In fact, the possibility that X2 < 0 is the only obstruction
to long time existence. Geometrically this says that if the shape operator
remains positive definite, then the trajectory induces a complete metric.

If A3 = 0, then X2 > 0 is immediate and the Einstein and Ricci soliton
loci (19) and (20), respectively, are bounded regions in phase space. Com-
pleteness of the metric then follows as in Proposition 2.7 below. Geometri-
cally the case A3 = 0 corresponds to the doubly warped product situation
which was considered by Ivey [34], Gastel-Kronz [28], Dancer-Wang [22, 23]
and Angenent-Knopf [1].

If A3 > 0, notice that X2 > 0 clearly holds as long as Y2

Y1
<
√

A2

2A3
. There-

fore, the quotient

ω =
Y2
Y1

.

plays a central role in the discussion. Observe that ω satisfies

ω′ = ω(X1 −X2).(21)
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In fact this implies that the Ricci soliton equation is equivalent to an ODE
system with polynomial right hand side.

In order to obtain an a priori bound for ω, fix d1 > 1 and consider the
function

Ĝ(ω) = A1

d1

ω2(d1−1)

2(d1 − 1)
− A2

d2

ω2d1

2d1
+A3

(
1

d1
+

2

d2

)
ω2(d1+1)

2(d1 + 1)
.(22)

Along trajectories of the two summands Ricci soliton ODE there holds

d

ds
Ĝ(ω) = ω2(d1−1)

{
A1

d1
− A2

d2
ω2 +A3

(
1

d1
+

2

d2

)
ω4

}
(X1 −X2)

and non-zero roots of Ĝ are of the form

ω2 =
1

2

A2

A3

d1 + 1

2d1 + d2

{
1±

√
1− 4

A1A3

A2
2

d2(2d1 + d2)

(d1 − 1)(d1 + 1)

}
.

In particular, there exist two positive roots 0 < ω̂1 < ω̂2 if and only if

(23) D̂ =
A2

2

d22
− 4

A1

d1(d1 − 1)

A3

d2

d1
d1 + 1

(2d1 + d2) > 0.

Moreover, in this case, ω̂2
1 < A2

2A3
.

Note that the examples in Theorem A indeed satisfy the conditions
d1 > 1 and D̂ > 0.

Proposition 2.5. Suppose that d1 > 1, D̂ > 0 and ε ≥ 0. Then the set

{
X2 > 0 and 0 <

Y2
Y1

< ω̂1

}

contains any trajectory of the two summands Ricci soliton ODE that em-
anates from (17) and flows into either (19) or (20).

Proof. The ODE for X2 shows that X2 remains positive if Y 2
2

Y 2
1

= ω2 < A2

2A3
.

Since ω̂2
1 < A2

2A3
, it suffices to show that ω < ω̂1 as long as X2 > 0. Consider
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the function

K =
1

2
ω2(d1−1)

(
X1 −X2

Y1

)2

− Ĝ (ω) ,(24)

which was introduced by Böhm in the Einstein case [7]. On the set X2 > 0
it is a Lyapunov function since

d

ds
K = ω2(d1−1)

(
X1 −X2

Y1

)2
{

2∑

i=1

diXi − 1− (n− 1)X2

}

and
∑2

i=1 diXi − 1 ≤ 0 holds in both loci. Notice that lims→−∞K = 0 and
K ≥ 0 if Y2

Y1
= ω = ω̂1. However, K is non-increasing and strictly decreasing

close to (17). This completes the proof. □

Corollary 2.6. Suppose that d1 > 1, D̂ > 0 and ε ≥ 0. Then along trajec-
tories emanating from (17) and flowing into (19) or (20) there holds X1,
X2 > 0 for all finite times. Moreover, the variables X1, X2 and Y1, Y2 and ω
are bounded, and if ε > 0 then L is bounded too. In particular, the rescaled
flow exists for all times.

Proof. According to Lemma 2.3 one has X1, X2 > 0 initially and X1 > 0 is
preserved along the flow. Positivity of X2 follows from Proposition 2.5 and
X1, X2 remain bounded as 0 ≤ d1X1 + d2X2 ≤ 1 due to (19) and (20).

Then the ODE for L implies that L cannot blow up in finite time as
ε ≥ 0. By the same argument, this also holds for Y1, Y2.

Alternatively, it follows from the bound Y 2
2

Y 2
1

< ω̂2
1 < A2

2A3
that A2 −

A3
Y 2
2

Y 2
1

> A2

2 . The Einstein and Ricci soliton loci (19) and (20) are therefore
contained in the bounded region

{
2∑

i=1

diX
2
i +A1Y

2
1 +

A2

2
Y 2
2 + (n− 1)

ε

2
L2 ≤ 1

}
.

By considering ω = Y2

Y1
as an independent variable, one obtains an ODE

system with polynomial right hand side. Since ω < ω̂1 is bounded, standard
ODE theory implies that the flow exists for all times. □

In order to prove that the corresponding metrics are complete, it suffices
to show that tmax = ∞. Recall from the coordinate change that

(25) t(s) = t(s0) +

∫ s

s0

L(τ)dτ.
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Therefore it is necessary to understand the asymptotic behaviour of L. This
will be considered separately for the cases ε = 0 and ε > 0.

Proposition 2.7. Suppose that d1 > 1 and D̂ > 0.
(i) The corresponding steady Ricci soliton and Ricci flat metrics are

complete.
(ii) The corresponding expanding Ricci solitons and Einstein metrics

with negative scalar curvature are complete.

Proof. (i) A special feature of the case ε = 0 is that L = 1
−u̇+tr(L) is in fact

a Lyapunov function. As L becomes positive initially and is therefore mono-
tonically increasing, it is bounded away from zero for s ≥ s0 and any s0 ∈ R.
Then the time rescaling (25) shows that t → ∞ as s → ∞, i.e. the metrics
are complete.

(ii) Suppose that ε > 0 and assume for contradiction that tmax < ∞. Due
to (25) this is equivalent to saying that ∥L∥L1(0,∞) < ∞. However, since L is
bounded due to corollary 2.6, this implies L ∈ L2(0,∞). Hence the ODE for
L yields L(s) ≥ L(0) exp

(
− ε

2∥L∥L2(0,∞)

)
> 0 and L is bounded away from

zero for s ≥ 0. However, this contradicts L ∈ L1(0,∞). □

Theorem A follows from Corollary 2.6 and Proposition 2.7 since all ex-
amples covered in Theorem A satisfy the conditions d1 > 1 and D̂ > 0. The
Einstein metrics are originally due to Böhm [8].

Remark 2.8. In the case of Einstein manifolds with negative scalar cur-
vature one may directly observe that the function L(s) bounded away from
zero for s ≥ 0. Indeed, since

∑2
i=1 diXi = 1 in the Einstein locus, one has∑2

i=1 diX
2
i ≥ 1

n and therefore L′

(s0) > 0 whenever ε
2L2(s0) <

1
n .

2.3. Ricci solitons from circle bundles

The two summands case allows the possibility d1 = 1 and A1 = 0. Geomet-
rically this case is realised by manifolds which are foliated by principal cir-
cle bundles over a Fano Kähler-Einstein manifold (V, J, g). In this setting,
examples of Kähler Ricci solitons have been found by Cao-Koiso [15],[37]
and Feldman-Ilmanen-Knopf [27]. Non-Kähler examples have also been con-
structed independently by Stolarski [46] and Appleton [2].

The precise geometric set-up is as follows: Recall that due to a result of
Kobayashi [36] any Fano manifold V is simply connected and henceH2(V,Z)
is torsion free. Therefore the first Chern class is c1(V, J) = pρ for a positive



✐

✐

“4-Wink” — 2023/12/25 — 11:34 — page 646 — #22
✐

✐

✐

✐

✐

✐

646 Matthias Wink

integer p and an indivisible class ρ ∈ H2(V,Z). Suppose that the Ricci cur-
vature of (V, g) is normalised to be Ric = pg. If π : P → V is the principal
circle bundle with Euler class qπ∗ρ for a non-zero integer q ∈ Z \ {0} and
θ the principal S1-connection with curvature form Ω = qπ∗η, where η is
the Kähler form associated to g, then the Ricci soliton equation on I × P
corresponding to the metric

dt2 + f2
1 (t)θ ⊗ θ + f2

2 (t)π
∗g

is described by the two summands system with d1 = 1, d2 = d = dimR V and
A1 = 0, A2 = d2p, A3 =

d2q2

4 . Notice also that the structure of the ODE has
changed since A1 = 0. If the smoothness conditions (14) are satisfied, this
construction induces a smooth metric on the associated complex line bundle
over V.

