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Deformation theory of nearly G, manifolds

SHUBHAM DWIVEDI AND RAGINI SINGHAL

We study the deformation theory of nearly G, manifolds. These
are seven dimensional manifolds admitting real Killing spinors. We
show that the infinitesimal deformations of nearly Gy structures
are obstructed in general. Explicitly, we prove that the infinitesi-
mal deformations of the homogeneous nearly Gy structure on the
Aloff-Wallach space are all obstructed to second order. We also
completely describe the cohomology of nearly G, manifolds.
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1. Introduction

Given a 7-dimensional smooth manifold M, a nearly Go structure on M is
a non-degenerate (or positive) 3-form ¢ such that for some non-zero real
constant 7o,

(1.1) dp = To *p ¢

where the metric and the orientation and hence the Hodge star % are all
induced by . The existence of a nearly Go structure was shown to be
equivalent to the existence of a real Killing spinor in [3]. A Killing spinor

677



678 S. Dwivedi and R. Singhal

on a Riemannian spin manifold (M",g) is a section of the spinor bundle
p € T($(M)) such that

(1.2) Vxp=aX u

for any vector field X on M and some « € C. Here - is the Clifford multipli-
cation. It was proved by Friedrich [§] that any manifold with a Killing spinor
is Einstein with Ric(g) = 4(n — 1)a?g and one of the three cases must hold:

e o =0 in which case u is a parallel spinor and M has holonomy con-
tained in SU(%), Sp(%), G2 or Spin(7).

e « is non-zero and is purely imaginary.

e « is non-zero and real, in which case p is a real Killing spinor and if M
is complete then since it is positive Einstein, it is compact with 71 (M)
finite.

Given a nearly Gy structure ¢ on M that satisfies equation (|1.1)), there
exists a real Killing spinor p that satisfies equation ([1.2)) with o = —%T() and
vice-versa. See [3] for more details.

Using the equivalence with real Killing spinors, nearly Go structures on
homogeneous spaces, excluding the case of the round 7-sphere, were classified
in [9]. Their classification is based on the dimension of the space of Killing
spinors K $. They showed that 3 different types can occur:

1) dim(K$) = 1 - nearly Gy structures of type 1.
2) dim(K§) = 2 - nearly Ga structures of type 2.
3) dim(K$) = 3 - nearly Gy structures of type 3.

A 7-dimensional manifold (M, ) with a nearly Gg structure ¢ is a nearly
G2 manifold (see §2 for more details). Other examples apart from the round
S7 include the squashed S7, Aloff-Wallach spaces N(k,1), the Berger space
SO(5)/SO(3) and the Stiefel manifold V52. Another important aspect of
nearly Go manifolds is that the Riemannian cone C'(M) over M has holon-
omy contained in the Lie group Spin(7). In that case, the possible holonomies
are Spin(7), SU(4) or Sp(2) depending on whether the link of the cone is a
nearly Go manifold of type 1, 2 or 3 respectively.

In this paper, we study the deformation theory of nearly Gs manifolds.
The infinitesimal deformations of nearly Go manifolds were studied by
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Alexandrov—Semmelmann in [I] where they identified the space of infinitesi-
mal deformations with an eigenspace of the Laplacian acting on co-closed 3-
forms on M of type 23,. We address the question of whether nearly Go man-
ifolds have smooth obstructed or unobstructed deformations, i.e., whether
infinitesimal deformations can be integrated to genuine deformations. This
could potentially give new examples of nearly Go manifolds. Another appli-
cability of studying the deformation theory of nearly Go manifolds can be
to develop the deformation theory of Spin(7) conifolds which are asymptot-
ically conical and conically singular Spin(7) manifolds, similar to the theory
developed by Karigiannis—Lotay [15] for Go conifolds. Lehmann [I7] studies
the deformation theory of asymptotically conical Spin(7)—manifolds.

The study of deformation theory of special algebraic structures is not new.
Deformations of Einstein metrics were studied by Koiso where he showed
[16, Theorem 6.12] that the infinitesimal deformations of Einstein metrics
is in general obstructed, by exhibiting certain Einstein symmetric spaces
which admit non-trivial infinitesimal Einstein deformations which cannot
be integrated to second order. The deformation theory of nearly Kahler
structures on homogeneous 6-manifolds was studied by Moroianu—Nagy—
Semmelmann in [I8]. They identified the space of infinitesimal deformations
with an eigenspace of the Laplacian acting on co-closed primitive (1,1)-
forms. Using this, they proved that the nearly K&hler structures on CP?
and S x 83 are rigid and the flag manifold F3 admits an 8-dimensional
space of infinitesimal deformations. Later, Foscolo proved [7, Theorem 5.3]
that the infinitesimal deformations of the flag manifold Fg are all obstructed.

Nearly G2 manifolds are in many ways similar to nearly Kahler 6-manifolds.
Both admit real Killing spinors and hence are positive Einstein. The minimal
hypersurfaces in both nearly K&hler 6-manifolds and nealy Go manifolds
behave in a similar way [6]. It was proved in [1] that the nearly G structures
on the squashed S and the Berger space SO(5)/SO(3) are rigid while the
space of infinitesimal nearly Gy deformations of the Aloff-Wallach space X1 1
is 8-dimensional. It is therefore natural to ask whether these infinitesimal
deformations are obstructed to second order.

To address this question, we use a Dirac-type operator on nearly Go mani-
folds (cf. equation ([3.6))). The use of Dirac operators to study deformation
theory has been very useful. Nordstrém in [20] used Dirac operators to study
the deformation theory of compact manifolds with special holonomy from a
different point of view than Joyce [11]. In particular, the mapping properties
of the Dirac type operators can be used to prove slice theorems for the ac-
tion of the diffeomorphism group. This approach has also been very effective
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in studying the deformation theory of non-compact manifolds with special
holonomy, most notably by Nordstrom [20] for asymptotically cylindrical
manifolds with exceptional holonomy and by Karigiannis—Lotay [15] for Go
conifolds. Dirac-type operators, in a way very close to the use made by the
authors in this paper, were also used by Foscolo [7] to study the deformation
theory of nearly Kahler 6-manifolds.

We follow a strategy similar to [7] in this paper. After introducing the Dirac
operator and a modified Dirac operator on nearly Go manifolds in §3, we
use their properties and the Hodge decomposition theorem to completely
describe the cohomology of a complete nearly Go manifold. We prove our
first two main results of the paper which characterize harmonic forms. These
are the following.

Theorem 3.8. Let (M, p,1) be a complete nearly Go manifold, not iso-
metric to round S”. Then every harmonic 4-form lies in Q3.. Equivalently,
every harmonic 3-form lies in 3-.

Theorem 3.9 Let (M, ¢, 1) be a complete nearly Go manifold, not isometric
to round S”. Then every harmonic 2-form lies in Q3,. Equivalently, every
harmonic 5-form lies in 3.

We note that Theorem 3.9 was originally proved by Ball-Oliveira [2] Re-
mark 15]. We give a different proof in this paper.

We use the properties of the modified Dirac operator, explicitly we use
Proposition 3.7, to prove a slice theorem for the action of the diffeomor-
phism group on the space of nearly Go structures on M in Proposition 4.2.
Using this, in Theorem 4.3 we obtain a new proof of the identification of
the space of infinitesimal nearly Go deformations with an eigenspace of the
Laplacian acting on co-closed 3-forms of type 3, a result originally due to
Alexandrov-Semmelmann [I].

To study higher order deformations of nearly G2 manifolds, we use the
point of view of Hitchin [I0] where he interprets nearly Gg structures as
constrained critical points of a functional defined on the space Q3 x Q2 ..
This approach is inspired from the work of Foscolo [7] where he used simi-
lar ideas to study second order deformations of nearly Kéhler structures on
6-manifolds. The advantage of this approach is that it allows us to view the

nearly G equation (2.24]) as the vanishing of a smooth map (cf. equation

#-9))

P QY e X T(TM) — QF

exact
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where Qiexach denotes the space of exact positive 4-forms on M. Thus the
obstructions on the first order deformations of a nearly Go structure to be
integrated to higher order deformations can be characterized by Im(D®)
which we do in Proposition 4.6.

Finally, we use the general deformation theory of nearly Gg structures de-
veloped in the first part of the %)aper to study the infinitesimal deformations
of the Aloff-Wallach space > )XSU( iy - It was expected in [7] that the in-
finitesimal deformations of the Aloﬁ Wallach space might be obstructed to
higher orders. In §5 we confirm this expectation. More precisely, we prove

the following.

Theorem 5.1. The infinitesimal deformations of the homo ﬁeneous nearly
Ga structure on the Aloff-Wallach space X1 = SS%( 3)XSUR) e all ob-
structed.

The proof of the above theorem is inspired from the ideas in [7]. However,
we note that since in the nearly Go case we only have one stable form and
the other is the dual of it, unlike the nearly Kahler case, the expressions and
computations involved are more complicated and the proof of the theorem
is computationally much more involved.

The paper is organized as follows. We discuss some preliminaries on Go and
nearly Go structures in §2. We discuss the decomposition of space of differ-
ential forms on manifolds with a Gy structure. We describe some first order
differential operators in §2.1 which appear throughout the paper. In §2.2,
we prove many important identities for 2-forms and 3-forms on manifolds
with nearly Go structures. Some of these appear to be new, at least in the
present form and we believe that they will be useful in other contexts as
well. We introduce the Dirac and the modified Dirac operator in §3 and
use the mapping properties of the latter to prove Theorem 3.8 and Theo-
rem 3.9. We begin the discussion on infinitesimal deformations in §4.1. We
prove a slice theorem and use that to obtain a new proof of the result of
Alexandrov—Semmmelmann on infinitesimal nearly Go deformations. We in-
terpret the nearly Go equation as the vanishing of a smooth map and prove
the characterization for a first order deformation of a nearly Go structure
to be integrated to second order in Proposition 4.6. Finally, in §5, we prove
Theorem 5.1.

Note. The almost simultaneous preprint [19] by Semmelmann-Nagy has
some overlap with the present paper and some of the ideas involved are
the same. We also characterize the cohomology of nearly Go manifolds. The
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second version of their paper also contains a discussion of the deformations
of the Aloff-Wallach spaces.
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2. Preliminaries on G, geometry

We start this section by defining Go structures and nearly Go structures on
a seven dimensional manifold and also discuss the decomposition of space
of differential forms on such a manifold. We also collect together various
identities which will be used throughout the paper.

