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We study the deformation theory of nearly G2 manifolds. These
are seven dimensional manifolds admitting real Killing spinors. We
show that the infinitesimal deformations of nearly G2 structures
are obstructed in general. Explicitly, we prove that the infinitesi-
mal deformations of the homogeneous nearly G2 structure on the
Aloff–Wallach space are all obstructed to second order. We also
completely describe the cohomology of nearly G2 manifolds.
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1. Introduction

Given a 7-dimensional smooth manifold M , a nearly G2 structure on M is
a non-degenerate (or positive) 3-form φ such that for some non-zero real
constant τ0,

dφ = τ0 ∗φ φ(1.1)

where the metric and the orientation and hence the Hodge star ∗ are all
induced by φ. The existence of a nearly G2 structure was shown to be
equivalent to the existence of a real Killing spinor in [3]. A Killing spinor
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on a Riemannian spin manifold (Mn, g) is a section of the spinor bundle
µ ∈ Γ(/S(M)) such that

∇Xµ = αX · µ(1.2)

for any vector field X on M and some α ∈ C. Here · is the Clifford multipli-
cation. It was proved by Friedrich [8] that any manifold with a Killing spinor
is Einstein with Ric(g) = 4(n− 1)α2g and one of the three cases must hold:

• α = 0 in which case µ is a parallel spinor and M has holonomy con-
tained in SU(n2 ), Sp(

n
4 ), G2 or Spin(7).

• α is non-zero and is purely imaginary.

• α is non-zero and real, in which case µ is a real Killing spinor and ifM
is complete then since it is positive Einstein, it is compact with π1(M)
finite.

Given a nearly G2 structure φ on M that satisfies equation (1.1), there
exists a real Killing spinor µ that satisfies equation (1.2) with α = −1

8τ0 and
vice-versa. See [3] for more details.

Using the equivalence with real Killing spinors, nearly G2 structures on
homogeneous spaces, excluding the case of the round 7-sphere, were classified
in [9]. Their classification is based on the dimension of the space of Killing
spinors K/S. They showed that 3 different types can occur:

1) dim(K/S) = 1 - nearly G2 structures of type 1.

2) dim(K/S) = 2 - nearly G2 structures of type 2.

3) dim(K/S) = 3 - nearly G2 structures of type 3.

A 7-dimensional manifold (M,φ) with a nearly G2 structure φ is a nearly
G2 manifold (see §2 for more details). Other examples apart from the round
S7 include the squashed S7, Aloff–Wallach spaces N(k, l), the Berger space
SO(5)/SO(3) and the Stiefel manifold V5,2. Another important aspect of
nearly G2 manifolds is that the Riemannian cone C(M) over M has holon-
omy contained in the Lie group Spin(7). In that case, the possible holonomies
are Spin(7), SU(4) or Sp(2) depending on whether the link of the cone is a
nearly G2 manifold of type 1, 2 or 3 respectively.

In this paper, we study the deformation theory of nearly G2 manifolds.
The infinitesimal deformations of nearly G2 manifolds were studied by
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Alexandrov–Semmelmann in [1] where they identified the space of infinitesi-
mal deformations with an eigenspace of the Laplacian acting on co-closed 3-
forms onM of type Ω3

27. We address the question of whether nearly G2 man-
ifolds have smooth obstructed or unobstructed deformations, i.e., whether
infinitesimal deformations can be integrated to genuine deformations. This
could potentially give new examples of nearly G2 manifolds. Another appli-
cability of studying the deformation theory of nearly G2 manifolds can be
to develop the deformation theory of Spin(7) conifolds which are asymptot-
ically conical and conically singular Spin(7) manifolds, similar to the theory
developed by Karigiannis–Lotay [15] for G2 conifolds. Lehmann [17] studies
the deformation theory of asymptotically conical Spin(7)−manifolds.

The study of deformation theory of special algebraic structures is not new.
Deformations of Einstein metrics were studied by Koiso where he showed
[16, Theorem 6.12] that the infinitesimal deformations of Einstein metrics
is in general obstructed, by exhibiting certain Einstein symmetric spaces
which admit non-trivial infinitesimal Einstein deformations which cannot
be integrated to second order. The deformation theory of nearly Kähler
structures on homogeneous 6-manifolds was studied by Moroianu–Nagy–
Semmelmann in [18]. They identified the space of infinitesimal deformations
with an eigenspace of the Laplacian acting on co-closed primitive (1, 1)-
forms. Using this, they proved that the nearly Kähler structures on CP

3

and S3 × S3 are rigid and the flag manifold F3 admits an 8-dimensional
space of infinitesimal deformations. Later, Foscolo proved [7, Theorem 5.3]
that the infinitesimal deformations of the flag manifold F3 are all obstructed.

Nearly G2 manifolds are in many ways similar to nearly Kähler 6-manifolds.
Both admit real Killing spinors and hence are positive Einstein. The minimal
hypersurfaces in both nearly Kähler 6-manifolds and nealy G2 manifolds
behave in a similar way [6]. It was proved in [1] that the nearly G2 structures
on the squashed S7 and the Berger space SO(5)/SO(3) are rigid while the
space of infinitesimal nearly G2 deformations of the Aloff–Wallach spaceX1,1

is 8-dimensional. It is therefore natural to ask whether these infinitesimal
deformations are obstructed to second order.

To address this question, we use a Dirac-type operator on nearly G2 mani-
folds (cf. equation (3.6)). The use of Dirac operators to study deformation
theory has been very useful. Nordström in [20] used Dirac operators to study
the deformation theory of compact manifolds with special holonomy from a
different point of view than Joyce [11]. In particular, the mapping properties
of the Dirac type operators can be used to prove slice theorems for the ac-
tion of the diffeomorphism group. This approach has also been very effective
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in studying the deformation theory of non-compact manifolds with special
holonomy, most notably by Nordström [20] for asymptotically cylindrical
manifolds with exceptional holonomy and by Karigiannis–Lotay [15] for G2

conifolds. Dirac-type operators, in a way very close to the use made by the
authors in this paper, were also used by Foscolo [7] to study the deformation
theory of nearly Kähler 6-manifolds.

We follow a strategy similar to [7] in this paper. After introducing the Dirac
operator and a modified Dirac operator on nearly G2 manifolds in §3, we
use their properties and the Hodge decomposition theorem to completely
describe the cohomology of a complete nearly G2 manifold. We prove our
first two main results of the paper which characterize harmonic forms. These
are the following.

Theorem 3.8. Let (M,φ, ψ) be a complete nearly G2 manifold, not iso-
metric to round S7. Then every harmonic 4-form lies in Ω4

27. Equivalently,
every harmonic 3-form lies in Ω3

27.

Theorem 3.9 Let (M,φ, ψ) be a complete nearly G2 manifold, not isometric
to round S7. Then every harmonic 2-form lies in Ω2

14. Equivalently, every
harmonic 5-form lies in Ω5

14.

We note that Theorem 3.9 was originally proved by Ball–Oliveira [2, Re-
mark 15]. We give a different proof in this paper.

We use the properties of the modified Dirac operator, explicitly we use
Proposition 3.7, to prove a slice theorem for the action of the diffeomor-
phism group on the space of nearly G2 structures on M in Proposition 4.2.
Using this, in Theorem 4.3 we obtain a new proof of the identification of
the space of infinitesimal nearly G2 deformations with an eigenspace of the
Laplacian acting on co-closed 3-forms of type Ω3

27, a result originally due to
Alexandrov–Semmelmann [1].

To study higher order deformations of nearly G2 manifolds, we use the
point of view of Hitchin [10] where he interprets nearly G2 structures as
constrained critical points of a functional defined on the space Ω3 × Ω4

exact.
This approach is inspired from the work of Foscolo [7] where he used simi-
lar ideas to study second order deformations of nearly Kähler structures on
6-manifolds. The advantage of this approach is that it allows us to view the
nearly G2 equation (2.24) as the vanishing of a smooth map (cf. equation
(4.9))

Φ : Ω4
+,exact × Γ(TM) −→ Ω4

exact
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where Ω4
+,exact denotes the space of exact positive 4-forms on M . Thus the

obstructions on the first order deformations of a nearly G2 structure to be
integrated to higher order deformations can be characterized by Im(DΦ)
which we do in Proposition 4.6.

Finally, we use the general deformation theory of nearly G2 structures de-
veloped in the first part of the paper to study the infinitesimal deformations
of the Aloff–Wallach space SU(3)×SU(2)

SU(2)×U(1) . It was expected in [7] that the in-
finitesimal deformations of the Aloff–Wallach space might be obstructed to
higher orders. In §5 we confirm this expectation. More precisely, we prove
the following.

Theorem 5.1. The infinitesimal deformations of the homogeneous nearly
G2 structure on the Aloff–Wallach space X1,1

∼= SU(3)×SU(2)
SU(2)×U(1) are all ob-

structed.

The proof of the above theorem is inspired from the ideas in [7]. However,
we note that since in the nearly G2 case we only have one stable form and
the other is the dual of it, unlike the nearly Kähler case, the expressions and
computations involved are more complicated and the proof of the theorem
is computationally much more involved.

The paper is organized as follows. We discuss some preliminaries on G2 and
nearly G2 structures in §2. We discuss the decomposition of space of differ-
ential forms on manifolds with a G2 structure. We describe some first order
differential operators in §2.1 which appear throughout the paper. In §2.2,
we prove many important identities for 2-forms and 3-forms on manifolds
with nearly G2 structures. Some of these appear to be new, at least in the
present form and we believe that they will be useful in other contexts as
well. We introduce the Dirac and the modified Dirac operator in §3 and
use the mapping properties of the latter to prove Theorem 3.8 and Theo-
rem 3.9. We begin the discussion on infinitesimal deformations in §4.1. We
prove a slice theorem and use that to obtain a new proof of the result of
Alexandrov–Semmmelmann on infinitesimal nearly G2 deformations. We in-
terpret the nearly G2 equation as the vanishing of a smooth map and prove
the characterization for a first order deformation of a nearly G2 structure
to be integrated to second order in Proposition 4.6. Finally, in §5, we prove
Theorem 5.1.

Note. The almost simultaneous preprint [19] by Semmelmann–Nagy has
some overlap with the present paper and some of the ideas involved are
the same. We also characterize the cohomology of nearly G2 manifolds. The
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second version of their paper also contains a discussion of the deformations
of the Aloff–Wallach spaces.
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2. Preliminaries on G2 geometry

We start this section by defining G2 structures and nearly G2 structures on
a seven dimensional manifold and also discuss the decomposition of space
of differential forms on such a manifold. We also collect together various
identities which will be used throughout the paper.

Let M7 be a smooth manifold. A G2 structure on M is a reduction of the
structure group of the frame bundle from GL(7,R) to the Lie group G2 ⊂
SO(7). Such a structure exists on M if and only if the manifold is orientable
and spinnable, conditions which are respectively equivalent to the vanishing
of the first and second Stiefel–Whitney classes. From the point of view of
differential geometry, a G2 structure on M is equivalently defined by a 3-
form φ on M that satisfies a certain pointwise algebraic non-degeneracy
condition. Such a 3-form nonlinearly induces a Riemannian metric gφ and
an orientation volφ on M and hence a Hodge star operator ∗φ. We denote
the Hodge dual 4-form ∗φφ by ψ. Pointwise we have |φ| = |ψ| = 7, where
the norm is taken with respect to the metric induced by φ.

Notations and conventions. Throughout the paper, we compute in a local
orthonormal frame, so all indices are subscripts and any repeated indices are
summed over all values from 1 to 7. Our convention for labelling the Riemann
curvature tensor is

Rijkm
∂

∂xm
= (∇i∇j −∇j∇i)

∂

∂xk
,
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in terms of coordinate vector fields. With this convention, the Ricci tensor
is Rjk = Rljkl, and the Ricci identity is

∇i∇jXk −∇j∇iXk = −RijklXl.(2.1)

We will use the metric to identify the vector fields and 1-forms by the musical
isomorphisms. As such, throughout the paper, we will use them interchange-
ably without mention.

We have the following contraction identities between φ and ψ, whose proofs
can be found in [13].

