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Cohomogeneity one Ricci solitons from
Hopf fibrations
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This paper studies cohomogeneity one Ricci solitons. If the isotropy
representation of the principal orbit G/K consists of two inequiv-
alent Adg-invariant irreducible summands, the existence of con-
tinuous families of non-homothetic complete steady and expand-
ing Ricci solitons on non-trivial bundles is shown. These examples
were detected numerically by Buzano-Dancer-Gallaugher-Wang.
The analysis of the corresponding Ricci flat trajectories is used
to reconstruct Einstein metrics of positive scalar curvature due to
Bohm. The techniques also apply to m-quasi-Einstein metrics.
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Introduction

A Riemannian manifold (M, g) is called Ricci soliton if there exists a smooth
vector field X on M and a real number € € R such that

Ric —l—%LXg + gg =0,

where Lxg denotes the Lie derivative of the metric ¢ with respect to X.
Ricci solitons are generalisations of Einstein manifolds and will be called
non-trivial if X is not a Killing vector field. If X is the gradient of a smooth
function u: M — R then it is called a gradient Ricci soliton. It is called
shrinking, steady or expanding depending on whether € < 0, e =0 or € > 0.
Ricci solitons were introduced by Hamilton [31] as self-similar solutions to
the Ricci flow and play an important role in its singularity analysis.

This paper studies the Ricci soliton equation under the assumption of
a large symmetry group. For example, Lauret [38] has constructed non-
gradient, homogeneous expanding Ricci solitons. However, Petersen-Wylie
[45] have shown that any homogeneous gradient Ricci soliton is rigid, i.e. it
is isometric to a quotient of N x R¥, where (N, gn) is an Einstein manifold
with Ric(gy) = —5gn and R* is equipped with the Euclidean metric and
soliton potential —%|z|2.

Therefore it is natural to assume that the Ricci soliton is of cohomogene-
ity one. That is, a Lie group acts isometrically on (M, g) and the generic
orbit is of codimension one. This will be the setting of this paper. A system-
atic investigation was initiated by Dancer-Wang [24] who set up the general
framework. Previous examples include the first non-trivial compact Ricci
soliton due to Cao [15] and Koiso [37] or the examples of Feldman-Ilmanen-
Knopf [27], which include the first non-Gaussian, non-compact shrinking
Ricci solitons. It is worth noting that all of these examples, as well as their
generalisations due to Dancer-Wang [24], are Kdhler. In fact, all currently
known non-trivial compact Ricci solitons are Kéhler. On the other hand,
Angenent-Knopf [I] constructed non-compact, non-Kéhler shrinking Ricci
solitons.

Hamilton’s cigar is also Kahler, whereas its higher dimensional analogue,
the Bryant soliton, is mon-Kéhler. Generalizing these examples, Dancer-
Wang and their coauthors Gallaugher and Buzano constructed steady and
expanding Ricci solitons of multiple warped product type [11], 3], 22] 23].
They also numerically investigated the case where the isotropy representa-
tion of the principal orbit G/K consists of two inequivalent Adg-invariant
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irreducible real summands and found numerical evidence for the existence
of continuous families of complete steady and expanding Ricci solitons on
certain non-trivial vector bundles in [I1), 12]. This paper gives a rigorous
construction thereof.

Let G be a compact Lie group and let K C H C G be closed subgroups
such that H/K = S%. Then H acts linearly on R%*! and the associ-
ated vector bundle G xz R%*! is a cohomogeneity one manifold. Exam-
ples where the Lie algebra of G/K decomposes into two inequivalent Adg-
invariant irreducible real summands include the triples

(G, H, K) = (Sp(1) x Sp(m + 1), Sp(1) x Sp(1)

x Sp(m), Sp(1) x Sp(m)),

(1) (G, H,K) = (Sp(m + 1), Sp(1) x Sp(m),U(1) x Sp(m)),
(G, H, K) = (Spin(9), Spin(8), Spin(T7)).

These examples come from the Hopf fibrations, cf. [6]. In the first and third
case, the associated vector bundle is diffeomorphic to HP™*!\ { point }
and CaP? )\ { point }, respectively. The main Theorem is the following:

Theorem A. On CaP?\{ point }, HP™\ { point } for m >1 and
on the wector bundle associated to (G,H,K)= (Sp(m+1),Sp(1) x
Sp(m),U(1) x Sp(m)) for m > 3, there exist a 1-parameter family of non-
homothetic complete steady and a 2-parameter family of non-homothetic
complete expanding Ricci solitons.

The steady Ricci solitons are asymptotically paraboloid and thus non-
collapsed. The expanding Ricci solitons are asymptotically conical.

Notice that non-trivial gradient steady and expanding Ricci solitons
must be non-compact. Furthermore, due to Perelman’s [44] no local col-
lapsing Theorem, blow up limits of finite time Ricci flow singularities are
necessarily non-collapsed.

The construction of the Ricci solitons in Theorem A partially carries over
to the case of complex line bundles over Fano Kéhler-Einstein manifolds,
where Cao [I5] and Feldman-Ilmanen-Knopf [27] previously constructed
Kdhler Ricci solitons. In contrast, Theorem B exhibits continuous families
of complete non-Kahler steady and expanding Ricci solitons.

Theorem B. Let (V,J,g) be a Fano Kdhler-Einstein manifold of real di-
mension d. Suppose that the first Chern class is given by c1(V,J) = pp for
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an indivisible class p € H*(V,J) and Ric, = pg. For q € Z let w: Py — V be
the principal circle bundle with Euler class qm*p and let Ly be the total space
of the associated complex line bundle.

If 2p? > (d+2)¢®> >0 there exist a 1-parameter family of non-
homothetic complete steady Ricci solitons and a 2-parameter family of non-
homothetic complete expanding Ricci solitons on Ly. In particular there ewxist
non-Kdahler Ricci solitons on L.

In the steady case these Ricci solitons were independently discovered by
Stolarski [46] and Appleton [2], who use different techniques.

The proof of Theorem A establishes that the Ricci soliton metrics cor-
respond to trajectories in a bounded region of a phase space, which implies
completeness. This also applies to Einstein metrics. In particular, in the
situation of Theorem A, the methods of this paper provide an alternative
construction of Ricci flat metrics and Einstein metrics with negative scalar
curvature due to Béhm [§].

The associated coordinate change moreover allows good control on the
trajectories close to the singular orbit, in particular in the limit as the vol-
ume of the singular orbit tends to zero. In the Einstein case it follows that
the metrics converge to explicit solutions with conical singularities, a result
originally due to Bohm [7], 8]. Moreover, an analysis of the Ricci flat tra-
jectories is used to reconstruct Einstein metrics of positive scalar curvature
due to Bohm [7].

In comparison to Bohm’s work, the methods in this paper do not use the
Poincaré-Bendixson theorem. In fact, the Ricci soliton potential introduces
an extra degree of freedom and the Ricci soliton equations do not reduce to
a planar system in the non-Einstein case. On the other hand, the Lyapunov
function , which is used to control the trajectories, goes back to Bohm’s
work [7].

The vector bundles associated to the two families of group diagrams
in also admit explicit Ricci flat metrics in the lowest dimensional case
m = 1. These are in fact of special holonomy G2 and Spin(7), respectively,
and were discovered earlier by Bryant-Salamon [9] and Gibbons-Page-Pope
[29]. However, it is worth noting that these metrics correspond to linear
trajectories in the above phase space, see Theorem 3.14.

The techniques in this paper moreover apply if the Bakry—Emery—Ricci
tensor Ric + Hess u is replaced with the more general version Ric + Hessu —
L du ® du. For any m € (0, 0c] this leads to the notion of m-quasi-Einstein
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metrics, i.e. Riemannian manifolds which satisfy the curvature condition

1
Ric+ Hessu — —du@du+§g:O
m 2

for u € C°°(M) and € € R. These metrics play an important role in the study
of Einstein warped products, cf. [I8] or [33] and references therein.

The initial value problem for cohomogeneity one m-quasi-Einstein man-
ifolds will be discussed in the spirit of Eschenburg-Wang [26] and Buzano
[10], see Theorem 5.5, and the m-quasi-Einstein analogue of Theorem A is
proven in Theorem 5.7.

Furthermore, the setting of m-quasi Einstein metrics allows a unified
proof of the existence of Einstein metrics and Ricci soliton metrics on
REH x My x ... x M,., for dy > 1, where (M;,g;) are Einstein manifolds
with positive scalar curvature. This summarizes earlier work due to Béhm
[8], Dancer-Wang [22], 23] for d; > 1 and Buzano-Dancer-Gallaugher-Wang
[11), 13] for dy =1 :

Theorem C. Let Ms,..., M, be Finstein manifolds with positive scalar
curvature and let dy > 1 and m € (0, o0].

Then there is an (r — 1)-parameter family of non-trivial, non-
homothetic, complete, smooth Bakry—E‘mery—Rz’cci flat m-quasi- Finstein
metrics and an r-parameter family of non-trivial, non-homothetic, com-
plete, smooth m-quasi-Einstein metrics with quasi-Einstein constant § > 0
on RO+ x My x ... x M,.

Structure of the paper. Section 1 reviews the Ricci soliton equation on
cohomogeneity one manifolds and recalls some structure results. The new
examples of complete Ricci solitons are constructed in Section 2. Specifically,
Theorem A is proven in Section 2.2 and Theorem B in Section 2.3. The
asymptotic behaviour of the metrics is studied in Section 3. Applications to
convergence to cone solutions and Bohm’s Einstein metrics of positive scalar
curvature follow in Section 4. Finally, Section 5 discusses m-quasi-Einstein
metrics and the proof of Theorem C.

Acknowledgements. 1 wish to thank my PhD advisor Prof. Andrew
Dancer for constant support, helpful comments and numerous discussions.
I would like to thank the referees for detailed comments that improved the
exposition of the paper.
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1. The cohomogeneity one Ricci soliton equation
1.1. The general set-up

The general framework for cohomogeneity one Ricci solitons has been set
up by Dancer-Wang [24]: Let (M, g) be a Riemannian manifold and let G
be a compact connected Lie group which acts isometrically on (M, g). The
action is of cohomogeneity one if the orbit space M/G is one-dimensional.
In this case, choose a unit speed geodesic v: I — M that intersects all prin-
cipal orbits perpendicularly. Let K = G, ;) denote the principal isotropy
group. Then ®: I x G/K — My, (t,gK) — g-~(t) is a G-equivariant dif-
feomorphism onto an open dense subset My of M and the pullback metric
is of the form ®*g = dt? + g;, where g; is a 1-parameter family of metrics on
the principal orbit P = G/K. Let N = d)*(%) be a unit normal vector field
and let Ly = VN denote the shape operator of the hypersurface ®({t} x P).
Via @, L; can be regarded as a one-parameter family of G-equivariant, g;-
symmetric endomorphisms of T'P which satisfies ¢; = 2¢g¢L;. Similarly, let
Ric; be the Ricci curvature corresponding to g;. According to Eschenburg-
Wang [26] the Ricci curvature of the cohomogeneity one manifold (M, g) is
given by

Ric(X, N) = —gi(8Y Ly, X) — d(tr(Ly))(X),
Ric(N, N) = —tr(L) — tr(L?),

Ric(X,Y) = —g(L(X),Y) — tr(Lo)gi(Li(X), Y) + Rics (X, V),

where X, Y € TP, 6V': T*P @ TP — TP is the codifferential, and L, is re-
garded as a T P-valued 1-form on T'P. Dancer-Wang [24] observed that, since
G is compact, any cohomogeneity one Ricci soliton induces a Ricci soliton
with a G-invariant vector field. Hence, in the case of gradient Ricci solitons,
the soliton potential can be assumed to be G-invariant. The gradient Ricci
soliton equation Ric + Hessu + §g = 0 then takes the form

(2) —(6Y" L) — d(tr(Ly)) =0,
(3) —tr(Ly) — tr(L?) 4 i + g =0,
(4) — Ly — (=t + te(Ly) Ly + 1o + %11 =0,

where 7, =g;oRic; is the Ricci endomorphism, ie. g¢(r(X),Y)=
Ric,(X,Y) for all X,Y € TP. Conversely, the above system induces a gra-
dient Ricci soliton on I x P provided that the metric g; is defined via
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gt = 2g:Ls. The special case of constant u recovers the cohomogeneity one
Einstein equations.