Let M7 be a smooth manifold. A Go structure on M is a reduction of the
structure group of the frame bundle from GL(7,R) to the Lie group Go C
SO(7). Such a structure exists on M if and only if the manifold is orientable
and spinnable, conditions which are respectively equivalent to the vanishing
of the first and second Stiefel-Whitney classes. From the point of view of
differential geometry, a Go structure on M is equivalently defined by a 3-
form ¢ on M that satisfies a certain pointwise algebraic non-degeneracy
condition. Such a 3-form nonlinearly induces a Riemannian metric g, and
an orientation vol, on M and hence a Hodge star operator *,. We denote
the Hodge dual 4-form *,¢ by 9. Pointwise we have |¢| = |1)| = 7, where
the norm is taken with respect to the metric induced by ¢.

Notations and conventions. Throughout the paper, we compute in a local
orthonormal frame, so all indices are subscripts and any repeated indices are
summed over all values from 1 to 7. Our convention for labelling the Riemann
curvature tensor is

0

0
Rijkmaxim = (V:V; = V;Vy)

oxk’
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in terms of coordinate vector fields. With this convention, the Ricci tensor
is Rj,, = Ryjki, and the Ricci identity is

(2.1) ViViXy — V;Vi Xy = —RijuX.

We will use the metric to identify the vector fields and 1-forms by the musical
isomorphisms. As such, throughout the paper, we will use them interchange-
ably without mention.

We have the following contraction identities between ¢ and 1, whose proofs
can be found in [I3].

(2.2) CijkPabk = Yia9jb — JibGja + Vijab,

(2.3) PijkPajk = 6ia

and

(2.4)  Qijktabek = GjaPive + JjpPaic + GjcPabi — GiaPjbe — JibPajc — GicPabys
(2.5)  wijkYabix = 4Piab,

(2.6) Yijritavki = 49ia9jp — 49ivGja + 2Vijab

(2.7) Yijraji = 24Gia-

A Gs structure on M induces a splitting of the spaces of differential forms
on M into irreducible Gy representations. The space of 2-forms Q?(M) and
3-forms Q3(M) decompose as

(2.8) Q*(M) = Q3(M) @ Q3,(M),
3
1

where Qf has pointwise dimension [. More precisely, we have the following
description of the space of forms:

(210) QM) ={Xop | X € D(TM)} = {8 € Q*(M) | x(p A B) = 28},
(2.11) (M) = {8 € Q*(M) | BAY =0}
={Be Q*(M) | x(p A B) =B}

In local coordinates, the above conditions can be re-written as

(2.12) BeW <= BiYaij = 4Babs
(2.13) BeQl <<= Bijbwij= 2B = Bijpijr=0.
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Similarly, for 3-forms

(2.14) OF = {fe | f e C®(M)},
(2.15) B ={X|Xecl(TM)} ={x(aryp)|acQl},
(2.16) W ={ne® | nAp=0=nA¢}.

Moreover, the space Q3. is isomorphic to the space of sections of S3(T* M),
the traceless symmetric 2-tensors on M, where the isomorphism i, is given
explicitly as

1 . .
n= gmjkdxz Adz? A da e Q3.
Loy hgdatda® € O (S2(T* M)

where 751 = hip@pjk + PjpPipk + hip@ijp-

(2.17)

The decompositions of (M) = QF (M) & QI (M) © Q3,(M) and Q5(M) =
Q5(M) & Q3,(M) are obtained by taking the Hodge star of (2.9) and (2.8)
respectively.

Given a Gg structure ¢ on M, we can decompose dp and dvy according to
(2.8) and (2.9). This defines the torsion forms, which are unique differential
forms 79 € QO(M), 7 € QY (M), 7 € Q3,(M) and 73 € Q23-(M) such that
(see [13])

(2.18) dp = 109 + 371 A @ + *,73,
(2.19) dip = 47y AN+ #,7.

Let V denote the Levi-Civita connection of the metric induced by the Go
structure. The full torsion tensor T of a Gg structure is a 2-tensor satisfying

(2.20) Vi = TimYmijkl,
1
(2'21) Ty = ﬂ(vl@abc)lbmabw
(2.22) Vinijkt = —Tmi®jrt + Tmjpirt — TmkPiji + Tiniij-

The full torsion T is related to the torsion forms by (see [13])

70

1
(223) T’lm = Zglm - (7_3)lm - (Tl)lm - i(TZ)Zm-
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Remark 2.1. The space Q2 is isomorphic to the space of vector fields and
hence to the space of 1-forms. Thus in (2.23]), we are viewing 71 as an element
of Q2 which justifies the expression (71),.

A Gg structure ¢ is called torsion-free if Vi = 0 or equivalently 7" = 0.
We can now define nearly Go structures.

Definition 2.2. A G, structure ¢ is a nearly Gq structure if 7 is the only
nonvanishing component of the torsion, that is

(2.24) dp =719ty and dy =0.
In this case, we see from (2.23) that Tj; = %gzj.

Remark 2.3. If ¢ is a nearly Go structure on M then since dyp = 1), we
can differentiate this to get dry A ¢ = 0 and hence dry = 0, as wedge product
with 1 is an isomorphism from QL(M) to Q3(M). Thus 79 is a constant, if
M is connected.

Given a Go structure ¢ with torsion 7j,,, we have the expressions for the
Ricci curvature R;; and the scalar curvature R of its associated metric g
which can be found in [5] or [I3] as

(2.25)  Rjx = (Villim — VTim)omki — TjTu, + tx(T)Tjk — TipTipupbk,
21 1
(2200  R=-12Vi(n)i+ on’ — | +5nf — fInl

where |C|? = C;;Crig®* ¢’" is the matrix norm in (2.26)).

In particular, for a manifold M with a nearly Go structure ¢, we see that

(2.27) Rij = 3 023ij,
21
(2.28) R= ngQ.

Finally, we remark that S7 with the round metric and also the squashed
ST are examples of manifolds with nearly Gg structure (see [9] for more on
nearly Go structures. The authors in [9] call such structures nearly parallel
G structures but we will call them nearly G structures.) In particular, S7
with radius 1 has scalar curvature 42, so comparing with we get that
0 = 4.
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We use the following identities throughout the paper. They are all proved
n [I2 Lemma 2.2.1 and Lemma 2.2.3] and we collect them here for the
convenience of the reader. First, we note that if o is a k-form and w is a
vector field then

(2.29) s(waa) = (=D (w A *a),
(2.30) s(wA @) = (=1)F(waxa).

If « is a 1-form then we have the following identities

(2.31) x(Nx(pAa)) =

(2.32) P A*(p Aa) =0,

(2.33) (Y Ax( N a)) =3a

(2.34) e Ax(PNa) = 2(¢Aa)

(2.35) e N (wap) = =4 xw,
(2.36) YA (wap) =0,

(2.37) YA (wap) = 3 *w,
(2.38) oA (wap) = 2% (wap)

Let ©: Qi — Qi be the non-linear map which associates to any Gg struc-
ture ¢, the dual 4-form 1) = O(y) = *¢ with respect to the metric g,. We
note that ©71: Qi — Q3 is defined only when we fix the orientation on
M. See [10], §8] for more details. We will need the following result from [11,
Proposition 10.3.5], later.

Proposition 2.4. Suppose ¢ be a Go structure on M with v = xp. Let £
be a 3-form which has sufficiently small pointwise norm with respect to g,
so that @ + & is still a positive 3-form and n be a 4-form with small enough
pointwise norm so that ¢ +n is a positive 4-form. Then

(1) the image of & under the linearization of © at ¢ is

4

(2.39) O(§) = *¢ (f

5 m1(&) + () —7T27(§))-
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(2) the image of n under the linearization of O~ at 1 is

_ 3
(2.40) O () = xp (mln) + mr () = mr () ).
2.1. First order differential operators

In this section, we discuss various first order differential operators on a
manifold with a nearly Gy structure and prove some identities involving
them.

For f € C°°(M), we have the vector field grad f given by
(grad f)r = Vi f

and for any vector field X we have the divergence of X which is a function
div X = Vi Xj.

On a manifold with a Gg structure ¢, for a vector field X € I'(T'M), we
define the curl of X, as

(2.41) (curl X)k = vinSDijk
which can also be written as
(2.42) (curl X)) = +(dX A1)

and so up to Go-equivariant isomorphisms, the vector field curl X is the
projection of the 2-form dX onto the Q% component. In fact, we have the
following

Proposition 2.5. Let X be a vector field on M. The Q% component of dX
s given by

(2.43) r(dX) = é(curlX)_:cp - é ¢ (curl X A 4h).

Proof. We know that m7(dX) = W .p for some vector field W. Using (2.37)
we compute

curl X = x(dX ANY) = x(m7(dX) ANp) = «(Wap) ANp) = 3W

which gives (2.43)). O
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In the next proposition we state and prove various relations among the first
order differential operators described above. We prove the results for any
Gg structure and will later state the results for nearly Go structures. These
formulas are generalizations of the formulas first proved for torsion-free Go
structures by Karigiannis [I4, Proposition 4.4].

Proposition 2.6. Let f € C°(M) and X be a vector field on M with a
Gy structure @. Then

(2.44) curl(grad f) =0,
(2.45) div(curl X) = V; X;(4(r1)ij — (72)i5) + (w7 (Rm))? X,
curl(curl X ); = Vi(div X) + Ry X — AX; — (curl X),,, Ty
- (V[XZ' — Vin)(Tl)msQDmsi + tr T(Curl X)l
(2.46) + ViX;Tispjsr + ViX;Tjspsi-

Remark 2.7. For fixed ¢, j, the Riemann curvature tensor R;j;j; is skew-
symmetric in k£ and ! and hence

Rk = (m7(Rm))ijr + (m1a(Rm));jm.-

Explicitly,

1 1
(m7(Rm))ijm = 5 Rijki + = RabkiWabij

3 6
2 1
(m1a(Rm))ijm = gRijkl — gRabklwabij'

Moreover, from [13, eq. (4.17)], we have

1
(247)  (m7(Rm))ijm = (77(Rm))ij@mu where m7(Rm)i; = éRijleOklm-

Proof. We compute

curl(grad f) = Vi(V, f)pijr = 0
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as @ is skew-symmetric, thus proving (2.44). For (2.45) we use the Ricci
identity (2.1)) to get
div(curl X) = Vk(Vin%-jk)
= Vi ViX;0iik + ViX; Vo

1
= §(VkVin — ViV X)) ik + ViX;ThmUmijk
1
= _§Rkilel90ijk + Vi X;(4(11)ij — (12)45)
= 3(7r7(Rm)){le + Vin(él(Tl)ij — (7’2)1']')

where we used (2.12)), (2.13]) and (2.47)). We have also used the fact that the

symmetric part of 7" will vanish when contracted with .