Metrics whose curvature tensor is invariant under the complex structure
are considered by Dancer-Wang [24] in the Ricci soliton case and by Wang-
Wang [47] in the Einstein case. This condition is equivalent to saying that

ḟ2
2

f2
2

− q2

4

f2
1

f4
2

=

(
−u̇+ tr(L) +

ḟ1
f1

)
ḟ2
f2

− p

f2
2

+
ε

2
.

As a special case, the Kähler condition reads

ḟ2
f2

= −q

2

f1
f2
2

and it is preserved by the flow. In both cases, the equations can actually
be integrated explicitly. In order to investigate non-Kähler trajectories, the
Ricci soliton ODE will be studied qualitatively as before. To adjust the
argument in Proposition 2.5 to the conditions d1 = 1 and A1 = 0, adopt the
convention A1

d1(d1−1) = 1. That is, consider

Ĝ(ω) = 1

2
− p

2
ω2 +

d+ 2

16
q2ω4 and K =

1

2

(
X1 −X2

Y1

)2

− Ĝ(ω)

and note that Ĝ has two positive roots 0 < ω̂1 < ω̂2 if 2p2 > (d+ 2)q2. Then
the proof of Proposition 2.5 shows
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Proposition 2.9. Suppose that d1 = 1, A1 = 0 and 2p2 > (d+ 2)q2 > 0. If
ε ≥ 0, the set

{
X2 > 0 and 0 <

Y2
Y1

< ω̂1

}

contains any trajectory of the Ricci soliton ODE that emanates from (17)
and flows into either (19) or (20).

Completeness of the metric can then be established as in Proposition 2.7.
Notice in particular that long time existence still follows from Corollary 2.6.
As the proof shows, even though Y1 is not controlled by the conservation
law (18) anymore since A1 = 0, it cannot blow up in finite time.

Corollary 2.10. Let d1 = 1, A1 = 0, 2p2 > (d+ 2)q2 > 0 and ε ≥ 0. Then
any trajectory of the Ricci soliton ODE which emanates from the critical
point (17) and lies in the Einstein locus (19) or Ricci soliton locus (20)
corresponds to a complete Einstein or Ricci soliton metric, respectively.

Observe that the initial stationary point (17) is not hyperbolic in the
case d1 = 1. Therefore a center manifold exists and the analysis before
Proposition 2.2 does not carry over. However, the work of Buzano [10] and
Eschenburg-Wang [26] still applies and the existence of Ricci soliton trajec-
tories can be deduced, see also [2] or [46] for different arguments. Combined
with Corollary 2.10 this implies following result:

Theorem 2.11. Suppose that d1 = 1, A1 = 0 and 2p2 > (d+ 2)q2 > 0.
If ε = 0 there exists a 1-parameter family and if ε > 0 a 2-parameter

family of trajectories lying in both the unstable manifold of (17) and the Ricci
soliton locus (20). In particular, these give rise to complete Ricci soliton
metrics on the total spaces of the corresponding complex line bundles over
Fano Kähler-Einstein manifolds.

Similarly, there exist a (up to homotheties) unique complete Ricci flat
metric and a 1-parameter family of complete Einstein metrics with negative
scalar curvature on these spaces.

Theorem B is a direct consequence of Theorem 2.11. The work of Apple-
ton [2] and Stolarski [46] shows that complete steady Ricci solitons exist in
fact for arbitrary values of p, q. Similarly, complete expanding Ricci solitons
for arbitrary p, q are constructed in [48].
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The existence of Einstein metrics is well known: explicit Kähler and
non-Kähler Einstein metrics have already been described by Calabi [14],
Bérard-Bergery [5], Page-Pope [43] and Wang-Wang [47].

Remark 2.12. (a) Notice on the contrary that the construction of Kähler
Ricci solitons due to Feldman-Ilmanen-Knopf [27] requires the condition
−q = p in the steady case and −q > p in the expanding case, see also [24,
Theorem 4.20 and Remark 4.21]. For example, in the case of CPn one has
p = d+2

2 and one thus requires p > q2 > 0 for the argument of Proposition 2.9
to work. In particular, the Kähler examples due to Feldman-Ilmanen-Knopf
are not covered by the Corollary. In the case of CPn, these Kähler Ricci
soliton metrics have also been investigated by Chave-Valent [19].

(b) It follows from the work of Appleton [2] that the Ricci solitons in
Theorem 2.11 are asymptotically conical.

(c) If q > p, Appleton [2] proves moreover that there cannot exist a com-
plete Ricci flat metric on the associated complex line bundle. In particular,
the corresponding trajectory cannot satisfy the bound ω < 4p

(d+2)q2 for all
times.

3. Asymptotics

This section discusses the asymptotic behaviour of the metrics which were
constructed in Section 2.2. In particular it will be shown that the steady Ricci
solitons are asymptotically paraboloid and the expanding Ricci solitons are
asymptotically conical.

3.1. Cone solutions

The concrete asymptotics of the metrics depend on the following well known
construction, cf. [8] or [21].

Proposition 3.1. Let (P, gE) be a homogeneous space with Ric = (n−
1)gE . Then the metrics

dt2 + sin2(t)gE for t ∈ (0, π),

dt2 + t2gE for t > 0,

dt2 + sinh2(t)gE for t > 0
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define cohomogeneity one Einstein metrics on (0, π2 )× P and (0,∞)× P
with Einstein constant − ε

2 = n, 0,−n, respectively. Any of these solutions
will be called a cone solution.

Furthermore, the Ricci flat metrics together with the soliton potential
−u̇(t) = ε

2 t induce a shrinking or expanding Ricci soliton on (0,∞)× P de-
pending on whether ε < 0 or ε > 0. If ε < 0 these solutions are called conical
Gaussians.

The above metrics have conical singularities at the singular orbits unless
P is a sphere. In this case the metrics correspond to the standard metrics
on Sn+1, Rn+1 and Hn+1, respectively. To obtain concrete formulae in the
two summands case, the following definitions are required.

Definition 3.2. Positive solutions (c1, c2) to the equations

(n− 1)d1 =
A1

c21
+A3

c21
c42

and (n− 1)d2 =
A2

c22
− 2A3

c21
c42

(26)

are called cone solutions.

Remark 3.3. If A3 > 0, the cone solutions take the explicit form

c21 =
1

2d1 + d2

(
A2

2d1 + 4A1A3(2d1 + d2)

2A3(n− 1)(2d1 + d2)
∓
√
D

)
,

c22 =
1

2d1 + d2

(
A2n± 2A3(2d1 + d2)

√
D
)
,

where the discriminant D is given by

(27) D =

(
A2

2A3

d1
2d1 + d2

)2

− A1

A3

d2
2d1 + d2

.

Inserting the geometric definitions of the constants A1, A2, A3 into (27), one
obtains

D ≥ 0 if and only if
(RicG/H)2

4||A||2 ≥ (2d1 + d2)
d1 − 1

d1
.

Suppose that there are two real cone solutions. For a cone solution (c1, c2),
set ω = c1

c2
. Then the ordering ω1 < ω2 defines the first and second cone

solution.
In particular, if D̂ > 0, cf. (23), there exist two cone solutions and it

is easy to check that ω1 < ω̂1 < ω2 < ω̂2 in this case. This has also been
observed by Böhm [7].
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LetD ≥ 0 and let (c1, c2) be a cone solution as in definition 3.2. With the
normalisation of the Einstein constant − ε

2 ∈ {−n, 0, n} , the two summands
Einstein cone solutions of Proposition 3.1 take the form

fi(t) = ci sin(t) for t ∈ (0, π)(28)

in the case of positive scalar curvature and

fi(t) = cit and fi(t) = ci sinh(t) for t > 0(29)

in the Ricci flat and negative scalar curvature case, respectively. Any cone
solution is called first cone solution if that is the case for the pair (c1, c2) as
Remark 3.3.

Example 3.4. Recall the examples of group diagrams in table 1, which
induce the Hopf fibrations. In the HPm+1-example the cone solutions are

c21 =
9 + 14m+ 4m2

(1 + 2m)(3 + 2m)2
and c22 =

9 + 14m+ 4m2

(1 + 2m)(3 + 2m)
,

c21 = c22 = 1,

in the Fm+1-example they are given by

c21 =
(1 +m)2 +m

(1 +m)2(1 + 4m)
and c22 = 4

(1 +m)2 +m

(2m+ 1)2 +m
,

c21 =
1 +m

1 + 4m
and c22 = 4c21,

and in the CaP 2-example they are c21 =
57
121 , c

2
2 =

19
11 and c21 = c22 = 1. In all

cases, the first pair also describes the first cone solution.

The following elementary but useful characterisation of ω1 and ω2 is
immediate from definition 3.2 and Remark 3.3.