φijkφabk = giagjb − gibgja + ψijab,(2.2)

φijkφajk = 6gia(2.3)

and

φijkψabck = gjaφibc + gjbφaic + gjcφabi − giaφjbc − gibφajc − gicφabj ,(2.4)

φijkψabjk = 4φiab,(2.5)

ψijklψabkl = 4giagjb − 4gibgja + 2ψijab(2.6)

ψijklψajkl = 24gia.(2.7)

A G2 structure on M induces a splitting of the spaces of differential forms
on M into irreducible G2 representations. The space of 2-forms Ω2(M) and
3-forms Ω3(M) decompose as

Ω2(M) = Ω2
7(M)⊕ Ω2

14(M),(2.8)

Ω3(M) = Ω3
1(M)⊕ Ω3

7(M)⊕ Ω3
27(M)(2.9)

where Ωk
l has pointwise dimension l. More precisely, we have the following

description of the space of forms:

Ω2
7(M) = {X⌟φ | X ∈ Γ(TM)} = {β ∈ Ω2(M) | ∗(φ ∧ β) = 2β},(2.10)

Ω2
14(M) = {β ∈ Ω2(M) | β ∧ ψ = 0}(2.11)

= {β ∈ Ω2(M) | ∗(φ ∧ β) = −β}.

In local coordinates, the above conditions can be re-written as

β ∈ Ω2
7 ⇐⇒ βijψabij = 4βab,(2.12)

β ∈ Ω2
14 ⇐⇒ βijψabij = −2βab ⇐⇒ βijφijk = 0.(2.13)
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Similarly, for 3-forms

Ω3
1 = {fφ | f ∈ C∞(M)},(2.14)

Ω3
7 = {X⌟ψ | X ∈ Γ(TM)} = {∗(α ∧ φ) | α ∈ Ω1},(2.15)

Ω3
27 = {η ∈ Ω3 | η ∧ φ = 0 = η ∧ ψ}.(2.16)

Moreover, the space Ω3
27 is isomorphic to the space of sections of S2

0(T
∗M),

the traceless symmetric 2-tensors on M, where the isomorphism iφ is given
explicitly as

(2.17)

η =
1

6
ηijkdx

i ∧ dxj ∧ dxk ∈ Ω3
27

iϕ←→ habdx
adxb ∈ C∞(S2

0(T
∗M))

where ηijk = hipφpjk + hjpφipk + hkpφijp.

The decompositions of Ω4(M) = Ω4
1(M)⊕ Ω4

7(M)⊕ Ω4
27(M) and Ω5(M) =

Ω5
7(M)⊕ Ω5

14(M) are obtained by taking the Hodge star of (2.9) and (2.8)
respectively.

Given a G2 structure φ on M , we can decompose dφ and dψ according to
(2.8) and (2.9). This defines the torsion forms, which are unique differential
forms τ0 ∈ Ω0(M), τ1 ∈ Ω1(M), τ2 ∈ Ω2

14(M) and τ3 ∈ Ω3
27(M) such that

(see [13])

dφ = τ0ψ + 3τ1 ∧ φ+ ∗φτ3,(2.18)

dψ = 4τ1 ∧ ψ + ∗φτ2.(2.19)

Let ∇ denote the Levi-Civita connection of the metric induced by the G2

structure. The full torsion tensor T of a G2 structure is a 2-tensor satisfying

∇iφjkl = Timψmjkl,(2.20)

Tlm =
1

24
(∇lφabc)ψmabc,(2.21)

∇mψijkl = −Tmiφjkl + Tmjφikl − Tmkφijl + Tmlφijk.(2.22)

The full torsion T is related to the torsion forms by (see [13])

(2.23) Tlm =
τ0
4
glm − (τ3)lm − (τ1)lm −

1

2
(τ2)lm.
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Remark 2.1. The space Ω2
7 is isomorphic to the space of vector fields and

hence to the space of 1-forms. Thus in (2.23), we are viewing τ1 as an element
of Ω2

7 which justifies the expression (τ1)lm.

A G2 structure φ is called torsion-free if ∇φ = 0 or equivalently T = 0.
We can now define nearly G2 structures.

Definition 2.2. A G2 structure φ is a nearly G2 structure if τ0 is the only
nonvanishing component of the torsion, that is

dφ = τ0ψ and dψ = 0.(2.24)

In this case, we see from (2.23) that Tij =
τ0
4
gij .

Remark 2.3. If φ is a nearly G2 structure on M then since dφ = τ0ψ, we
can differentiate this to get dτ0 ∧ ψ = 0 and hence dτ0 = 0, as wedge product
with ψ is an isomorphism from Ω1

7(M) to Ω5
7(M). Thus τ0 is a constant, if

M is connected.

Given a G2 structure φ with torsion Tlm, we have the expressions for the
Ricci curvature Rij and the scalar curvature R of its associated metric g
which can be found in [5] or [13] as

Rjk = (∇iTjm −∇jTim)φmki − TjlTlk + tr(T )Tjk − TjbTlpψlpbk,(2.25)

R = −12∇i(τ1)i +
21

8
τ0

2 − |τ3|2 + 5|τ1|2 −
1

4
|τ2|2.(2.26)

where |C|2 = CijCklg
ikgjl is the matrix norm in (2.26).

In particular, for a manifold M with a nearly G2 structure φ, we see that

Rij =
3

8
τ0

2gij ,(2.27)

R =
21

8
τ0

2.(2.28)

Finally, we remark that S7 with the round metric and also the squashed
S7 are examples of manifolds with nearly G2 structure (see [9] for more on
nearly G2 structures. The authors in [9] call such structures nearly parallel
G2 structures but we will call them nearly G2 structures.) In particular, S7

with radius 1 has scalar curvature 42, so comparing with (2.24) we get that
τ0 = 4.
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We use the following identities throughout the paper. They are all proved
in [12, Lemma 2.2.1 and Lemma 2.2.3] and we collect them here for the
convenience of the reader. First, we note that if α is a k-form and w is a
vector field then

∗(w⌟α) = (−1)k+1(w ∧ ∗α),(2.29)

∗(w ∧ α) = (−1)k(w⌟ ∗ α).(2.30)

If α is a 1-form then we have the following identities

∗(φ ∧ ∗(φ ∧ α)) = −4α,(2.31)

ψ ∧ ∗(φ ∧ α) = 0,(2.32)

∗(ψ ∧ ∗(ψ ∧ α)) = 3α,(2.33)

φ ∧ ∗(ψ ∧ α) = 2(ψ ∧ α).(2.34)

Suppose w is a vector field then we have the following identities

φ ∧ (w⌟ψ) = −4 ∗ w,(2.35)

ψ ∧ (w⌟ψ) = 0,(2.36)

ψ ∧ (w⌟φ) = 3 ∗ w,(2.37)

φ ∧ (w⌟φ) = 2 ∗ (w⌟φ).(2.38)

Let Θ : Ω3
+ → Ω4

+ be the non-linear map which associates to any G2 struc-
ture φ, the dual 4-form ψ = Θ(φ) = ∗φ with respect to the metric gφ. We
note that Θ−1 : Ω4

+ → Ω3
+ is defined only when we fix the orientation on

M . See [10, §8] for more details. We will need the following result from [11,
Proposition 10.3.5], later.

Proposition 2.4. Suppose φ be a G2 structure on M with ψ = ∗φ. Let ξ
be a 3-form which has sufficiently small pointwise norm with respect to gφ
so that φ+ ξ is still a positive 3-form and η be a 4-form with small enough
pointwise norm so that ψ + η is a positive 4-form. Then

(1) the image of ξ under the linearization of Θ at φ is

Θ(ξ) = ∗φ
(4
3
π1(ξ) + π7(ξ)− π27(ξ)

)
.(2.39)
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(2) the image of η under the linearization of Θ−1 at ψ is

Θ−1(η) = ∗φ
(3
4
π1(η) + π7(η)− π27(η)

)
.(2.40)

2.1. First order differential operators

In this section, we discuss various first order differential operators on a
manifold with a nearly G2 structure and prove some identities involving
them.

For f ∈ C∞(M), we have the vector field grad f given by

(grad f)k = ∇kf

and for any vector field X we have the divergence of X which is a function

divX = ∇kXk.

On a manifold with a G2 structure φ, for a vector field X ∈ Γ(TM), we
define the curl of X, as

(curlX)k = ∇iXjφijk(2.41)

which can also be written as

(curlX) = ∗(dX ∧ ψ)(2.42)

and so up to G2-equivariant isomorphisms, the vector field curlX is the
projection of the 2-form dX onto the Ω2

7 component. In fact, we have the
following

Proposition 2.5. Let X be a vector field on M . The Ω2
7 component of dX

is given by

π7(dX) =
1

3
(curlX)⌟φ =

1

3
∗ (curlX ∧ ψ).(2.43)

Proof. We know that π7(dX) =W⌟φ for some vector field W . Using (2.37)
we compute

curlX = ∗(dX ∧ ψ) = ∗(π7(dX) ∧ ψ) = ∗((W⌟φ) ∧ ψ) = 3W

which gives (2.43). □
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In the next proposition we state and prove various relations among the first
order differential operators described above. We prove the results for any
G2 structure and will later state the results for nearly G2 structures. These
formulas are generalizations of the formulas first proved for torsion-free G2

structures by Karigiannis [14, Proposition 4.4].

Proposition 2.6. Let f ∈ C∞(M) and X be a vector field on M with a
G2 structure φ. Then

curl(grad f) = 0,(2.44)

div(curlX) = ∇iXj(4(τ1)ij − (τ2)ij) + (π7(Rm))jjlXl,(2.45)

curl(curlX)l = ∇l(divX) +RlmXm −∆Xl − (curlX)mTml

− (∇lXi −∇iXl)(τ1)msφmsi + trT (curlX)l

+∇iXjTisφjsl +∇iXjTjsφsil.(2.46)

Remark 2.7. For fixed i, j, the Riemann curvature tensor Rijkl is skew-
symmetric in k and l and hence

Rijkl = (π7(Rm))ijkl + (π14(Rm))ijkl.

Explicitly,

(π7(Rm))ijkl =
1

3
Rijkl +

1

6
Rabklψabij ,

(π14(Rm))ijkl =
2

3
Rijkl −

1

6
Rabklψabij .

Moreover, from [13, eq. (4.17)], we have

(π7(Rm))ijkl = (π7(Rm))mijφmkl where π7(Rm)mij =
1

6
Rijklφklm.(2.47)

Proof. We compute

curl(grad f) = ∇i(∇jf)φijk = 0
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as φ is skew-symmetric, thus proving (2.44). For (2.45) we use the Ricci
identity (2.1) to get

div(curlX) = ∇k(∇iXjφijk)

= ∇k∇iXjφijk +∇iXj∇kφijk

=
1

2
(∇k∇iXj −∇i∇kXj)φijk +∇iXjTkmψmijk

= −1

2
RkijlXlφijk +∇iXj(4(τ1)ij − (τ2)ij)

= 3(π7(Rm))jljXl +∇iXj(4(τ1)ij − (τ2)ij)

where we used (2.12), (2.13) and (2.47). We have also used the fact that the
symmetric part of T will vanish when contracted with ψ.

Finally we use the contraction identities (2.2) and (2.4) and the Ricci iden-
tity (2.1) to compute

(curl(curlX))l = ∇m(∇iXjφijk)φmkl

= (∇m∇iXjφijk +∇iXjTmsψsijk)φlmk

= ∇m∇iXj(gilgjm − gimgjl + ψijlm)

+∇iXjTms(gmsφlij + gmiφslj + gmjφsil

− glsφmij − gliφsmj − gljφsim)

= ∇j∇lXj −∆Xl +
1

2
(∇m∇iXj −∇i∇mXj)ψijlm

+ trT∇iXjφijl +∇iXjTisφslj +∇iXmTmsφsil

−∇iXjTmlφmij −∇lXjTmsφsmj −∇iXlTmsφmsi

= ∇l(divX) +RlmXm −∆Xl + trT (curlX)l

+∇iXjTisφjsl +∇iXmTmsφsil − (curlX)mTml

−∇lXj(τ1)msφmsj +∇iXl(τ1)msφmsi

where we used the fact that Rabcdψabck = 0 for the third term in the fourth
equality and (2.13) to cancel the τ2 components which contract on two in-
dices with φ for the last two terms in the fourth equality. Thus, we get

(curl(curlX))l = ∇l(divX) +RlmXm −∆Xl

− (curlX)mTml − (∇iXl −∇lXi)(τ1)msφmsi

+ trT (curlX)l +∇iXjTisφjsl +∇iXjTjsφsil.