From now on, for simplicity, the t-dependence may not be stated explic-
itly.

It is an immediate consequence of that the mean curvature with
respect to the volume element e™“d Vol is a Lyapunov function if ¢ < 0.

Proposition 1.1. Fiz ¢ < 0. Then the generalised mean curvature —u +
tr(L) is monotonically decreasing along the flow of the cohomogeneity one
Ricci soliton equation.

If the Ricci soliton metric is at least C3-regular, then the second Bianchi
identity implies that the conservation law

(5) U+ (—u+tr(L))u=C+eu

has to be satisfied for some constant C' € R. Using the equations and
it can be reformulated as

(6) tr(r) + tr(L%) — (=i + tr (L))* + (n — 1)% =C +eu.

Recall that the scalar curvature R of a cohomogeneity one Riemannian
manifold (M"*1 g) is given by R = tr(r) —tr(L?) — tr(L)? — 2tr(L). In
combination with equation this shows that the conservation law (@
is just the cohomogeneity one version of Hamilton’s [32] general identity
R+|Vu?>+eu=C for gradient Ricci solitons (where C = —C — 2tle).
This also provides a formula for the scalar curvature in terms of the soliton
potential:

(7) R:—C’—eu—uQ—(n+1)g.
1.2. Ricci solitons with a singular orbit

From now on, assume that there is a singular orbit Q@ = G/H at t = 0. That
is, the orbit at t = 0 is of dimension strictly less than the dimension of the
principal orbit, and let H = G o) denote its isotropy group.

Building up on an idea of Back [3], see also [26], Dancer-Wang [24]
have shown that in the presence of a singular orbit, equation implies
automatically, provided that the metric is at least C?-regular and the soliton
potential is of class C3. Moreover, if in this case the conservation law is
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satisfied, then equation holds as well. Conversely, any trajectory of the
Ricci soliton equations , that describes a C3-regular metric with a
singular orbit has to satisfy the conservation law @

The initial value problem for gradient cohomogeneity one Ricci solitons
has been considered by Buzano [10]. Extending Eschenburg-Wang’s work
[26] in the Einstein case, under a simplifying, technical assumption, the
initial value problem can be solved close to a singular orbit regardless of the
soliton being shrinking, steady or expanding. However, the solution may not
be unique. For a precise statement, see Theorem 5.5.

Notice that u(0) = 0 can be assumed, as the Ricci soliton equation is in-
variant under changing the potential by an additive constant. Furthermore,
the existence of a singular orbit at ¢ = 0 imposes the smoothness condition
%(0) = 0 on the soliton potential u. If dg denotes the dimension of the col-
lapsing sphere at the singular orbit, then the trace of the shape operator
grows like tr(L) = % + O(t) as t — 0. Therefore the conservation law
implies i(0) = ?%. To summarize:

_C
_ds—f-l'

(8) w(0) =0, w(0)=0, (0)

The existence of a singular orbit has consequences for the behaviour of
the soliton potential. Proposition 1.2 below follows from [I3], Propositions 2.3
and 2.4] and [11], Proposition 1.11]. It should be emphasised that the prop-
erties hold along the flow of the Ricci soliton equation and completeness of
the metric is not required.

Proposition 1.2. Consider a trajectory of the cohomogeneity one Ricci
soliton equations corresponding to a cohomogeneity one manifold of dimen-
sion n + 1 with a singular orbit at t = 0.

Suppose that € > 0 and C' < 0 in . Fort > 0 and as long as the solu-
tion exists, the soliton potential satisfies u(t), u(t) < 0. If in addition € > 0
ore =0 and Ly # 0, then also u(t) < 0.

Furthermore, if e = 0 and C < 0 it follows that tr(L;) < % fort >0 and
as long as the solution exists.

Remark 1.3. The quantity % will appear frequently in later calcu-

lations. It is useful to note that it satisfies the differential equation

cclif—utj—(fr)([/) E— +1tr(L) {(_utj_(fr)([/) — 1> (tr(L2) — %) + u} .
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In particular, in the steady case, Proposition 1.2 shows that %

monotonically decreasing as long as — + tr(L) > 0. According to Proposi-
tion 1.4 below, this is always true if the metric corresponds to a complete

steady Ricci soliton. In this case, moreover, it follows that % — 0 as
t — oo.

is

1.3. Consequences of completeness

If the solution corresponds to a non-trivial complete Ricci soliton metric,
further restrictions on the asymptotics of the soliton potential and the metric
are known.

In the steady case, according to a result of Chen [20], the ambient scalar
curvature of steady Ricci solitons satisfies R > 0 with equality if and only if
the metric is Ricci flat. Then implies that C' < 0 is a necessary for com-
pleteness and C' = 0 precisely corresponds to the Ricci flat case. Munteanu-
Sesum [41] have shown that non-trivial complete steady Ricci solitons have
at least linear volume growth and Buzano-Dancer-Wang used this to show
in [I3, Proposition 2.4 and Corollary 2.6]:

Proposition 1.4. Along any trajectory which corresponds to a non-trivial
complete steady cohomogeneity one Ricci soliton of dimension n + 1 with a
singular orbit at t = 0 and integrability constant C' < 0, the estimates

2

0<tr(L) <% and 0<—itr(L) < R<2V=Co 455

=3

hold for t > 0 and the soliton potential satisfies
—u(t) > v—C and u(t) —0
ast — oo.

In the case of expanding Ricci solitons, a similar result of Chen [20] im-
plies that the scalar curvature R of a non-trivial, complete expanding Ricci
soliton satisfies R > —§(n + 1). It follows from that 0 > —u? > C + cu
holds on any complete expanding Ricci soliton. The smoothness condition
at the singular orbit therefore requires C' < 0 as a necessary condition
to construct non-trivial, complete expanding Ricci solitons. Conversely, Ein-
stein metrics with negative scalar curvature correspond to trajectories with

C=0.
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Once the Ricci soliton is shown to be complete, it follows from results of
Buzano-Dancer-Gallaugher-Wang [I1] that any non-trivial, complete, gradi-
ent expanding Ricci soliton has at least logarithmic volume growth. This has
consequences for the asymptotic behaviour of the soliton, see [11, Equation
(1.10) and Proposition 1.18]: There exists constants ag,a; > 0 and a time
to > 0 such that for all t > tg

(9) [ tr(Ly)] < 4/ gg and ait + ap < —u(t) < %t +v—C
i.e. —u growths approximately linearly for ¢ large enough.

1.4. The Bohm functional

Bohm [8] introduced the functional Fy to the study of Einstein manifolds
of cohomogeneity one. Subsequently it was considered by Dancer-Wang and
their collaborators Buzano, Gallaugher and Hall in the context of cohomo-
geneity one Ricci solitons [11], 13, 21]. The significance of Fy lies in the fact
that it is monotonic under mild assumptions.

To define it, let v(t) = v/det g; denote the relative volume of the principal
orbits and let L) = L — %tr(L)H denote the trace-free part of the shape
operator. Then the Bo6hm functional is given by

(10) Fo = vt (tr(rt) v tr((L(O))2)) :

The following Proposition is due to Dancer-Hall-Wang [21, Proposi-
tion 2.17].

Proposition 1.5. Along the flow of a C3-regular cohomogeneity one gra-
dient Ricci soliton the Bohm functional Fy satisfies

d .
(11) oo =—2v2 tr((L(9)?) (—a -

n—1

tr(L)) .

Remark 1.6. The C3-regularity condition guarantees that the conserva-
tion law is satisfied. On the other hand the existence of a singular orbit
along the trajectory is not required to prove ([11).



Ricci solitons from Hopf fibrations 635

2. New examples of Ricci solitons
2.1. The geometric set-up

Let (M"™*!, g) be a Riemannian manifold and suppose that G is a compact
connected Lie group which acts isometrically on (M, g). Assume that the
orbit space is a half open interval and let K’ C H denote the isotropy groups
of the principal and singular orbit, respectively. It follows that M is diffeo-
morphic to the open disc bundle G x z D% *! — G//H, where D! denotes
the normal disc to the singular orbit G/H and S% = H/K is the collaps-
ing sphere. Conversely, let G be a compact connected Lie group and let
K C H be closed subgroups such that H/K is a sphere. Then G x g Rds+1
is a cohomogeneity one manifold with principal orbit G/K. Suppose that
the non-principal orbit G/H is singular, i.e. of dimension strictly less than
G/K.

Choose a bi-invariant metric b on G which induces the metric of constant
curvature 1 on H/K. The two summands case assumes that the space of G-
invariant metrics on the principal orbit is two dimensional: Let g = € & p be
an Ad(K)-invariant decomposition of the Lie algebra of G and suppose fur-
thermore that p decomposes into two inequivalent, b-orthogonal, irreducible
K-modules, p = p1 @ po. In fact, p; can be identified with the tangent space
to the collapsing sphere S% = H/K and py with the tangent space of the
singular orbit Q = G/H. Let gs = b),, and gg = b),, denote the induced
metrics. Then, away from the singular orbit @), the metric on M is given by

(12) gng = At + fi(t)’gs + f2(t)%g0

and the shape operator of the principal orbit takes the form

_(hy £
Ly = <f1Hd17f2Hd2>7

where dy = dg is the dimension of the collapsing sphere and do is the di-
mension of the singular orbit. Furthermore, it follows from the theory of
Riemannian submersions and the O’Neill calculus, cf. [7], that the Ricci
endomorphism takes the form

Al Agf%} {A21 2A3f12} )
13 = ({2t o3 hty, pe2 o 28T by )
a3 <{d1f12 IS R W Ry
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Here the constants A; > 0 are defined as follows: A} = dy(d; — 1), Ay =
ds Ric?, where Ric? is the Einstein constant of the isotropy irreducible space
(Q,99), and A3 = da||A||?, where ||A|| > 0 appears naturally in the theory
of Riemannian submersions, cf. [7]: Fix the background metric gp = gs + g¢
on the principal orbit P and let V97 be the corresponding Levi-Civita con-
nection. If Hy,..., Hy, is an orthonormal basis of horizontal vector fields
with respect to the Riemannian submersion (G/K,gp) = (G/H, gg), then
||A]]? = Efil 9s((V¥ Hi)y, (V97 Hy)jy) is the norm of an O’Neill tensor as-
sociated to the above Riemannian submersion, where (-)|, denotes the pro-
jection onto the tangent space of the fibre S = §9s.

Warped product metrics with two homogeneous summands provide ex-
amples with ||A|| = 0. Examples with ||A]| > 0 are given by the total spaces
of non-trivial disc bundles which are induced by the Hopf fibrations, cf.
[6]. The following table, which lists the corresponding group diagrams and
associated constants, is taken from [7, Table 1].

Ccpmtl Hpm+1 Fml CaP?