Finally we use the contraction identities ([2.2]) and (2.4) and the Ricci iden-
tity (2.1) to compute

(curl(curl X)) = Vi (ViX;0ik) Pmi

= (Vi ViX;0ijk + ViX;TrnsVsiik) Cimk

= Vi ViX;(9a9jm — gimGjt + Vijim)
+ Vi X Tns(Gmsiij + 9mi@sij + GmjPsit

— GisPmij — JiPsmj — 9jPsim)

= Vjlej — AX; + %(vaiXJ‘ - vivaj)@Z}ijlm
+tr TV X055 + ViX;Tisosj + ViXpn Tins@si
— ViX;Tniomij — ViXiTms@smj — ViXiTnsPmsi

= Vi(div X) + Ry X — AX; + tr T'(curl X),
+ Vi X;Tispjst + ViXmTinspsi — (curl X)) Ty
— Vi X5 () msPmsj + ViXi(T1) msPmsi

where we used the fact that Rupeq®aper = 0 for the third term in the fourth
equality and (2.13)) to cancel the 79 components which contract on two in-
dices with ¢ for the last two terms in the fourth equality. Thus, we get

(curl(curl X)); = Vi(div X) + Rjn Xom — AX)
— (curl X)) T — (ViXy — ViX3) (T1) msPmsi
+trT(curl X); + ViX;Tispjst + ViX;Tjs@sit-
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T 3702
For a nearly Gg structure we have Tj; = Zogij and R;; = —Ogij. Moreover

8
from [13}, eq. (4.18)],
(77 (Rm))}, = =Vi(tr T) + V;(Tyj) + T Typpar; = 0.

Thus using the Weitzenbock formula for X, V*VX;=-V;V;X; =
(AgX); + Ry X;, we get the following

Corollary 2.8. Let f € C®°(M) and X be a vector field on M with a nearly
Gy structure @. Then

(2.48) curl(grad f) =0,
(2.49) div(curl X') =0,
3 2
(2.50) curl(curl X') = grad(divX) — AX + %X + 1o (curl X),
(2.51) = Ay X + grad(div X) + mo(curl X).

2.2. Identities for 2-forms and 3-forms

In this subsection, we prove some identities for 2-forms and 3-forms on a
manifold with a nearly Go structure. These identities will be used several
times in the paper.

Lemma 2.9. Let (M, ) be a manifold with a Go structure. If 8 = 87 + (14
is a 2-form then

(1) *(BAp) =267 — P14
(2) *(BABA@) =257 — |Bral®.

Proof. The identity in (1) follows from ([2.10) and (2.11). For (2) we note
that for 7-dimensional manifolds *?(a) = « for a k-form «, so

BABN@=BA*(BAp)=BA*2pr — Pra)
and the decomposition of 2-forms is orthogonal. O

Lemma 2.10. Let (M, ) be a manifold with a Go structure. Let o = fo +
o7 + g97 be a 3-form on M and let o7 = X _np for some vector field X on
M. Then
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(1) (o N ) =4X.
(2) x(c Np) =Tf.

Proof. For (1) we have

x(0 N @) = *((fo+or+0ar) Np) = *(07 Ap) = *((Xa% ) Ap)
(2.52) —4X

where we have used the fact that Q3 & Q3 lies in the kernel of wedge product
with ¢ and (2.37) in the last equality. For (2) we note that Q3 @ Q3; lies in
the kernel of wedge product with ¥ and ¢ A ) = 7 vol. 0

Next, we explicitly derive the expressions for exterior derivative and the
divergence of various components of 2-forms and 3-forms on a manifold
with a nearly Gg structure. Some of these identities are new, at least in the
present form and we believe that they will be useful in other contexts as
well.

Lemma 2.11. Suppose (M, ) is a manifold with a nearly Go structure.
Let f € C®°(M), B€Q2, and X € T(TM). Then

(1) d(fe) =df N+ 10ft.
(2) d*(fe) = —(df ).
(3) dB = — * (d*B A @) + m27(df).

(4) d(Xap) = _%(d*X)go—i- % * <<32ﬂX — curlX) A go) + i@<%(vin 4

1
v, X:) + ?(d*X)gij)
(5) d*(X 1p) = curl X.

~—

e~ =

_ A xe o (L 0 i (v x,
(6) d(X ) = —=d" Xy (20ur1X—|—4X)/\<p *Z¢<2(V1X]+

1
ViXj) + ;(d*X)gz-J')-
Proof. We have

d(fe) =df N+ fdp
=df N+ T10f¢
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where we have used ([2.24]) which proves (1). For part (2) we compute

d*(fp) = —xdx* (fo) = —*d(f xp) = —* (df Nxp) = —df 2

as dy = 0.
We prove part (3). Since df is a 3-form so

(2.53) dﬁ = Wl(dﬁ) + 7T7<d5) + 7T27<dﬁ).

We compute each term on the right hand side of (2.53]). We will repeatedly
use the identities (2.29)—(2.38). Suppose

m1(dB) = ap

for some a € C°°(M). Since Q2 @ Q3. lies in the kernel of wedge product
with ¢ and B A = 0 for 8 € 03,, we have

0=d(BAY)=dBAY =m(dB) A = Tavol

and hence
m1(dB) = 0.

Suppose 7m7(df) = X 1) for X € I'(T'M). Using ([2.11)) and Lemma 2.10 (1),

we have

d*B =xdx (B) = = d(BN@) === (dBNp) =70 (BAY)) = —4X.

Thus

1

m7(dp) = —id*ﬁ_,w =71* (d*B A ),

which proves (3).

Since d(X 1) is a 3-form, so we will write
(2.54) d(X ap) = m(d(X ap)) 4+ m7(d(Xap)) + m27 (d(X 20))
and will calculate each term on the right hand side. As before, assume

mi(d(Xop)) = ap
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for some a € C°°(M). Then
d(Xop) ANp) = m(d(X 2p)) Ay = Tavol

and hence Ta = *d((X1p) A1) = xd(3 % X). So we get that

a:%*d*X:—%d*X.

Assume that
m7(d(X p)) =Y 1)

for some Y € T(TM). Using the fact that Q3 @ Q3. lies in the kernel of
wedge product with ¢ we get

d((Xap) N ) = d(Xap) Ao+ (Xap) Ndp
=m7(d(X2p)) AN+ 10(Xap) AN = (Y b)) Ao+ 319 % X.

So we get
4xY +310% X =d(Xup) ANp) =d(2 (Xap)) =2d(X NYp) =2(dX) AN
which gives
1 379 B 1 _ 3&
Y = 2(*((dX)/\¢)— : X) - 2<curlX : X)
and hence

m7(d(X 1)) = —% * ((curlX - %X) A <p>.
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Recall the map i, from (2.17). To calculate ma7(d(X 1¢)) we have

(2.55)
d(XJSO)imnSijn + d(X—'CP)jmnSOimn

= [_73(d*X)goimn + 1((curlX - %X) _w,b)mm + i(ho)imn:| Yimn

2
-3 1 3 .
+ [ X0 + 5 (el X = Z2X) )+ i) jmn] fimn
jmn
36 1 3
= —7(d*X)g¢j + 8(h0)ij + §<CuﬂX — %X) VsimnPjmn

+ (CUI‘IX - %X> Swsjmn@imn

36

== (d*X)gij + 8(ho)ij-

We calculate the left hand side of (2.55)). We have

d(X—‘(P)imnSDjmn + d(X—'(P)jmn(szn
= (vi(Xl(plmn) - vm(Xl(Plin) + vn(XlSOlim))Sijn
+ (vj(XlSOZmn) - Vm(XlSOZjn) + Vn(XlSOljm))SDimn
= (viXZQOlmn - val(Plin + anNOlim)Sijn
T
+ ZO(Xl¢zlmn — Xi¥miin + Xlwnlim)@jmn
+ (vaZSOlmn - Vm)(l(upljn + VnXlSOij)SDimn
p
+ ZO(X”pjlmn - de}mljn + Xﬂ/}nljm)@imn

where we have used ([2.20]) and (2.24)). So

d(X—‘SO)imnSijn + d(X—'(P)jmn@imn
= (ViXi10tmn@jmn — 2V Xi@1in@jmn)

70
+ Z(de)umn — Xi¥miin + Xi¥ntim)@jmn

(Vle@lmnSOimn - QVle@ljnSOimn)
70
+ Z(Xl¢jlmn - Xl¢mljn + Xlwnljm)‘-;oimn-
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We use the contraction identities (2.2)), (2.3)) and (2.4) to get

d(X—‘SD)imn(-ijn + d(X—'SO)]mnSOzmn
=4V; X; +4V;X; + 4(div X)gsj

T

+ ZO(—4XZ%U +4X 005 + 4X10055)

70
+ Z(—4Xz%u + 4 X015 + 4 X10154)

=4V X; +4V;X; — A(d"X)gi

and so from (2.55) we get
36
— (A" X)gij + 8(ho)ij = AViX; + 4V, X; — 4(d"X)gy5
and thus

1 1
(h0>ij = §(VZX] + Vin) -+ ?(d X)gij

which completes the proof of (4).
We obtain (5) by

d"(Xop) = xd* (Xop) = xd(X Np) = x(dX N) = curl X.

To prove part (6), we notice that since dyp = 0, d(X 1p) = Lx1 which is the
image of Lx¢ = d(X 1p) + 79X 1) under the linearization of the map ©. We
then use part (4) of the lemma and (2.39) to get part (6). O

We use the following important lemma on several occasions.