□
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For a nearly G2 structure we have Tij =
τ0
4
gij and Rij =

3τ0
2

8
gij . Moreover

from [13, eq. (4.18)],

(π7(Rm))jjl = −∇l(trT ) +∇j(Tlj) + TlaTjbφabj = 0.

Thus using the Weitzenböck formula for X, ∇∗∇Xl = −∇j∇jXl =
(∆dX)l +RilXi, we get the following

Corollary 2.8. Let f ∈ C∞(M) and X be a vector field onM with a nearly
G2 structure φ. Then

curl(grad f) = 0,(2.48)

div(curlX) = 0,(2.49)

curl(curlX) = grad(divX)−∆X +
3τ0

2

8
X + τ0(curlX),(2.50)

= ∆dX + grad(divX) + τ0(curlX).(2.51)

2.2. Identities for 2-forms and 3-forms

In this subsection, we prove some identities for 2-forms and 3-forms on a
manifold with a nearly G2 structure. These identities will be used several
times in the paper.

Lemma 2.9. Let (M,φ) be a manifold with a G2 structure. If β = β7 + β14
is a 2-form then

(1) ∗(β ∧ φ) = 2β7 − β14.
(2) ∗(β ∧ β ∧ φ) = 2|β7|2 − |β14|2.

Proof. The identity in (1) follows from (2.10) and (2.11). For (2) we note
that for 7-dimensional manifolds ∗2(α) = α for a k-form α, so

β ∧ β ∧ φ = β ∧ ∗2(β ∧ φ) = β ∧ ∗(2β7 − β14)

and the decomposition of 2-forms is orthogonal. □

Lemma 2.10. Let (M,φ) be a manifold with a G2 structure. Let σ = fφ+
σ7 + σ27 be a 3-form on M and let σ7 = X⌟ψ for some vector field X on
M . Then
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(1) ∗(σ ∧ φ) = 4X.

(2) ∗(σ ∧ ψ) = 7f .

Proof. For (1) we have

∗(σ ∧ φ) = ∗((fφ+ σ7 + σ27) ∧ φ) = ∗(σ7 ∧ φ) = ∗((X⌟ ∗ φ) ∧ φ)
= 4X(2.52)

where we have used the fact that Ω3
1 ⊕ Ω3

27 lies in the kernel of wedge product
with φ and (2.35) in the last equality. For (2) we note that Ω3

7 ⊕ Ω3
27 lies in

the kernel of wedge product with ψ and φ ∧ ψ = 7vol. □

Next, we explicitly derive the expressions for exterior derivative and the
divergence of various components of 2-forms and 3-forms on a manifold
with a nearly G2 structure. Some of these identities are new, at least in the
present form and we believe that they will be useful in other contexts as
well.

Lemma 2.11. Suppose (M,φ) is a manifold with a nearly G2 structure.
Let f ∈ C∞(M), β ∈ Ω2

14 and X ∈ Γ(TM). Then

(1) d(fφ) = df ∧ φ+ τ0fψ.

(2) d∗(fφ) = −(df)⌟φ.

(3) dβ =
1

4
∗ (d∗β ∧ φ) + π27(dβ).

(4) d(X⌟φ) = −3

7
(d∗X)φ+

1

2
∗
((3τ0

2
X − curlX

)
∧ φ
)
+ iφ

(1
2
(∇iXj +

∇jXi) +
1

7
(d∗X)gij

)
.

(5) d∗(X⌟φ) = curlX.

(6) d(X⌟ψ) = −4

7
d∗Xψ −

(1
2
curlX +

τ0
4
X
)
∧ φ− ∗iφ

(1
2
(∇iXj +

∇jXj) +
1

7
(d∗X)gij

)
.

Proof. We have

d(fφ) = df ∧ φ+ fdφ

= df ∧ φ+ τ0fψ
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where we have used (2.24) which proves (1). For part (2) we compute

d∗(fφ) = − ∗ d ∗ (fφ) = − ∗ d(f ∗ φ) = − ∗ (df ∧ ∗φ) = −df⌟φ

as dψ = 0.
We prove part (3). Since dβ is a 3-form so

dβ = π1(dβ) + π7(dβ) + π27(dβ).(2.53)

We compute each term on the right hand side of (2.53). We will repeatedly
use the identities (2.29)–(2.38). Suppose

π1(dβ) = aφ

for some a ∈ C∞(M). Since Ω3
7 ⊕ Ω3

27 lies in the kernel of wedge product
with ψ and β ∧ ψ = 0 for β ∈ Ω2

14, we have

0 = d(β ∧ ψ) = dβ ∧ ψ = π1(dβ) ∧ ψ = 7a vol

and hence

π1(dβ) = 0.

Suppose π7(dβ) = X⌟ψ for X ∈ Γ(TM). Using (2.11) and Lemma 2.10 (1),
we have

d∗β = ∗d ∗ (β) = − ∗ d(β ∧ φ) = − ∗ (dβ ∧ φ)− τ0 ∗ (β ∧ ψ) = −4X.

Thus

π7(dβ) = −
1

4
d∗β⌟ψ =

1

4
∗ (d∗β ∧ φ),

which proves (3).

Since d(X⌟φ) is a 3-form, so we will write

d(X⌟φ) = π1(d(X⌟φ)) + π7(d(X⌟φ)) + π27(d(X⌟φ))(2.54)

and will calculate each term on the right hand side. As before, assume

π1(d(X⌟φ)) = aφ
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for some a ∈ C∞(M). Then

d((X⌟φ) ∧ ψ) = π1(d(X⌟φ)) ∧ ψ = 7a vol

and hence 7a = ∗d((X⌟φ) ∧ ψ) = ∗d(3 ∗X). So we get that

a =
3

7
∗ d ∗X = −3

7
d∗X.

Assume that

π7(d(X⌟φ)) = Y ⌟ψ

for some Y ∈ Γ(TM). Using the fact that Ω3
1 ⊕ Ω3

27 lies in the kernel of
wedge product with φ we get

d((X⌟φ) ∧ φ) = d(X⌟φ) ∧ φ+ (X⌟φ) ∧ dφ
= π7(d(X⌟φ)) ∧ φ+ τ0(X⌟φ) ∧ ψ = (Y ⌟ψ) ∧ φ+ 3τ0 ∗X.

So we get

4 ∗ Y + 3τ0 ∗X = d((X⌟φ) ∧ φ) = d(2 ∗ (X⌟φ)) = 2d(X ∧ ψ) = 2(dX) ∧ ψ

which gives

Y =
1

2

(
∗ ((dX) ∧ ψ)− 3τ0

2
X
)
=

1

2

(
curlX − 3τ0

2
X
)

and hence

π7(d(X⌟φ)) = −1

2
∗
((

curlX − 3τ0
2
X
)
∧ φ
)
.
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Recall the map iφ from (2.17). To calculate π27(d(X⌟φ)) we have

d(X⌟φ)imnφjmn + d(X⌟φ)jmnφimn

(2.55)

=
[−3
7
(d∗X)φimn +

1

2

((
curlX − 3τ0

2
X
)
⌟ψ
)
imn

+ i(h0)imn

]
φjmn

+
[−3
7
(d∗X)φjmn +

1

2

((
curlX − 3τ0

2
X
)
⌟ψ
)
jmn

+ i(h0)jmn

]
φimn

= −36

7
(d∗X)gij + 8(h0)ij +

1

2

(
curlX − 3τ0

2
X
)
s
ψsimnφjmn

+
(
curlX − 3τ0

2
X
)
s
ψsjmnφimn

= −36

7
(d∗X)gij + 8(h0)ij .

We calculate the left hand side of (2.55). We have

d(X⌟φ)imnφjmn + d(X⌟φ)jmnφimn

= (∇i(Xlφlmn)−∇m(Xlφlin) +∇n(Xlφlim))φjmn

+ (∇j(Xlφlmn)−∇m(Xlφljn) +∇n(Xlφljm))φimn

= (∇iXlφlmn −∇mXlφlin +∇nXlφlim)φjmn

+
τ0
4
(Xlψilmn −Xlψmlin +Xlψnlim)φjmn

+ (∇jXlφlmn −∇mXlφljn +∇nXlφljm)φimn

+
τ0
4
(Xlψjlmn −Xlψmljn +Xlψnljm)φimn

where we have used (2.20) and (2.24). So

d(X⌟φ)imnφjmn + d(X⌟φ)jmnφimn

= (∇iXlφlmnφjmn − 2∇mXlφlinφjmn)

+
τ0
4
(Xlψilmn −Xlψmlin +Xlψnlim)φjmn

(∇jXlφlmnφimn − 2∇mXlφljnφimn)

+
τ0
4
(Xlψjlmn −Xlψmljn +Xlψnljm)φimn.
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We use the contraction identities (2.2), (2.3) and (2.4) to get

d(X⌟φ)imnφjmn + d(X⌟φ)jmnφimn

= 4∇iXj + 4∇jXi + 4(divX)gij

+
τ0
4
(−4Xlφilj + 4Xlφlij + 4Xlφlij)

+
τ0
4
(−4Xlφjli + 4Xlφlji + 4Xlφlji)

= 4∇iXj + 4∇jXi − 4(d∗X)gij

and so from (2.55) we get

−36

7
(d∗X)gij + 8(h0)ij = 4∇iXj + 4∇jXi − 4(d∗X)gij

and thus

(h0)ij =
1

2
(∇iXj +∇jXi) +

1

7
(d∗X)gij

which completes the proof of (4).

We obtain (5) by

d∗(X⌟φ) = ∗d ∗ (X⌟φ) = ∗d(X ∧ ψ) = ∗(dX ∧ ψ) = curlX.

To prove part (6), we notice that since dψ = 0, d(X⌟ψ) = LXψ which is the
image of LXφ = d(X⌟φ) + τ0X⌟ψ under the linearization of the map Θ. We
then use part (4) of the lemma and (2.39) to get part (6). □

We use the following important lemma on several occasions.

Lemma 2.12. Let φ be a nearly G2 structure on M and σ be a 3-form so
that

σ = fφ+ ∗(X ∧ φ) + η

where η ∈ Ω3
27 with η = iφ(h) where h is a symmetric traceless 2-tensor.

Then

π1(dσ) =
(
τ0f +

4

7
d∗X

)
ψ,(2.56)

π7(dσ) =
(
df +

τ0
4
X +

1

2
curlX − 1

2
div h

)
∧ φ,(2.57)

π7(d
∗σ) = ∗

(
(−df + τ0X −

2

3
curlX − 2

3
div h) ∧ ψ

)
.(2.58)



✐

✐

“5-Dwivedi” — 2023/12/25 — 11:35 — page 696 — #20
✐

✐

✐

✐

✐

✐

696 S. Dwivedi and R. Singhal

Proof. We note that ∗σ = fψ + (X ∧ φ) + ∗η and since φ is a nearly G2

structure hence

dσ = df ∧ φ+ τ0fψ + d ∗ (X ∧ φ) + dη(2.59)

and

d∗σ = − ∗ d ∗ σ = − ∗ (df ∧ ψ)− ∗d(X ∧ φ) + d∗η.(2.60)

Now π1(dσ) = λψ for some λ ∈ C∞(M). We use Lemma 2.11 (6) to get,

7λ = ⟨λψ, ψ⟩ = ⟨π1(dσ), ψ⟩ = ⟨dσ, ψ⟩
= ⟨df ∧ φ+ τ0fψ + d ∗ (X ∧ φ) + dη, ψ⟩
= ⟨df ∧ φ, ψ⟩+ 7τ0f + 4d∗X + ⟨dη, ψ⟩.(2.61)

The first term on the right hand side of (2.61) is 0 as df ∧ φ ∈ Ω4
7 and

ψ ∈ Ω4
1. The last term is also 0 as from (2.16)

⟨dη, ψ⟩ vol = dη ∧ φ = d(η ∧ φ) + τ0η ∧ ψ = 0.

Thus we get that

7λ = 7τ0f + 4d∗X =⇒ λ = τ0f +
4

7
d∗X

which gives (2.56).