G Um+1) Sp(1) x Sp(m +1) Sp(m+1) Spin(9)
H U(1l) x U(m) | Sp(1) x Sp(1) x Sp(m) | Sp(1) x Sp(m) | Spin(8)
K U(m) Sp(1) x Sp(m) U(1) x Sp(m) | Spin(7)
dy 1 3 2 7

do 2m 4m dm 8
IZUERR! 3 8 7

Ric® | 2m + 2 4m + 8 4m +8 28

Table 1: Group diagrams associated to Hopf fibrations.

The soliton potential u will be assumed to be invariant under the action
of G, u=u(t), and u(0) =0 will be fixed. If u satisfies the smoothness
conditions and the functions fi, fo satisfy

(14) £1(0)=0, f1(0) =1 and f2(0) = f >0, f2(0)=0,

then the work of Buzano [10] implies that there is a unique local solution of
the Ricci soliton equations with these initial conditions, and it extends the
soliton potential and the metric smoothly over the singular orbit.

Recall that the two summands case is also the set-up for Bohm’s work
[7, 8] on Einstein manifolds.
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2.2. Qualitative ODE analysis

The Ricci soliton equations for the two summands system can be read off
from the discussion in Section 2.1 and equations and . However, in
this form, the equations become singular at the singular orbit. Therefore,
a rescaling will be introduced which smooths the Ricci soliton equation
close to the initial value. It was used effectively by Dancer-Wang [23] and is
motivated by Ivey’s work [34]. Notice that under the coordinate change

1 f; 1 1 .
15 Xi=———"F+7 Yi=—— 5 fori=12,
(15) —u+tr(L) f; “a+u@) i
_ 1 a__ 1 d
- —u+tr(L)’ ds — —u+tr(L) dt

the cohomogeneity one two summands Ricci soliton equations reduce to the
ODE system

2
’ 9 Al 9 A3Y4
16 X, =X E:diXQ——Ez—l L 5 Ml gt
(16) 1 1<21 i3 >+d11+2 +d1Y12,

2
, A 243 Y5
X, = X, <§ d;X2 — gﬁ - 1) +22y2 Sz 80
=1

2
’ 2 € .2

=1

2
L =r (Z diX? — ;&) .
i=1

Here and in the following, the d% derivative is denoted by a prime . On the
other hand, the % derivative will always correspond to a dot .

To establish some basic properties of this ODE system, it will be enough
to assume that dy,ds > 0, A;, As > 0 and A3 > 0. However, in the main body
of the paper d; > 1 and Ay, As, A3 > 0 will be assumed.

Remark 2.1. (a) The case A3 = 0 is already well understood from works
on multiple warped products, see [1], 111, [13] 22} 23] 28 [34].

(b) The case d; = 1 implies A; = 0 in geometric applications. In this case
Cao-Koiso [15], [37] and Feldman-Ilmanen-Knopf [27] found explicit solutions
to the associated Kdhler Ricci solitons equations. Non-Kdhler steady and
expanding Ricci solitons will be constructed in Section 2.3. In the steady
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case these were independently found by Appleton [2] and Stolarski [46], who
use different techniques.

Notice that the time, the metric and the soliton potential can be recov-
ered from the ODE via

® L
t(s) = t(s0) +/ L(T)dr and f; = v for i =1,2,
Y diXi—1

and U =

L

In the new coordinate system, the smoothness conditions for the metric
in and the soliton potential in correspond to the stationary point

1
(17) Xy=Yi=_ and X;=Y;=0 and L=0.
1

Trajectories emanating from will be parametrised so that corre-
sponds to s = —o0.
The conservation law @ takes the form

e

2E2 =14 (C +eu) L2

2 2
Y4
(18) Y diXP+ Y AN~ Ay (n-1)
i=1 i=1 1

Consider the functions

3

L2 -1
2 b

2 2
Y4
S =) diX}+ > AY] - Agy%z +(n—1)
=1 =1
2
Sy =) diX;—1.
=1

Notice that 87 occurs in the conservation law and Sy = #H(L) encodes
the derivative of the soliton potential in the rescaled coordinates.

Fix € > 0 and recall from Section 1.3 that C' < 0 is a necessary condition
to obtain trajectories that correspond to complete steady or expanding Ricci
solitons and that C' = 0 is the Einstein case. Due to the initial conditions
and Proposition 1.2, the soliton potential satisfies u, % < 0 if C' <0, and

away from the singular orbit equality can only occur in the Einstein case.



Ricci solitons from Hopf fibrations 639

Therefore, any trajectory with ¢ >0 and C <0 satisfies 1,82 < 0.
Equality occurs at the initial stationary point and then Finstein tra-
jectories lie in the locus

(19) {81 = 0} N {SQ = 0}

whereas trajectories of complete non-trivial Ricci solitons are contained in
the locus

(20) {81 <0} N{Sy < 0}.

Conversely, trajectories in these loci correspond to Einstein metrics and
non-trivial Ricci solitons.

The invariance of the above loci for € > 0 follows from the Ricci soliton
ODE, as a direct calculation verifies

2
1d € €
s (S ax?- i €r2.
2d881 (iZId i 2£>81 2£ So,

2
do _ x2 _ Ep2
(1882—814—<zd2Xi 5L 1) Sy.

=1

Now the existence of trajectories which lie in one of the above loci and
in the unstable manifold of the critical point will be discussed. Differ-
ent trajectories will correspond to non-homothetic Einstein or Ricci soliton
metrics.

The linearisation of the Ricci soliton ODE at the initial stationary

point is given by

2.1 0 U oo o
0 +-1 0 0 0
T 0 0 0 0
0 0 0 + 0
0 0 I
The corresponding eigenvalues are hence d%, d% -1, d% —1 and d%, d%.

In particular, the critical point is hyperbolic if d; > 1. The corresponding
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eigenspaces are given by

E. = span{(2,0,1,0,0)},
Edi—l = span{(O, 1’0a070)7 (dl - 1a0a _17070)}a
and E% = span {(0,0,0,1,0),(0,0,0,0,1)}.

Notice that the stationary point lies in the set {S; =0} N{S2 =0}.
Furthermore, {S; =0} isa submanifold of R? if Y] # 0 and its tangent space
at (17) is span{(1,0,d; — 1,0 L0)ME Slmllarly, {S2 = 0} is a submanifold
with tangent space span {(dl, d2,0,0,0) } at (L7)). Notice that both tangent
spaces contain E but not £ 2 and that FE 1 @ E 2 is the tangent space to
the unstable mamfold '

According to the above discussion, trajectories in the unstable mani-
fold of that either remain in the set {S; = 0} N {S2 = 0} or flow into
{81 <0} N{S2 < 0} need to be considered. Notice, however, that if e =0
the ODE for £ decouples. Hence, the soliton system effectively reduces to
a system in X;,Y; for i =1,2. Counting trajectories with respect to the
possibly reduced system then gives the following result.

Proposition 2.2. Suppose that dy > 1. If € # 0, then there exists a 1-
parameter family of trajectories lying both in the unstable manifold of
and the FEinstein locus and a 2-parameter family of trajectories lying
both in the unstable manifold of and the Ricci soliton locus .

If € =0, then the unstable manifold of with respect to the reduced
two summands ODE in X1, X9 and Y1,Ys contains a unique trajectory lying
in the Einstein locus and a 1-parameter family of trajectories lying in
the Ricci soliton locus (20)). These give rise to an (up to scaling) unique Ricci
flat metric and a 1-parameter family of Ricci solitons with soliton potential
u = 0 at the singular orbit.

Proposition 2.2 is in agreement with the theory of solutions to the initial
value problem for cohomogeneity one Ricci solitons and Einstein metrics
developed by Buzano [10] and Eschenburg-Wang [26], respectively. Their
methods also carry over to the case d; = 1.

Notice that the ODE system and the initial stationary point
are invariant under changing the signs of Y3, £. Since £~ = — + tr(L) —
400 as t =+ 0, L >0 will be assumed along the trajectories. The choice
f2(0)=f>0in implies fo(t) > 0 for small £ > 0 and thus Y3 > 0 will be
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assumed. Recall that lim,_,_ Yi(s) = 1/d;. The ODEs for Y1, Ys, £ imply
that positivity of the variables is preserved along the flow.

The following lemma shows a basic dynamical property of the Ricci
soliton ODE and sets up the discussion of the long time behaviour.

Lemma 2.3. Let € >0 and consider a trajectory of the two summands
Ricci soliton ODE that emanates from at s = —00 and enters either
or (20).

Then there holds X1 > 0 for all finite s and X3 is positive for sufficiently
negative s. Moreover, suppose there is an sy € R such that Xo(s9) < 0. Then
Xso(s) <0 for all s > so.

Proof. Recall that lims_,_o, X7 = 1/d; > 0 and in particular X is positive
initially. If there is an s € R such that Xi(s) = 0, then X;(s) > 0. By con-
tinuity this implies X7 > 0 everywhere. .
The conservation law (18) implies that 2?21 diX?-1< Ag% —
S22 L AY2 <0 close to as Y1 — d—ll and Yy — 0. Similarly, %Y; -

2;23 % > 0 for sufficiently negative times. If X3(sg) < 0 in this region, then

the ODE

2 4
/_ 2 (3 2 A2 2 13 2 2A3}/2
Xy =Xy (;diXi - 5L —1) +d—2Y2 + 5L v

implies that X,(so) > 0 as e > 0. In particular X»(s) < X2(s¢) < 0 for all
s < sg. This contradicts Xo — 0 as s — —o0.

If the last statement is not true, then there exist s, < s* such that Xs < 0
on (s, s") and

X5(s,) =0 and X,(s,)
X5(s*) =0 and X,(s%)

9

0
0

AVARVAY

It follows that %Yf(s*) + 5L2%(sy) — 2’3—;}%(5*) < 0 which is equivalent to

oAz (Ya)* e (L)
d2 \ Y7 2\ Y,

A2<

672 > (84)-
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Similarly, the second condition implies the reverse inequality at s*. There-

fore,
A (Ya\* e (L)’ JAs (Ya\* e (L)’
de \ Y1 2\ Y, dy \ Y1 2\Y,
_d 2A3 2 _E L 2
da Ys

ds
for some £ € (84, 5*). On the other hand, observe that

dY, dL C
4 2x X)) and L2 2
ds Y, Yl( 1~ Xz) an dsY, Y,

Therefore, X5(§) < 0, € > 0 and s, < s* imply

d A3 2 I3 L 2 %
< — — — - (8 —
o<t 12 (2) 2 (E) )@ o
— 9 2@ &2()( X)—E £2X' (€)- (5, —s") <0
= 4 \ Y, 1— X2 Y, 2 Sk — S )
which is a contradiction. O

Remark 2.4. In fact, the possibility that X9 < 0 is the only obstruction
to long time existence. Geometrically this says that if the shape operator
remains positive definite, then the trajectory induces a complete metric.

If A3 =0, then X5 > 0 is immediate and the Einstein and Ricci soliton
loci and , respectively, are bounded regions in phase space. Com-
pleteness of the metric then follows as in Proposition 2.7 below. Geometri-
cally the case A3 = 0 corresponds to the doubly warped product situation
which was considered by Ivey [34], Gastel-Kronz [28], Dancer-Wang [22, 23]
and Angenent-Knopf [1].

. There-

If A3 > 0, notice that X5 > 0 clearly holds as long as 2 <
fore, the quotient
Yo
v
plays a central role in the discussion. Observe that w satisfies

w =

(21) w’:w(Xl —Xz).
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In fact this implies that the Ricci soliton equation is equivalent to an ODE
system with polynomial right hand side.