Lemma 2.12. Let ¢ be a nearly Go structure on M and o be a 3-form so
that

o= fo+*(XANp)+n

where n € Q3, with n=1i,(h) where h is a symmetric traceless 2-tensor.
Then

4
(2.56) m1(do) = (TO f+ ?d*x)w,
_ oy L Ly
(2.57) m7(do) = (df + 1 X+ 5 curl X 5 div h) A @,

(2.58) m7(d*o) = *((—df + 10X — gcurlX - gdiv h) A w>
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Proof. We note that xo = fi 4+ (X A ¢) 4+ *n and since ¢ is a nearly Go
structure hence

(2.59) do=df No+T1oftp +d* (X Np)+dn
and
(2.60) d'c=—xdxo=—x(df Np) —*d(X AN p)+dn.

Now 71 (do) = M for some A € C*°(M). We use Lemma 2.11 (6) to get,

A= </\¢a ¢> - <7T1 <d0—>7w> = <d0, ¢>
=({df N+ Toftp+dx (X Ap)+dn,¢)
(2.61) = {df N, ) + Trof +4d* X + (dn,¢).

The first term on the right hand side of (2.61)) is 0 as df Ay € Q% and
Y € Qf. The last term is also 0 as from (2.16))

{(dn,¥)vol =dn N =d(nAp)+Ton A =0.

Thus we get that
* 4 *
TA="Trof +4d" X = )\:Tgf+?dX

which gives (2.56)).

To derive (2.57) and (2.58), we will need to contract n € 3. with ¢ on
two indices and with v on three indices. Using (2.17)) and the contraction

identities (2.2]) and (2.5)), a short computation gives

(2.62) NijkPajk = 4hia,
(2.63) NijkYaijk = 0.

Suppose 77(do) =Y A ¢ for some 1-form Y. Note that for an arbitrary 1-
form Z we have

(YN, ZANpyvol=Y ANp A*x(Z N\ )
=Y NoN(Zw) =4Y NxZ
— 4(Y, Z) vol.
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So from (2.59) we have

AY,Z) =Y Np, Z Np) = (m7(do), Z N p) = (do, Z \ @)
=(df No+tTof+dx (X Ne)+dn, Z Ng)
(2.64) =4df, Z) +{dx (X Np), Z N )+ {dn, Z N ¢).

We first use Lemma 2.11 (6) to calculate the second term on the right hand

side of (2.64). We have

(dx (X N@), ZNp)= <(;cur1X—l—th)/\g0,Z/\g0>
= QculX + 719X, 72)
So in , we have
(2.65) AY, Z) = (4df + 10X + 2curl X, Z) + (dn, Z A ).

We compute in local coordinates

1
(dn, Z N ) = ——(dn)ijui(Z N 0)ijri

24
= i(vmﬂcl — Vinikt + Viniji — Viniie) (Z A ©)ijkl
= é(vmjkz)(zwjkl — Zjpikt — ZrPjit — Z19jki)
= é(Zivmjkl‘ijl — 3Z;V ik ir)
= é(zivi(njleDjkl) - % Nk Vijkl
—3Z;Vi(njripin) + 3TTOZj??jwﬁmcz)-

We now use (2.62)), (2.63) and the fact that h is traceless to get

1
<d17, Z N g0> = E(szl(ﬁl tr h) —0- SZjVi(4hji))
= —2(div h, Z).

Thus from ([2.65)) we get

1 1
(Y, Z) = <df—|—%X—i—§cur1X— 5divh,z>
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and since Z is arbitrary, we get
_ 0 1 1 ..
Y—df—|—4X—i—2curlX 2dlvh

which establishes (2.57)).
Next, we see from (2.60) and (2.10) that

d'c = —x*(df Np) —*(dX AN p) +*10(X AY) +d™n
= — % (df —T()X/\Lﬁ) — 27T7(dX) +7l'14(dX) +d*77

which on using (2.43) becomes
* 2 *
(2.66)  d'o—=—x ((df ~ToX + 3 curlX) A q,z)) 4 ma(dX) + d*.

Suppose 77(d*o) = *(W A1) for some 1-form W. For any 1-form Z we note
that

(x(WAY),*x(ZNp))vol = (W AY)ANZ N
=x(WAY)ANYNZ=3«W ANZ =3(W,Z)vol.

Thus using (2.66]) and the orthogonality of the spaces Q2 and Q2%,, we have
W, Z) = («(WAY), +(Z Ap)) = (m1(d0), x(Z A1) = (d"0,x(Z N )

= (—x* ((df — 10X + %curlX) AY) + m14(dX) + d*n, x(Z AN )
(2.67) = (=3df +310X —2curl X, Z) + (d*n,x(Z AN )).

Using :2.62) and (2.63]), we compute the last term on the right hand side
of (2.67)), in local coordinates. We have

(d*n,«(Z AN)) = (d"n, Zap) = %(d*n)ijstomij = —%Vp(npij)memz‘j
= _%ZM(vp(npijSDmij) - %npijwpmij)
= — 5 Zn (8t — 0) = ~2(div b, 2)
and hence we get

P 2
(W, Z) = < —df + 70X — gcurlX—gdivh,Z>.
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Since Z is arbitrary we get
2 2 .
W = —df + X — gcurlX — gdlvh

which gives (2.58]). g

Remark 2.13. The main point of the previous lemma is to exhibit a rela-
tion between 77(dn) and m7(d*n). Such a relation is expected because of the
form of the linearization of the map ©. More precisely, from , applying
the linearization of © to Lie derivatives, we have mo7 (Lx 1)) = — * mo7(Lxp),
(dn, Z Np)r> = —(n,*Lx) 2 and (d*n, Zp) 2 = (n, Lxp) 2. The compu-
tations in local coordinates was done to relate m7(dn) and w7 (d*n) to the
divergence of the symmetric 2-tensor h.

Remark 2.14. The previous lemma generalizes Proposition 2.17 from [15]
where the Go structure was assumed to be torsion-free (79 = 0).

We have the following corollary of Lemma 2.12.

Corollary 2.15. Let ¢ be a nearly Go structure and let n € Q3.. Then

(1) If n is closed then d*n € Q3,.
(2) If n is co-closed then dn € Q3.

Proof. In the notation of Lemma 2.12 we get that f = X =0 and o = 1.
Thus we get that

m7(dn) =0 = m7(d*n) =0

as from Lemma 2.12, both conditions are equivalent to div h = 0. Now if dn =
0 then m7(d*n) = 0 and hence d*n € Q3,. If d*n = 0 then m7(dn) = 0. Also,
since f = X = 0, we know from (2.56)) that 71 (dn) = 0. So dn € Q3. O

We also have a result similar to Lemma 2.12 for 4-forms which we state
below. The proof follows from the proof of Lemma 2.12 by taking ( = %o
and noting that xi,(h) = —i,(h). We expect that both Lemma 2.12 and
Lemma 2.16 will be useful in other contexts as well.
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Lemma 2.16. Let ¢ be a nearly Go structure on M and ¢ be a 4-form on
M so that

C=fPp+XNp+Go

where X € QY (M) and (o € Q3, with (o = xiy(h) where h is a symmetric
traceless 2-tensor. Then

2 2
(2.68) m7(d() =W AY where W =df — 10X + 3 curl X — 3 div h,
% 4 %
(2:69) m(dQ) = (rof +=d'X ),

1 1
(270) wr(d"Q) =Y where Y =—df - JculX - %X — S divh.

We get the following corollary.

Corollary 2.17. Let ¢ be a nearly Go structure on M and let (g € Q‘é?.
Then

1) If dGo = 0 then d*(y € Q3.
2) If d*Co = 0 then d(o € Q2.

3. Hodge theory of nearly G, manifolds
3.1. Dirac operators on nearly G2 manifolds

We begin this section by defining the Dirac operator on (M, ) with a nearly
Gg structure. We then define a modified Dirac operator which is more suit-
able for our purposes. A Gy structure on M induces a spin structure, so M
admits an associated Dirac operator I) on its spinor bundle $(M). Since
To is constant, by rescaling the metric induced by the nearly G structure,
we can change the magnitude of 79 and by changing the orientation, we
can change its sign. In the later part of the paper, we study deformations
of nearly Go structures through nearly Go structures ;. Since the under-
lying metric of any nearly G structure is positive Einstein, the family of
metrics g; corresponding to ¢ will be positive Einstein and so by [4, Corol-
lary 2.12], the scalar curvature R; is constant in ¢. Thus, by , 70 will be
constant through the deformation. Henceforth, we will assume that mp = 4.
The results of the paper do not depend on the value of 19 chosen. Recall the
following definition from §1 with mp = 4.
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Definition 3.1. A spinor n € I'($(M)) is called a Killing spinor if for any
X € I(TM)

1
(3.1) Vxn=—5X1

“.77

where is the Clifford multiplication.

The real spinor bundle $(M), as a G representation, is isomorphic to Q0 @
0!, where the isomorphism is

(L, X)—f-n+X-n

For comparison with the Dirac-type operator which we define later, let us
derive a formula for the Dirac operator ) on a nearly Gs manifold in terms
of this isomorphism.

A unit spinor 7 on a nearly Go manifold M satisfies (3.1)). Thus

D(fn)=>> ei-Ve fn)=Vf n+ fn,
i=1
where we have used the fact that ¢; - e; = —1. Also,
7
DX ) =) e Ve (X n) =) (ei Ve X ntei X Ven)
i=1 =1

7
= (dX) -+ (d"X)n+ e+ X Ven
i=1

which on using X -e; + ;- X = —2(X, ¢;) and (3.1]) becomes

7

DX -m) = (dX) - n+(d"X)n =Y (X e+ Ven+2(X,€)Ve,n)
=1

7
= (dX) -+ (" X)n -5 X -n+X-n
. 5
= (dX) -n+ (dX)n - 5X 1.
Thus we get

(32 DU+ X-m = (Lrrax)n+ (V5 +ax - 2x)
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Now dX is a 2-form, hence dX = m7(dX) + m4(dX). Since the Lie group
Go preserves the nearly Go structure ¢, it preserves the real Killing spinor 7
induced by ¢ and Q3,(M) = go, the Lie algebra of Ga, we have m14(dX) - n =

1
0. Also, we know from (2.42) that m7(dX) = g(curlX )2 and it follows from

the definition of the Clifford multiplication, for instance as in [14] §4.2], that
(Yop) -n=3Y -nforany Y € I'(T'M), we get that

7 5
D(f,X) = (§f+d*X)n+ (Vf+curlX _ 5X) -
which we will write as

7. 5
(3.3) B(f, X) = (§f+d X,Vf +curl X — §X>.