To derive (2.57) and (2.58), we will need to contract η ∈ Ω3
27 with φ on

two indices and with ψ on three indices. Using (2.17) and the contraction
identities (2.2) and (2.5), a short computation gives

ηijkφajk = 4hia,(2.62)

ηijkψaijk = 0.(2.63)

Suppose π7(dσ) = Y ∧ φ for some 1-form Y . Note that for an arbitrary 1-
form Z we have

⟨Y ∧ φ,Z ∧ φ⟩ vol = Y ∧ φ ∧ ∗(Z ∧ φ)
= −Y ∧ φ ∧ (Z⌟ψ) = 4Y ∧ ∗Z
= 4⟨Y, Z⟩ vol .
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So from (2.59) we have

4⟨Y, Z⟩ = ⟨Y ∧ φ,Z ∧ φ⟩ = ⟨π7(dσ), Z ∧ φ⟩ = ⟨dσ, Z ∧ φ⟩
= ⟨df ∧ φ+ τ0fψ + d ∗ (X ∧ φ) + dη, Z ∧ φ⟩
= 4⟨df, Z⟩+ ⟨d ∗ (X ∧ φ), Z ∧ φ⟩+ ⟨dη, Z ∧ φ⟩.(2.64)

We first use Lemma 2.11 (6) to calculate the second term on the right hand
side of (2.64). We have

⟨d ∗ (X ∧ φ), Z ∧ φ⟩ =
〈
(
1

2
curlX +

τ0
4
X) ∧ φ,Z ∧ φ

〉

= ⟨2 curlX + τ0X,Z⟩

So in (2.64), we have

4⟨Y, Z⟩ = ⟨4df + τ0X + 2 curlX,Z⟩+ ⟨dη, Z ∧ φ⟩.(2.65)

We compute in local coordinates

⟨dη, Z ∧ φ⟩ = 1

24
(dη)ijkl(Z ∧ φ)ijkl

=
1

24
(∇iηjkl −∇jηikl +∇kηijl −∇lηijk)(Z ∧ φ)ijkl

=
1

6
(∇iηjkl)(Ziφjkl − Zjφikl − Zkφjil − Zlφjki)

=
1

6
(Zi∇iηjklφjkl − 3Zj∇iηjklφikl)

=
1

6
(Zi∇i(ηjklφjkl)−

τ0
4
Ziηjklψijkl

− 3Zj∇i(ηjklφikl) +
3τ0
4
Zjηjklψiikl).

We now use (2.62), (2.63) and the fact that h is traceless to get

⟨dη, Z ∧ φ⟩ = 1

6
(Zi∇i(4 trh)− 0− 3Zj∇i(4hji))

= −2⟨div h, Z⟩.

Thus from (2.65) we get

⟨Y, Z⟩ =
〈
df +

τ0
4
X +

1

2
curlX − 1

2
div h, Z

〉
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and since Z is arbitrary, we get

Y = df +
τ0
4
X +

1

2
curlX − 1

2
div h

which establishes (2.57).

Next, we see from (2.60) and (2.10) that

d∗σ = − ∗ (df ∧ ψ)− ∗(dX ∧ φ) + ∗τ0(X ∧ ψ) + d∗η

= − ∗ (df − τ0X ∧ ψ)− 2π7(dX) + π14(dX) + d∗η

which on using (2.43) becomes

d∗σ = − ∗
((
df − τ0X +

2

3
curlX

)
∧ ψ
)
+ π14(dX) + d∗η.(2.66)

Suppose π7(d
∗σ) = ∗(W ∧ ψ) for some 1-form W . For any 1-form Z we note

that

⟨∗(W ∧ ψ), ∗(Z ∧ ψ)⟩ vol = ∗(W ∧ ψ) ∧ Z ∧ ψ
= ∗(W ∧ ψ) ∧ ψ ∧ Z = 3 ∗W ∧ Z = 3⟨W,Z⟩ vol .

Thus using (2.66) and the orthogonality of the spaces Ω2
7 and Ω2

14, we have

3⟨W,Z⟩ = ⟨∗(W ∧ ψ), ∗(Z ∧ ψ)⟩ = ⟨π7(d∗σ), ∗(Z ∧ ψ)⟩ = ⟨d∗σ, ∗(Z ∧ ψ)⟩

= ⟨− ∗ ((df − τ0X +
2

3
curlX) ∧ ψ) + π14(dX) + d∗η, ∗(Z ∧ ψ)⟩

= ⟨−3df + 3τ0X − 2 curlX,Z⟩+ ⟨d∗η, ∗(Z ∧ ψ)⟩.(2.67)

Using (2.62) and (2.63), we compute the last term on the right hand side
of (2.67), in local coordinates. We have

⟨d∗η, ∗(Z ∧ ψ)⟩ = ⟨d∗η, Z⌟φ⟩ = 1

2
(d∗η)ijZmφmij = −

1

2
∇p(ηpij)Zmφmij

= −1

2
Zm(∇p(ηpijφmij)−

τ0
4
ηpijψpmij)

= −1

2
Zm(4∇phpm − 0) = −2⟨div h, Z⟩

and hence we get

⟨W,Z⟩ =
〈
− df + τ0X −

2

3
curlX − 2

3
div h, Z

〉
.



✐

✐

“5-Dwivedi” — 2023/12/25 — 11:35 — page 699 — #23
✐

✐

✐

✐

✐

✐

Deformation theory of nearly G2 manifolds 699

Since Z is arbitrary we get

W = −df + τ0X −
2

3
curlX − 2

3
div h

which gives (2.58). □

Remark 2.13. The main point of the previous lemma is to exhibit a rela-
tion between π7(dη) and π7(d

∗η). Such a relation is expected because of the
form of the linearization of the map Θ. More precisely, from (2.39), applying
the linearization of Θ to Lie derivatives, we have π27(LXψ) = − ∗ π27(LXφ),
⟨dη, Z ∧ φ⟩L2 = −⟨η, ∗LXψ⟩L2 and ⟨d∗η, Z⌟φ⟩L2 = ⟨η,LXφ⟩L2 . The compu-
tations in local coordinates was done to relate π7(dη) and π7(d

∗η) to the
divergence of the symmetric 2-tensor h.

Remark 2.14. The previous lemma generalizes Proposition 2.17 from [15]
where the G2 structure was assumed to be torsion-free (τ0 = 0).

We have the following corollary of Lemma 2.12.

Corollary 2.15. Let φ be a nearly G2 structure and let η ∈ Ω3
27. Then

(1) If η is closed then d∗η ∈ Ω2
14.

(2) If η is co-closed then dη ∈ Ω4
27.

Proof. In the notation of Lemma 2.12 we get that f = X = 0 and σ = η.
Thus we get that

π7(dη) = 0 ⇐⇒ π7(d
∗η) = 0

as from Lemma 2.12, both conditions are equivalent to div h = 0. Now if dη =
0 then π7(d

∗η) = 0 and hence d∗η ∈ Ω2
14. If d

∗η = 0 then π7(dη) = 0. Also,
since f = X = 0, we know from (2.56) that π1(dη) = 0. So dη ∈ Ω4

27. □

We also have a result similar to Lemma 2.12 for 4-forms which we state
below. The proof follows from the proof of Lemma 2.12 by taking ζ = ∗σ
and noting that ∗iφ(h) = −iφ(h). We expect that both Lemma 2.12 and
Lemma 2.16 will be useful in other contexts as well.



✐

✐

“5-Dwivedi” — 2023/12/25 — 11:35 — page 700 — #24
✐

✐

✐

✐

✐

✐

700 S. Dwivedi and R. Singhal

Lemma 2.16. Let φ be a nearly G2 structure on M and ζ be a 4-form on
M so that

ζ = fψ +X ∧ φ+ ζ0

where X ∈ Ω1(M) and ζ0 ∈ Ω4
27 with ζ0 = ∗iφ(h) where h is a symmetric

traceless 2-tensor. Then

π7(dζ) =W ∧ ψ where W = df − τ0X +
2

3
curlX − 2

3
div h,(2.68)

π1(d
∗ζ) =

(
τ0f +

4

7
d∗X

)
φ,(2.69)

π7(d
∗ζ) = Y ⌟ψ where Y = −df − 1

2
curlX − τ0

4
X − 1

2
div h.(2.70)

We get the following corollary.

Corollary 2.17. Let φ be a nearly G2 structure on M and let ζ0 ∈ Ω4
27.

Then

1) If dζ0 = 0 then d∗ζ0 ∈ Ω3
27.

2) If d∗ζ0 = 0 then dζ0 ∈ Ω5
14.

3. Hodge theory of nearly G2 manifolds

3.1. Dirac operators on nearly G2 manifolds

We begin this section by defining the Dirac operator on (M,φ) with a nearly
G2 structure. We then define a modified Dirac operator which is more suit-
able for our purposes. A G2 structure on M induces a spin structure, so M
admits an associated Dirac operator /D on its spinor bundle /S(M). Since
τ0 is constant, by rescaling the metric induced by the nearly G2 structure,
we can change the magnitude of τ0 and by changing the orientation, we
can change its sign. In the later part of the paper, we study deformations
of nearly G2 structures through nearly G2 structures φt. Since the under-
lying metric of any nearly G2 structure is positive Einstein, the family of
metrics gt corresponding to φt will be positive Einstein and so by [4, Corol-
lary 2.12], the scalar curvature Rt is constant in t. Thus, by (2.28), τ0 will be
constant through the deformation. Henceforth, we will assume that τ0 = 4.
The results of the paper do not depend on the value of τ0 chosen. Recall the
following definition from §1 with τ0 = 4.
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Definition 3.1. A spinor η ∈ Γ(/S(M)) is called a Killing spinor if for any
X ∈ Γ(TM)

(3.1) ∇Xη = −1

2
X · η

where “ · ” is the Clifford multiplication.

The real spinor bundle /S(M), as a G2 representation, is isomorphic to Ω0 ⊕
Ω1, where the isomorphism is

(f,X) −→ f · η +X · η.

For comparison with the Dirac-type operator which we define later, let us
derive a formula for the Dirac operator /D on a nearly G2 manifold in terms
of this isomorphism.

A unit spinor η on a nearly G2 manifold M satisfies (3.1). Thus

/D(fη) =

7∑

i=1

ei · ∇ei(fη) = ∇f · η +
7

2
fη,

where we have used the fact that ei · ei = −1. Also,

/D(X · η) =
7∑

i=1

ei · ∇ei(X · η) =
7∑

i=1

(ei · ∇eiX · η + ei ·X · ∇eiη)

= (dX) · η + (d∗X)η +

7∑

i=1

ei ·X · ∇eiη

which on using X · ei + ei ·X = −2⟨X, ei⟩ and (3.1) becomes

/D(X · η) = (dX) · η + (d∗X)η −
7∑

i=1

(X · ei · ∇eiη + 2⟨X, ei⟩∇eiη)

= (dX) · η + (d∗X)η − 7

2
X · η +X · η

= (dX) · η + (d∗X)η − 5

2
X · η.

Thus we get

/D(fη +X · η) =
(7
2
f + d∗X

)
η +

(
∇f + dX − 5

2
X
)
· η.(3.2)
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Now dX is a 2-form, hence dX = π7(dX) + π14(dX). Since the Lie group
G2 preserves the nearly G2 structure φ, it preserves the real Killing spinor η
induced by φ and Ω2

14(M) ∼= g2, the Lie algebra of G2, we have π14(dX) · η =

0. Also, we know from (2.42) that π7(dX) =
1

3
(curlX)⌟φ and it follows from

the definition of the Clifford multiplication, for instance as in [14, §4.2], that
(Y ⌟φ) · η = 3Y · η for any Y ∈ Γ(TM), we get that

/D(f,X) =
(7
2
f + d∗X

)
η +

(
∇f + curlX − 5

2
X
)
· η

which we will write as

/D(f,X) =
(7
2
f + d∗X,∇f + curlX − 5

2
X
)
.(3.3)

Definition 3.2. The Dirac operator /D is a first-order differential operator
on /S(M) defined as follows. Let s = (f,X) ∈ Γ(/S(M)). Then

(3.4) /D(f,X) =
(7
2
f + d∗X,∇f + curlX − 5

2
X
)
.

The Dirac operator is formally self-adjoint, that is, /D
∗
= /D and is also an

elliptic operator.