In order to obtain an a priori bound for w, fix d; > 1 and consider the
function

N 2(d1—1) 2d, 2(d1+1)
(22) Q(w)—Alw Ao w 3(1 2) w

T 2di—1)  dy 2dy d " dy) Ady A1)

Along trajectories of the two summands Ricci soliton ODE there holds

ey = -y [A1 Az o L2 by,
G(w) =w a d2w + As d1+d2 w r (X1 — Xo)

and non-zero roots of Q\ are of the form

2 LA di+1 {1i\/1_4A1A3 dy(2dy + dy) }

T 2A452d, +dy A2 (dy —1)(dy +1)
In particular, there exist two positive roots 0 < w1 < @ if and only if

R 2
(23) p-L_y, A A d

28 2dy + da) > 0.
42 dl(dl—l)d2d1+1( 1t d2)

Moreover, in this case, ©f < 2‘4723.
Note that the examples in Theorem A indeed satisfy the conditions
di >1and D > 0.

Proposition 2.5. Suppose that dq > 1, D>0ande > 0. Then the set

Y;
{X2>0 and 0<2<5J1}
Yy

contains any trajectory of the two summands Ricci soliton ODE that em-

anates from and flows into either or .

2A3°

Proof. The ODE for X5 shows that Xs remains positive if 5—22 =w? < A2
Since dzf < 2A723, it suffices to show that w < @y as long as X > 0. Consider
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the function

1 X - X\? 4
4 — S 2di-1) (AL T A2
(24) K 2w v G(w),

which was introduced by Bohm in the Einstein case [7]. On the set Xs > 0
it is a Lyapunov function since

2
d o gy (X1 X o
dSIC—w Y. ;del 1—(n—-1)X,

and 2?21 d; X; —1 < 0 holds in both loci. Notice that lims_,_ -, K = 0 and
K >0if % = w = w;. However, K is non-increasing and strictly decreasing
close to . This completes the proof. [l

Corollary 2.6. Suppose that d; > 1, D>0ande > 0. Then along trajec-
tories emanating from and flowing into or there holds X1,
Xo > 0 for all finite times. Moreover, the variables X1, Xo and Y1,Ys and w
are bounded, and if € > 0 then L is bounded too. In particular, the rescaled
flow exists for all times.

Proof. According to Lemma 2.3 one has X, X5 > 0 initially and X; > 0 is
preserved along the flow. Positivity of Xy follows from Proposition 2.5 and
X1, X5 remain bounded as 0 < dy X1 + da X9 < 1 due to and .

Then the ODE for £ implies that £ cannot blow up in finite time as
e > 0. By the same argument, this also holds for 52/1, Ys.

Alternatively, it follows from the bound % <wic< 2‘}423 that A, —

Ag% > %. The Einstein and Ricci soliton loci and are therefore
contained in the bounded region

2
A
{ > diX]+ MY+ 721/22 + (n— 1);52 <1 } :
=1

By considering w = % as an independent variable, one obtains an ODE

system with polynomial right hand side. Since w < @; is bounded, standard
ODE theory implies that the flow exists for all times. O

In order to prove that the corresponding metrics are complete, it suffices
to show that t,,x = co. Recall from the coordinate change that

(25) t(s) = t(so) + /S L(T)dr.
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Therefore it is necessary to understand the asymptotic behaviour of £. This
will be considered separately for the cases ¢ = 0 and € > 0.

Proposition 2.7. Suppose that di > 1 and D>0.

(i) The corresponding steady Ricci soliton and Ricci flat metrics are
complete.

(ii) The corresponding expanding Ricci solitons and Einstein metrics
with negative scalar curvature are complete.

Proof. (i) A special feature of the case ¢ = 0 is that £ = m is in fact
a Lyapunov function. As £ becomes positive initially and is therefore mono-
tonically increasing, it is bounded away from zero for s > sg and any sg € R.
Then the time rescaling shows that ¢ — oo as s — oo, i.e. the metrics
are complete.

(ii) Suppose that € > 0 and assume for contradiction that tyax < 00. Due
to this is equivalent to saying that || £||11(9,n0) < 0o. However, since L is
bounded due to corollary 2.6, this implies £ € L?(0, 00). Hence the ODE for
L yields £(s) > £(0) exp (=51 £]|12(0,00)) > 0 and L is bounded away from
zero for s > 0. However, this contradicts £ € L*(0, 00). O

Theorem A follows from Corollary 2.6 and Proposition 2.7 since all ex-
amples covered in Theorem A satisfy the conditions d; > 1 and D > 0. The
Einstein metrics are originally due to Béhm [g].

Remark 2.8. In the case of Einstein manifolds with negative scalar cur-
vature one may directly observe that the function £(s) bounded away from
zero for s > 0. Indeed, since 25:1 d;X; =1 in the Einstein locus, one has
S22 diXE > 1 and therefore £'(sg) > 0 whenever ££%(sg) < 1.

2.3. Ricci solitons from circle bundles

The two summands case allows the possibility d; = 1 and A; = 0. Geomet-
rically this case is realised by manifolds which are foliated by principal cir-
cle bundles over a Fano Kéahler-Einstein manifold (V,J, g). In this setting,
examples of Kdhler Ricci solitons have been found by Cao-Koiso [15],[37]
and Feldman-Ilmanen-Knopf [27]. Non-Kdhler examples have also been con-
structed independently by Stolarski [46] and Appleton [2].

The precise geometric set-up is as follows: Recall that due to a result of
Kobayashi [36] any Fano manifold V' is simply connected and hence H?(V, Z)
is torsion free. Therefore the first Chern class is ¢1(V, J) = pp for a positive
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integer p and an indivisible class p € H2(V,Z). Suppose that the Ricci cur-
vature of (V,g) is normalised to be Ric = pg. If 7: P — V is the principal
circle bundle with Euler class gm*p for a non-zero integer ¢ € Z \ {0} and
6 the principal S'-connection with curvature form Q = gn*n, where 7 is
the Kéhler form associated to g, then the Ricci soliton equation on I x P
corresponding to the metric

dt* + f2 ()0 ® 6 + f2(t)n*g

is described by the two summands system with d; = 1, do = d = dimg V and
A1 =0, Ay = dop, A3 = d24—qz. Notice also that the structure of the ODE has
changed since A; = 0. If the smoothness conditions are satisfied, this
construction induces a smooth metric on the associated complex line bundle
over V.

Metrics whose curvature tensor is invariant under the complex structure
are considered by Dancer-Wang [24] in the Ricci soliton case and by Wang-
Wang [47] in the Einstein case. This condition is equivalent to saying that

2 PR . A\f2 »p e
E_Zg_ —u+tr(L) + = f—ﬁ-i-i.

As a special case, the Kdhler condition reads

fa q fi

fo 2f2

and it is preserved by the flow. In both cases, the equations can actually
be integrated explicitly. In order to investigate non-Kahler trajectories, the
Ricci soliton ODE will be studied qualitatively as before. To adjust the
argument in Proposition 2.5 to the conditions d; = 1 and Ay = 0, adopt the

. Al _ . .
convention 71—y = 1. That is, consider

=_-_"F - = d K== (2L _22) _
G(w) 5~ 5% + 16 g-w® and K 5 Y G(w)

and note that ? has two positive roots 0 < @ < @y if 2p? > (d + 2)¢%. Then
the proof of Proposition 2.5 shows
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Proposition 2.9. Suppose that dy = 1, Ay = 0 and 2p* > (d +2)¢> > 0. If
€ > 0, the set

Y.
{X2>O and 0<2<w1}
Yy

contains any trajectory of the Ricci soliton ODE that emanates from
and flows into either or .

Completeness of the metric can then be established as in Proposition 2.7.
Notice in particular that long time existence still follows from Corollary 2.6.
As the proof shows, even though Y7 is not controlled by the conservation
law anymore since A1 = 0, it cannot blow up in finite time.

Corollary 2.10. Letd; =1, A; =0, 2p? > (d+2)¢> > 0 and € > 0. Then
any trajectory of the Ricci soliton ODE which emanates from the critical
point and lies in the FEinstein locus or Ricci soliton locus

corresponds to a complete Einstein or Ricci soliton metric, respectively.

Observe that the initial stationary point is not hyperbolic in the
case dy = 1. Therefore a center manifold exists and the analysis before
Proposition 2.2 does not carry over. However, the work of Buzano [10] and
Eschenburg-Wang [26] still applies and the existence of Ricci soliton trajec-
tories can be deduced, see also [2] or [46] for different arguments. Combined
with Corollary 2.10 this implies following result:

Theorem 2.11. Suppose that di = 1, A1 =0 and 2p* > (d + 2)q* > 0.

If e =0 there exists a 1-parameter family and if € >0 a 2-parameter
family of trajectories lying in both the unstable manifold of and the Ricci
soliton locus . In particular, these give rise to complete Ricci soliton
metrics on the total spaces of the corresponding complex line bundles over
Fano Kdhler-FEinstein manifolds.

Similarly, there exist a (up to homotheties) unique complete Ricci flat
metric and a 1-parameter family of complete Einstein metrics with negative
scalar curvature on these spaces.

Theorem B is a direct consequence of Theorem 2.11. The work of Apple-
ton [2] and Stolarski [46] shows that complete steady Ricci solitons exist in
fact for arbitrary values of p, q. Similarly, complete expanding Ricci solitons
for arbitrary p, g are constructed in [48].



648 Matthias Wink

The existence of Einstein metrics is well known: explicit Kéahler and
non-Kéahler Einstein metrics have already been described by Calabi [14],
Bérard-Bergery [5], Page-Pope [43] and Wang-Wang [47].

Remark 2.12. (a) Notice on the contrary that the construction of Kéhler
Ricci solitons due to Feldman-Ilmanen-Knopf [27] requires the condition
—q = p in the steady case and —qg > p in the expanding case, see also [24]
Theorem 4.20 and Remark 4.21]. For example, in the case of CP™ one has
p= % and one thus requires p > ¢? > 0 for the argument of Proposition 2.9
to work. In particular, the Kéhler examples due to Feldman-Ilmanen-Knopf
are not covered by the Corollary. In the case of CP"™, these Kahler Ricci
soliton metrics have also been investigated by Chave-Valent [19].
(b) It follows from the work of Appleton [2] that the Ricci solitons in
Theorem 2.11 are asymptotically conical.
(c) If ¢ > p, Appleton [2] proves moreover that there cannot exist a com-
plete Ricci flat metric on the associated complex line bundle. In4particu1ar,
p

the corresponding trajectory cannot satisfy the bound w < @ for all
times.

3. Asymptotics

This section discusses the asymptotic behaviour of the metrics which were
constructed in Section 2.2. In particular it will be shown that the steady Ricci
solitons are asymptotically paraboloid and the expanding Ricci solitons are
asymptotically conical.

3.1. Cone solutions

The concrete asymptotics of the metrics depend on the following well known
construction, cf. [8] or [21].

Proposition 3.1. Let (P,gg) be a homogeneous space with Ric= (n —
1)gg. Then the metrics

dt* + sin®(t)gp for t € (0,m),
dt> + t2gg for t >0,
dt* 4 sinh?(t)gg for t>0
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define cohomogeneity one Einstein metrics on (0,5) x P and (0,00) x P
with Einstein constant —5 = n,0, —n, respectively. Any of these solutions
will be called a cone solution.

Furthermore, the Ricci flat metrics together with the soliton potential
—u(t) = 5t induce a shrinking or expanding Ricci soliton on (0,00) X P de-
pending on whether e < 0 ore > 0. If e < 0 these solutions are called conical

Gaussians.

The above metrics have conical singularities at the singular orbits unless
P is a sphere. In this case the metrics correspond to the standard metrics
on S"t1 R™1 and H"H!, respectively. To obtain concrete formulae in the
two summands case, the following definitions are required.