Definition 3.2. The Dirac operator I is a first-order differential operator
on $(M) defined as follows. Let s = (f, X) € I'($§(M)). Then

(3.4) D(f.X) = (;f L X, Vf+eul X — gx)

The Dirac operator is formally self-adjoint, that is, )" = Ip and is also an
elliptic operator.

Consider the Dirac Laplacian ]ﬂ2 = P* ). We relate it to the Hodge Lapla-
cian in the following

Proposition 3.3. Let s = (f, X) be a section of the spinor bundle $(M).
Then

(35)  D(f.X)= (Aer%erd*X, AgX + curl X + %XJer).

Thus ]D2 1s equal to Ay up to lower order terms.
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Proof. Using Corollary 2.8, we calculate
2 . 7 * * §
DA, X) = <2(2f+d X) +d (Vf+cur1X 2x),
7 N 5
d(§f+d X> + curl (Vf Feurl X — §X>
) )
— i(Vf +curl X — 2X>>

4 2
- (Af+zgf+d*X, AdX+cur1X+Z5X+Vf)

which proves (3.5]). O

We need a modification of the Dirac operator defined above. The spinor
bundle (M) is isomorphic to Qf & QL and hence, via a Go-equivariant iso-
morphism, it is also isomorphic to Q3 @ Q3. We define the modified Dirac
operator, which we denote by D, as follows. Consider the map

D: Mool — a0l
1
(f, X) = 3% d(fp) + mar(d(Xap)).

Using Lemma 2.11 (4) with 79 = 4, we get
3 .1
(3.6) D(f,X) = (2f — SdX, Sdf 46X - curlX).

Remark 3.4. We note that D is defined in the same way as in [I5] where
the authors denote the operator by ID.

We find the kernel of D. Let (f, X) € Q° ® Q! be in the kernel of D. Then

2f—%d*X:O

1
§df 4+ 6X —curl X = 0.

Taking d* of the second equation and using the first equation and equa-

tion (2.49), we get
Af = d*df = 2d" curl X — 12d*X = —56.
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Since A is a non-negative operator, f = 0. For X, we have
d*X =0 and curl X = 6X.

We want to prove that X is a Killing vector field. Let dX =Y up + m14(dX).
Then

dX Ny = (Yap) Ay
=3xY.

Therefore
1 1
m7(dX) = 3* (dX NY)op = g(curlX)_ngp =2X Jp.
From Lemma 2.9 (2), we have

/ X NdX Ao = 202X sl — mia(dX)]?
M

= 8(X up, X 3p) — ||m14(dX)]?
— 8(X, #((X ) A ) — | m1a(dX)|?
= 24| X2 — [[mia(dX)|?.

On the other hand, since M is compact, using integration by parts we have

/ dX/\dX/\g0:/ XANdX Ndp
M M

:4/ X/\dX/\1/;=4/ X A (6% X)=24] X%
M M

Therefore, m14(dX) = 0 and dX = 77(dX) = 2X 1. Now using Lemma 2.11
(4), along with the fact that X € ker D, i.e., d*X =0 and curl X = 6X, we
get

1.
0 = d(dX) = d(X 1p) = ip(Lxg).
and hence X is a Killing vector field. Therefore ker D is isomorphic to the
set of Killing vector fields X such that curl X = 6X. We denote ker D by K,

that is,

(3.7) kerD=K={XeIl(TM) | Lxg=0and curl X =6X}.
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Remark 3.5. Note that the above can also be proved using the identity
AX = d"dX = -2d*(X 1p) = 12X, since Ricy = 6g for 79 = 4.

Remark 3.6. If we also want the vector field X € K to preserve the Go
structure, then

Lxp=d(X )+ Xidp=4X)=0,

but since Q' = Q%, this implies X = 0. Hence the only vector fields in K
that preserve the Gg structure are trivial. Note that when ¢ is a nearly Go
structure of type-1, that is dim(K $) = 1, every Killing vector field preserves
the G structure and hence K = {0}.

The motivation for defining the modified Dirac operator can be understood
from the following.

Consider the following operator

DY Q@ Q) — Qley
(fo, X ANY) = migr(d(fe) + d (X A ).

From previous calculations and Lemma 2.11 we know that

d(fe) =df Ao+ 4fp € Qigr,

Te7(d" (X AY)) = %(d*X)zb + %(curlX — 6X> A .

Thus
D*(fo, X Ap) = <4f + %(d*X),df + %(curlX . 6X>).

Doing a similar calculation as we did for ker D, we observe that if (f, X) €
ker DT, then

Af=-28f, curlX =6X = f=0=d"X hence X € K

and so ker DT = ker D. Since Q3 @ Q3 =~ Qf,; and D, D" are self-adjoint
operators, we have the following identification
Qlgr =Im D" @ ker DY =Im D' @ ker D

3.8
(38:8) = d3 @ mer(d*Q5) ® {X A p|X € K}

This is used in the following important
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Proposition 3.7. Let (M, p,1) be a nearly Go manifold. Then the follow-
ing holds.

1) Q= {X Ap|X € K} & dO3 & d* Q3 & Q4.

2) We have an L*-orthogonal decomposition Qi .. ={X N | X € K} ®
dQ? ® Q%Zexact'

Proof. The first part of the proposition follows from the decomposition of
Q17 in equation (3.8).

For the second part we note that the space d*Q)3 is L*-orthogonal to exact 4-
forms. To prove the L2-orthogonality of the remaining summands we proceed
term by term. Let X € K, d(fy) € dQ3 and v € Q4, such that da = X A
v+ d(fe)+ B for some exact 4-form da. Using the pointwise orthogonality
of Q‘ll and Q‘%, we have

(XN, d(fe))rz = (X Ao, df Ao +4fY)re
= (X Np,df Np)re
= 4<X> df>L2 = 4<d*X7 f>L2 =0.

Note that since X € K, Lemma 2.11 (6) implies that X A ¢ =d (—iX_n/)),
and hence is exact. Thus, 8 € Q3 Let B = doyg. The L?-orthogonality

27,exact*

of 3, and Qf, along with the identity ¢ A *da = 0 implies

(dao, d(f)) L2 = (daw, df N+ 4f)Le
= (dao, df N @)r2 + (dao, 4f) 2 = 0.

The orthogonality of X A ¢ and dag follows from the L?-orthogonality of
Q2 and Q3. O

Thus, from the previous proposition, we know that any 4-form « on a
nearly G2 manifold can be written as a« = X A p +d(fp) + d*(Y A ¢) + ap,
for some X € K, f € C®(M),Y € I'(TM) and ap € Q3. Since for Y € K,
d*(Y A1) =0, one can choose Y € ICt22 in the previous proposition.

Thus for every 4-form a there exists unique X € KC, Y € Kte2, f € C®(M)
and ag € Q3. such that

a=XANp+d(fe)+d (Y AY) + ap.
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3.2. Harmonic 2-forms and 3-forms on nearly Gs manifolds

The above decomposition of 4-forms has a very useful application in de-
termining the cohomology of nearly Go manifolds. We first note that since
nearly Gy manifolds are positive Einstein, it follows from Bochner formula
and Hodge theory that any harmonic 1-form is 0 and hence H!(M) =
HO(M) = 0. The next two theorems describe the degree 3, 4 and degree
2 and 5 cohomology of a nearly G2 manifold.

Theorem 3.8. Let (M, p,1) be a complete nearly Go manifold. Then ev-
ery harmonic 4-form lies in 937. Equivalently, every harmonic 3-form lies
in Q3.

Proof. Let a be a harmonic 4-form that is da = d*a = 0. From Proposi-
tion 3.7 there exists X € K, f€ C®(M), Y € K*t2 and o € Q3, such
that

a=XNp+d(fe)+d (Y AN) + ap.

Since X € K and hence 6X = curl X, by Lemma 2.11 (6), d*(X A ¢) =
4X np € Q3 and since d(fo) =df Ao +4f1 € Q‘ll@% we have

0= (o, d(f))r> = (X A, d(fo))> + [|d(fo)l|7-
+ (@ (Y A0), d(f)) 12 + (o, d(f0)) 12
= (d"(X N ), fo)re + ||d(fo)13
= [ld(f)|7--

Thus d(fe) = 0 and hence f = 0.

Now, 0=d*a=d"(X Ay)+d*ayg=4X ) + d*ap. Using the identity,
(X)) N =4 % X we have

|d* |22 = 16(X b, X 1)) 12
= 16(X, *((X ) A @))re = 64] X 7.

On the other hand, again by Lemma 2.11 (6)

ld* a2 = (d* a0, d*ag) 12
= *4<d*010, X_I’QZJ>L2
= —4<O¢0,d(X_|1/J)>L2 = 16<O¢0,X A (p>L2 =0,

which implies X = 0. So a = d*(Y A¢) + .
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Since d*ag = 0, applying Corollary 2.17 on g implies dag € 934. This iden-
tity together with the closedness of « gives us

0= {a,d" (Y Ap))z2 = [d" (Y A)|[72 + (a0, d*(Y A))re
= " (Y A )72 + (dao, Y Ap)re = [d5(Y A9)|[7.

as Y Ay € Q2. Hence d*(Y A1) =0 or equivalently Y € K, thus Y =0
which implies that o = « which completes the proof of the theorem. O

We also describe the degree 2 (and hence degree 5) cohomology on nearly
Go manifolds below. In combination with Theorem 3.8, this completely de-

scribes the cohomology of a nearly Gg manifold.

Theorem 3.9. Let (M, p, 1)) be a complete nearly Go manifold with 1y = 4.
Let B be a 2-form with

B = pBr+ Pia = (X1p) + pra for some X € T'(TM).
If B is harmonic then B € Q3.

