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Introduction

In [4], Dorfmeister, Pedit and Wu introduced a loop group method (the
DPW method) for constructing harmonic maps from a Riemann surface into
a symmetric space. As a consequence of the Ruh-Vilms theorem [19], their
method provides a Weierstrass-type representation of constant mean cur-
vature surfaces (CMC) in Euclidean space R3. Many examples have been
constructed (see for example [3, 5, 7, 8, 12, 21]). Among them, Traizet
[25, 26] showed how the DPW method can construct genus zero n-noids,
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that is, CMC H ̸= 0 surfaces conformal to an n-punctured sphere, with De-
launay ends (as Kapouleas did with partial differential equations techniques
in [10]) and glue half-Delaunay ends to minimal surfaces (as did Mazzeo
and Pacard in [16], also with PDE techniques). Using [18], the embedded-
ness (or Alexandrov-embeddedness) of these examples can be derived from
their Weierstrasss data.

A natural question is whether these constructions can be carried out in
H3. Lawson has shown [15] that to any CMC H surface in R3 corresponds a
CMC H2 + 1 surface in H3, and the Lawson correspondence has been trans-
lated in the DPW framework [21]. We thus use the DPW method for CMC
H > 1 surfaces in H3 and adapt the techniques used in [18, 25] to construct
new examples. Admittedly, the n-noids of [25, 26] already provide equally as
many CMC H > 1 cousins in H3. Nevertheless, the Lawson correspondence
being only local, these cousin n-noids are immersions of the universal cover
of the n-punctured sphere, and they have no reason to descend to a well-
defined immersion of the n-punctured sphere itself. Hence, the construction
carried out here is not the cousin construction of [25, 26].

The two resulting theorems are as follows:

Theorem 1. Given a point p ∈ H3, n ≥ 3 distinct unit vectors u1, · · · , un
in the tangent space of H3 at p and n non-zero real weights τ1, · · · , τn satis-
fying the balancing condition

(1)

n
∑

i=1

τiui = 0

and given H > 1, there exists a smooth 1-parameter family of CMC H sur-
faces (Mt)0<t<T with genus zero, n Delaunay ends and the following prop-
erties:

1) Denoting by wi,t the weight of the i-th Delaunay end,

lim
t→0

wi,t

t
= τi.

2) Denoting by ∆i,t the axis of the i-th Delaunay end, ∆i,t converges as t
tends to 0 to the oriented geodesic through the point p in the direction
of ui.

3) If all the weights τi are positive, then Mt is Alexandrov-embeddedd.
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4) If all the weights τi are positive and if for all i ̸= j ∈ [1, n], the angle
θij between ui and uj satisfies

(2)

∣

∣

∣

∣

sin
θij
2

∣

∣

∣

∣

>

√
H2 − 1

2H
,

then Mt is embedded.

Theorem 2. Let M0 ⊂ R3 be a non-degenerate minimal n-noid with n ≥ 3
and let H > 1. There exists a smooth family of CMC H surfaces (Mt)0<|t|<T

in H3 such that

1) The surfaces Mt have genus zero and n Delaunay ends.

2) After a suitable blow-up, Mt converges to M0 as t tends to 0.

3) IfM0 is Alexandrov-embedded, then all the ends ofMt are of unduloidal
type if t > 0 and of nodoidal type if t < 0. Moreover,Mt is Alexandrov-
embedded if t > 0.

Following the proofs of [25, 26] gives an effective strategy to construct
the desired CMC surfaces Mt. This is done in Sections 3 and 4. However,
showing thatMt is Alexandrov-embedded requires a precise knowledge of its
ends. This is the purpose of our main theorem (Section 2, Theorem 3). We
consider a family of holomorphic perturbations of the data giving rise, via the
DPW method, to a half-Delaunay embedding f0 : D

∗ ⊂ C −→ H3 and show
that the perturbed induced surfaces ft(D

∗) are also embedded. Note that
the domain on which the perturbed immersions are defined does not depend
on the parameter t, which is stronger than ft having an embedded end, and
is critical for showing that the surfaces Mt are Alexandrov-embedded. The
essential hypothesis on the perturbations is that they induce a well-defined
immersion of the punctured disk. The proof relies on the Frobenius method
for linear differential systems with regular singular points. Although this
idea has been used in R3 by Kilian, Rossman, Schmitt [13] and [18], the
case of H3 generates in the differential system two extra resonance points
that are unavoidable and make their results inapplicable. Our solution is
to extend the Frobenius method to loop-group-valued differential systems.
Finally, let us note that there exists a DPW framework for minimal surfaces
in H3 in which this construction has been carried out [2] except for the proof
of embeddedness and another one for CMC H < 1 surfaces in H3 [3] in which
these techniques should also be efficient.
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Figure 1: Theorem 1 ensures the existence of n-noids with small necks. For
H > 1 small enough (H ≃ 1.5 on the picture), there exist coplanar embedded
heptanoids.