Consider the Dirac Laplacian /D
2
= /D

∗ /D. We relate it to the Hodge Lapla-
cian in the following

Proposition 3.3. Let s = (f,X) be a section of the spinor bundle /S(M).
Then

/D
2
(f,X) =

(
∆f +

49

4
f + d∗X, ∆dX + curlX +

25

4
X +∇f

)
.(3.5)

Thus /D
2
is equal to ∆d up to lower order terms.
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Proof. Using Corollary 2.8, we calculate

/D
2
(f,X) =

(
7

2

(7
2
f + d∗X

)
+ d∗

(
∇f + curlX − 5

2
X
)
,

d
(7
2
f + d∗X

)
+ curl

(
∇f + curlX − 5

2
X
)

− 5

2

(
∇f + curlX − 5

2
X
))

=
(
∆f +

49

4
f + d∗X, ∆dX + curlX +

25

4
X +∇f

)

which proves (3.5). □

We need a modification of the Dirac operator defined above. The spinor
bundle /S(M) is isomorphic to Ω0

1 ⊕ Ω1
7 and hence, via a G2-equivariant iso-

morphism, it is also isomorphic to Ω3
1 ⊕ Ω3

7. We define the modified Dirac

operator, which we denote by D, as follows. Consider the map

D : Ω0
1 ⊕ Ω1

7 −→ Ω3
1 ⊕ Ω3

7

(f,X) 7→ 1

2
∗ d(fφ) + π1⊕7(d(X⌟φ)).

Using Lemma 2.11 (4) with τ0 = 4, we get

D(f,X) =
(
2f − 3

7
d∗X,

1

2
df + 6X − curlX

)
.(3.6)

Remark 3.4. We note that D is defined in the same way as in [15] where

the authors denote the operator by /̌D.

We find the kernel of D. Let (f,X) ∈ Ω0 ⊕ Ω1 be in the kernel of D. Then

2f − 3

7
d∗X = 0,

1

2
df + 6X − curlX = 0.

Taking d∗ of the second equation and using the first equation and equa-
tion (2.49), we get

∆f = d∗df = 2d∗ curlX − 12d∗X = −56f.
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Since ∆ is a non-negative operator, f = 0. For X, we have

d∗X = 0 and curlX = 6X.

We want to prove that X is a Killing vector field. Let dX = Y ⌟φ+ π14(dX).
Then

dX ∧ ψ = (Y ⌟φ) ∧ ψ
= 3 ∗ Y.

Therefore

π7(dX) =
1

3
∗ (dX ∧ ψ)⌟φ =

1

3
(curlX)⌟φ = 2X⌟φ.

From Lemma 2.9 (2), we have

∫

M

dX ∧ dX ∧ φ = 2∥2X⌟φ∥2 − ∥π14(dX)∥2

= 8⟨X⌟φ,X⌟φ⟩ − ∥π14(dX)∥2

= 8⟨X, ∗((X⌟φ) ∧ ψ)⟩ − ∥π14(dX)∥2

= 24∥X∥2 − ∥π14(dX)∥2.

On the other hand, since M is compact, using integration by parts we have

∫

M

dX ∧ dX ∧ φ =

∫

M

X ∧ dX ∧ dφ

= 4

∫

M

X ∧ dX ∧ ψ = 4

∫

M

X ∧ (6 ∗X) = 24∥X∥2.

Therefore, π14(dX) = 0 and dX = π7(dX) = 2X⌟φ. Now using Lemma 2.11
(4), along with the fact that X ∈ kerD, i.e., d∗X = 0 and curlX = 6X, we
get

0 = d(dX) = d(X⌟φ) =
1

2
iφ(LXg),

and hence X is a Killing vector field. Therefore kerD is isomorphic to the
set of Killing vector fields X such that curlX = 6X. We denote kerD by K,
that is,

kerD = K = {X ∈ Γ(TM) | LXg = 0 and curlX = 6X}.(3.7)
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Remark 3.5. Note that the above can also be proved using the identity
∆X = d∗dX = −2d∗(X⌟φ) = 12X, since Ricg = 6g for τ0 = 4.

Remark 3.6. If we also want the vector field X ∈ K to preserve the G2

structure, then

LXφ = d(X⌟φ) +X⌟ dφ = 4X⌟ψ = 0,

but since Ω1 ∼= Ω4
7, this implies X = 0. Hence the only vector fields in K

that preserve the G2 structure are trivial. Note that when φ is a nearly G2

structure of type-1, that is dim(K/S) = 1, every Killing vector field preserves
the G2 structure and hence K = {0}.

The motivation for defining the modified Dirac operator can be understood
from the following.

Consider the following operator

D+ : Ω3
1 ⊕ Ω5

7 → Ω4
1⊕7

(fφ,X ∧ ψ) 7→ π1⊕7(d(fφ) + d∗(X ∧ ψ)).

From previous calculations and Lemma 2.11 we know that

d(fφ) = df ∧ φ+ 4fψ ∈ Ω4
1⊕7,

π1⊕7(d
∗(X ∧ ψ)) = 3

7
(d∗X)ψ +

1

2

(
curlX − 6X

)
∧ φ.

Thus

D+(fφ,X ∧ ψ) =
(
4f +

3

7
(d∗X), df +

1

2

(
curlX − 6X

))
.

Doing a similar calculation as we did for kerD, we observe that if (f,X) ∈
kerD+, then

∆f = −28f, curlX = 6X =⇒ f = 0 = d∗X hence X ∈ K

and so kerD+ = kerD. Since Ω3
1 ⊕ Ω5

7
∼= Ω4

1⊕7 and D,D+ are self-adjoint
operators, we have the following identification

(3.8)
Ω4
1⊕7 = ImD+ ⊕ kerD+ = ImD+ ⊕ kerD

= dΩ3
1 ⊕ π1⊕7(d

∗Ω5
7)⊕ {X ∧ φ|X ∈ K}.

This is used in the following important
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Proposition 3.7. Let (M,φ, ψ) be a nearly G2 manifold. Then the follow-
ing holds.

1) Ω4 = {X ∧ φ|X ∈ K} ⊕ dΩ3
1 ⊕ d∗Ω5

7 ⊕ Ω4
27.

2) We have an L2-orthogonal decomposition Ω4
exact = {X ∧ φ | X ∈ K} ⊕

dΩ3
1 ⊕ Ω4

27,exact.

Proof. The first part of the proposition follows from the decomposition of
Ω4
1⊕7 in equation (3.8).

For the second part we note that the space d∗Ω5
7 is L

2-orthogonal to exact 4-
forms. To prove the L2-orthogonality of the remaining summands we proceed
term by term. Let X ∈ K, d(fφ) ∈ dΩ3

1 and γ ∈ Ω4
27, such that dα = X ∧

φ+ d(fφ) + β for some exact 4-form dα. Using the pointwise orthogonality
of Ω4

1 and Ω4
7, we have

⟨X ∧ φ, d(fφ)⟩L2 = ⟨X ∧ φ, df ∧ φ+ 4fψ⟩L2

= ⟨X ∧ φ, df ∧ φ⟩L2

= 4⟨X, df⟩L2 = 4⟨d∗X, f⟩L2 = 0.

Note that since X ∈ K, Lemma 2.11 (6) implies that X ∧ φ = d
(
−1

4X⌟ψ
)
,

and hence is exact. Thus, β ∈ Ω4
27,exact. Let β = dα0. The L

2-orthogonality
of Ω4

27 and Ω4
1, along with the identity φ ∧ ∗dα = 0 implies

⟨dα0, d(fφ)⟩L2 = ⟨dα0, df ∧ φ+ 4fψ⟩L2

= ⟨dα0, df ∧ φ⟩L2 + ⟨dα0, 4fψ⟩L2 = 0.

The orthogonality of X ∧ φ and dα0 follows from the L2-orthogonality of
Ω4
7 and Ω4

27. □

Thus, from the previous proposition, we know that any 4-form α on a
nearly G2 manifold can be written as α = X ∧ φ+ d(fφ) + d∗(Y ∧ ψ) + α0,
for some X ∈ K, f ∈ C∞(M), Y ∈ Γ(TM) and α0 ∈ Ω4

27. Since for Y ∈ K,
d∗(Y ∧ ψ) = 0, one can choose Y ∈ K⊥L2 in the previous proposition.

Thus for every 4-form α there exists unique X ∈ K, Y ∈ K⊥L2 , f ∈ C∞(M)
and α0 ∈ Ω4

27 such that

α = X ∧ φ+ d(fφ) + d∗(Y ∧ ψ) + α0.
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3.2. Harmonic 2-forms and 3-forms on nearly G2 manifolds

The above decomposition of 4-forms has a very useful application in de-
termining the cohomology of nearly G2 manifolds. We first note that since
nearly G2 manifolds are positive Einstein, it follows from Bochner formula
and Hodge theory that any harmonic 1-form is 0 and hence H1(M) =
H6(M) = 0. The next two theorems describe the degree 3, 4 and degree
2 and 5 cohomology of a nearly G2 manifold.

Theorem 3.8. Let (M,φ, ψ) be a complete nearly G2 manifold. Then ev-
ery harmonic 4-form lies in Ω4

27. Equivalently, every harmonic 3-form lies
in Ω3

27.

Proof. Let α be a harmonic 4-form that is dα = d∗α = 0. From Proposi-
tion 3.7 there exists X ∈ K, f ∈ C∞(M), Y ∈ K⊥L2 and α0 ∈ Ω4

27 such
that

α = X ∧ φ+ d(fφ) + d∗(Y ∧ ψ) + α0.

Since X ∈ K and hence 6X = curlX, by Lemma 2.11 (6), d∗(X ∧ φ) =
4X⌟ψ ∈ Ω3

7 and since d(fφ) = df ∧ φ+ 4fψ ∈ Ω4
1⊕7, we have

0 = ⟨α, d(fφ)⟩L2 = ⟨X ∧ φ, d(fφ)⟩L2 + ∥d(fφ)∥2L2

+ ⟨d∗(Y ∧ ψ), d(fφ)⟩L2 + ⟨α0, d(fφ)⟩L2

= ⟨d∗(X ∧ φ), fφ⟩L2 + ∥d(fφ)∥2L2

= ∥d(fφ)∥2L2 .

Thus d(fφ) = 0 and hence f = 0.

Now, 0 = d∗α = d∗(X ∧ φ) + d∗α0 = 4X⌟ψ + d∗α0. Using the identity,
(X⌟ψ) ∧ φ = 4 ∗X we have

∥d∗α0∥2L2 = 16⟨X⌟ψ,X⌟ψ⟩L2

= 16⟨X, ∗((X⌟ψ) ∧ φ)⟩L2 = 64∥X∥2L2 .

On the other hand, again by Lemma 2.11 (6)

∥d∗α0∥2L2 = ⟨d∗α0, d
∗α0⟩L2

= −4⟨d∗α0, X⌟ψ⟩L2

= −4⟨α0, d(X⌟ψ)⟩L2 = 16⟨α0, X ∧ φ⟩L2 = 0,

which implies X = 0. So α = d∗(Y ∧ ψ) + α0.
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Since d∗α0 = 0, applying Corollary 2.17 on α0 implies dα0 ∈ Ω5
14. This iden-

tity together with the closedness of α gives us

0 = ⟨α, d∗(Y ∧ ψ)⟩L2 = ∥d∗(Y ∧ ψ)∥2L2 + ⟨α0, d
∗(Y ∧ ψ)⟩L2

= ∥d∗(Y ∧ ψ)∥2L2 + ⟨dα0, Y ∧ ψ⟩L2 = ∥d∗(Y ∧ ψ)∥2L2 .

as Y ∧ ψ ∈ Ω5
7. Hence d∗(Y ∧ ψ) = 0 or equivalently Y ∈ K, thus Y = 0

which implies that α = α0 which completes the proof of the theorem. □

We also describe the degree 2 (and hence degree 5) cohomology on nearly
G2 manifolds below. In combination with Theorem 3.8, this completely de-
scribes the cohomology of a nearly G2 manifold.

Theorem 3.9. Let (M,φ, ψ) be a complete nearly G2 manifold with τ0 = 4.
Let β be a 2-form with

β = β7 + β14 = (X⌟φ) + β14 for some X ∈ Γ(TM).

If β is harmonic then β ∈ Ω2
14.

Proof. Suppose β ∈ Ω2(M) is harmonic. Then dβ = d∗β = 0 and since d and
d∗ are linear, we have

dβ7 + dβ14 = 0, d∗β7 + d∗β14 = 0

which on using Lemma 2.11 (3), (4) and (5) imply

−3

7
(d∗X)φ+

1

2
∗ ((6X − curlX) ∧ φ)

+ iφ

(1
2
(LXg) +

1

7
(d∗X)g

)
+

1

4
∗ (d∗β14 ∧ φ) + π27(dβ14) = 0

and

d∗β14 = − curlX.