Proof. Suppose 3 € Q%(M) is harmonic. Then df = d*3 = 0 and since d and
d* are linear, we have

dBr + dpa = 0, d*Br +d*fra =0

which on using Lemma 2.11 (3), (4) and (5) imply

3 1
—?(d*X)go + 5 * ((6X —curl X) A @)
+ l¢<§(ﬁxg) + §(d X)Q) T (d*Bra A @) + m27(dB14) = 0
and
d*f14 = —curl X.
Thus we get

1 1
—%(d*X)go—i— 3 * ((6X —curl X — §cur1X) A )

Fig(5(Ex0) + 2@ X)g) + mardfra) = 0
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and so
1
(3.9) d*X =0, curlX =4X and i(ﬁxg) + mo7(df14) = 0.

Now curl X = 4X, so taking curl of both sides and using (2.51)) with d*X =
0, we get

AgX +4curl X =4curl X = Ay X=0.

Thus X is harmonic. Since nearly Go manifolds are positive Einstein, it
follows from Bochner formula and Myers theorem that X = 0. Hence 8 =
By € Q3. O

Remark 3.10. Theorem 3.9 was also proved in a very different way in [2
Remark 15]. The theorem has the following interesting interpretation in the
context of Ga-instantons on a nearly Go manifold, as already described in
[2, Corollary 14]. For any « € H%(M,Z), by Theorem 3.9, there is a unique
Go-instanton on a complex line bundle L with ¢;(L) = a.

Remark 3.11. It was brought to the attention of the authors by Uwe
Semmelmann and Paul-Andi Nagy that Theorem 3.8 also follows from the
description of nearly Go manifolds using Killing spinors which is based on
an old result of Hijazi saying that the Clifford product of a harmonic form
and a Killing spinor vanishes. We also describe degree 2 cohomology by our
methods. We believe that the methods and the identities described here,
apart from being useful in other contexts, also have the potential to be
extended to manifolds with any Gg structure (not necessarily nearly Gg)
with suitable modifications. The authors are currently investigating this.

4. Deformations of nearly G, structures

Let (M, ¢, 1) be a nearly Gy manifold with a nearly Gg structure (¢, ). We
are interested in studying the deformation problem of (¢, ) in the space of
nearly Gg structures. The infinitesimal version of this problem was settled
by Alexandrov and Semmelmann in [I]. We will obtain new proofs of some
of their results using the results proved in the previous sections.

Let P be the space of Go structures on M, that is, the set of all (¢,) €
Q3 x Qi with O(¢) = 1. Given a point p = (p, 1)) € P we define the tangent
space T, P.
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Lemma 4.1. The tangent space TP is the set of all (&,m) € Q3(M) x
QM) such that

E=3fp—Xnp+~
n=4f+X Np—xy

for some f € Q°(M), X € T(TM) and v € Q3.

Proof. The proof immediately follows from equations (2.39)) and (2.40) from
Proposition 2.4. [l

4.1. Infinitesimal deformations

We want to study deformations of a given nearly Ga structure ¢ on a com-
pact manifold M by nearly Gg structures ;. We will only be interested in
deformations of the nearly Go structures modulo the action of the group
R* x Diffy(M) where Diffy(M) denotes the space of diffeomorphisms of M
which are isotopic to the identity. We first use Proposition 3.7 to find a slice
for the action of diffeomorphism group on P which is used to find the space
of infinitesimal nearly Go deformations, a result originally due Alexandrov—
Semmelmann [1].

For the purposes of doing analysis, we consider the Holder space P%® of
Gy structures on M such that ¢ and v are of class C* k> 1, a € (0,1).
Let p = (¢,9) € P52 be a nearly Gy structure such that the induced metric
is not isometric to round S”. Denote the orbit of p under the action of
Diff’gﬂ’a(M ) — Ck+1e diffeomorphisms isotopic to the identity, by O,. The
tangent space T}, O, is the space of Lie derivatives Lx (¢,1) for X € I'(T'M).
We are interested in finding a complement C of 1,0, in T,P.

If (§,m) € T,’P then using Proposition 3.7 (1), we can write
n=XNp+df No+4f+d (Y AN)+no

for unique X € K f € QO(M), Y € K22 and 5y € Q3. From Lemma 2.11
(4) we know that

xdx (Y NY) = —xd(Yap) = %(d*Y)z/J - (3Y — %curlY) Ap

/1 1 .,
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and since
4, 1
Lyt = d(Y ) = —=d"Y§) = (5 curl Y + Y) Ag
1 1
¥, <§(V’Yj LYY+ ?(d*y)gij)
from Lemma 2.11 (6), we see that
1
(Y ANY) = —?(d*Y)I/J + (curlY —2Y) A ¢ — Ly ).

Thus up to an element in 7,0, we get that

(1) = (4 - %d*Y)er (X +df + curl Y — 2Y) Ao+ 1o

and hence from Lemma 4.1

(4.2) E=(3f— %d*Y)cp — (X +df +curlY —2Y) ) — *np.

Now, if X € K then from Lemma 2.11 (6) and curl X = 6X we see that

Loxp=d (fm) =X Ap

and hence
n=~L xp+d(fe)+d (Y NY)+m0
which implies that up to an element in 7,0, combined with the above
observation, we can write
1
(4.3) 0= (4f— ?d*Y>w+(df—l—curlY—QY)/\(p—i-Uo
which implies that

(4.4) &= (3f— 2—38d*Y)g0 — (df + curlY —2Y") np — xnp

and hence we get a splitting T, P = T,O, @ C where C = QO(M) x Ktz> x
Q3; which consists of (£,7) € T,P of the form ([4.4) and (£.3) respectively.
This gives a choice of slice. In fact, as discussed in [20, pg. 49 & Theo-
rem 3.1.4] we have
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Proposition 4.2. There exists an open neighbourhood U of C of the origin
such that the “exponentiation” of U is a slice for the action of Diﬂ“’gﬂ’a(M)
on a sufficiently small neighbourhood of p € Pk,

With this choice of slice we determine the infinitesimal deformations of the
nearly Gg structure p which gives a new proof of a result of Alexandrov—
Semmelmann [I, Theorem 3.5].

Theorem 4.3. Let (M, p,1v) be a complete nearly Go manifold, not iso-
metric to the round S*. Then the infinitesimal deformations of the nearly
Gs structure are in one to one correspondence with (X,&y) € K x Q3; with

(4.5) xd€y = —4&p and AX =12X.
Hence & is co-closed as well. Moreover, Ay&y = 16&y.

Proof. Let (§,1) € T,’P be an infinitesimal nearly Go deformation of a Go
structure p € P. So n must be exact and hence from Proposition 3.7 (2), we
can remove the d*(Y A %) term, in which case (4.1]) and (4.2)) become

(4.6) n=A4fv+(X+df)Ne+mny and &=3fp— (X +df)sp — *np.
Moreover, for infinitesimal nearly Gy deformations we must have
d¢ = 4n
and hence implies
dfp+ (4X +df) N +4no + d((X + df ) sp) + dxny = 0.

Using Lemma 2.11 (6) for the fourth term above and taking inner product
with v gives

28f — 4d*(X +df) = 0.

But since X € K = d*X = 0 and hence we get Af = 7f. Since M is not
isometric to round S7, Obata’s theorem then implies that f = 0 and hence

(4.7) n=XANe+n and &=-Xup—=x*n

which proves the one to one correspondence between the infinitesimal nearly
G2 deformations and K x Q3-. Since Ric = 6g and X is a Killing vector field,
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we have AX = 12X which is the second part of (4.5). Since 7y is exact,
dno = 0. From (4.7) and the fact that d§ = 4n, we get

d*no = —4no

and hence
*d§p = —48p.
Taking d* of both sides give d*§y = 0. Moreover,
Agéo = d*déy = —4d" x & = —4 * (d&o) = 160
which completes the proof of the theorem. O

Remark 4.4. From the computations for the proof of Proposition 4.2 we
know that for X € KC,

—4AX N = Lx.

Thus, from Theorem 4.3 we see that the infinitesimal deformations of a
nearly Go structure modulo diffeomorphisms are in one-to-one correspon-
dence with & € Q§7 such that xd&y = —4&.

Motivated from the study of deformations of nearly Kéahler 6-manifolds by
Foscolo [7), §4] where he used observations of Hitchin [I0], we also want to
interpret the nearly Gy condition as the vanishing of a smooth map on
the space of exact positive 4-forms. Moreover, in order to study the second
order deformations, it will be convenient to enlarge the space by introducing
a vector field as an additional parameter which is natural when one considers
the action of the diffeomorphism group. We elaborate on this below.

Let ¢ = da be an exact positive 4-form, not necessarily satisfying the nearly
Gz condition. Let n € Q2 ., be the first order deformation of . Hitchin in

exac
[10] defined a volume functional for exact 4-form p = dv given by

Vip) = /M *p A P,

and a quadratic form

W(p,p’)z/ 7/\,0/:/ pAY,
M M
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where p = dvy and p' = dv' are exact 4-forms. We denote W (p, p) by W(p).
When M is compact, Hitchin proves [10, Theorem 5] that stable 4-forms
(which is the same as a positive 4-form in our case) n € Q2 (M) is a critical
point of the volume functional V' subject to the constraint W (n) = constant
if and only if 1 defines a nearly Gg structure. The linearization of the volume

functional at v is given by

d

dV(n) = it

Vv tn) = *
i (¥ +tn) /MsaAn+/M nAY

:2/ pAm.
M

For the linearization of the quadratic form, suppose 1) is exact with ¢ = da.
We use integration by parts to get

d
awm =2 0W<w+tn>:/MaAn+/me
t_

dt|,_
:2/ aAn.
M

Let us define an energy functional £ on exact 4-forms by

E(p) :=V(p) — 4W (p).

Then from above calculations
aE() = [ (¢~ 1) An= [ dle-1a) Ay
M M

Therefore ¥ = da is a critical point of E if and only if dE(n) = 0 for every
n € Q2 ... that is if and only if

deo —4da = dp — 49 = 0.

Hence the critical points of the functional E on Qi’exact are nearly Gy struc-
tures. Since the energy functional F is diffeomorphism invariant, we can
introduce an extra vector field, as dF will vanish in the direction of Lie
derivatives. Thus 1) being a stable exact 4-form can be given by the formula

¥ = jdlp — =d(Z )

for some Z € I'(T'M). We use these observations to write the nearly Go
condition (2.24)) as the vanishing of a smooth map. Let us denote by P the
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space of stable 3 and stable, exact 4-forms, i.e., (¢, 9) € Q% x Q4 . We
have the following

Proposition 4.5. Suppose (¢, ) € P satisfies
(4.8) dp — 4y = dxd(Z )

for some vector field Z and x denotes the Hodge star with respect to a fized
background metric. Then (p,1) is a nearly Ga structure.