Definition 3.2. Positive solutions (c1,cq) to the equations

A 2 A 2
(26) (n—1)dy = —21 + Ag% and (n—1)dy = —22 - 2A3%
3 5 3 e

are called cone solutions.

Remark 3.3. If A3 > 0, the cone solutions take the explicit form
1 A2d1 + 4A1A3(2d1 + dg)
: (*2 VD).

V720 1 dy \ 243(n — 1)(2d1 + da)
1
2
= —— (Aan £ 2A3(2d; +d2)V D
3 2d1+d2(2n 3(2d1 + d2)V >7
where the discriminant D is given by
(27) po(f2_d ' A d
- 2A32d + do A3 2dy + do ’

Inserting the geometric definitions of the constants Ay, Ao, A3 into , one
obtains

. . (RicG/H)? dy — 1
D >0 if and only if ——=— > (2d; + d2
aap =TTy
Suppose that there are two real cone solutions. For a cone solution (¢, ¢2),
set w = g—; Then the ordering w; < wo defines the first and second cone
solution.

In particular, if D> 0, cf. , there exist two cone solutions and it
is easy to check that w; < W < wy < Wy in this case. This has also been
observed by Bohm [7].
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Let D > 0 and let (c1, c2) be a cone solution as in definition 3.2. With the
normalisation of the Einstein constant —§ € {—n,0,n}, the two summands
Einstein cone solutions of Proposition 3. 1 take the form

(28) fi(t) = ¢isin(t) for t e (0,m)
in the case of positive scalar curvature and
(29) fi(t) = cit and fi(t) = ¢;sinh(t) for ¢ >0

in the Ricci flat and negative scalar curvature case, respectively. Any cone
solution is called first cone solution if that is the case for the pair (c1,c2) as
Remark 3.3.

Example 3.4. Recall the examples of group diagrams in table 1, which
induce the Hopf fibrations. In the HP™*!-example the cone solutions are

9 9 + 14m + 4m? 9 9 + 14m + 4m?
] = and c; = ;
(14 2m)(3+2m)? (142m)(3+2m)
2
=c; =1,

%!
=D

in the F™*1_example they are given by

9 (1+m)?2+m
Cl_

= and 62:4(1—|—m)2—|—m
(1+m)2(1+ 4m) 2

2m+1)2+m’
9 1+m 9

] = T dm and 3 = 4c?,

and in the CaP?-example they are ¢? = %, 3 = i? and ¢? = c3 = 1. In all

cases, the first pair also describes the first cone solution.

The following elementary but useful characterisation of wi and ws is
immediate from definition 3.2 and Remark 3.3.

Proposition 3.5. Let D > 0. Then the two positive roots of the function

(30) flw) = G0 = Gt + 4y (d1+d2>w

are the ratios wy, we of the first and second cone solution, respectively, i.e.

2 2 1 2 2 1
wi=—-r————VD and w ++vVD
1 2A32d1 + do an 27 2A3 2d1 + do
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In particular, it follows that w? < fjﬁ and w3 < fj@.

3.2. Steady Ricci solitons

The rotationally symmetric Bryant soliton on R", n > 3, is asymptotically
paraboloid and therefore non-collapsed. It will be shown that this is also the
case for the non-trivial steady Ricci solitons constructed in Section 2.2.

Recall from Proposition 1.4 that on a complete, non-trivial cohomo-
geneity one steady Ricci soliton there holds —u(t) — +/—C as t — oo and
0<tr(L) <% fort>0. Therefore if the shape operator remains positive

definite, it follows that t — 0 as t — co. According to Corollary 2.6, this

automatically holds in the two summands case if d; > 1 and D > 0.

In order to obtain the concrete asymptotics of the metric if A3 > 0, an
understanding of the long time behaviour of w = %’ is essential:
Proposition 3.6. Let dy > 1, D>0 and € =0. Then along trajectories
of non-trivial steady Ricci solitons the limit weo = limy_0o w(t) exists and

Proof. Let v(t) = v/det g; = f (1) fd2(t) denote the relative volume of the

principal orbit and consider the variables ¥ f v f for ¢ = 1,2. Observe
that & — di/n and “}/" wh/n,

Therefore the Bohm functional has the lower bound

Fo = vt (tr(rt) + tr((L<0>)2))

> v% tr(rt) 3, /n + A w2d1/n A3w2(2d1+d2)/n_

Since Fy is non-increasing, v tr(r¢) is bounded from above for ¢ >ty > 0

and hence w is bounded away from zero for these ¢. As w < @y, the variables

v f/ are hence bounded for ¢t > tg

Furthermore, the variables ¥ f v satisfy the ODE system

d v¥/nf n—2 v A (vl/”>2 As o1/
— = —(—u+ tr(L + + == 2( >
dt  fi (- n H(L) bil di \ fi f2

i'UQ/an _ ) n—2 . U2/nf2 +é (Ul/n>2_2A3w2 <,U1/n)
dt  f n f2 f2 f2
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the remaining polynomial terms are bounded. Her;ce, by comparison, the
variables ”Q/ff ¢ remain bounded. Therefore, one can pass to the w-limit set
Q. Due to its monotonicity, Fy converges. Its derivative has to vanish
on  and therefore the limiting value Fo = (v tr(r))se can be expressed in
terms of w as above. In particular, w converges.

Due to the known asymptotics, the coefficient of Uz;nf'i tends to —v/—C' and

The asymptotics of w simply follow from the ODE w = w {% — f—z} and

the fact that ;— —0ast— oo. O

Remark 3.7. It is also possible to derive an integral formula for w. Indeed,
it is straightforward to check that

d U - —Uu 1— 2
%{we i lfgzﬂ}:f(w)e fi ? ga

where f(w) is defined in (30)). If d; > 1, it follows that

eu

T

w (*) . t w(s))e ) fh=2(g) £d2 () g
(t e /Of( ())e™") f52(s) 2 (s)ds.

Since fi, fo are monotonic and e“(*) fg e_“(ids — \/% as t — oo due to
L’Hopital’s rule, one has the bound w(t) < C - m for some constant
C > 0.

Now the asymptotics of the metric can be deduced:

Proposition 3.8. Let di > 1, A >0,lA? >0 and suppose that (di +
1)i(0) = C < 0. Then the corresponding two summands steady Ricci soli-
ton metrics satisfy

HONE: ;

—u(t) - vV—C and " ﬁ(n —1)c;

7

as t — oo, where (c1,ca) denotes the first cone solution. In particular, w —
w1 ast — oo.
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Proof. Recall that —u(t) — +/—C as t — oo due to Proposition 1.4. Notice
that fi, fo satisfy

ﬁ+A1—|—A3w4
i difi
g Oy o4 A2 24507
f2_ ( u+d1w)f2 (n )f2+ d2f2

fi=—(ci- &)~ (- 1)

Asw < w; < 1/2‘4723, Aq > 0 and w converges, both f1, fo satisfy a differ-
ential equation of the form
.. . f2
f=—af-m-nl 42
foo2f
where a;: [0,00) — R are smooth functions with lim; o a;(t) = af > 0. Set
A = min{aj,a’}. It is shown in [2, Lemma 6.2] that for every € € (0, A) and

every solution f : [0,00) — R with f(0), f(0) > 0 there exists ty > 0 such
that

Fto)? +9- (1 +e)7 " (t—to) < f2(t) < F(to)® + 7+ (t —to)

aste
aiFe
It follows that 71 < le < 71 + for every sufficiently small € > 0. In the

limit as € — 0 one obtalns equahty and thus

for all t > tg, where v+ =

w2 - @ A1 —i—Agng
oo d1 A2 — 2143(4.)%0.

In particular, 0 < ws < @ is a root of f(w) and due the characterisation
3.5 of the cone solutions, it follows that w., = w; is the ratio of the first cone
solution.

The asymptotic behaviour of fi, fo now follows with the formulae in
definition 3.2. O

Remark 3.9. Ford; > 1, D>0ande = 0, the asymptotics of the rescaled
Ricci soliton ODE of Section 2.2 are

1
X1,X9—0 and Y7,Y9s -0 and £ — —

V=C

as s — oQ.
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3.3. Expanding Ricci solitons

It will be shown that the expanding Ricci solitons are asymptotically conical
at infinity and the soliton potential grows quadratically at infinity.

Recall from @D that on a complete, non-trivial cohomogeneity one ex-
panding Ricci soliton — is asymptotically linear and the mean curvature of
the principal orbit is bounded. Furthermore, Corollary 2.6 implies that the
shape operator is positive definite in the two summands case. The definition

of the rescaled variables in thus implies:

Proposition 3.10. Suppose that dy > 1 and D > 0 and consider the flow

of the Ricci soliton ODE in the phase space of expanding Ricci solitons.
Then

X1,Xo—0 and Y1,Yo -0 and £L—0
as s — oo.

A modification of the discussion in [22] can now be used to deduce the
claimed asymptotically conical geometry at infinity.

Proposition 3.11. Suppose that di > 1 and D > 0. Then along trajecto-
ries corresponding to non-trivial expanding Ricci soliton metrics the soliton
potential and shape operator satisfy

—ift)

€
; 5 and t- Ly — 1,

ast — oo.

Proof. Consider the ODE system
2

et Y (N 1. G ) LN § I

ds L2 ( ; i )£2+2( X

AN Ay (N Y

di \ L di \ £ i)’
2

S22 (N gx2o1| 22 1+ X

ds L (; Z )£2+(+2)

€
2

LA (VT 24y (Vs
doy \ L dy \ L
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and notice that ds L = —%Xi implies that both limits §; = lims_ % €
[0, 00) exist.

If g1 = 0 then, asw = % remains bounded, one necessarily also has g2 =
0. In this case one can proceed as in [22, Lemma 3.15] to show that 2(; — %

as s — oo because the extra terms involving As tend to zero. Similarly,
integrating the ODE for £ implies £2 s —> as § — 0o0. Since dt = Lds,
this yields s ~ £ t2 and hence L -t —> Zast —> 00. The claim then follows
from the deﬁmtlon of the coordinate change in

It remains to rule out that possibly ¢; > 0. In this case the existence of
Woo = liMg_y00 % is immediate. Hence the ODEs imply

X1 Xo 9 2
ﬁ — —|— d— (Alyl + A3y2w ) and F + df (Azyz 2143@/2“00)

as s — oo and both limits are positive as € > 0 and w?2, < 2A . Set A; =
lims_y o0 & 7+ > 0. It follows that

2
Y, Yi (Ei:l X7 — 5L7 — Xi) Ik 2A;

T (s - 50 e

as s — 0o, but if ¢; > 0 L’Hopital’s rule implies A; = 0 and thus a contra-
diction. 0

Added in proof. Due to proposition 2.5, it follows as in [42, Lemma 4.6]
that moreover lim;_, f; exist in (0, 00) for i = 1, 2.

3.4. Ricci flat metrics

The rescaled coordinates of Section 2.2 are particularly suited to analyse
the Ricci flat trajectories. The induced Ricci flat metric is asymptotically
conical and in fact is asymptotic to the first cone solution f;(t) = ¢;t. This
also follows from Bohm'’s [§] original construction.

Proposition 3.12. Let d; > 1 and D > 0. Along trajectories of the Ricci
flat system X; — % and Y; — n%l as s — 0o, where (c1,c2) denotes the first
cone solution.