Thus we get

−3

7
(d∗X)φ+

1

2
∗ ((6X − curlX − 1

2
curlX) ∧ φ)

+ iφ

(1
2
(LXg) +

1

7
(d∗X)g

)
+ π27(dβ14) = 0
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and so

d∗X = 0, curlX = 4X and
1

2
(LXg) + π27(dβ14) = 0.(3.9)

Now curlX = 4X, so taking curl of both sides and using (2.51) with d∗X =
0, we get

∆dX + 4 curlX = 4 curlX =⇒ ∆dX = 0.

Thus X is harmonic. Since nearly G2 manifolds are positive Einstein, it
follows from Bochner formula and Myers theorem that X = 0. Hence β =
β14 ∈ Ω2

14. □

Remark 3.10. Theorem 3.9 was also proved in a very different way in [2,
Remark 15]. The theorem has the following interesting interpretation in the
context of G2-instantons on a nearly G2 manifold, as already described in
[2, Corollary 14]. For any α ∈ H2(M,Z), by Theorem 3.9, there is a unique
G2-instanton on a complex line bundle L with c1(L) = α.

Remark 3.11. It was brought to the attention of the authors by Uwe
Semmelmann and Paul-Andi Nagy that Theorem 3.8 also follows from the
description of nearly G2 manifolds using Killing spinors which is based on
an old result of Hijazi saying that the Clifford product of a harmonic form
and a Killing spinor vanishes. We also describe degree 2 cohomology by our
methods. We believe that the methods and the identities described here,
apart from being useful in other contexts, also have the potential to be
extended to manifolds with any G2 structure (not necessarily nearly G2)
with suitable modifications. The authors are currently investigating this.

4. Deformations of nearly G2 structures

Let (M,φ, ψ) be a nearly G2 manifold with a nearly G2 structure (φ, ψ). We
are interested in studying the deformation problem of (φ, ψ) in the space of
nearly G2 structures. The infinitesimal version of this problem was settled
by Alexandrov and Semmelmann in [1]. We will obtain new proofs of some
of their results using the results proved in the previous sections.

Let P be the space of G2 structures on M , that is, the set of all (φ, ψ) ∈
Ω3
+ × Ω4

+ with Θ(φ) = ψ. Given a point p = (φ, ψ) ∈ P we define the tangent
space TpP.
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Lemma 4.1. The tangent space TpP is the set of all (ξ, η) ∈ Ω3(M)×
Ω4(M) such that

ξ = 3fφ−X⌟ψ + γ

η = 4fψ +X ∧ φ− ∗γ

for some f ∈ Ω0(M), X ∈ Γ(TM) and γ ∈ Ω3
27.

Proof. The proof immediately follows from equations (2.39) and (2.40) from
Proposition 2.4. □

4.1. Infinitesimal deformations

We want to study deformations of a given nearly G2 structure φ on a com-
pact manifold M by nearly G2 structures φt. We will only be interested in
deformations of the nearly G2 structures modulo the action of the group
R∗ ×Diff0(M) where Diff0(M) denotes the space of diffeomorphisms of M
which are isotopic to the identity. We first use Proposition 3.7 to find a slice
for the action of diffeomorphism group on P which is used to find the space
of infinitesimal nearly G2 deformations, a result originally due Alexandrov–
Semmelmann [1].

For the purposes of doing analysis, we consider the Hölder space Pk,α of
G2 structures on M such that φ and ψ are of class Ck,α, k ≥ 1, α ∈ (0, 1).
Let p = (φ, ψ) ∈ Pk,α be a nearly G2 structure such that the induced metric
is not isometric to round S7. Denote the orbit of p under the action of
Diffk+1,α

0 (M) – Ck+1,α diffeomorphisms isotopic to the identity, by Op. The
tangent space TpOp is the space of Lie derivatives LX(φ, ψ) for X ∈ Γ(TM).
We are interested in finding a complement C of TpOp in TpP.
If (ξ, η) ∈ TpP then using Proposition 3.7 (1), we can write

η = X ∧ φ+ df ∧ φ+ 4fψ + d∗(Y ∧ ψ) + η0

for unique X ∈ K f ∈ Ω0(M), Y ∈ K⊥L2 and η0 ∈ Ω4
27. From Lemma 2.11

(4) we know that

∗d ∗ (Y ∧ ψ) = − ∗ d(Y ⌟φ) =
3

7
(d∗Y )ψ − (3Y − 1

2
curlY ) ∧ φ

− ∗iφ
(1
2
(∇iYj +∇jYi) +

1

7
(d∗Y )gij

)
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and since

LY ψ = d(Y ⌟ψ) = −4

7
d∗Y ψ −

(1
2
curlY + Y

)
∧ φ

− ∗iφ
(1
2
(∇iYj +∇jYj) +

1

7
(d∗Y )gij

)

from Lemma 2.11 (6), we see that

d∗(Y ∧ ψ) = −1

7
(d∗Y )ψ + (curlY − 2Y ) ∧ φ− LY ψ.

Thus up to an element in TpOp we get that

η =
(
4f − 1

7
d∗Y

)
ψ + (X + df + curlY − 2Y ) ∧ φ+ η0(4.1)

and hence from Lemma 4.1

ξ = (3f − 3

28
d∗Y )φ− (X + df + curlY − 2Y )⌟ψ − ∗η0.(4.2)

Now, if X ∈ K then from Lemma 2.11 (6) and curlX = 6X we see that

L−X

4

ψ = d

(
−X

4
⌟ψ

)
= X ∧ φ

and hence

η = L−X

4

ψ + d(fφ) + d∗(Y ∧ ψ) + η0

which implies that up to an element in TpOp combined with the above
observation, we can write

η =
(
4f − 1

7
d∗Y

)
ψ + (df + curlY − 2Y ) ∧ φ+ η0(4.3)

which implies that

ξ = (3f − 3

28
d∗Y )φ− (df + curlY − 2Y )⌟ψ − ∗η0(4.4)

and hence we get a splitting TpP = TpOp ⊕ C where C ∼= Ω0(M)×K⊥L2 ×
Ω4
27 which consists of (ξ, η) ∈ TpP of the form (4.4) and (4.3) respectively.

This gives a choice of slice. In fact, as discussed in [20, pg. 49 & Theo-
rem 3.1.4] we have
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Proposition 4.2. There exists an open neighbourhood U of C of the origin
such that the “exponentiation” of U is a slice for the action of Diffk+1,α

0 (M)
on a sufficiently small neighbourhood of p ∈ Pk,α.

With this choice of slice we determine the infinitesimal deformations of the
nearly G2 structure p which gives a new proof of a result of Alexandrov–
Semmelmann [1, Theorem 3.5].

Theorem 4.3. Let (M,φ, ψ) be a complete nearly G2 manifold, not iso-
metric to the round S7. Then the infinitesimal deformations of the nearly
G2 structure are in one to one correspondence with (X, ξ0) ∈ K × Ω3

27 with

∗dξ0 = −4ξ0 and ∆X = 12X.(4.5)

Hence ξ0 is co-closed as well. Moreover, ∆dξ0 = 16ξ0.

Proof. Let (ξ, η) ∈ TpP be an infinitesimal nearly G2 deformation of a G2

structure p ∈ P. So η must be exact and hence from Proposition 3.7 (2), we
can remove the d∗(Y ∧ ψ) term, in which case (4.1) and (4.2) become

η = 4fψ + (X + df) ∧ φ+ η0 and ξ = 3fφ− (X + df)⌟ψ − ∗η0.(4.6)

Moreover, for infinitesimal nearly G2 deformations we must have

dξ = 4η

and hence (4.6) implies

4fψ + (4X + df) ∧ φ+ 4η0 + d((X + df)⌟ψ) + d ∗ η0 = 0.

Using Lemma 2.11 (6) for the fourth term above and taking inner product
with ψ gives

28f − 4d∗(X + df) = 0.

But since X ∈ K =⇒ d∗X = 0 and hence we get ∆f = 7f . Since M is not
isometric to round S7, Obata’s theorem then implies that f = 0 and hence

η = X ∧ φ+ η0 and ξ = −X⌟ψ − ∗η0(4.7)

which proves the one to one correspondence between the infinitesimal nearly
G2 deformations and K × Ω3

27. Since Ric = 6g and X is a Killing vector field,
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we have ∆X = 12X which is the second part of (4.5). Since η0 is exact,
dη0 = 0. From (4.7) and the fact that dξ = 4η, we get

d ∗ η0 = −4η0

and hence

∗dξ0 = −4ξ0.

Taking d∗ of both sides give d∗ξ0 = 0. Moreover,

∆dξ0 = d∗dξ0 = −4d∗ ∗ ξ0 = −4 ∗ (dξ0) = 16ξ0

which completes the proof of the theorem. □

Remark 4.4. From the computations for the proof of Proposition 4.2 we
know that for X ∈ K,

−4X ∧ φ = LXψ.

Thus, from Theorem 4.3 we see that the infinitesimal deformations of a
nearly G2 structure modulo diffeomorphisms are in one-to-one correspon-
dence with ξ0 ∈ Ω3

27 such that ∗dξ0 = −4ξ0.

Motivated from the study of deformations of nearly Kähler 6-manifolds by
Foscolo [7, §4] where he used observations of Hitchin [10], we also want to
interpret the nearly G2 condition (2.24) as the vanishing of a smooth map on
the space of exact positive 4-forms. Moreover, in order to study the second
order deformations, it will be convenient to enlarge the space by introducing
a vector field as an additional parameter which is natural when one considers
the action of the diffeomorphism group. We elaborate on this below.

Let ψ = dα be an exact positive 4-form, not necessarily satisfying the nearly
G2 condition. Let η ∈ Ω4

exact be the first order deformation of ψ. Hitchin in
[10] defined a volume functional for exact 4-form ρ = dγ given by

V (ρ) =

∫

M

∗ρ ∧ ρ,

and a quadratic form

W (ρ, ρ′) =

∫

M

γ ∧ ρ′ =
∫

M

ρ ∧ γ′,
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where ρ = dγ and ρ′ = dγ′ are exact 4-forms. We denote W (ρ, ρ) by W (ρ).
When M is compact, Hitchin proves [10, Theorem 5] that stable 4-forms
(which is the same as a positive 4-form in our case) η ∈ Ω4

exact(M) is a critical
point of the volume functional V subject to the constraint W (η) = constant
if and only if η defines a nearly G2 structure. The linearization of the volume
functional at ψ is given by

dV (η) =
d

dt

∣∣∣∣
t=0

V (ψ + tη) =

∫

M

φ ∧ η +
∫

M

∗η ∧ ψ

= 2

∫

M

φ ∧ η.

For the linearization of the quadratic form, suppose ψ is exact with ψ = dα.
We use integration by parts to get

dW (η) =
d

dt

∣∣∣∣
t=0

W (ψ + tη) =

∫

M

α ∧ η +
∫

M

γ ∧ ψ

= 2

∫

M

α ∧ η.

Let us define an energy functional E on exact 4-forms by

E(ρ) := V (ρ)− 4W (ρ).

Then from above calculations

dE(η) =

∫

M

(φ− 4α) ∧ η =

∫

M

d((φ− 4α) ∧ γ.

Therefore ψ = dα is a critical point of E if and only if dE(η) = 0 for every
η ∈ Ω4

exact that is if and only if

dφ− 4dα = dφ− 4ψ = 0.

Hence the critical points of the functional E on Ω4
+,exact are nearly G2 struc-

tures. Since the energy functional E is diffeomorphism invariant, we can
introduce an extra vector field, as dE will vanish in the direction of Lie
derivatives. Thus ψ being a stable exact 4-form can be given by the formula

ψ =
1

4
d(φ− ∗d(Z⌟ψ))

for some Z ∈ Γ(TM). We use these observations to write the nearly G2

condition (2.24) as the vanishing of a smooth map. Let us denote by P̂ the
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space of stable 3 and stable, exact 4-forms, i.e., (φ, ψ) ∈ Ω3
+ × Ω4

+,exact. We
have the following

Proposition 4.5. Suppose (φ, ψ) ∈ P̂ satisfies

dφ− 4ψ = d ∗ d(Z⌟ψ)(4.8)

for some vector field Z and ∗ denotes the Hodge star with respect to a fixed
background metric. Then (φ, ψ) is a nearly G2 structure.