Proof. We will prove that d(Z.y) = 0. We note from (2.32)) that
(Zap) N =0
So from (4.8]) we get that

1d(Z )72 = (d(Z ), d(Z )1
<(Z_|?/)), xd * d(Z_N,b»Lz
(Z), x(dp — 49)) 12

— [ ne-1w)= [ zw)nde
M M

Since ¢ is a Gg structure and dip = 0 from (4.8]), we know from (2.19) that
71 = 0 and hence dp has no component in 7. Thus

((Zap), xdep) =0

which implies that

Ja(Z6)1: = [ (Zow)ndp=0
M
which proves the proposition. O

Suppose we want to describe the local moduli space of nearly G structures
on a manifold M. If NP denotes the space of nearly Gy structures on M
then the local moduli space is M = NP /Diffo(M). A natural way to study
this problem is to view the nearly Go structures on M as the zero locus of
an appropriate function, find the linearization of the function and prove its
surjectivity, so that an Implicit Function Theorem argument describes M.

Now let (,1) be a nearly Gy structure on M. Let U C Q4 _,; be a small
neighborhood of the 4-form 1. Since the condition of being stable is open we
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can assume the existence of such a neighborhood. Thus for n € ngact with

sufficiently small norm with respect to the metric induced by ¢, ¥ =¥ +n
is also a stable exact 4-form. From Proposition 4.5 the pair of stable forms

(¢, ) defines a nearly Go structure if there exists a Z € I'(T'M) such that
dp — 4 = dx d(Z ).
This condition is equivalent to the vanishing of the map

d:UxT(TM) — Ql

exact

(4.9) (), Z) — dx1p — 4p — d * d(Z ).

Thus, the nearly Go structures are the zero locus of the map ® modulo
diffeomorphisms.

Let € be the dual of n under the Hitchin’s duality map © as in Proposi-
tion 2.4. The linearization of the map ® at the point (1, 0) is given by

d¢ — 4y = d+ d(Zb).

Thus the obstructions on the first order deformations of the nearly Go struc-
ture (p, 1) are given by Im(D®) which is characterized in the following
proposition, whose proof is inspired from a similar theorem in the nearly
Kaéhler case by Foscolo [7, Proposition 4.5].

Proposition 4.6. Let (p,9) be a nearly G structure and (£,m) € Q3 x
QL ot be a first order deformation in P. Then o € QL . lies in the image
of D® if and only if

(d*a—4xa,x)2 =0
for all co-closed x € Q3; such that Ay = 16y.

Proof. From Proposition 3.7 (2), there exists X € K, f € C°°(M) and ng €
Q%Zexact such that

n=XANe+d(fe)+m
1
~d <—4Xw + fw) +m
and from Lemma 4.1, the 3-form

§=3fp— (df + X)xp — =no.
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By Proposition 3.7, a=Y Ap+d(hy)+ay for some Y €K, he
C>®(M), g € Q3 Such an « lies in the image of D® if

27,exact*
1
dE —dn—d*d(Zp) = a = d(— EYJ@D—i-th) + ap.
From Lemma 2.11 (5)

d*(Z Np) = — % d(Z )

3 |
= ?(d 20 — i(GZ—CurlZ> A

/1 1,
- *Zso(g(ViZj +V;Zi)+-(d Z)gz'j)

Comparing the last term in the above expression with that of d(Z.y) in
Lemma 2.11 we get

1
d(Z ) = ?d*Zl/J + (2Z —curl Z) A p +d*(Z N).
Using these expressions for £, 7 and d(Z 1)) we get

dé —an —d = d(Zxp) = d((—f — %d*Z)g@ — (df —2Z + curl Z) 1)
—d* o — 4770.

Thus, for finding the Im(D®), we need to solve the equations

1
f+ ?d*Z =—h
(4.10) df —2Z +curlZ = iY
—d*ny — 4np = ag.

Let ag = 0. Then by Implicit Function Theorem, a solution of the first pair
of equations always exist if the operator

D: Qx5 x !
1
(f, Z) (f+§d*Z,df—QZ+curlZ)

is invertible in a small neighborhood of its zero locus. Since D differs from
the modified Dirac operator D in (3.6)) only by self-adjoint zeroth-order
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term, it is self-adjoint and hence ker(D) = coker(D). A pair (f,Z) is in the
kernel of the operator D if and only if

1
f—l—?d*Zzo
df —2Z 4+ curlZ = 0.

Applying the operator d* on the second equation and using the fact that
d*(curl Z) = 0 gives

0 = d*df — 2d*Z = d*df + 14f.

Thus f =0 as A is a non-negative operator. The second equation then
becomes

curl Z = d*(Z ap) = *(dZ Np) = 27

2
and Proposition 2.5 implies that dZ = gZ_ngo + m14(dZ). Using Lemma 2.9
(2) we get that

8
[ 4z ndzno= 1206l - Imutaz) P
M
8
= §||Z||2 — ||m1a(d2)| .
On the other hand

/ dZ/\dZ/\go:Zl/ Z NdZ N = 8]|Z)2.
M M

16
Combining these two equations we get §HZH2 = —||714(dZ)||* and hence

Z = 0 as well. Thus ker(D) = coker(D) = 0 and D is invertible when ag = 0
and we can always solve the first pair of equations in . Thus there are
no restrictions on Y, h to be in the image of D®. Moreover if ay # 0 satisfies
the third equation in then

d*og = —d*d * ng — 4d*no,
xag = —d*ng — 4 * 19

which on using the fact that *ng is co-closed implies

d*ag —4*xag =16 %19 — d*d *ng = 16 * 199 — Ay * 19.
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Thus o € Q%Zexact is a solution to the equation (4.10)) (3) if and only if
(d*ag — 4 x g, )2 =0

for all co-closed &y € Q3 such that A¢ = 16¢. To complete the proof of the
proposition we now only need to prove the L2-orthogonality condition for
«. But observe that since Y € K

d'a=d"(Y Np) +d"d(he) + d*ag = —4Y 1) + d*d(hy) + d* o,

and so d*a —4xa=d"d(hy) —4xd(he) + d*ap — 4 % ap. Since £ is co-
closed, from Corollary 2.15 d¢ € Q3, and

<d*d(hgp)7£>L2 = <d(h80)a d£>L2 = 0.

Similarly

(xd(he), &) 12 = (d* (M), &) 12 = (M, dE) 2 = 0

which completes the proof of the proposition. O

Remark 4.7. Proposition 4.6 puts a very strong restriction on the first
order deformations of a nearly Go structure to be unobstructed.

4.2. Second-order deformations

Following the work of Koiso [16] on deformations of Einstein metrics and
the work of Foscolo [7] on the second order deformations of nearly Kéhler
structures on 6-manifolds, we define the notion of second order deformations
of nearly Go structures.

Definition 4.8. Given a nearly Go structure (¢, 1) and an infinitesimal
deformation (£1,71), a second order deformation of (g, ) in the direction
of (&1,m1) is a pair (&2,72) € 2 x Q% such that

2 2

€ €

80=<P0+6§1+§€27 ¢=¢0+6771+5772

is a nearly Gg structure up to terms of order O(€?). An infinitesimal de-

formation (£1,71) is said to be obstructed to second order if there exists no
second-order deformation in its direction.
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Remark 4.9. Second order deformations are the same as the second deriva-
tive of a curve of nearly Gg structures on a manifold M.

Remark 4.10. In a similar way, we can define higher order deformations
of a nearly Go structure.

Following the discussion in the previous section and in particular Proposi-
tion 4.5, in order to find second order deformations of a given nearly Go
structure (g, o), we look for formal power series defining positive ezact
4-form

2
€
¢e=¢0+6771+5772+---

where 7; € Q2 ... and a vector field

2
262621-1-5224-“-

which satisfy (4.8), that is
(4.11) dpe — dpe = d * d(Zeibe)

where . is the dual of 1).. Note that the Hodge star = is taken with respect
to e.

Since we are interested in second order deformations, given an infinitesimal
nearly G deformation (£1,71), we set Z; = 0 and look for ny € Q2 . such
that (4.11)) is satisfied upto terms of O(e?). Explicitly, we write

2

pe = 0+ €1+ 5 (1 — Qs(m)

where 72 denotes the linearization of Hitchin’s duality map © for stable forms
in Proposition 2.4 and Q3(n1) is the quadratic term of Hitchin’s duality map.
Since we want solutions to (4.11)) up to second order, we look for 72 such
that

(4.12) dnz — 4ne = d(Q3(m)) + d * d(Z2 1))

as Z1 =0 and Z3.)g is the only second order term in Z.p.. We know
from Proposition 4.6 that there are obstructions to finding second order
deformations and hence in solving the above equation. We want to establish
a one-to-one correspondence between second order deformations of a nearly
Gy structure and solutions to . We do this in the following lemma.
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Lemma 4.11. Suppose 12 is a solution of (4.12). Then d(Zstby) = 0 and
(M2 — Q3(m),m2) defines a second-order deformation of (g,o) in the di-
rection of (§&1,m) in the sense of Definition 4.8. Conversely, every second

order deformation (£2,12) is a solution to (4.12)).

Proof. We start with

|d(Zabo) 172 = (Zabo, d*d(Zz o)) L2
= (Zonpo, *d * d(Za o)) 12
= (Zaxtho, *(dipz — 4m2 — dQ3(m1))) 2

Since dipe = O(e?), hence from (2.18) and (2.19)) we see that for any vector
field Y, [ dpe A (Y 31p) = O(e3). Thus the terms which are O(€?) in [ dipe A
(Y 1)) vanish, that is

/ do A (Yomz) + déy Ay + d(7s — Qa(m)) A (Y stbo) = 0.