Proof. Recall from Corollary 2.6 that the variables X;, Y; for i = 1,2 are all
positive and bounded along the flow since d; > 1 and D > 0. To deduce the
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asymptotics, consider the function
G =Yy,

which is in fact the inverse of Bohm’s Lyapunov function in the X-Y-
coordinates. Its derivative is given by

2
!’ 1
G :ng{;dixl?— n}

and hence it is non-decreasing and bounded. Thus, it converges to a finite
positive limit as s — co. This also shows that Y7, Y5 are bounded away from
zero as § — oo. Standard ODE theory now implies that the w-limit set 2 of
the flow of X1, Xo, Y7, Y5 is non-empty, compact, connected and flow invari-
ant. As G is monotonic and bounded, it must be constant on 2. But since
d1 X1 + daXs = 1 there holds G = 0 if and only if X1 = Xo = % Moreover,
this yields

;11 Al o AYs
0=X=—(—--1 —Y] — ==
1 n<n >+d1 1+ d1Y12’
;11 Ay o A3Yy
=X, =-(=-=-1 Tiy2 _9fB 2
0 2 n<n >+d 2 dy Y

on the w-limit set. In particular, the pair ((nY;)™!, (nY2)™!) satisfies the
equations of the cone solutions. Since the bound Y2/Y7 < @ holds along
the flow and wy < W1 < wo < W9, it follows that Y; — % as s — 0o, where
(c1,c2) describes the first cone solution. This completes the proof. O

The asymptotic behaviour of the metric can be deduced from fz =X
¢; as t — 0o. The metric is therefore asymptotically conical at infinity.

=

3.5. Ricci flat metrics: Explicit trajectories and rotational
behaviour

It is a special feature of the Ricci flat equation that it reduces to a planar
system for the variables X1, Y] as the variable £ decouples completely. More
generally, in the Einstein case there holds Xy = d%(l —d1X;) and the con-
servation law then determines Y5 in terms of X1, Y7 and %EQ. Explicitly,
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it is given by

24 2,4 A2V + 443 (Z?Zl diX?+(n—1)5L2 -1+ A1Y12) Y7

Initially, Y5 is given by the solution corresponding to ’—’ as limsﬁ oo Yo = 0.
Notice that the discriminant vanishes if and only if Y2/ Y2 = A and recall

that if d, > 1, D >0 and & > 0 the estimate Y/YE <@f < £% A has been

established. Hence, in this case, only the ’—’ solution is realised by the flow.
Therefore, consider the ODE system

X =(x x2 o8 x, + - S22
1 (1+¢><@ R R > )

2A-+éi ——+ L
' 945 ) 4 m

2
A2 9
— A2YA 4+ 4A E i X2 —D=L2 -1+ A Y2 | Y2
2, As ¥y + 3<i:1d i+ (n )25 + 11) s
’ d1 d1 1 € .9
Y, = Y] X2 -2-X —=L-X
1 1<d2 1 & 1+d2 25 1>,
= —X —2—X —_——
L L(nd2 & 1+d2 2£

In the Ricci flat case this yields indeed a 2-dimensional system for X; and
Y1. Moreover, one has L(s) = L(sg) exp [fsso (ng—;X% - ZQX + C%) dT] .
Recall from Proposition 3.12 that one expects (Xl,Yl) (L, n%l) as
s — oo if the cone solutions are real. To study the dynamics of the planar
(X1, Y1)-system close to the stationary point (2, nlc ), consider its linearisa-

tion at that point. It is described by the matrix

e vt )

L 0

c1n

The eigenvalues are the solutions to the quadratic equation

n—1 2 2 /1 1
A= n—1-2432 (—+—)| =
n +n2 |:77/ 36% <d1+d2>:| 0

and it is therefore easy to deduce:

A2+
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Corollary 3.13. The limiting point of the Ricci flat trajectories is a stable
spiral if and only if

(n—1)(n—9) /1 1
31 — L 4243 —+ — ] <0.
(31) 8 R P B P

In particular, if As =0 this is equivalent to 2 < n < 8. Otherwise, it is a
stable node.

The reduction to the planar (X7, Y7)-system can also be used to describe
explicit trajectories. Trajectories which correspond to smooth complete Ricci
flat metrics must emanate from (dil, d%) and are expected to converge to
(%, %q) In low dimensional examples, these trajectories are actually realised
by straight lines! This can be seen by introducing polar coordinates centred
at (d%ﬂ dil), and a straightforward calculation verifies that the angle remains
constant.

This provides a new coordinate representation of metrics of special

holonomy considered by Bryant-Salamon [9] and Gibbons-Page-Pope [29].

Theorem 3.14. On the open disc bundles associated to the group diagrams
G =Sp(2), H= Sp(1) x Sp(1), K =U(1) x Sp(1) and G = Sp(1) x Sp(2),
H = Sp(1) x Sp(1) x Sp(1), K = Sp(1) x Sp(1) the trajectories of the com-
plete Ricci flat two summands metrics are line segments when represented
in the above coordinate system.

3.6. Einstein metrics with negative scalar curvature

It will be shown that in this case the Béhm functional Fy asymptotically
approaches the value of the first cone solution, and hence work of Béhm
implies that the metric is in fact asymptotic to the first cone solution f;(t) =
¢; sinh(t).

Proposition 3.15. Let d; > 1 and D > 0. Then the asymptotic behaviour
of trajectories corresponding to complete FEinstein metrics with negative
scalar curvature is given by

1 Y5 /2
Xi1,Xo— — and Yl,Y2—>O,w:—2—>w1 and L — 4/ —
n Y; ne
as s — oo, where w; = 2—; is the ratio of the first cone solution.

Furthermore, o — n(n — l)cfdl/ncgddn as s — 00, which is the value of

Fo evaluated on the first cone solution (c1,c2).
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Proof. As in the proof of Corollary 2.6, introduce the variable w = % in

order to view the Ricci soliton equation as an ODE with polynomial right
hand side. Furthermore, all variables remain bounded along the flow and
hence the w-limit set € is non-empty, connected, compact and flow-invariant.
Recall from Remark 2. 8 that L(s) is bounded away from zero for s > 0.
As the quotients ¥: v satisfy 2 s L = %X,-, they are monotonically decreasing
and hence converge as s — 0o. Moreover, the quotients are well-defined on 2.
Therefore their derivatives vanish, which implies Y; - X; = 0 on 2. Moreover,
since L is bounded due to Proposition 2.7, X is bounded away from zero and
in particular is non-zero on ). This implies 0 < Y5 < w1Y] — 0 as s — oo.
~ Now consider the evolution of the Bohm functional Fo=
v (tr(re) + tr((L(O))Q)) , which was introduced in (10). In the current
coordinate system it is given by

HY 2d:/n ZAY2 As +ZdX2—<ZdX>
_Hy‘2d/"{AY1+Y2 <A2 A2 >+de2_}

=1

Observe that it is bounded from below by zero as % =w<w < 2A

thermore, according to ., Fo is non-increasing and therefore converges
as s — oco. However, for Fy to be finite on the w-limit set €2, one has
to have Z?:l diXi2 = %, which forces X7 = Xy = % in the Einstein locus
Z?:l d; X; =1 as X1, X2 > 0. Therefore X7 is constant on €2 and then also
L due to the ODE for X;. Finally, the ODE for L itself shows that %L’z = %
on 2.

To deduce the asymptotic behaviour of w, first observe that the mono-
tonicity of Fy and

Jo = (A + Agw? — Azw ) + v/ e ((LO)?)

2d2/n
— w;;l2/n + Ao w2d/n A3w2(2d1+d2)/n + v?/" tr((L(O))Q)
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imply that w is bounded away from zero for ¢ > t3 > 0. Notice furthermore
that

d om On2y _ 4 d [ A 2i/n 4. 22di+ds)/n
T tr((L ))—ﬁi}b—ﬁ 2d/n-|—Aw Azw

_ _QnT_l,UQ/n tr((L(O))2) . 2dn#d?w—2d2/n—1f(w)’

where the polynomial f(w) is defined in ([30)). Therefore, 02/ tr((L()?) can
be treated as an independent variable, which is nonnegative, bounded by &y
and satisfies a well-defined ODE on the w-limit set 2.

Since JF( takes a finite value on 2 and %ffo = —2”7711)2/” tr((L0)2), it
follows that v?/™ tr((L(®)?) — 0 as t — co. This in turn implies f(w) — 0
and thus w — wy as t — oo due to Proposition 3.5.

This also implies Fy — 2d2/n (A1 + A2w1 Agwl) as t — oo, which is
easily seen to be the value of the first cone solution by using the identities
in Definition 3.2. O

Notice that = ’ — \F as t — oo immediately implies that fi, fs
grow exponentlally at mﬁmty In fact, the metric is asymptotic to the first
cone solution at infinity. This follows from a more general result of Bohm
[8, Corollary 2.4]: If the scalar curvature of the principal orbit is positive
and JFy is bounded from below, then any Einstein trajectory that takes a
constant value on Fy is a cone solution. An argument specifically adapted
to the two summands case is given in the proof of Proposition 4.2.

4. Remarks on Bohm’s work in the Einstein case
4.1. Convergence to cone solutions

The results in Sections 3.4 and 3.6 show that the non-compact Ricci flat
metrics and Einstein metrics with negative scalar curvature of Section 2.2
are asymptotic to the cone solutions at infinity. In this section it will be
shown that the asymptotics of the Ricci flat trajectories also imply that the
metric actually converges to the cone solution as the volume of the singular
orbit tends to zero, i.e. as fo(0) = f — 0. In fact this follows for any sign of
the Einstein constant and recovers convergence results due to Bohm [7, [§].
In comparison to Bohm’s work, the main technical simplification is that the
proof does not rely on the Poincaré-Bendixson Theorem.
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Recall from that the metric is given by

gng = dt* + f1(t)*gs + f2(t)*gq

away from the singular orbits. It follows from the results of Eschenburg-
Wang [26] that there exists a unique one parameter family cz(t) =
(fi, f1, f2, f2)(t) of solutions to the Einstein equations (3 3), () with initial
condition c7(0) = (0,1 , f,0) for any f > 0. Moreover, Bohm [7] has observed
that it depends continuously on the 1n1t1a1 condition f > 0. Notice also that
(@) implies (d1 + 1) f2(0) = s —|— > 0 if either ¢ > 0 or f? < 2‘42 and
€ < 0. However, the equations are a pr10r1 not well defined if f = 0. ThlS sin-
gular condition corresponds geometrically to the collapse of the full principal
orbit.

To describe the behaviour of the Einstein equations as the volume of
the singular orbit tends to zero more concretely, the following observation is
key: In the (Xj, Y;, £)-coordinate system defined in , the initial condition
(0,1, f,0) of the trajectory c 7 corresponds to the stationary point , which
is independent of f. Furthermore the initial condition f5(0) = f can be
recovered via f = lims_s_oo Y In particular, f = 0 is the limit of trajectories
with £ = 0.

However, the two coordinate systems are only equivalent along trajec-
tories with £ > 0. Nonetheless, due to the continuous dependence on the
initial condition, any trajectory with £ = 0 can hence be viewed as a con-
tinuous limit of Einstein trajectories. Hence, the collapse f — 0 is described
in the (Xj,Y;, £)-coordinates by the solution of the Ricci flat equations. By
construction this solution lies in the unstable manifold of and due to
Proposition 2.2 it is indeed unique.

Furthermore, due to the uniqueness of solutions ¢ 7 of the Einstein equa-
tions with initial condition c(0) = (0,1, f,0), one might expect that the
limit as f — 0 is a cone solution. This intuition is confirmed in Proposi-
tion 4.2.

In the case of Einstein metrics with positive scalar curvature, the proof
of Proposition 4.2 requires the concept of maximal volume orbits:

Notice that the volume V of the principal orbit satisfies V = Vtr(L),
where tr(L) is the mean curvature. Along trajectories corresponding to Ein-
stein metrics with positive scalar curvature, every critical point of V is a
maximum or a singular orbit is reached. Therefore, if the maximal volume
orbit exists, it is unique and characterised by tr(L) = 0.