Proposition 3.5. Let D > 0. Then the two positive roots of the function

(30) f(ω) =
A1

d1
− A2

d2
ω2 +A3

(
1

d1
+

2

d2

)
ω4

are the ratios ω1, ω2 of the first and second cone solution, respectively, i.e.

ω2
1 =

A2

2A3

d1
2d1 + d2

−
√
D and ω2

2 =
A2

2A3

d1
2d1 + d2

+
√
D.
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In particular, it follows that ω2
1 < A2

4A3
and ω2

2 < A2

2A3
.

3.2. Steady Ricci solitons

The rotationally symmetric Bryant soliton on Rn, n ≥ 3, is asymptotically
paraboloid and therefore non-collapsed. It will be shown that this is also the
case for the non-trivial steady Ricci solitons constructed in Section 2.2.

Recall from Proposition 1.4 that on a complete, non-trivial cohomo-
geneity one steady Ricci soliton there holds −u̇(t) →

√
−C as t → ∞ and

0 < tr(L) ≤ n
t for t > 0. Therefore, if the shape operator remains positive

definite, it follows that ḟi
fi

→ 0 as t → ∞. According to Corollary 2.6, this

automatically holds in the two summands case if d1 > 1 and D̂ > 0.
In order to obtain the concrete asymptotics of the metric if A3 > 0, an

understanding of the long time behaviour of ω = Y2

Y1
is essential:

Proposition 3.6. Let d1 > 1, D̂ > 0 and ε = 0. Then along trajectories
of non-trivial steady Ricci solitons the limit ω∞ = limt→∞ ω(t) exists and
limt→∞ ω̇(t) = 0.

Proof. Let v(t) =
√
det gt = fd1

1 (t)fd2

2 (t) denote the relative volume of the

principal orbit and consider the variables v1/n

fi
and v2/nḟi

fi
for i = 1, 2. Observe

that v1/n

f1
= 1

ωd2/n and v1/n

f2
= ωd1/n.

Therefore, the Böhm functional has the lower bound

F0 = v
2

n

(
tr(rt) + tr((L(0))2)

)

≥ v
2

n tr(rt) =
A1

ω2d2/n
+A2ω

2d1/n −A3ω
2(2d1+d2)/n.

Since F0 is non-increasing, v
2

n tr(rt) is bounded from above for t ≥ t0 > 0
and hence ω is bounded away from zero for these t. As ω < ω̂1, the variables
v1/n

fi
are hence bounded for t ≥ t0.

Furthermore, the variables v2/nḟi
fi

satisfy the ODE system

d

dt

v2/nḟ1
f1

= −(−u̇+
n− 2

n
tr(L))

v2/nḟ1
f1

+
A1

d1

(
v1/n

f1

)2

+
A3

d1
ω2

(
v1/n

f2

)2

,

d

dt

v2/nḟ2
f2

= −(−u̇+
n− 2

n
tr(L))

v2/nḟ2
f2

+
A2

d2

(
v1/n

f2

)2

− 2A3

d2
ω2

(
v1/n

f2

)2

.
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Due to the known asymptotics, the coefficient of v2/nḟi
fi

tends to −
√
−C and

the remaining polynomial terms are bounded. Hence, by comparison, the

variables v2/nḟi
fi

remain bounded. Therefore, one can pass to the ω-limit set
Ω. Due to its monotonicity, F0 converges. Its derivative (11) has to vanish
on Ω and therefore the limiting value F0 = (v

2

n tr(r))∞ can be expressed in
terms of ω as above. In particular, ω converges.

The asymptotics of ω̇ simply follow from the ODE ω̇ = ω
{

ḟ1
f1

− ḟ2
f2

}
and

the fact that ḟi
fi

→ 0 as t → ∞. □

Remark 3.7. It is also possible to derive an integral formula for ω̇. Indeed,
it is straightforward to check that

d

dt

{
ω̇e−ufd1−1

1 fd2+1
2

}
= f(ω)e−ufd1−2

1 fd2

2 ,

where f(ω) is defined in (30). If d1 > 1, it follows that

ω̇(t) =
eu(t)

fd1−1
1 (t)fd2+1

2 (t)
·
∫ t

0
f(ω(s))e−u(s)fd1−2

1 (s)fd2

2 (s)ds.

Since f1, f2 are monotonic and eu(t)
∫ t
0 e

−u(s)ds → 1√
−C

as t → ∞ due to

L’Hôpital’s rule, one has the bound ω̇(t) ≤ C · 1
f1(t)f2(t)

for some constant

C > 0.

Now the asymptotics of the metric can be deduced:

Proposition 3.8. Let d1 > 1, A1 > 0, D̂ > 0 and suppose that (d1 +
1)ü(0) = C < 0. Then the corresponding two summands steady Ricci soli-
ton metrics satisfy

−u̇(t) →
√
−C and

f2
i (t)

t
→ 2√

−C
(n− 1)c2i

as t → ∞, where (c1, c2) denotes the first cone solution. In particular, ω →
ω1 as t → ∞.
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Proof. Recall that −u̇(t) →
√
−C as t → ∞ due to Proposition 1.4. Notice

that f1, f2 satisfy

f̈1 = −(−u̇− d2
ω̇

ω
)ḟ1 − (n− 1)

ḟ2
1

f1
+

A1 +A3ω
4

d1f1
,

f̈2 = −(−u̇+ d1
ω̇

ω
)ḟ2 − (n− 1)

ḟ2
2

f2
+

A2 − 2A3ω
2

d2f2
.

As ω < ω̂1 <
√

A2

2A3
, A1 > 0 and ω converges, both f1, f2 satisfy a differ-

ential equation of the form

f̈ = −a1ḟ − (n− 1)
ḟ2

f
+

a2
2f

,

where ai : [0,∞) → R are smooth functions with limt→∞ ai(t) = a∗i > 0. Set
A = min{a∗1, a∗2}. It is shown in [2, Lemma 6.2] that for every ε ∈ (0, A) and
every solution f : [0,∞) → R with f(0), ḟ(0) > 0 there exists t0 > 0 such
that

f(t0)
2 + γ− (1 + ε)−1 (t− t0) ≤ f2(t) ≤ f(t0)

2 + γ+ (t− t0)

for all t > t0, where γ± = a∗

2±ε
a∗

1∓ε .

It follows that γ1,−

γ2,+
≤ ω2

∞ ≤ γ1,+

γ2,−
for every sufficiently small ε > 0. In the

limit as ε → 0 one obtains equality and thus

ω2
∞ =

d2
d1

A1 +A3ω
4
∞

A2 − 2A3ω2∞
.

In particular, 0 < ω∞ ≤ ω̂1 is a root of f(ω) and due the characterisation
3.5 of the cone solutions, it follows that ω∞ = ω1 is the ratio of the first cone
solution.

The asymptotic behaviour of f1, f2 now follows with the formulae in
definition 3.2. □

Remark 3.9. For d1 > 1, D̂ > 0 and ε = 0, the asymptotics of the rescaled
Ricci soliton ODE of Section 2.2 are

X1, X2 → 0 and Y1, Y2 → 0 and L → 1√
−C

as s → ∞.
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3.3. Expanding Ricci solitons

It will be shown that the expanding Ricci solitons are asymptotically conical
at infinity and the soliton potential grows quadratically at infinity.

Recall from (9) that on a complete, non-trivial cohomogeneity one ex-
panding Ricci soliton −u̇ is asymptotically linear and the mean curvature of
the principal orbit is bounded. Furthermore, Corollary 2.6 implies that the
shape operator is positive definite in the two summands case. The definition
of the rescaled variables in (15) thus implies:

Proposition 3.10. Suppose that d1 > 1 and D̂ > 0 and consider the flow
of the Ricci soliton ODE in the phase space of expanding Ricci solitons.
Then

X1, X2 → 0 and Y1, Y2 → 0 and L → 0

as s → ∞.

A modification of the discussion in [22] can now be used to deduce the
claimed asymptotically conical geometry at infinity.

Proposition 3.11. Suppose that d1 > 1 and D̂ > 0. Then along trajecto-
ries corresponding to non-trivial expanding Ricci soliton metrics the soliton
potential and shape operator satisfy

−u̇(t)

t
→ ε

2
and t · Lt → In

as t → ∞.