Proof. We will prove that d(Z⌟ψ) = 0. We note from (2.32) that

(Z⌟ψ) ∧ ψ = 0

So from (4.8) we get that

∥d(Z⌟ψ)∥2L2 = ⟨d(Z⌟ψ), d(Z⌟ψ)⟩L2

= ⟨(Z⌟ψ), ∗d ∗ d(Z⌟ψ)⟩L2

= ⟨(Z⌟ψ), ∗(dφ− 4ψ)⟩L2

=

∫

M

(Z⌟ψ) ∧ (dφ− 4ψ) =

∫

M

(Z⌟ψ) ∧ dφ

Since φ is a G2 structure and dψ = 0 from (4.8), we know from (2.19) that
τ1 = 0 and hence dφ has no component in Ω4

7. Thus

⟨(Z⌟ψ), ∗dφ⟩ = 0

which implies that

∥d(Z⌟ψ)∥2L2 =

∫

M

(Z⌟ψ) ∧ dφ = 0

which proves the proposition. □

Suppose we want to describe the local moduli space of nearly G2 structures
on a manifold M . If NP denotes the space of nearly G2 structures on M
then the local moduli space isM = NP/Diff0(M). A natural way to study
this problem is to view the nearly G2 structures on M as the zero locus of
an appropriate function, find the linearization of the function and prove its
surjectivity, so that an Implicit Function Theorem argument describesM.

Now let (φ, ψ) be a nearly G2 structure on M . Let U ⊂ Ω4
+,exact be a small

neighborhood of the 4-form ψ. Since the condition of being stable is open we
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can assume the existence of such a neighborhood. Thus for η ∈ Ω4
exact with

sufficiently small norm with respect to the metric induced by φ, ψ̃ = ψ + η
is also a stable exact 4-form. From Proposition 4.5 the pair of stable forms
(φ̃, ψ̃) defines a nearly G2 structure if there exists a Z ∈ Γ(TM) such that

dφ̃− 4ψ̃ = d ∗ d(Z⌟ψ̃).

This condition is equivalent to the vanishing of the map

Φ : U × Γ(TM)→ Ω4
exact

(ψ̃, Z) 7→ d ∗ ψ̃ − 4ψ̃ − d ∗ d(Z⌟ψ̃).(4.9)

Thus, the nearly G2 structures are the zero locus of the map Φ modulo
diffeomorphisms.

Let ξ be the dual of η under the Hitchin’s duality map Θ as in Proposi-
tion 2.4. The linearization of the map Φ at the point (ψ, 0) is given by

dξ − 4η = d ∗ d(Z⌟ψ).

Thus the obstructions on the first order deformations of the nearly G2 struc-
ture (φ, ψ) are given by Im(DΦ) which is characterized in the following
proposition, whose proof is inspired from a similar theorem in the nearly
Kähler case by Foscolo [7, Proposition 4.5].

Proposition 4.6. Let (φ, ψ) be a nearly G2 structure and (ξ, η) ∈ Ω3 ×
Ω4
exact be a first order deformation in P. Then α ∈ Ω4

exact lies in the image
of DΦ if and only if

⟨d∗α− 4 ∗ α, χ⟩L2 = 0

for all co-closed χ ∈ Ω3
27 such that ∆χ = 16χ.

Proof. From Proposition 3.7 (2), there exists X ∈ K, f ∈ C∞(M) and η0 ∈
Ω4
27,exact such that

η = X ∧ φ+ d(fφ) + η0

= d

(
−1

4
X⌟ψ + fφ

)
+ η0

and from Lemma 4.1, the 3-form

ξ = 3fφ− (df +X)⌟ψ − ∗η0.
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By Proposition 3.7, α = Y ∧ φ+ d(hφ) + α0 for some Y ∈ K, h ∈
C∞(M), α0 ∈ Ω4

27,exact. Such an α lies in the image of DΦ if

dξ − 4η − d ∗ d(Z⌟ψ) = α = d
(
− 1

4
Y ⌟ψ + hφ

)
+ α0.

From Lemma 2.11 (5)

d∗(Z ∧ ψ) = − ∗ d(Z⌟φ)

=
3

7
(d∗Z)ψ − 1

2

(
6Z − curlZ

)
∧ φ

− ∗iφ
(1
2
(∇iZj +∇jZi) +

1

7
(d∗Z)gij

)

Comparing the last term in the above expression with that of d(Z⌟ψ) in
Lemma 2.11 we get

d(Z⌟ψ) =
1

7
d∗Zψ + (2Z − curlZ) ∧ φ+ d∗(Z ∧ ψ).

Using these expressions for ξ, η and d(Z⌟ψ) we get

dξ − 4η − d ∗ d(Z⌟ψ) = d((−f − 1

7
d∗Z)φ− (df − 2Z + curlZ)⌟ψ)

− d ∗ η0 − 4η0.

Thus, for finding the Im(DΦ), we need to solve the equations

(4.10)

f +
1

7
d∗Z = −h

df − 2Z + curlZ =
1

4
Y

−d ∗ η0 − 4η0 = α0.

Let α0 = 0. Then by Implicit Function Theorem, a solution of the first pair
of equations always exist if the operator

D̃ : Ω0 × Ω1 → Ω0 × Ω1

(f, Z) 7→
(
f +

1

7
d∗Z, df − 2Z + curlZ

)

is invertible in a small neighborhood of its zero locus. Since D̃ differs from
the modified Dirac operator D in (3.6) only by self-adjoint zeroth-order
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term, it is self-adjoint and hence ker(D̃) = coker(D̃). A pair (f, Z) is in the
kernel of the operator D if and only if

f +
1

7
d∗Z = 0

df − 2Z + curlZ = 0.

Applying the operator d∗ on the second equation and using the fact that
d∗(curlZ) = 0 gives

0 = d∗df − 2d∗Z = d∗df + 14f.

Thus f = 0 as ∆ is a non-negative operator. The second equation then
becomes

curlZ = d∗(Z⌟φ) = ∗(dZ ∧ ψ) = 2Z

and Proposition 2.5 implies that dZ =
2

3
Z⌟φ+ π14(dZ). Using Lemma 2.9

(2) we get that
∫

M

dZ ∧ dZ ∧ φ =
8

9
∥Z⌟φ∥2 − ∥π14(dZ)∥2

=
8

3
∥Z∥2 − ∥π14(dZ)∥2.

On the other hand
∫

M

dZ ∧ dZ ∧ φ = 4

∫

M

Z ∧ dZ ∧ ψ = 8∥Z∥2.

Combining these two equations we get
16

3
∥Z∥2 = −∥π14(dZ)∥2 and hence

Z = 0 as well. Thus ker(D̃) = coker(D̃) = 0 and D̃ is invertible when α0 = 0
and we can always solve the first pair of equations in (4.10). Thus there are
no restrictions on Y, h to be in the image of DΦ. Moreover if α0 ̸= 0 satisfies
the third equation in (4.10) then

d∗α0 = −d∗d ∗ η0 − 4d∗η0,

∗α0 = −d∗η0 − 4 ∗ η0

which on using the fact that ∗η0 is co-closed implies

d∗α0 − 4 ∗ α0 = 16 ∗ η0 − d∗d ∗ η0 = 16 ∗ η0 −∆d ∗ η0.
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Thus α0 ∈ Ω4
27,exact is a solution to the equation (4.10) (3) if and only if

⟨d∗α0 − 4 ∗ α0, ξ0⟩L2 = 0

for all co-closed ξ0 ∈ Ω3
27 such that ∆ξ = 16ξ. To complete the proof of the

proposition we now only need to prove the L2-orthogonality condition for
α. But observe that since Y ∈ K

d∗α = d∗(Y ∧ φ) + d∗d(hφ) + d∗α0 = −4Y ⌟ψ + d∗d(hφ) + d∗α0,

and so d∗α− 4 ∗ α = d∗d(hφ)− 4 ∗ d(hφ) + d∗α0 − 4 ∗ α0. Since ξ is co-
closed, from Corollary 2.15 dξ ∈ Ω4

27 and

⟨d∗d(hφ), ξ⟩L2 = ⟨d(hφ), dξ⟩L2 = 0.

Similarly

⟨∗d(hφ), ξ⟩L2 = ⟨d∗(hψ), ξ⟩L2 = ⟨hψ, dξ⟩L2 = 0

which completes the proof of the proposition. □

Remark 4.7. Proposition 4.6 puts a very strong restriction on the first
order deformations of a nearly G2 structure to be unobstructed.

4.2. Second-order deformations

Following the work of Koiso [16] on deformations of Einstein metrics and
the work of Foscolo [7] on the second order deformations of nearly Kähler
structures on 6-manifolds, we define the notion of second order deformations
of nearly G2 structures.

Definition 4.8. Given a nearly G2 structure (φ0, ψ0) and an infinitesimal
deformation (ξ1, η1), a second order deformation of (φ0, ψ0) in the direction
of (ξ1, η1) is a pair (ξ2, η2) ∈ Ω3 × Ω4 such that

φ = φ0 + ϵξ1 +
ϵ2

2
ξ2, ψ = ψ0 + ϵη1 +

ϵ2

2
η2

is a nearly G2 structure up to terms of order O(ϵ2). An infinitesimal de-
formation (ξ1, η1) is said to be obstructed to second order if there exists no
second-order deformation in its direction.
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Remark 4.9. Second order deformations are the same as the second deriva-
tive of a curve of nearly G2 structures on a manifold M .

Remark 4.10. In a similar way, we can define higher order deformations
of a nearly G2 structure.

Following the discussion in the previous section and in particular Proposi-
tion 4.5, in order to find second order deformations of a given nearly G2

structure (φ0, ψ0), we look for formal power series defining positive exact
4-form

ψϵ = ψ0 + ϵη1 +
ϵ2

2
η2 + · · ·

where ηi ∈ Ω4
exact and a vector field

Zϵ = ϵZ1 +
ϵ2

2
Z2 + · · ·

which satisfy (4.8), that is

dφϵ − 4ψϵ = d ∗ d(Zϵ⌟ψϵ)(4.11)

where φϵ is the dual of ψϵ. Note that the Hodge star ∗ is taken with respect
to φϵ.

Since we are interested in second order deformations, given an infinitesimal
nearly G2 deformation (ξ1, η1), we set Z1 = 0 and look for η2 ∈ Ω4

exact such
that (4.11) is satisfied upto terms of O(ϵ3). Explicitly, we write

φϵ = φ0 + ϵξ1 +
ϵ2

2
(η̂2 −Q3(η1))

where η̂2 denotes the linearization of Hitchin’s duality map Θ for stable forms
in Proposition 2.4 and Q3(η1) is the quadratic term of Hitchin’s duality map.
Since we want solutions to (4.11) up to second order, we look for η2 such
that

dη̂2 − 4η2 = d(Q3(η1)) + d ∗ d(Z2⌟ψ0)(4.12)

as Z1 = 0 and Z2⌟ψ0 is the only second order term in Zϵ⌟ψϵ. We know
from Proposition 4.6 that there are obstructions to finding second order
deformations and hence in solving the above equation. We want to establish
a one-to-one correspondence between second order deformations of a nearly
G2 structure and solutions to (4.12). We do this in the following lemma.
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Lemma 4.11. Suppose η2 is a solution of (4.12). Then d(Z2⌟ψ0) = 0 and
(η̂2 −Q3(η1), η2) defines a second-order deformation of (φ0, ψ0) in the di-
rection of (ξ1, η1) in the sense of Definition 4.8. Conversely, every second
order deformation (ξ2, η2) is a solution to (4.12).

Proof. We start with

∥d(Z2⌟ψ0)∥2L2 = ⟨Z2⌟ψ0, d
∗d(Z2⌟ψ0)⟩L2

= ⟨Z2⌟ψ0, ∗d ∗ d(Z2⌟ψ0)⟩L2

= ⟨Z2⌟ψ0, ∗(dη̂2 − 4η2 − dQ3(η1))⟩L2

Since dψϵ = O(ϵ3), hence from (2.18) and (2.19) we see that for any vector
field Y ,

∫
dφϵ ∧ (Y ⌟ψϵ) = O(ϵ3). Thus the terms which are O(ϵ2) in

∫
dφϵ ∧

(Y ⌟ψϵ) vanish, that is
∫
dφ0 ∧ (Y ⌟η2) + dξ1 ∧ η1 + d(η̂2 −Q3(η1)) ∧ (Y ⌟ψ0) = 0.