662 Matthias Wink

In the two summands case, if A3 =0, due to a result of Bohm [7, Sec-
tion 4, (e)], the maximal volume orbit always exists. An alternative argument
is discussed below, mainly to introduce a natural coordinate system which
extends past the maximal volume orbit.

Lemma 4.1. If A3 =0 and ¢ < 0, then any Finstein trajectory has a max-
tmal volume orbit.

Proof. In analogy to , introduce the variables

. SN 1 —~
(32) Xl-:ﬁ, Yi=—, for i=1,2, and L =tr(L).
fi fi
Due to the assumption A3 = 0 the two summands Einstein equations
take the form

<)

Fla S
=0
I
|
>

D)

I
N M
|
NgE
&

)

Rl V]

and the conservation law is
d; X2 AY2+ (n—1)= = L2
(33) Z + Z (n—1)2 ;=L

Notice that the time slice has not been rescaled and that the conservation
law and £ = 21221 d; X; describe the rescaled Einstein locus .
Clearly the above system is an ODE system with polynomial right hand
side. In particular, a solution can only develop a finite time singularity if the
norm of (Xj,Y;, £) blows up. However, the conservation law shows that
this can only be the case if L blows up. At the first singular orblt i.e. at time
t =0, one has L = +oo and L is strictly decreasing for all ¢ >0 as e <0.
Hence, the finite time singularity corresponds to L = —o0o and in particular
there exists a time with tr(L) = £ = 0, the maximal volume orbit. O

From now on fix the normalisation —5 € {—n,0,n} of the Einstein con-
stant —5 and recall that in this case the corresponding cone solutions are
given by , . The following Proposition recovers the convergence re-

sults of Bohm [7, Theorem 5.7], [8, Theorem 11.1].
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Proposition 4.2. Suppose that dy > 1 and A3 = 0. As f — 0, the solution
cy to the two summands Einstein equations converges to the first cone so-
lution on every relatively compact subset of (0,m) if =5 =n and (0,00) if
—5 € {-n,0}, respectively.

Proof. Recall that the limit trajectory with f = 0 corresponds to a trajectory
with £ = 0, more precisely the unique solution of the Ricci flat system in
X;, Y; in the unstable manifold of . According to Proposition 3.12, the
Ricci flat trajectory asymptotically approaches the first cone solution, which
takes the constant value X; = % and Y; = % for 2 = 1, 2. Notice that this
is in fact the value at ¢ = 0 of all cone solutions. Therefore it will be called
base point of the cone solution.

If € > 0 notice as in the proof of Proposition 3.15 that the variables X;, Y;
are bounded, that the Bohm functional Fy is bounded from below and non-
increasing, and that it has a critical point on the cone solution. In fact,
any Einstein trajectory that takes a constant value on Fy is a cone solution
and Fo = n(n — 1)c§d1/nc§d2/n. However, since A3 = 0, the cone solution is
unique and hence the minimum.

If —5 =n, then implies that Fy achieves its minimum along a
trajectory c; on the maximal volume orbit. On any maximal volume or-
bit the coordinates satisfy 22221 di)/i\'i = £ =0 and the conservation
law hence implies that the variables )A(Z,?Z are bounded. Thus, Fy =
n(n—1) [, ?i_mi/ " has a minimum on the maximal volume orbit, which
is achieved by the value of cone solution.

However, Jy is constant on the cone solution and since the solution cf
approaches the base point of the cone solution as f — 0, the claim follows.

O

Remark 4.3. (a) The simplifying assumption A3 = 0 can be relaxed. For
the geometric examples in 3.4, one can calculate directly that the first cone
solution realises the minimum. So the exact same proof works if D > 0 and
€ > 0 due to Proposition 2.5.

(b) The behaviour of the Bohm functional close to cone solutions was
studied in a more general context in [§]. In particular, Bohm shows that any
stable cone solution is a local attractor of the cohomogeneity one Einstein
equations. In the two summands case, the cone solutions are stable if d; > 1.
However, the cone solutions corresponding to the circle bundle construction
of Section 2.3 are unstable.
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(c) In the original proof, Bohm [7] uses a coordinate system specifically
adapted to the cone solution to find a limit trajectory, which solves a pla-
nar ODE. The limit trajectory lies in a compact planar domain and the
Poincaré-Bendixson Theorem is applied to prove convergence to the base
point. Stability of the first cone solution then follows via an attractor func-
tion, a version of which is in the Einstein case.

The planar ODE in Bohm’s work is similar to the reduction of the Ricci
flat equations to a planar ODE in Section 3.5. However, in the Ricci soliton
case, the extra degree of freedom of the soliton potential prevents a similar
reduction and a different proof is required.

(d) Bohm’s [§] construction of the complete, non-compact Einstein met-
rics which were recovered in Section 2.2 relies on the above convergence
result, i.e. on the fact that for f2(0) = f — 0 the trajectories remain close
to the cone solution and are thus defined for all times. The proof in Sec-
tion 2.2 shows moreover that one obtains an Einstein metric for all f2(0) > 0.
Notice that in the Ricci flat case the metric is unique up to scaling.

4.2. Bohm'’s Einstein metrics of positive scalar curvature

For the convenience of the reader, this Section explains how the refined
asymptotics of the Ricci flat equations in Section 3.5 and Proposition 4.2
yield Bohm’s [7, Theorem 3.4] Einstein metrics of positive scalar curvature
on low dimensional spaces, including S? x S3,...,58% x S7 or §* x S°.

It should be emphasised that the overall strategy of the construction due
to Bohm remains the same.

A solution ¢ = (f1, f1, fo, fg) of the two summands Einstein equations

with initial condition ¢;(0) = (0,1, f,0) is called symmetric if there is 7 > 0
such that c¢(7) = (0,1, f,0). In fact, c7 is symmetric if and only if there
exists tg > 0 such that C]?(to) = (fl (to),o, fg(to),O) with fl(to),fg(to) > 0.
In particular, reflection along the maximal volume orbit, the unique orbit
with tr(L) = 0, is an isometry precisely for symmetric solutions.
Moreover, since w = f—; satisfies w = w(% — %), any symmetric solution
is characterised by a critical point of w on the maximal volume orbit. It is
an important observation due to Béhm [7, Lemma 4.2.1] that critical points
of w are non-degenerate.

Theorem 4.4 (Bohm). Letd; > 1, A3 =0 and —5 = n. If the dimension
of the principal orbit satisfies 2 < n < 8, there exist infinitely many symmet-
ric solutions to the two summands Einstein equations.
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Proof. Recall that symmetric solutions are induces by critical points of w at
the maximal volume orbit. We may use the normalization Ay = da(dy — 1) >
0, which in geometric applications corresponds to setting Ric? =dy — 1 > 0.
Then the metric of the round sphere is given by (f1, f2)(t) = (sin(t), cos(t))
and it induces a solution to the two summands Einstein equations without
any critical point of w before the maximal volume orbit. Thus a general
counting principle based on the non-degeneracy of the critical points of w
implies that it suffices to show that there are trajectories ¢y with an arbi-
trarily high number of critical points of w before the maximal volume orbit,
see [7, Lemmas 4.4 and 4.5].

Recall that the maximal volume orbit of a trajectory is achieved exactly
when tr(L) = 0. In the (X;,Y;, £)-coordinates this corresponds to the
blow up time of L. In particular, critical points of w which are detected by
the rescaled system happen to be before the maximal volume orbit. Recall
that w’ = w (X7 — X3) and that every critical point in the rescaled variables
also corresponds to a critical point of w in the original time frame ¢. Since the
FEinstein trajectories lie in the subvariety diX; + doXo = 1, critical points
occur if and only if X; = %

Recall that by Proposition 3.12 the trajectory of the Ricci flat system
satisfies X; — % and Y; — ﬁ where (c1, c2) denotes the first cone solution.
Moreover, observe that the Ricci flat system is realised by solutions to the
two summands system for any value of € € R by the trajectory with £ = 0, as
¢ and £ only occur in the combination %/32. However, as explained in Section
4.1, the limit _E = 0 exactly corresponds to a smoothing of the trajectory ¢
in the limit f = 0. Due to the continuous dependence of the solution on
the initial condition, for any € € R and f > 0 small enough, the solution
to the two summands system approaches the base point of the first cone
solution along a trajectory which is C-close to the Ricci flat trajectory Yrp
of Proposition 3.12 with £ = 0, and then remains close to the actual cone
solution in the sense of Proposition 4.2.

The dimension assumption and Corollary 3.13 imply that the projection
of the Ricci flat trajectory yrr onto the (X7, Y7)-plane rotates infinitely often
around the stationary point (%, C%n), which is the base point of the first cone
solution. Hence, the variable X; takes the value X; = % arbitrarily often.
This implies that the number of critical points of w along ¢z, which occur
before the maximal volume orbit, tends to infinity as f — 0.

A direct computation of curvatures shows that the metrics are inhomo-
geneous and non-isometric, cf. [7, Section 6. O
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5. Quasi-Einstein metrics
5.1. Introduction

In the study of smooth metric measure spaces the m-Bakry—Emery—Ricci
tensor Ric + Hessu — %du ® du plays a central role, cf. [18]. It also naturally
appears in the context of warped product Einstein manifolds, where it has
led to the notion of m-quasi-Einstein metrics or (A, n + m)-Einstein metrics
in the terminology of He-Petersen-Wylie, cf. [33]:

Definition 5.1. Let (M, g) be an n-dimensional Riemannian manifold, u €
C*®(M), m € (0,00] and € € R. Then (M, g,e""dVolyr) is called m-quasi-
Einstein manifold if

1
(34) Ric+ Hessu — —du ® du + %g =0.
m

[

The sum m +n is called effective dimension and —5 is the quasi-Einstein

constant.

Kim-Kim [35] observed that any connected m-quasi-Einstein manifold
with m < oo satisfies the following conservation law: There exists a constant
u € R, called characteristic constant, such that

3

=0.
2

(35) Au — |Vul? + mpe?/™ 4 m
In this case, Kim-Kim [35] proved that if m > 1 is an integer and (N™, h)
is Einstein with Ric; = ph, then the warped product

(36) (M x N, g+ e 24/mp)

is Einstein. Conversely, if (M x N,g+ e~2u/mp) is Einstein, then
(M, g,e "dVolys) must be m-quasi-Einstein and (N, h) must be Einstein
with Ric, = ph.

This point of view on Einstein warped products was successfully used
by Case-Shu-Wei [16] to show that any compact Kdhler m-quasi-Einstein
metric with m < oo is Einstein. In contrast, recall that all known non-trivial
compact Ricci solitons are Kahler.

Hall [30] constructed m-quasi-Einstein metrics on total spaces of complex
vector bundles associated to principal circle bundles over products of Fano
Kahler-Einstein manifolds. Due to the induced hypersurface foliation their



Ricci solitons from Hopf fibrations 667

geometry can in fact be described using cohomogeneity one equations similar
to those considered in Section 1.1. The case of a single base factor is due to
Lii-Page-Pope [39]. Remarkably, the Lii-Page-Pope metrics are conformally
Kahler and the associated Kahler class is a multiple of the first Chern class
as shown by Batat-Hall-Jizany-Murphy [4].

5.2. The initial value problem for cohomogeneity one
quasi-Einstein metrics

The formulae for the Ricci curvature of a cohomogeneity one manifold in
Section 1.1 yield that the m-quasi-Einstein equation takes the form

(37) —(8V" Ly)” = d(tr(Ly) = 0,
(38) —te(fe) — tr(L2) + i — %iﬁ +5=0,
(39) f— (—a 4 tr(Le)Le e+ %}1 —0,
and the conservation law is given by

(40) i+ (=i + te(L))i + mpe™™ +m= = 0.