Proof. Consider the ODE system

d

ds

X1

L2
=

(
−

2∑

i=1

diX
2
i − 1

)
X1

L2
+

ε

2
(1 +X1)

+
A1

d1

(
Y1
L

)2

+
A3

d1

(
Y2
L

)2(Y2
Y1

)2

,

d

ds

X2

L2
=

(
−

2∑

i=1

diX
2
i − 1

)
X2

L2
+

ε

2
(1 +X2)

+
A2

d2

(
Y2
L

)2

− 2A3

d2

(
Y2
L

)2(Y2
Y1

)2



✐

✐

“4-Wink” — 2023/12/25 — 11:34 — page 655 — #31
✐

✐

✐

✐

✐

✐

Ricci solitons from Hopf fibrations 655

and notice that d
ds

Yi

L = −Yi

LXi implies that both limits ŷi = lims→∞
Yi

L ∈
[0,∞) exist.

If ŷ1 = 0 then, as ω = Y2

Y1
remains bounded, one necessarily also has ŷ2 =

0. In this case one can proceed as in [22, Lemma 3.15] to show that Xi

L2 → ε
2

as s → ∞ because the extra terms involving A3 tend to zero. Similarly,
integrating the ODE for L implies L2 · s → 1

ε as s → ∞. Since dt = Lds,
this yields s ∼ ε

4 t
2 and hence L · t → 2

ε as t → ∞. The claim then follows
from the definition of the coordinate change in (15).

It remains to rule out that possibly ŷ1 > 0. In this case the existence of
ω∞ = lims→∞

Y2

Y1
is immediate. Hence the ODEs imply

X1

L2
→ ε

2
+

1

d1

(
A1ŷ

2
1 +A3ŷ

2
2ω

2
∞
)

and
X2

L2
→ ε

2
+

1

d2

(
A2ŷ

2
2 − 2A3ŷ

2
2ω

2
∞
)

as s → ∞ and both limits are positive as ε > 0 and ω2
∞ < A2

2A3
. Set Λi =

lims→∞
Xi

L2 > 0. It follows that

Y
′

i

L′
=

Yi

(∑2
i=1 diX

2
i − ε

2L2 −Xi

)

L
(∑2

i=1 diX
2
i − ε

2L2
) → ŷi ·

ε+ 2Λi

ε

as s → ∞, but if ŷ1 > 0 L’Hôpital’s rule implies Λ1 = 0 and thus a contra-
diction. □

Added in proof. Due to proposition 2.5, it follows as in [42, Lemma 4.6]
that moreover limt→∞ ḟi exist in (0,∞) for i = 1, 2.

3.4. Ricci flat metrics

The rescaled coordinates of Section 2.2 are particularly suited to analyse
the Ricci flat trajectories. The induced Ricci flat metric is asymptotically
conical and in fact is asymptotic to the first cone solution fi(t) = cit. This
also follows from Böhm’s [8] original construction.

Proposition 3.12. Let d1 > 1 and D̂ > 0. Along trajectories of the Ricci
flat system Xi → 1

n and Yi → 1
nci

as s → ∞, where (c1, c2) denotes the first
cone solution.

Proof. Recall from Corollary 2.6 that the variables Xi, Yi for i = 1, 2 are all
positive and bounded along the flow since d1 > 1 and D̂ > 0. To deduce the
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asymptotics, consider the function

G = Y d1

1 Y d2

2 ,

which is in fact the inverse of Böhm’s Lyapunov function (10) in the X-Y -
coordinates. Its derivative is given by

G′

= nG
{

2∑

i=1

diX
2
i − 1

n

}

and hence it is non-decreasing and bounded. Thus, it converges to a finite
positive limit as s → ∞. This also shows that Y1, Y2 are bounded away from
zero as s → ∞. Standard ODE theory now implies that the ω-limit set Ω of
the flow of X1, X2, Y1, Y2 is non-empty, compact, connected and flow invari-
ant. As G is monotonic and bounded, it must be constant on Ω. But since
d1X1 + d2X2 = 1 there holds G′

= 0 if and only if X1 = X2 =
1
n . Moreover,

this yields

0 = X
′

1 =
1

n

(
1

n
− 1

)
+

A1

d1
Y 2
1 +

A3

d1

Y 4
2

Y 2
1

,

0 = X
′

2 =
1

n

(
1

n
− 1

)
+

A2

d2
Y 2
2 − 2

A3

d2

Y 4
2

Y 2
1

on the ω-limit set. In particular, the pair ((nY1)
−1, (nY2)

−1) satisfies the
equations (26) of the cone solutions. Since the bound Y2/Y1 < ω̂1 holds along
the flow and ω1 < ω̂1 < ω2 < ω̂2, it follows that Yi → 1

nci
as s → ∞, where

(c1, c2) describes the first cone solution. This completes the proof. □

The asymptotic behaviour of the metric can be deduced from ḟi =
Xi

Yi
→

ci as t → ∞. The metric is therefore asymptotically conical at infinity.

3.5. Ricci flat metrics: Explicit trajectories and rotational
behaviour

It is a special feature of the Ricci flat equation that it reduces to a planar
system for the variables X1, Y1 as the variable L decouples completely. More
generally, in the Einstein case there holds X2 =

1
d2
(1− d1X1) and the con-

servation law (18) then determines Y2 in terms of X1, Y1 and
ε
2L2. Explicitly,
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it is given by

Y 2
2 = A2

2A3
Y 2
1 ± 1

2A3

√
A2

2Y
4
1 + 4A3

(∑2
i=1 diX

2
i + (n− 1) ε2L2 − 1 +A1Y 2

1

)
Y 2
1 .

Initially, Y2 is given by the solution corresponding to ’−’ as lims→−∞ Y2 = 0.
Notice that the discriminant vanishes if and only if Y 2

2 /Y
2
1 = A2

2A3
and recall

that if d1 > 1, D̂ > 0 and ε ≥ 0 the estimate Y 2
2 /Y

2
1 < ω̂2

1 < A2

2A3
has been

established. Hence, in this case, only the ’−’ solution is realised by the flow.
Therefore, consider the ODE system

X
′

1 =

(
X1 +

1

d1

)(
n
d1
d2

X2
1 − 2

d1
d2

X1 +
1

d2
− ε

2
L2 − 1

)

+

(
2A1 +

A2
2

2A3

)
Y 2
1

d1
+

ε

2

(
1 +

n

d1

)
L2

− A2

2d1A3

√√√√A2
2Y

4
1 + 4A3

(
2∑

i=1

diX2
i + (n− 1)

ε

2
L2 − 1 +A1Y 2

1

)
Y 2
1 ,

Y
′

1 = Y1

(
n
d1
d2

X2
1 − 2

d1
d2

X1 +
1

d2
− ε

2
L2 −X1

)
,

L′

= L
(
n
d1
d2

X2
1 − 2

d1
d2

X1 +
1

d2
− ε

2
L2

)
.

In the Ricci flat case this yields indeed a 2-dimensional system for X1 and

Y1. Moreover, one has L(s) = L(s0) exp
[∫ s

s0

(
nd1

d2
X2

1 − 2d1

d2
X1 +

1
d2

)
dτ
]
.

Recall from Proposition 3.12 that one expects (X1, Y1) → ( 1n ,
1

nc1
) as

s → ∞ if the cone solutions are real. To study the dynamics of the planar
(X1, Y1)-system close to the stationary point ( 1n ,

1
nc1

), consider its linearisa-
tion at that point. It is described by the matrix

(
−n−1

n 2 c1
n

[
n− 1− 2A3

c21
c42

(
1
d1

+ 1
d2

)]

− 1
c1n

0

)
.

The eigenvalues are the solutions to the quadratic equation

λ2 +
n− 1

n
λ+

2

n2

[
n− 1− 2A3

c21
c42

(
1

d1
+

1

d2

)]
= 0

and it is therefore easy to deduce:
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Corollary 3.13. The limiting point of the Ricci flat trajectories is a stable
spiral if and only if

(31)
(n− 1)(n− 9)

8
+ 2A3

c21
c42

(
1

d1
+

1

d2

)
< 0.

In particular, if A3 = 0 this is equivalent to 2 ≤ n ≤ 8. Otherwise, it is a
stable node.

The reduction to the planar (X1, Y1)-system can also be used to describe
explicit trajectories. Trajectories which correspond to smooth complete Ricci
flat metrics must emanate from ( 1

d1
, 1
d1
) and are expected to converge to

( 1n ,
1

nc1
). In low dimensional examples, these trajectories are actually realised

by straight lines! This can be seen by introducing polar coordinates centred
at ( 1

d1
, 1
d1
), and a straightforward calculation verifies that the angle remains

constant.
This provides a new coordinate representation of metrics of special

holonomy considered by Bryant-Salamon [9] and Gibbons-Page-Pope [29].

Theorem 3.14. On the open disc bundles associated to the group diagrams
G = Sp(2), H = Sp(1)× Sp(1), K = U(1)× Sp(1) and G = Sp(1)× Sp(2),
H = Sp(1)× Sp(1)× Sp(1), K = Sp(1)× Sp(1) the trajectories of the com-
plete Ricci flat two summands metrics are line segments when represented
in the above coordinate system.