Using the facts that dyg = 419, dé1 An1 = 0, being an 8-form on a seven
dimensional manifold and (Y n2) A g = —(Y 1tbg) A m2 we get that

/d(@ = Q3(m)) A (Y sbo) — dmp A (Y tho) = 0
Taking Y = Z, proves that d(Z2119) = 0. From (4.12)) we get that

d(72 — Q3(m)) = 42

which proves that ((n2 — Q3(n1),m2)) is a second-order deformation of
(po,t%0) in the direction of (£1,71) in the sense of Definition 4.8. Con-
versely, suppose that (£2,72) is a second-order deformation of (¢g, 1)g). Then
d&o = 4na. O

From the previous proposition and Proposition 4.6 we have that if (£2,72) is
a second order deformation of the nearly Go structure (g, 1) in the sense
of Definition 4.8 then

(413) <d*dQ3(7]1) — 4 x ng(?]l), X>L2 =0

for all y € Q3. such that d*y = 0, Ax = 16. The above equation simplifies
to

(xQs(m),dx — 4 x)L> = 0.
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Moreover, if x is an infinitesimal deformation of (yg, 1), then by Theo-
rem 4.3 x satisfies dy = —4 % x (which of course implies d*x = 0 and Ax =
16x) and so the above equation is equivalent to

(@s(m), x)r= = 0.
5. Deformations on the Aloff-Wallach space

In [I, Prop. 8.3] Alexandrov—Semmelmann established that the space of
infinitesimal deformations of the nearly G structure on the Aloff-Wallach
space X1 = % is an eight dimensional space isomorphic to su(3),
the Lie algebra of SU(3). The rest of the paper is devoted to prove that

these deformations are obstructed to second order.

The embedding of su(2) and u(1) in su(3) @ su(2), which we denote by su(2)4
and u(1), following [I], is given by

su(2)y = {( (g 8) ) Ja 6511(2)},

t 0
u(l) =span{C} =span< ([0 ¢ 0 |],0)
0 0

The Lie algebra su(3) & su(2) splits as
su(3) ®su(2) =su(2) du(l) dm

where m is the 7-dimensional orthogonal complement of su(2) @ u(1) with
respect to B, the Killing form of su(3) @ su(2). The normal nearly Go metric
on Xi1 is then given by —%B where the constant —% comes from our
choice of 19 = 4. If we denote by W the standard 2-dimensional complex
irreducible representation of SU(2) and by F(k) the 1-dimensional complex
irreducible representation of U(1) with highest weight k, then as an SU(2) x

U(1)-representation

su(3)c = S°W @ WEF(3) @ WEF(-3) @ C.

Let {e;}/_, be the basis of m. If we define I:<Z 0i>’J:

0 -1 0 4
(1 0>andK<i 0>,wehave
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1//2 0 1//2] 0
= (5 0) ) =5 (7 0)).
1//2K 0
w3 (05 9)-).
0 0 V2 0 0 V2
e4::\f 0o 0 01].,0], e5_‘f’ 0o 0 0 ].,0],
V2 0 0 2 0 0
0 0 0 0 0 0
5
66;:? o 0o v2|.0], e7.:*3[ 0 0 V2il.0
0 —vV2 0 0 V2i 0

This basis is orthonormal with respect to the metric g = —%B. We use the
shorthand e“%i to denote the n-form e* Ae® A--- Aei. The nearly Gog
structure ¢ is given by

123 + 6145 _ 6167 + 6246 + 6257 + 6347 _ 6356.

p=¢e
As an SU(2) x U(1) representation, m¢ = S?2W @& WF(3) @ W F(—3) where
S?W = Span{e!, 2,3}, WF(3) = Span{e® —ie®, e® —ie™},
WF(—3) = Span{e* +ie®, % 4 ie"}.
By Theorem 4.3, the space of first order deformations is given by {{ €
937 | d¢ = —4x¢}. In this example, it was found to be isomorphic to
su(3). As an SU(2) x U(1) representation, su(3) is isomorphic to the span

of {C,e1,...,er}. The SU(2) x U(1)-invariant homomorphism from su(3) to
Q3-(X11) is given by Span{A} where

A(C) © — 76123 A(el) — §(6145 + 6167),

3
Ales) = 2(6245 7)) Aley) = 2(6345 + €367,
Ales) = 8(36467 + el 4 o126 4 23,
Ales) = 3(36567 4235 _ o136 4 o127y
Aleg) = 8(36456 _ 236 _ o135 6124),

§(3€457 _ 6237 + 6125 + 6134).

Aler) = 9
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Let us fix an a € su(3). The adjoint action of h = (hi, he) € SU(3) x SU(2)
is given by

1 1 + 122 T3 + 124
htah = hilah) = | —21 +ixe i T5 + ix6

—x3+ixgy —x5+ireg —i(vy + v2)

where vy, v2, 21, X2, 3, 24, T5, Te are functions on Xj ;.

The infinitesimal deformation &, associated to a such that d§, = —4 % £, is
given by
v1 + v v V) 0
1+ V2 1— V2
ba = =5 AC) + Aler) + Y wiA(eit).
i=1

We can now compute the 4-form 7, by using the relation d€, = 41, = —4 *
€a. In order to show that the infinitesimal deformation ({,,7.) associated
to « is obstructed to second order, we need to compute the quadratic term
Q3(na) as discussed in equation and find an element 3 € su(3) for
which the L?-inner product is non-zero.

To compute Q3(7q), one can use the algorithm for stable 4-forms on mani-
folds with Gg structures as discussed in [10]. Using the fact that &, = — * 7q,
one can easily show that for some non-zero constant c1, Q3(1,) = ¢1 * Q4(&a)
where Q4(&,) is the quadratic term associated to &,. Thus, we will instead
compute Q4(§,) and show that the inner product (xQ4(&n),&n)r2 #0 to
prove obstructedness.

Consider ¢ = ¢ + t€, to be a positive 3-form for small t. We will denote
the metric and the volume form induced by ¢ by ¢: and vol; respectively.
We have a Taylor series expansion

gt = go +tgr + t2g2 + O(t*)).
Then one can define the symmetric bi-linear form B; by
(Bt)ij = ((eiape) A (ejupr) Apr)(ers ... er).
The zero order term of B, denoted by By is given by (Bp)ij = ((eiup) A

(ejup) N)(et,...,er) = 0;;. Similarly, one can compute the linear term
(B1)ij = 3((eiap) A (ej00) Aéa)(e, ..., er) and the quadratic term (Ba);; =
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3((eisba) N (ej2€a) Np)(e1, ..., er). The metric is then defined using the re-
lation (see for example, [13])

(Bt)ij = 6(gt)ij/det gq.

The linear term in vol; is proportional to ¢ A 1, + ¥ A &, and thus vanishes
since (€ayMa) € Q37 x Q3. Using the above formula we get that

vol; = /det g; = 1 + At> + O(t3),

where A is a quadratic polynomial in vy, v9 and z;,7 = 1..6. Using the Taylor
series expansion of g; and v/det g, we can compute the Taylor series expan-
sion of the Hodge star associated to oy, *; = %o + t *1 +12 %o +O(t3). The
Hodge star operator *; can be computed using the formula

VOlt 1171 iRJk ,ejk+1~~~j7
g7 .

7— k:)!gt 9t €

The quadratic term Q4(&,) is then given by

Q4(€a) = *20p0 + *18a-

In the present case, for a general element « € s1u(3), the quadratic term turns
out to be very complicated and is not very enlightening. We define the cubic
polynomial on X1 by

fa([h]) = (xQ1(&a), Ea) L2

Note that f, is cubic in «a since Q4(&,) and &, are quadratic and linear in «
respectively. This cubic polynomial can be lifted to a polynomial P on the
Lie group SU(3) x SU(2) by

fa([n]) = P(h" ah).

This lift enables us to calculate the average of P on SU(3) x SU(2) by us-
ing the Peter—Weyl theorem. To express the polynomial P in a compact
form, we will set z1 = o + i1, 29 = T4 — ix3, 23 = ¢ + ix5. Then the cubic
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polynomial P is given by

97 25 29
P(h_lah) = —E(v%vg + U%Ul) + gRe(leQZg) — E(U% + vg’)

5 37
(5.1) +§(U1+U2)|Zl\2+E(Ul|23|3+vz|z2|2)

31
+ 3(’01122\3 + vaz3?)

The next step in proving obstructedness is to show that the average value
of P on SU(3) x SU(2) is non-zero. For this, we appeal to the Peter—Weyl
theorem. The Peter—Weyl theorem states that for any compact Lie group
G, we have

L*(G)= @ Hom(V;,G)®V,
V,€Girr

where G- denotes the set of all non-isomorphic irreducible representations
of G.

The cubic polynomial P lies in the SU(3) x SU(2) representation Sym?>su(3).
The average value of the function P(g~!¢g) on SU(3) x SU(2) is the same
as the average value of R(h~'ah) where R is the projection of P to the in-
variant polynomials. This is because (P — R)(h~'ah) lies in the non-trivial
part of the Peter—Weyl decomposition and has an average value of zero. The
unique trivial sub-representation of Sym®su(3) is generated by the determi-
nant polynomial i det on su(3) which is given by

idet(g tag) = —(v1v5 + v20?) + (v1 + v2)|21|?
— (v1]23]* + v2|22]?) + 2Re(212223).

The average value of the polynomial P can be computed by computing
the inner product of P with idet. On su(3), since the Killing form B is
non-degenarate, g = —1—12B defines an inner product on su(3). The inner
product g induces an inner product on Sym3su(3) in the natural way. All
the computations that follow are done using g.

If E;; denotes the matrix with 1 as the (7,j)-th entry and zero elsewhere,
then the subspace of su(3) generated by {E;; — Ej; +i(E;j + Ej;) | 4,5 =
1,2,3,i # j} is orthogonal to Span{ E11 — iE33, E9s — iE33}. Moreover E;; —
Eji+i(Eij + Eji), i,j = 1,2,3,1 # j are also orthogonal to each other. Thus
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the only non-trivial terms occurring in the inner product of P and i det are,

1 2
lofve +vdun|® = 5, [Re(z1z22)lI” = 3,
1
(0} + o3, 0ofvs +vdun) = =7, (1 o)l PP =1,
4 1
”U1’ZS|2 + U2|Z2|2||2 = g, <Ul‘22|2 + 212’23|2,U1‘23|2 + 02‘22|2> = _g‘

From (5.1)) and the above computations we have that

=7 ()20 () 0-20) ()
191

ﬂ#o.

Thus we get the following theorem.

Theorem 5.1. The infinitesimal deformations of the homogeneous nearly

Go structure on the Aloff-Wallach space X1 = % are all ob-
structed.
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