Using the facts that dφ0 = 4ψ0, dξ1 ∧ η1 = 0, being an 8-form on a seven
dimensional manifold and (Y ⌟η2) ∧ ψ0 = −(Y ⌟ψ0) ∧ η2 we get that

∫
d(η̂2 −Q3(η1)) ∧ (Y ⌟ψ0)− 4η2 ∧ (Y ⌟ψ0) = 0

Taking Y = Z2 proves that d(Z2⌟ψ0) = 0. From (4.12) we get that

d(η̂2 −Q3(η1)) = 4η2

which proves that ((η̂2 −Q3(η1), η2)) is a second-order deformation of
(φ0, ψ0) in the direction of (ξ1, η1) in the sense of Definition 4.8. Con-
versely, suppose that (ξ2, η2) is a second-order deformation of (φ0, ψ0). Then
dξ2 = 4η2. □

From the previous proposition and Proposition 4.6 we have that if (ξ2, η2) is
a second order deformation of the nearly G2 structure (φ0, ψ0) in the sense
of Definition 4.8 then

⟨d∗dQ3(η1)− 4 ∗ dQ3(η1), χ⟩L2 = 0(4.13)

for all χ ∈ Ω3
27 such that d∗χ = 0,∆χ = 16χ. The above equation simplifies

to

⟨∗Q3(η1), dχ− 4 ∗ χ⟩L2 = 0.
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Moreover, if χ is an infinitesimal deformation of (φ0, ψ0), then by Theo-
rem 4.3 χ satisfies dχ = −4 ∗ χ (which of course implies d∗χ = 0 and ∆χ =
16χ) and so the above equation is equivalent to

⟨Q3(η1), χ⟩L2 = 0.

5. Deformations on the Aloff-Wallach space

In [1, Prop. 8.3] Alexandrov–Semmelmann established that the space of
infinitesimal deformations of the nearly G2 structure on the Aloff–Wallach
space X1,1

∼= SU(3)×SU(2)
SU(2)×U(1) is an eight dimensional space isomorphic to su(3),

the Lie algebra of SU(3). The rest of the paper is devoted to prove that
these deformations are obstructed to second order.

The embedding of su(2) and u(1) in su(3)⊕ su(2), which we denote by su(2)d
and u(1), following [1], is given by

su(2)d =

{((a 0
0 0

)
, a
)
| a ∈ su(2)

}
,

u(1) = span{C} = span



(



i 0 0
0 i 0
0 0 −2i


 , 0)



 .

The Lie algebra su(3)⊕ su(2) splits as

su(3)⊕ su(2) = su(2)⊕ u(1)⊕m

where m is the 7-dimensional orthogonal complement of su(2)⊕ u(1) with
respect to B, the Killing form of su(3)⊕ su(2). The normal nearly G2 metric
on X1,1 is then given by − 3

40B where the constant − 3
40 comes from our

choice of τ0 = 4. If we denote by W the standard 2-dimensional complex
irreducible representation of SU(2) and by F (k) the 1-dimensional complex
irreducible representation of U(1) with highest weight k, then as an SU(2)×
U(1)-representation

su(3)C ∼= S2W ⊕WF (3)⊕WF (−3)⊕ C.

Let {ei}7i=1 be the basis of m. If we define I =

(
i 0
0 −i

)
, J =

(
0 −1
1 0

)
and K =

(
0 i
i 0

)
, we have
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e1 :=
1

3

((
2I 0
0 0

)
,−3I

)
, e2 :=

1

3

((
2J 0
0 0

)
,−3J

)
,

e3 :=
1

3

((
2K 0
0 0

)
,−3K

)
,

e4 :=

√
5

3






0 0
√
2

0 0 0

−
√
2 0 0


 , 0


 , e5 :=

√
5

3






0 0
√
2i

0 0 0√
2i 0 0


 , 0


 ,

e6 :=

√
5

3





0 0 0

0 0
√
2

0 −
√
2 0


 , 0


 , e7 :=

√
5

3





0 0 0

0 0
√
2i

0
√
2i 0


 , 0


 .

This basis is orthonormal with respect to the metric g = − 3
40B. We use the

shorthand ei1i2...in to denote the n-form ei1 ∧ ei2 ∧ · · · ∧ ein . The nearly G2

structure φ is given by

φ = e123 + e145 − e167 + e246 + e257 + e347 − e356.

As an SU(2)×U(1) representation, mC
∼= S2W ⊕WF (3)⊕WF (−3) where

S2W = Span{e1, e2, e3}, WF (3) = Span{e4 − ie5, e6 − ie7},
WF (−3) = Span{e4 + ie5, e6 + ie7}.

By Theorem 4.3, the space of first order deformations is given by {ξ ∈
Ω3
27 | dξ = −4 ∗ ξ}. In this example, it was found to be isomorphic to

su(3). As an SU(2)×U(1) representation, su(3) is isomorphic to the span
of {C, e1, . . . , e7}. The SU(2)×U(1)-invariant homomorphism from su(3) to
Ω3
27(X1,1) is given by Span{A} where

A(C) = φ− 7e123, A(e1) =
5

3
(e145 + e167),

A(e2) =
5

3
(e245 + e267), A(e3) =

5

3
(e345 + e367),

A(e4) =
5

9
(3e467 + e137 + e126 + e234),

A(e5) =
5

9
(3e567 + e235 − e136 + e127),

A(e6) =
5

9
(3e456 − e236 − e135 + e124),

A(e7) =
5

9
(3e457 − e237 + e125 + e134).
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Let us fix an α ∈ su(3). The adjoint action of h = (h1, h2) ∈ SU(3)× SU(2)
is given by

h−1αh = h−1
1 αh1 =




iv1 x1 + ix2 x3 + ix4
−x1 + ix2 iv2 x5 + ix6
−x3 + ix4 −x5 + ix6 −i(v1 + v2)




where v1, v2, x1, x2, x3, x4, x5, x6 are functions on X1,1.

The infinitesimal deformation ξα associated to α such that dξα = −4 ∗ ξα is
given by

ξα =
v1 + v2

2
A(C) +

v1 − v2
2

A(e1) +

6∑

i=1

xiA(ei+1).

We can now compute the 4-form ηα by using the relation dξα = 4ηα = −4 ∗
ξα. In order to show that the infinitesimal deformation (ξα, ηα) associated
to α is obstructed to second order, we need to compute the quadratic term
Q3(ηα) as discussed in equation (4.13) and find an element β ∈ su(3) for
which the L2-inner product is non-zero.

To compute Q3(ηα), one can use the algorithm for stable 4-forms on mani-
folds with G2 structures as discussed in [10]. Using the fact that ξα = − ∗ ηα,
one can easily show that for some non-zero constant c1, Q3(ηα) = c1 ∗Q4(ξα)
where Q4(ξα) is the quadratic term associated to ξα. Thus, we will instead
compute Q4(ξα) and show that the inner product ⟨∗Q4(ξα), ξα⟩L2 ̸= 0 to
prove obstructedness.

Consider φt = φ+ tξα to be a positive 3-form for small t. We will denote
the metric and the volume form induced by φt by gt and volt respectively.
We have a Taylor series expansion

gt = g0 + tg1 + t2g2 +O(t3)).

Then one can define the symmetric bi-linear form Bt by

(Bt)ij = ((ei⌟φt) ∧ (ej⌟φt) ∧ φt)(e1, . . . , e7).

The zero order term of Bt, denoted by B0 is given by (B0)ij = ((ei⌟φ) ∧
(ej⌟φ) ∧ φ)(e1, . . . , e7) = δij . Similarly, one can compute the linear term
(B1)ij = 3((ei⌟φ) ∧ (ej⌟φ) ∧ ξα)(e1, . . . , e7) and the quadratic term (B2)ij =
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3((ei⌟ξα) ∧ (ej⌟ξα) ∧ φ)(e1, . . . , e7). The metric is then defined using the re-
lation (see for example, [13])

(Bt)ij = 6(gt)ij
√

det gt.

The linear term in volt is proportional to φ ∧ ηα + ψ ∧ ξα and thus vanishes
since (ξα, ηα) ∈ Ω3

27 × Ω4
27. Using the above formula we get that

volt =
√

det gt = 1 +At2 +O(t3),

where A is a quadratic polynomial in v1, v2 and xi, i = 1..6. Using the Taylor
series expansion of gt and

√
det gt, we can compute the Taylor series expan-

sion of the Hodge star associated to φt, ∗t = ∗0 + t ∗1 +t2 ∗2 +O(t3). The
Hodge star operator ∗t can be computed using the formula

∗t(ei1i2...ik) =
volt

(7− k)!g
i1j1
t . . . gikjkt ϵj1...j7e

jk+1...j7 .

The quadratic term Q4(ξα) is then given by

Q4(ξα) = ∗2φ+ ∗1ξα.

In the present case, for a general element α ∈ su(3), the quadratic term turns
out to be very complicated and is not very enlightening. We define the cubic
polynomial on X1,1 by

fα([h]) = ⟨∗Q4(ξα), ξα⟩L2 .

Note that fα is cubic in α since Q4(ξα) and ξα are quadratic and linear in α
respectively. This cubic polynomial can be lifted to a polynomial P on the
Lie group SU(3)× SU(2) by

fα([h]) = P (h−1αh).

This lift enables us to calculate the average of P on SU(3)× SU(2) by us-
ing the Peter–Weyl theorem. To express the polynomial P in a compact
form, we will set z1 = x2 + ix1, z2 = x4 − ix3, z3 = x6 + ix5. Then the cubic
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polynomial P is given by

P (h−1αh) = −97

6
(v21v2 + v22v1) +

25

9
Re(z1z2z3)−

29

6
(v31 + v32)

+
5

3
(v1 + v2)|z1|2 +

37

18
(v1|z3|3 + v2|z2|2)

+
31

9
(v1|z2|3 + v2|z3|2)

(5.1)

The next step in proving obstructedness is to show that the average value
of P on SU(3)× SU(2) is non-zero. For this, we appeal to the Peter–Weyl
theorem. The Peter–Weyl theorem states that for any compact Lie group
G, we have

L2(G) =
⊕

Vγ∈Girr

Hom(Vγ , G)⊗ Vγ

where Girr denotes the set of all non-isomorphic irreducible representations
of G.

The cubic polynomial P lies in the SU(3)× SU(2) representation Sym3
su(3).

The average value of the function P (g−1ξg) on SU(3)× SU(2) is the same
as the average value of R(h−1αh) where R is the projection of P to the in-
variant polynomials. This is because (P −R)(h−1αh) lies in the non-trivial
part of the Peter–Weyl decomposition and has an average value of zero. The
unique trivial sub-representation of Sym3

su(3) is generated by the determi-
nant polynomial i det on su(3) which is given by

i det(g−1αg) = −(v1v22 + v2v
2
1) + (v1 + v2)|z1|2

− (v1|z3|2 + v2|z2|2) + 2Re(z1z2z3).

The average value of the polynomial P can be computed by computing
the inner product of P with i det. On su(3), since the Killing form B is
non-degenarate, g = − 1

12B defines an inner product on su(3). The inner
product g induces an inner product on Sym3

su(3) in the natural way. All
the computations that follow are done using g.

If Eij denotes the matrix with 1 as the (i, j)-th entry and zero elsewhere,
then the subspace of su(3) generated by {Eij − Eji + i(Eij + Eji) | i, j =
1, 2, 3, i ̸= j} is orthogonal to Span{E11 − iE33, E22 − iE33}. Moreover Eij −
Eji + i(Eij + Eji), i, j = 1, 2, 3, i ̸= j are also orthogonal to each other. Thus
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the only non-trivial terms occurring in the inner product of P and i det are,

∥v21v2 + v22v1∥2 =
1

3
, ∥Re(z1z2z3)∥2 =

2

3
,

⟨v31 + v32, v
2
1v2 + v22v1⟩ = −

1

4
, ∥(v1 + v2)|z1|2∥2 = 1,

∥v1|z3|2 + v2|z2|2∥2 =
4

3
, ⟨v1|z2|2 + v2|z3|2, v1|z3|2 + v2|z2|2⟩ = −

1

3
.

From (5.1) and the above computations we have that

⟨P, i det⟩ = 97

6

(
1

3

)
+

50

9

(
2

3

)
+

29

6

(
−1

4

)
+

5

3
(1)− 37

18

(
4

3

)
− 31

9

(
−1

3

)

=
191

24
̸= 0.

Thus we get the following theorem.

Theorem 5.1. The infinitesimal deformations of the homogeneous nearly
G2 structure on the Aloff–Wallach space X1,1

∼= SU(3)×SU(2)
SU(2)×U(1) are all ob-

structed.
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