3.6. Einstein metrics with negative scalar curvature

It will be shown that in this case the Böhm functional F0 asymptotically
approaches the value of the first cone solution, and hence work of Böhm
implies that the metric is in fact asymptotic to the first cone solution fi(t) =
ci sinh(t).

Proposition 3.15. Let d1 > 1 and D̂ > 0. Then the asymptotic behaviour
of trajectories corresponding to complete Einstein metrics with negative
scalar curvature is given by

X1, X2 →
1

n
and Y1, Y2 → 0, ω =

Y2
Y1

→ ω1 and L →
√

2

nε

as s → ∞, where ω1 =
c1
c2

is the ratio of the first cone solution.

Furthermore, F0 → n(n− 1)c
2d1/n
1 c

2d2/n
2 as s → ∞, which is the value of

F0 evaluated on the first cone solution (c1, c2).
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Proof. As in the proof of Corollary 2.6, introduce the variable ω = Y2

Y1
in

order to view the Ricci soliton equation as an ODE with polynomial right
hand side. Furthermore, all variables remain bounded along the flow and
hence the ω-limit set Ω is non-empty, connected, compact and flow-invariant.

Recall from Remark 2.8 that L(s) is bounded away from zero for s ≥ 0.
As the quotients Yi

L satisfy d
ds

Yi

L = −Yi

LXi, they are monotonically decreasing
and hence converge as s → ∞.Moreover, the quotients are well-defined on Ω.
Therefore their derivatives vanish, which implies Yi ·Xi = 0 on Ω. Moreover,
since L is bounded due to Proposition 2.7,X1 is bounded away from zero and
in particular is non-zero on Ω. This implies 0 < Y2 < ω̂1Y1 → 0 as s → ∞.

Now consider the evolution of the Böhm functional F0 =
v

2

n

(
tr(rt) + tr((L(0))2)

)
, which was introduced in (10). In the current

coordinate system it is given by

F0 =

2∏

i=1

Y
−2di/n
i





2∑

i=1

AiY
2
i −A3

Y 4
2

Y 2
1

+

2∑

i=1

diX
2
i − 1

n

(
2∑

i=1

diXi

)2




=

2∏

i=1

Y
−2di/n
i

{
A1Y

2
1 + Y 2

2

(
A2 −A3

Y 2
2

Y 2
1

)
+

2∑

i=1

diX
2
i − 1

n

}
.

Observe that it is bounded from below by zero as Y2

Y1
= ω < ω̂1 <

A2

2A3
. Fur-

thermore, according to (11), F0 is non-increasing and therefore converges
as s → ∞. However, for F0 to be finite on the ω-limit set Ω, one has
to have

∑2
i=1 diX

2
i = 1

n , which forces X1 = X2 =
1
n in the Einstein locus∑2

i=1 diXi = 1 as X1, X2 ≥ 0. Therefore X1 is constant on Ω and then also
L due to the ODE for X1. Finally, the ODE for L itself shows that ε

2L2 = 1
n

on Ω.
To deduce the asymptotic behaviour of ω, first observe that the mono-

tonicity of F0 and

F0 =
1

ω2d2/n

(
A1 +A2ω

2 −A3ω
4
)
+ v2/n tr((L(0))2)

=
A1

ω2d2/n
+A2ω

2d1/n −A3w
2(2d1+d2)/n + v2/n tr((L(0))2)



✐

✐

“4-Wink” — 2023/12/25 — 11:34 — page 660 — #36
✐

✐

✐

✐

✐

✐

660 Matthias Wink

imply that ω is bounded away from zero for t ≥ t0 > 0. Notice furthermore
that

d

dt
v2/n tr((L(0))2) =

d

dt
F0 −

d

dt

{
A1

ω2d2/n
+A2ω

2d1/n −A3w
2(2d1+d2)/n

}

= −2
n− 1

n
v2/n tr((L(0))2)− 2d1d2

n
ω−2d2/n−1f(ω),

where the polynomial f(ω) is defined in (30). Therefore, v2/n tr((L(0))2) can
be treated as an independent variable, which is nonnegative, bounded by F0

and satisfies a well-defined ODE on the ω-limit set Ω.
Since F0 takes a finite value on Ω and d

dtF0 = −2n−1
n v2/n tr((L(0))2), it

follows that v2/n tr((L(0))2) → 0 as t → ∞. This in turn implies f(ω) → 0
and thus ω → ω1 as t → ∞ due to Proposition 3.5.

This also implies F0 → 1

ω
2d2/n
1

(
A1 +A2ω

2
1 −A3ω

4
1

)
as t → ∞, which is

easily seen to be the value of the first cone solution by using the identities
in Definition 3.2. □

Notice that ḟi
fi

= Xi

L →
√

ε
2n as t → ∞ immediately implies that f1, f2

grow exponentially at infinity. In fact, the metric is asymptotic to the first
cone solution at infinity. This follows from a more general result of Böhm
[8, Corollary 2.4]: If the scalar curvature of the principal orbit is positive
and F0 is bounded from below, then any Einstein trajectory that takes a
constant value on F0 is a cone solution. An argument specifically adapted
to the two summands case is given in the proof of Proposition 4.2.

4. Remarks on Böhm’s work in the Einstein case

4.1. Convergence to cone solutions

The results in Sections 3.4 and 3.6 show that the non-compact Ricci flat
metrics and Einstein metrics with negative scalar curvature of Section 2.2
are asymptotic to the cone solutions at infinity. In this section it will be
shown that the asymptotics of the Ricci flat trajectories also imply that the
metric actually converges to the cone solution as the volume of the singular
orbit tends to zero, i.e. as f2(0) = f̄ → 0. In fact this follows for any sign of
the Einstein constant and recovers convergence results due to Böhm [7, 8].
In comparison to Böhm’s work, the main technical simplification is that the
proof does not rely on the Poincaré-Bendixson Theorem.
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Recall from (12) that the metric is given by

gM\Q = dt2 + f1(t)
2gS + f2(t)

2gQ

away from the singular orbits. It follows from the results of Eschenburg-
Wang [26] that there exists a unique one parameter family cf̄ (t) =

(f1, ḟ1, f2, ḟ2)(t) of solutions to the Einstein equations (3), (4) with initial
condition cf̄ (0) = (0, 1, f̄ , 0) for any f̄ > 0. Moreover, Böhm [7] has observed
that it depends continuously on the initial condition f̄ > 0. Notice also that
(4) implies (d1 + 1)f̈2(0) =

ε
2 f̄ + A2

d2

1
f̄
> 0 if either ε ≥ 0 or f̄2 < −2

ε
A2

d2
and

ε < 0. However, the equations are a priori not well defined if f̄ = 0. This sin-
gular condition corresponds geometrically to the collapse of the full principal
orbit.

To describe the behaviour of the Einstein equations as the volume of
the singular orbit tends to zero more concretely, the following observation is
key: In the (Xi, Yi,L)-coordinate system defined in (15), the initial condition
(0, 1, f̄ , 0) of the trajectory cf̄ corresponds to the stationary point (17), which
is independent of f̄ . Furthermore, the initial condition f2(0) = f̄ can be
recovered via f̄ = lims→−∞ L

Y2
. In particular, f̄ = 0 is the limit of trajectories

with L ≡ 0.
However, the two coordinate systems are only equivalent along trajec-

tories with L > 0. Nonetheless, due to the continuous dependence on the
initial condition, any trajectory with L ≡ 0 can hence be viewed as a con-
tinuous limit of Einstein trajectories. Hence, the collapse f̄ → 0 is described
in the (Xi, Yi,L)-coordinates by the solution of the Ricci flat equations. By
construction this solution lies in the unstable manifold of (17) and due to
Proposition 2.2 it is indeed unique.

Furthermore, due to the uniqueness of solutions cf̄ of the Einstein equa-
tions with initial condition cf̄ (0) = (0, 1, f̄ , 0), one might expect that the
limit as f̄ → 0 is a cone solution. This intuition is confirmed in Proposi-
tion 4.2.

In the case of Einstein metrics with positive scalar curvature, the proof
of Proposition 4.2 requires the concept of maximal volume orbits:

Notice that the volume V of the principal orbit satisfies V̇ = V tr(L),
where tr(L) is the mean curvature. Along trajectories corresponding to Ein-
stein metrics with positive scalar curvature, every critical point of V is a
maximum or a singular orbit is reached. Therefore, if the maximal volume
orbit exists, it is unique and characterised by tr(L) = 0.
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In the two summands case, if A3 = 0, due to a result of Böhm [7, Sec-
tion 4, (e)], the maximal volume orbit always exists. An alternative argument
is discussed below, mainly to introduce a natural coordinate system which
extends past the maximal volume orbit.