Acknowledgement. I would like to thank the referee for the careful read-
ing and suggestions.

1. Delaunay surfaces in H
3 via the DPW method

We recall the matrix model of H3 and the DPW expression of the Lawson
correspondence for CMC H > 1 surfaces in H3 [21]. We then study Delaunay
surfaces and parametrise them by their weight.

1.1. Hyperbolic space

We set the notations for a matrix model of H3 and give the formulas for
rigid motions, geodesics and parallel transportation in this model.

Matrix model. Let R1,3 denote the space R4 with the Lorentzian metric
⟨x, x⟩ = −x20 + x21 + x22 + x23. Hyperbolic space is the subset H3 of vectors
x ∈ R1,3 such that ⟨x, x⟩ = −1 and x0 > 0, with the metric induced by R1,3.
The DPW method constructs CMC immersions into a matrix model of H3.



✐

✐

“6-Raujouan” — 2023/12/25 — 11:36 — page 735 — #5
✐

✐

✐

✐

✐

✐

Constant mean curvature n-noids in hyperbolic space 735

Consider the identification

x = (x0, x1, x2, x3) ∈ R
1,3 ≃ X =

(

x0 + x3 x1 + ix2
x1 − ix2 x0 − x3

)

∈ H2

where H2 := {M ∈ M(2,C) |M∗ =M} denotes the Hermitian matrices.
In this model, ⟨X,X⟩ = − detX and H3 is identified with the set H++

2 ∩
SL(2,C) of Hermitian positive definite matrices with determinant 1. This
fact leads us to write

H
3 = {FF ∗ | F ∈ SL(2,C)} .

Setting

(3) σ1 =

(

0 1
1 0

)

, σ2 =

(

0 i
−i 0

)

, σ3 =

(

1 0
0 −1

)

,

gives us an orthonormal basis (σ1, σ2, σ3) of the tangent space TI2H
3 of H3 at

the identity matrix. We choose the orientation of H3 induced by this basis.

Rigid motions. In the matrix model of H3, SL(2,C) acts as rigid motions:
for all p ∈ H3 and A ∈ SL(2,C), this action is denoted by

A · p := ApA∗ ∈ H
3.

This action extends to tangent spaces: for all v ∈ TpH
3, A · v := AvA∗ ∈

TA·pH3. The DPW method takes advantage of this fact and contructs im-
mersions in H3 with the moving frame method.

Geodesics. Let p ∈ H3 and v ∈ UTpH
3. Define the map

(4)
geod(p, v) : R −→ H3

t 7−→ p cosh t+ v sinh t.

Then geod(p, v) is the unit speed geodesic through p in the direction v. The
action of SL(2,C) extends to oriented geodesics via:

A · geod(p, v) := geod(A · p,A · v).

Parallel transport. Let p, q ∈ H3 and v ∈ TpH
3. We denote the result of

parallel transporting v from p to q along the geodesic of H3 joining p to q
by Γq

pv ∈ TqH
3. The parallel transport of vectors from the identity matrix is

easy to compute with Proposition 1.
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Proposition 1. For all p ∈ H3 and v ∈ TI2H
3, there exists a unique S ∈

H++
2 ∩ SL(2,C) such that p = S · I2. Moreover, Γp

I2
v = S · v.

Proof. The point p is in H3 identified with H++
2 ∩ SL(2,C). Define S as

the unique square root of p in H++
2 ∩ SL(2,C). Then p = S · I2. Define for

t ∈ [0, 1]:

S(t) := exp (t logS) , γ(t) := S(t) · I2, v(t) := S(t) · v.

Then v(t) ∈ Tγ(t)H
3 because

⟨v(t), γ(t)⟩ = ⟨S(t) · I2, S(t) · v⟩ = ⟨I2, v⟩ = 0

and S · v = v(1) ∈ TpH
3.

Suppose that S is diagonal. Then

S(t) =

(

e
at

2 0

0 e
−at

2

)

(a ∈ R)

and using equations (3) and (4),

γ(t) =

(

eat 0
0 e−at

)

= geod(I2, σ3)(at)

is a geodesic curve. Write v = v1σ1 + v2σ2 + v3σ3 and compute S(t) · σi to
find

v(t) = v1σ1 + v2σ2 + v3
(

eat 0
0 −e−at

)

.