2

Remark 5.2. Notice that for f = e%/™ the conservation law is equivalent
to

d [ / fom e
Sl il et L B
i f <mf+r( )>f—|—f2+2,
and hence it is the Einstein equation for the added factor in Kim-Kim’s [35]
warped product construction (36)).

The following Proposition generalises an observation due to Back[3] in
the Einstein case, see also [26] and [24].

Proposition 5.3. Let M be a connected manifold and g a C?-Riemannian
metric on M. Suppose that G is a compact Lie group which acts isometrically
and with cohomogeneity one on (M, g) and that the action has a singular
orbit. Let u € C3(M) be G-invariant.

Then implies and if the conservation law is satisfied,
then holds as well.
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Proof. The fact that implies follows as in the Ricci soliton case,
cf. [24, Proposition 3.19], as the equations are identical.

Let vy be the relative volume of the principal orbit (P, g;). Then it follows
that 4v = tr(L)v and due to [24, Formula (3.16)] there holds

d d
(07 (Rie(V, M) + 5 ) 402 (2u (L) + = (i tr(L))> — 0.

By combining this with Ric(N, N) = — tr(L) — tr(L?) and the conservation
law , one obtains

d 1 1

= (1)2 (Ric(N, N) i = i 4 ;)) = 200> (Ric(N, N) i = i + ;) .
Therefore v? (Ric(N, N) + it — =% + 5) is a multiple of e* which vanishes
at the singular orbit, and thus vanishes identically. (]

Proposition 5.4. Let M be a smooth manifold of dimension dim M > 3.
Suppose that a solution of the m-quasi-Finstein equation on M is given by
a C2%-Riemannian metric g and uw € C3(M). Then g and u are real analytic
in harmonic and geodesic normal coordinates.

Proof. The m-quasi-Einstein equation and the contracted second Bianchi
identity give rise to the PDE

1
Ric+ Hessu — —du@du+§g:O,
m 2

A(du) + Ric(-, grad u) (Au)du =0

2
m
for (g, du). Notice that the %—terms are of lower order and thus the principal
symbol is the same as in the Ricci soliton case. Hence, (g, du) is a solution of
a quasi-linear elliptic system and the regularity analysis in[24, Lemma 3.2]
carries over without any changes, see also [25, Theorem 5.2]. O

The initial value problem for m-quasi-Einstein metrics at a singular orbit
can be solved analoguously to Buzano’s [10] approach in the Ricci soliton
case: Due to Proposition 5.3 it suffices to consider , and the relation
gt = 2g:Ly. Setting up an ODE system for (g¢, Ly, u) as in [10], one observes
that the —%QQ—term simply disappears in the error terms that occur in
Buzano’s proof because it is of lower order. In particular, the construction
of a formal power series solution is unchanged. Due to the real analyticity
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of m-quasi-Einstein metrics as in Proposition 5.4, a Theorem of Malgrange
[40, Theoreme 7.1] then yields a genuine solution. Alternatively, a Picard
iteration may be applied as in [26].

Theorem 5.5. Let G be a compact Lie group acting isometrically on
a connected Riemannian manifold (M,g) and suppose there exists a sin-
gular orbit Q = G/H. Choose q € M such that Q@ = G -q and denote by
V =T,M/T,Q the normal space of Q at q. Then H acts linearly and or-
thogonally on V and a tubular neighbourhood of QQ may be identified with its
normal bundle E = G x g V. The principal orbits are P = G/K = G -v for
any v € V \ {0} . These can be identified with the sphere bundle of E (with
respect to an H -invariant scalar product on V). Let g = bh & p_ be a decom-
position of the Lie algebra of G where p_ is an Adg-invariant complement
of h = Lie(H).

Assume that V. and p_ have no common irreducible factors as K-
representations.

Then for any € € R, any m € (0, 00|, any G-invariant metric gg on Q
and any shape operator L: E — Sym?(T*Q) there exists a G-invariant m-
quasi-Einstein metric on some open disc bundle of E.

Remark 5.6. The assumption that V' and p_ have no common irreducible
factors as K-representations is primarily a technical simplification. However,
as Eschenburg-Wang point out in [26, Remark 2.7] it is also natural in the
context of the Kaluza-Klein construction.

5.3. New quasi-Einstein metrics

The analysis of the two summands case in Section 2.2 can be adapted to the
m-quasi-Einstein case for m < oo. Recall that the metric restricted to the
principal orbit is given by g; = f1(t)%gs + f2(t)%gg, and set f3(t) = e7u(/m,
Due to Proposition 5.3, it suffices to consider and , and thus the
two summands m-quasi-Einstein equations take the form

d ( fi B ~fi e A1 Agf?
o7 (fl) =—tr(L)— + +

d(f\__ g2 e Al Af
<f2> = tr(L)f2 +2+ d2 f22 2d2 fép

BY_ o pf e n
<f3>_ t(L)fzaJr2+ 3

&

SIES
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where L = diag (%Hdl, %]Id27 %Hm) corresponds to the shape operator in

Kim-Kim'’s [35] warped product construction. Notice that L is only well-
defined if m € N, but its trace always is.

Due to the regularity Theorem 5.5 the metric can be smoothly extended
over the singular orbit if the initial conditions

f1(0) =0, f1(0) =1 and f5(0) = f >0, fo(0) =0
are imposed. Clearly one may fix »(0) = 0 and then
f3(0) =1 and f3(0) =0 and f3(0) =+ 2u

are the corresponding smoothness conditions for f3.
Fix ¢ >0 and p > 0. It follows that f;(t) >0 for i = 1,2,3 and suffi-
ciently small ¢ > 0. In analogy to , set

! izﬁ-iandXi:E-ﬁ Ygzﬁ-lforizl,2,3.

E - o~ )
w(@) ds dt i i

In particular, £, X;,Y; are positive initially. Set ds =m. Then
Zg’zl d; X; = 1 and the rescaled two summands m-quasi-Einstein equations
take the form

3
’ 9 A1 9 A3Y4
X =X ;X2 —-£%2-1 R I e i
1 1<;—1” 5 )+d11+2 +d1Y12,

3
, € Ag £ 243 Y5
X, =X diX?— L2 — 1| +2Y2 4oL 222
2 2(;1 i 2 >+d2 2+2 d2 Y127

3
X = X3 (Z d; X? — 252 - 1> + pY? + %ﬁz,

=1
3 g
Y, =Y din—zﬁz—XJ) for j =1,2,3,
=1
3 13
L=L (2} d; X2 — 2£2>
1=

It follows that £, X;, Y; > 0 holds along the flow, except possibly for Xs. In
the situations of Proposition 2.5 and Proposition 2.9, the respective proofs
carry over to show that both Xs > 0 and % < @y are preserved. Since djf <
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A2 the conservation law
2A3 ’

4

3
Y,
> diX] + MY+ AYS + muYy - A37?2 +(n—1)
=1

3

L£2=1
2

implies that X;, Y; are bounded for ¢ = 1,2,3. Thus £ cannot blow up in
finite time either. Completeness of the metric now follows as in Proposi-
tion 2.7.

If e >0 and =0, then £, X;, Y; are bounded due to the conservation
law, except possibly Ys. However, the ODE for Y3 implies that Y3 cannot
blow up in finite time and a similar argument applies. This shows:

Theorem 5.7. Letd; > 1, Ay = di(dy — 1) and (dy + 1) A2 > 4dyd2(2d; +
dy)As > 0 and fix m > 0.

Then the associated two summands ODE gives rise to a 1-parameter
family of complete, non-trivial non-homothetic m—Bakry—Emery—Ricci flat
metrics and a 2-parameter family of non-trivial, complete, non-homothetic
m-quasi Einstein metrics with quasi-Einstein constant —5 < 0, all of which
have positive characteristic constant.

Furthermore, there exists a 1-parameter family of complete, non-
trivial non-homothetic m-quasi-FEinstein metrics with quasi-Finstein con-
stant —5 < 0 and vanishing characteristic constant.

Remark 5.8. Case [I7] has shown that any complete, non-trivial m-Bakry-
Emery-Ricci flat quasi-Einstein manifold has positive characteristic con-
stant.

Notice that if A3 =0 and m € N, the above construction gives rise to a
triply warped product Einstein metric.

Multiple warped product Einstein metrics of nonpositive scalar curva-
ture were constructed by Bohm [8] on RE+! x My x ... x M, if d; > 1, for
Einstein manifolds (M;, g;) of positive scalar curvature pu; > 0. The corre-
sponding steady and expanding Ricci solitons have been constructed by
Dancer-Wang [22| 23] who in joint work with Buzano and Gallaugher [11], [13]
also settled the case d; = 1.

Away from the singular orbit, on (0,00) x S% x My x ... x M,, the
metrics are of the form dt? + >°7_, f?(t)g;. Notice that the corresponding
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m-quasi-Einstein equations are
fi Wi

c;ltjz = _(_u+tr(L))ﬁ+;+in2 for i=1,...,n7
where 1 =d; — 1. If m < oo, then f,11 = e~ %/™ gatisfies an analogous
equation, where p,+; > 0 will be the characteristic constant of the induced
m-quasi-Einstein metric.

Due to the regularity Theorem 5.4 one induces a smooth m-quasi-
Einstein metric on the trivial R®*!'-bundle over My x ... x M, by imposing
the initial conditions f; =0, fi =1 and f; > 0 for i > 2 at ¢ = 0 and by re-
quiring that f;(¢) for i > 2 and u(t) are even.

Set d,y1 =m if m < oo and d, 1 = pir1 = 0 if m = co. In terms of the
rescaled coordinates £, X;, Y; of the above initial conditions correspond
to the stationary point

1

1
Xi=—Vi=—and X;=Y,= L —=0fori>?2
dq dq

of the Riccei soliton ODE

r+1 c
L =r Zde]?— §£2 ,
j=1
! -« 2 €52 ) 2
XZ:XZ Zd]XJ_§L —1 —|—§£ +/MK,
j=1
r+1 c
Y =Y | DX - 5L X,
j=1

Notice that fi(t) > 0, fi(t) >0 for ¢t > 0 small and thus the rescaled
coordinates L, X;, Y; are also positive initially. Moreover, for € > 0 positivity
is preserved by the flow of the Ricci soliton ODE.

Consider
r—+1 r—+1 c r+1
St = Z;din + Z;,u,,»Yf +(n— 1)552 —1 and Sy, = Z;diXi —1.
1= 1= 1=

Note that the condition &1, = 0 corresponds to the conservation law ,
where p,41 > 0 corresponds to the characteristic constant of the induced
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m-~quasi-Einstein metric. In analogy to , it follows that trajec-
tories lying in the preserved locus {Si, = 0} N {S2,, = 0} correspond to
non-trivial m-quasi-Einstein metrics for m < oo. Similarly, non-trivial Ricci
soliton metrics correspond to trajectories in {Si s < 0} N {S2.0 < 0} and
Einstein metrics to trajectories in {S; 00 = 0} N {S2,00 = 0}.

In all cases, if € > 0, the variables X;,Y; > 0 are bounded, except pos-
sibly Y7 if d; = 1. However, the ODEs for L, Y; show as before that £, Y;
cannot blow up in finite time. Completeness of the metric again follows as
in Proposition 2.7.

Thus this construction yields m-quasi-Einstein metrics on multiple
warped products as in Theorem C, and a unified proof of the works of
Boéhm [§] and Buzano-Dancer-Gallaugher-Wang [11], [13], 22] 23].
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