Lemma 4.1. If A3 = 0 and ε < 0, then any Einstein trajectory has a max-
imal volume orbit.

Proof. In analogy to (15), introduce the variables

(32) X̂i =
ḟi
fi
, Ŷi =

1

fi
, for i = 1, 2, and L̂ = tr(L).

Due to the assumption A3 = 0 the two summands Einstein equations
take the form

d

dt
X̂i = −X̂iL̂+

Ai

di
Ŷ 2
i +

ε

2
d

dt
Ŷi = −X̂iŶi,

d

dt
L̂ =

ε

2
−

2∑

i=1

diX̂
2
i

and the conservation law is

(33)

2∑

i=1

diX̂
2
i +

2∑

i=1

AiŶ
2
i + (n− 1)

ε

2
= L̂2.

Notice that the time slice has not been rescaled and that the conservation
law (33) and L̂ =

∑2
i=1 diX̂i describe the rescaled Einstein locus (19).

Clearly the above system is an ODE system with polynomial right hand
side. In particular, a solution can only develop a finite time singularity if the
norm of (X̂i, Ŷi, L̂) blows up. However, the conservation law (33) shows that
this can only be the case if L̂ blows up. At the first singular orbit, i.e. at time
t = 0, one has L̂ = +∞ and L̂ is strictly decreasing for all t > 0 as ε < 0.
Hence, the finite time singularity corresponds to L̂ = −∞ and in particular
there exists a time with tr(L) = L̂ = 0, the maximal volume orbit. □

From now on fix the normalisation − ε
2 ∈ {−n, 0, n} of the Einstein con-

stant − ε
2 and recall that in this case the corresponding cone solutions are

given by (28), (29). The following Proposition recovers the convergence re-
sults of Böhm [7, Theorem 5.7], [8, Theorem 11.1].
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Proposition 4.2. Suppose that d1 > 1 and A3 = 0. As f̄ → 0, the solution
cf̄ to the two summands Einstein equations converges to the first cone so-
lution on every relatively compact subset of (0, π) if − ε

2 = n and (0,∞) if
− ε

2 ∈ {−n, 0} , respectively.

Proof. Recall that the limit trajectory with f̄ = 0 corresponds to a trajectory
with L ≡ 0, more precisely the unique solution of the Ricci flat system in
Xi, Yi in the unstable manifold of (17). According to Proposition 3.12, the
Ricci flat trajectory asymptotically approaches the first cone solution, which
takes the constant value Xi =

1
n and Yi =

1
nci

for i = 1, 2. Notice that this
is in fact the value at t = 0 of all cone solutions. Therefore it will be called
base point of the cone solution.

If ε ≥ 0 notice as in the proof of Proposition 3.15 that the variablesXi, Yi
are bounded, that the Böhm functional F0 is bounded from below and non-
increasing, and that it has a critical point on the cone solution. In fact,
any Einstein trajectory that takes a constant value on F0 is a cone solution

and F0 = n(n− 1)c
2d1/n
1 c

2d2/n
2 . However, since A3 = 0, the cone solution is

unique and hence the minimum.
If − ε

2 = n, then (11) implies that F0 achieves its minimum along a
trajectory cf̄ on the maximal volume orbit. On any maximal volume or-

bit the coordinates (32) satisfy
∑2

i=1 diX̂i = L̂ = 0 and the conservation

law (33) hence implies that the variables X̂i, Ŷi are bounded. Thus, F0 =

n(n− 1)
∏2

i=1 Ŷ
−2di/n
i has a minimum on the maximal volume orbit, which

is achieved by the value of cone solution.
However, F0 is constant on the cone solution and since the solution cf̄

approaches the base point of the cone solution as f̄ → 0, the claim follows.
□

Remark 4.3. (a) The simplifying assumption A3 = 0 can be relaxed. For
the geometric examples in 3.4, one can calculate directly that the first cone
solution realises the minimum. So the exact same proof works if D̂ > 0 and
ε ≥ 0 due to Proposition 2.5.

(b) The behaviour of the Böhm functional close to cone solutions was
studied in a more general context in [8]. In particular, Böhm shows that any
stable cone solution is a local attractor of the cohomogeneity one Einstein
equations. In the two summands case, the cone solutions are stable if d1 > 1.
However, the cone solutions corresponding to the circle bundle construction
of Section 2.3 are unstable.
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(c) In the original proof, Böhm [7] uses a coordinate system specifically
adapted to the cone solution to find a limit trajectory, which solves a pla-
nar ODE. The limit trajectory lies in a compact planar domain and the
Poincaré-Bendixson Theorem is applied to prove convergence to the base
point. Stability of the first cone solution then follows via an attractor func-
tion, a version of which is (24) in the Einstein case.

The planar ODE in Böhm’s work is similar to the reduction of the Ricci
flat equations to a planar ODE in Section 3.5. However, in the Ricci soliton
case, the extra degree of freedom of the soliton potential prevents a similar
reduction and a different proof is required.

(d) Böhm’s [8] construction of the complete, non-compact Einstein met-
rics which were recovered in Section 2.2 relies on the above convergence
result, i.e. on the fact that for f2(0) = f̄ → 0 the trajectories remain close
to the cone solution and are thus defined for all times. The proof in Sec-
tion 2.2 shows moreover that one obtains an Einstein metric for all f2(0) > 0.
Notice that in the Ricci flat case the metric is unique up to scaling.

4.2. Böhm’s Einstein metrics of positive scalar curvature

For the convenience of the reader, this Section explains how the refined
asymptotics of the Ricci flat equations in Section 3.5 and Proposition 4.2
yield Böhm’s [7, Theorem 3.4] Einstein metrics of positive scalar curvature
on low dimensional spaces, including S2 × S3, . . . , S2 × S7 or S4 × S5.

It should be emphasised that the overall strategy of the construction due
to Böhm remains the same.

A solution cf̄ = (f1, ḟ1, f2, ḟ2) of the two summands Einstein equations
with initial condition cf̄ (0) = (0, 1, f̄ , 0) is called symmetric if there is τ > 0
such that cf̄ (τ) = (0,−1, f̄ , 0). In fact, cf̄ is symmetric if and only if there
exists t0 > 0 such that cf̄ (t0) = (f1(t0), 0, f2(t0), 0) with f1(t0), f2(t0) > 0.
In particular, reflection along the maximal volume orbit, the unique orbit
with tr(L) = 0, is an isometry precisely for symmetric solutions.

Moreover, since ω = f1
f2

satisfies ω̇ = ω( ḟ1f1 − ḟ2
f2
), any symmetric solution

is characterised by a critical point of ω on the maximal volume orbit. It is
an important observation due to Böhm [7, Lemma 4.2.1] that critical points
of ω are non-degenerate.

Theorem 4.4 (Böhm). Let d1 > 1, A3 = 0 and − ε
2 = n. If the dimension

of the principal orbit satisfies 2 ≤ n ≤ 8, there exist infinitely many symmet-
ric solutions to the two summands Einstein equations.
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Proof. Recall that symmetric solutions are induces by critical points of ω at
the maximal volume orbit. We may use the normalization A2 = d2(d2 − 1) >
0, which in geometric applications corresponds to setting RicQ = d2 − 1 > 0.
Then the metric of the round sphere is given by (f1, f2)(t) = (sin(t), cos(t))
and it induces a solution to the two summands Einstein equations without
any critical point of ω before the maximal volume orbit. Thus a general
counting principle based on the non-degeneracy of the critical points of ω
implies that it suffices to show that there are trajectories cf̄ with an arbi-
trarily high number of critical points of ω before the maximal volume orbit,
see [7, Lemmas 4.4 and 4.5].

Recall that the maximal volume orbit of a trajectory is achieved exactly
when tr(L) = 0. In the (Xi, Yi,L)-coordinates (15) this corresponds to the
blow up time of L. In particular, critical points of ω which are detected by
the rescaled system happen to be before the maximal volume orbit. Recall
that ω′ = ω (X1 −X2) and that every critical point in the rescaled variables
also corresponds to a critical point of ω in the original time frame t. Since the
Einstein trajectories lie in the subvariety d1X1 + d2X2 = 1, critical points
occur if and only if X1 =

1
n .

Recall that by Proposition 3.12 the trajectory of the Ricci flat system
satisfies Xi → 1

n and Yi → 1
cin

where (c1, c2) denotes the first cone solution.
Moreover, observe that the Ricci flat system is realised by solutions to the
two summands system for any value of ε ∈ R by the trajectory with L ≡ 0, as
ε and L only occur in the combination ε

2L2. However, as explained in Section
4.1, the limit L ≡ 0 exactly corresponds to a smoothing of the trajectory cf̄
in the limit f̄ = 0. Due to the continuous dependence of the solution on
the initial condition, for any ε ∈ R and f̄ > 0 small enough, the solution
to the two summands system approaches the base point of the first cone
solution along a trajectory which is C0-close to the Ricci flat trajectory γRF

of Proposition 3.12 with L ≡ 0, and then remains close to the actual cone
solution in the sense of Proposition 4.2.

The dimension assumption and Corollary 3.13 imply that the projection
of the Ricci flat trajectory γRF onto the (X1, Y1)-plane rotates infinitely often
around the stationary point ( 1n ,

1
c1n

), which is the base point of the first cone

solution. Hence, the variable X1 takes the value X1 =
1
n arbitrarily often.

This implies that the number of critical points of ω along cf̄ , which occur
before the maximal volume orbit, tends to infinity as f̄ → 0.

A direct computation of curvatures shows that the metrics are inhomo-
geneous and non-isometric, cf. [7, Section 6]. □
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5. Quasi-Einstein metrics

5.1. Introduction

In the study of smooth metric measure spaces the m-Bakry-Émery-Ricci
tensor Ric+Hessu− 1

mdu⊗ du plays a central role, cf. [18]. It also naturally
appears in the context of warped product Einstein manifolds, where it has
led to the notion of m-quasi-Einstein metrics or (λ, n+m)-Einstein metrics
in the terminology of He-Petersen-Wylie, cf. [33]:

Definition 5.1. Let (M, g) be an n-dimensional Riemannian manifold, u ∈
C∞(M), m ∈ (0,∞] and ε ∈ R. Then (M, g, e−udVolM ) is called m-quasi-
Einstein manifold if

(34) Ric+Hessu− 1

m
du⊗ du+

ε

2
g = 0.

The sum m+ n is called effective dimension and − ε
2 is the quasi-Einstein

constant.

Kim-Kim [35] observed that any connected m-quasi-Einstein manifold
with m < ∞ satisfies the following conservation law: There exists a constant
µ ∈ R, called characteristic constant, such that

(35) ∆u− |∇u|2 +mµe2u/m +m
ε

2
= 0.

In this case, Kim-Kim [35] proved that ifm > 1 is an integer and (Nm, h)
is Einstein with Rich = µh, then the warped product

(36) (M ×N, g + e−2u/mh)

is Einstein. Conversely, if (M ×N, g + e−2u/mh) is Einstein, then
(M, g, e−udVolM ) must be m-quasi-Einstein and (N, h) must be Einstein
with Rich = µh.

This point of view on Einstein warped products was successfully used
by Case-Shu-Wei [16] to show that any compact Kähler m-quasi-Einstein
metric with m < ∞ is Einstein. In contrast, recall that all known non-trivial
compact Ricci solitons are Kähler.

Hall [30] constructedm-quasi-Einstein metrics on total spaces of complex
vector bundles associated to principal circle bundles over products of Fano
Kähler-Einstein manifolds. Due to the induced hypersurface foliation their
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geometry can in fact be described using cohomogeneity one equations similar
to those considered in Section 1.1. The case of a single base factor is due to
Lü-Page-Pope [39]. Remarkably, the Lü-Page-Pope metrics are conformally
Kähler and the associated Kähler class is a multiple of the first Chern class
as shown by Batat-Hall-Jizany-Murphy [4].

5.2. The initial value problem for cohomogeneity one
quasi-Einstein metrics

The formulae for the Ricci curvature of a cohomogeneity one manifold in
Section 1.1 yield that the m-quasi-Einstein equation takes the form

−(δ∇
t

Lt)
♭ − d(tr(Lt)) = 0,(37)

− tr(L̇t)− tr(L2
t ) + ü− 1

m
u̇2 +

ε

2
= 0,(38)

−L̇t − (−u̇+ tr(Lt))Lt + rt +
ε

2
I = 0,(39)

and the conservation law (35) is given by

(40) ü+ (−u̇+ tr(L))u̇+mµe2u/m +m
ε

2
= 0.

Remark 5.2. Notice that for f = e−u/m the conservation law is equivalent
to

d

dt

ḟ

f
= −

(
m
ḟ

f
+ tr(L)

)
ḟ

f
+

µ

f2
+

ε

2
,

and hence it is the Einstein equation for the added factor in Kim-Kim’s [35]
warped product construction (36).

The following Proposition generalises an observation due to Back[3] in
the Einstein case, see also [26] and [24].

Proposition 5.3. Let M be a connected manifold and g a C2-Riemannian
metric on M. Suppose that G is a compact Lie group which acts isometrically
and with cohomogeneity one on (M, g) and that the action has a singular
orbit. Let u ∈ C3(M) be G-invariant.

Then (39) implies (37) and if the conservation law (40) is satisfied,
then (38) holds as well.
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Proof. The fact that (39) implies (37) follows as in the Ricci soliton case,
cf. [24, Proposition 3.19], as the equations are identical.

Let vt be the relative volume of the principal orbit (P, gt). Then it follows
that d

dtv = tr(L)v and due to [24, Formula (3.16)] there holds

d

dt

(
v2
(
Ric(N,N) +

ε

2

))
+ v2

(
2u̇ tr(L2) +

d

dt
(u̇ tr(L))

)
= 0.

By combining this with Ric(N,N) = − tr(L̇)− tr(L2) and the conservation
law (40), one obtains

d

dt

(
v2
(
Ric(N,N) + ü− 1

m
u̇2 +

ε

2

))
= 2u̇v2

(
Ric(N,N) + ü− 1

m
u̇2 +

ε

2

)
.

Therefore v2
(
Ric(N,N) + ü− 1

m u̇2 + ε
2

)
is a multiple of e2u which vanishes

at the singular orbit, and thus vanishes identically. □

Proposition 5.4. Let M be a smooth manifold of dimension dimM ≥ 3.
Suppose that a solution of the m-quasi-Einstein equation on M is given by
a C2-Riemannian metric g and u ∈ C3(M). Then g and u are real analytic
in harmonic and geodesic normal coordinates.

Proof. The m-quasi-Einstein equation and the contracted second Bianchi
identity give rise to the PDE

Ric+Hessu− 1

m
du⊗ du+

ε

2
g = 0,

∆(du) + Ric(·, gradu)− 2

m
(∆u) du = 0

for (g, du). Notice that the 1
m -terms are of lower order and thus the principal

symbol is the same as in the Ricci soliton case. Hence, (g, du) is a solution of
a quasi-linear elliptic system and the regularity analysis in[24, Lemma 3.2]
carries over without any changes, see also [25, Theorem 5.2]. □

The initial value problem form-quasi-Einstein metrics at a singular orbit
can be solved analoguously to Buzano’s [10] approach in the Ricci soliton
case: Due to Proposition 5.3 it suffices to consider (39), (40) and the relation
ġt = 2gtLt. Setting up an ODE system for (gt, Lt, u) as in [10], one observes
that the − 1

m u̇2-term simply disappears in the error terms that occur in
Buzano’s proof because it is of lower order. In particular, the construction
of a formal power series solution is unchanged. Due to the real analyticity
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of m-quasi-Einstein metrics as in Proposition 5.4, a Theorem of Malgrange
[40, Theorème 7.1] then yields a genuine solution. Alternatively, a Picard
iteration may be applied as in [26].

Theorem 5.5. Let G be a compact Lie group acting isometrically on
a connected Riemannian manifold (M, g) and suppose there exists a sin-
gular orbit Q = G/H. Choose q ∈ M such that Q = G · q and denote by
V = TqM/TqQ the normal space of Q at q. Then H acts linearly and or-
thogonally on V and a tubular neighbourhood of Q may be identified with its
normal bundle E = G×H V. The principal orbits are P = G/K = G · v for
any v ∈ V \ {0} . These can be identified with the sphere bundle of E (with
respect to an H-invariant scalar product on V ). Let g = h⊕ p− be a decom-
position of the Lie algebra of G where p− is an AdH-invariant complement
of h = Lie(H).

Assume that V and p− have no common irreducible factors as K-
representations.

Then for any ε ∈ R, any m ∈ (0,∞], any G-invariant metric gQ on Q
and any shape operator L : E → Sym2(T ∗Q) there exists a G-invariant m-
quasi-Einstein metric on some open disc bundle of E.

Remark 5.6. The assumption that V and p− have no common irreducible
factors as K-representations is primarily a technical simplification. However,
as Eschenburg-Wang point out in [26, Remark 2.7] it is also natural in the
context of the Kaluza-Klein construction.

5.3. New quasi-Einstein metrics

The analysis of the two summands case in Section 2.2 can be adapted to the
m-quasi-Einstein case for m < ∞. Recall that the metric restricted to the
principal orbit is given by gt = f1(t)

2gS + f2(t)
2gQ, and set f3(t) = e−u(t)/m.

Due to Proposition 5.3, it suffices to consider (39) and (40), and thus the
two summands m-quasi-Einstein equations take the form

d

dt

(
ḟ1
f1

)
= − tr(L̂)

ḟ1
f1

+
ε

2
+

A1

d1

1

f2
1

+
A3

d1

f2
1

f4
2

,

d

dt

(
ḟ2
f2

)
= − tr(L̂)

ḟ2
f2

+
ε

2
+

A2

d2

1

f2
2

− 2
A3

d2

f2
1

f4
2

,

d

dt

(
ḟ3
f3

)
= − tr(L̂)

ḟ3
f3

+
ε

2
+

µ

f2
3

,
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where L̂ = diag
(
ḟ1
f1
Id1

, ḟ2f2 Id2
, ḟ3f3 Im

)
corresponds to the shape operator in

Kim-Kim’s [35] warped product construction. Notice that L̂ is only well-
defined if m ∈ N, but its trace always is.

Due to the regularity Theorem 5.5 the metric can be smoothly extended
over the singular orbit if the initial conditions

f1(0) = 0, ḟ1(0) = 1 and f2(0) = f̄ > 0, ḟ2(0) = 0

are imposed. Clearly one may fix u(0) = 0 and then

f3(0) = 1 and ḟ3(0) = 0 and f̈3(0) = ε+ 2µ

are the corresponding smoothness conditions for f3.
Fix ε ≥ 0 and µ > 0. It follows that ḟi(t) > 0 for i = 1, 2, 3 and suffi-

ciently small t > 0. In analogy to (15), set

L =
1

tr(L̂)
,

d

ds
= L · d

dt
and Xi = L · ḟi

fi
, Yi = L · 1

fi
for i = 1, 2, 3.

In particular, L, Xi, Yi are positive initially. Set d3 = m. Then∑3
i=1 diXi = 1 and the rescaled two summands m-quasi-Einstein equations

take the form

X
′

1 = X1

(
3∑

i=1

diX
2
i − ε

2
L2 − 1

)
+

A1

d1
Y 2
1 +

ε

2
L2 +

A3

d1

Y 4
2

Y 2
1

,

X
′

2 = X2

(
3∑

i=1

diX
2
i − ε

2
L2 − 1

)
+

A2

d2
Y 2
2 +

ε

2
L2 − 2A3

d2

Y 4
2

Y 2
1

,

X
′

3 = X3

(
3∑

i=1

diX
2
i − ε

2
L2 − 1

)
+ µY 2

3 +
ε

2
L2,

Y
′

j = Yj

(
3∑

i=1

diX
2
i − ε

2
L2 −Xj

)
for j = 1, 2, 3,

L′

= L
(

3∑

i=1

diX
2
i − ε

2
L2

)
.

It follows that L, Xi, Yi > 0 holds along the flow, except possibly for X2. In
the situations of Proposition 2.5 and Proposition 2.9, the respective proofs
carry over to show that both X2 > 0 and Y2

Y1
< ω̂1 are preserved. Since ω̂2

1 <
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A2

2A3
, the conservation law

3∑

i=1

diX
2
i +A1Y

2
1 +A2Y

2
2 +mµY 2

3 −A3
Y 4
2

Y 2
1

+ (n− 1)
ε

2
L2 = 1

implies that Xi, Yi are bounded for i = 1, 2, 3. Thus L cannot blow up in
finite time either. Completeness of the metric now follows as in Proposi-
tion 2.7.

If ε > 0 and µ = 0, then L, Xi, Yi are bounded due to the conservation
law, except possibly Y3. However, the ODE for Y3 implies that Y3 cannot
blow up in finite time and a similar argument applies. This shows:

Theorem 5.7. Let d1 ≥ 1, A1 = d1(d1 − 1) and (d1 + 1)A2
2 > 4d1d2(2d1 +

d2)A3 > 0 and fix m > 0.
Then the associated two summands ODE gives rise to a 1-parameter

family of complete, non-trivial non-homothetic m-Bakry-Émery-Ricci flat
metrics and a 2-parameter family of non-trivial, complete, non-homothetic
m-quasi Einstein metrics with quasi-Einstein constant − ε

2 < 0, all of which
have positive characteristic constant.

Furthermore, there exists a 1-parameter family of complete, non-
trivial non-homothetic m-quasi-Einstein metrics with quasi-Einstein con-
stant − ε

2 < 0 and vanishing characteristic constant.

Remark 5.8. Case [17] has shown that any complete, non-trivialm-Bakry-
Émery-Ricci flat quasi-Einstein manifold has positive characteristic con-
stant.

Notice that if A3 = 0 and m ∈ N, the above construction gives rise to a
triply warped product Einstein metric.

Multiple warped product Einstein metrics of nonpositive scalar curva-
ture were constructed by Böhm [8] on Rd1+1 ×M2 × . . .×Mr if d1 > 1, for
Einstein manifolds (Mi, gi) of positive scalar curvature µi > 0. The corre-
sponding steady and expanding Ricci solitons have been constructed by
Dancer-Wang [22, 23] who in joint work with Buzano and Gallaugher [11, 13]
also settled the case d1 = 1.

Away from the singular orbit, on (0,∞)× Sd1 ×M2 × . . .×Mr, the
metrics are of the form dt2 +

∑r
i=1 f

2
i (t)gi. Notice that the corresponding
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m-quasi-Einstein equations are

d

dt

ḟi
fi

= −(−u̇+ tr(L))
ḟi
fi

+
ε

2
+

µi

f2
i

for i = 1, . . . , r,

where µ1 = d1 − 1. If m < ∞, then fr+1 = e−u/m satisfies an analogous
equation, where µr+1 > 0 will be the characteristic constant of the induced
m-quasi-Einstein metric.

Due to the regularity Theorem 5.4 one induces a smooth m-quasi-
Einstein metric on the trivial Rd1+1-bundle over M2 × . . .×Mr by imposing
the initial conditions f1 = 0, ḟ1 = 1 and fi > 0 for i ≥ 2 at t = 0 and by re-
quiring that fi(t) for i ≥ 2 and u(t) are even.

Set dr+1 = m if m < ∞ and dr+1 = µr+1 = 0 if m = ∞. In terms of the
rescaled coordinates L, Xi, Yi of (15) the above initial conditions correspond
to the stationary point

X1 =
1

d1
, Y1 =

1

d1
and Xi = Yi = L = 0 for i ≥ 2

of the Ricci soliton ODE

L′

= L




r+1∑

j=1

djX
2
j − ε

2
L2


 ,

X
′

i = Xi




r+1∑

j=1

djX
2
j − ε

2
L2 − 1


+

ε

2
L2 + µiY

2
i ,

Y
′

i = Yi




r+1∑

j=1

djX
2
j − ε

2
L2 −Xi


 .

Notice that fi(t) > 0, ḟi(t) > 0 for t > 0 small and thus the rescaled
coordinates L, Xi, Yi are also positive initially. Moreover, for ε ≥ 0 positivity
is preserved by the flow of the Ricci soliton ODE.

Consider

S1,m =

r+1∑

i=1

diX
2
i +

r+1∑

i=1

µiY
2
i + (n− 1)

ε

2
L2 − 1 and S2,m =

r+1∑

i=1

diXi − 1.

Note that the condition S1,m = 0 corresponds to the conservation law (40),
where µr+1 > 0 corresponds to the characteristic constant of the induced
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m-quasi-Einstein metric. In analogy to (19), (20) it follows that trajec-
tories lying in the preserved locus {S1,m = 0} ∩ {S2,m = 0} correspond to
non-trivial m-quasi-Einstein metrics for m < ∞. Similarly, non-trivial Ricci
soliton metrics correspond to trajectories in {S1,∞ < 0} ∩ {S2,∞ < 0} and
Einstein metrics to trajectories in {S1,∞ = 0} ∩ {S2,∞ = 0}.

In all cases, if ε ≥ 0, the variables Xi, Yi ≥ 0 are bounded, except pos-
sibly Y1 if d1 = 1. However, the ODEs for L, Y1 show as before that L, Y1
cannot blow up in finite time. Completeness of the metric again follows as
in Proposition 2.7.

Thus this construction yields m-quasi-Einstein metrics on multiple
warped products as in Theorem C, and a unified proof of the works of
Böhm [8] and Buzano-Dancer-Gallaugher-Wang [11, 13, 22, 23].
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