Compute in R1,3

Dv(t)

dt
=

(

dv(t)

dt

)T

= av3 (γ(t))T = 0

to see that v(t) is the parallel transport of v along the geodesic γ.
If S is not diagonal, write S = QDQ−1 whereQ ∈ SU(2) andD ∈ H++

2 ∩
SL(2,C) is diagonal. Then,

S · v = Q ·
(

D ·
(

Q−1 · v
))

= Q · ΓD·I2
I2

(Q−1 · v).

But for all A ∈ SL(2,C), p, q ∈ H3 and v ∈ TpH
3,

A · Γq
pv = ΓA·q

A·pA · v
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and thus

S · v = Γp
I2
v.

□

1.2. The DPW method for CMC H > 1 surfaces in H3

We present the loop groups we will need and endow them with a Banach
structure. We then recall the ingredients and steps of the DPW method
and recall the dressing and gauging action, leading us to the monodromy
problem that we will need to solve. We finally study the example of the
sphere.

Loop groups. In the DPW method a one-parameter family of surfaces is
constructed. The parameter is called “spectral parameter” and will always
be in one of the following subsets of C (ρ > 1):

S
1 = {λ ∈ C | |λ| = 1} , Aρ =

{

λ ∈ C | ρ−1 < |λ| < ρ
}

,

Dρ = {λ ∈ C | |λ| < ρ} .

Any smooth map f : S1 −→ M(2,C) can be decomposed into its Fourier
series

f(λ) =
∑

i∈Z
fiλ

i.

Let | · | denote a norm on M(2,C). Fix some ρ > 1 and consider

∥f∥ρ :=
∑

i∈Z
|fi|ρ|i|.

Let G be a Lie subgroup or subalgebra of M(2,C). We define

• ΛG as the set of smooth functions f : S1 −→ G.

• ΛGρ ⊂ ΛG as the set of functions f such that ∥f∥ρ is finite. If G is
a group (or an algebra) then (ΛGρ, ∥·∥ρ) is a Banach Lie group (or
algebra).

• ΛG≥0
ρ ⊂ ΛGρ as the set of functions f such that fi = 0 for all i < 0.

• Λ+Gρ ⊂ ΛG≥0
ρ as the set of functions such that f0 is upper-triangular.

• ΛR
+Gρ ⊂ Λ+Gρ as the set of functions that have positive elements on

the diagonal.
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Seeing C as an abelian subalgebra of M(2,C), the above notations are ex-
tended to ΛCρ and ΛC≥0

ρ . Note that every function of ΛGρ holomorphically
extends to Aρ and that every function of ΛG≥0

ρ holomorphically extends to
Dρ.

In the sequel we will use the Frobenius norm on M(2,C):

|A| :=





∑

i,j

|aij |2




1

2

.

Since this norm is sub-multiplicative, the norm ∥·∥ρ is sub-multiplicative.
Moreover, for all A ∈ ΛSL(2,C)ρ,

∥

∥A−1
∥

∥

ρ
= ∥A∥ρ

and for all A ∈ ΛM(2,C)ρ and λ ∈ Aρ,

|A(λ)| ≤ ∥A∥ρ .

The DPW method relies on the Iwasawa decomposition [17], which we
state in our context and with the above notations:

Proposition 2. The multiplication map ΛSU(2)ρ × ΛR
+SL(2,C)ρ 7−→

ΛSL(2,C)ρ is a smooth diffeomorphism between Banach manifolds. Its in-
verse map is called “Iwasawa decomposition” and is denoted by

Iwa(Φ) = (Uni(Φ),Pos(Φ))

for Φ ∈ ΛSL(2,C)ρ.

Remark 1. The decomposition of Proposition 2 covers a smaller set than
the r-Iwasawa decomposition used in [13, 21] because the loops we consider
holomorphically extend to a whole annulus. This allows us to use a stronger
strucure than the Ck-topologies on those loops. An elementary proof of Propo-
sition 2 (relying on [17]) can be found in [26].

The ingredients. Let H > 1, q = arcothH > 0 and ρ > eq. The DPW
uses the following input data:

• A Riemann surface Σ.
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• A holomorphic 1-form on Σ with values in Λsl(2,C)ρ of the following
form:

ξ =

(

α λ−1β
γ −α

)

where α, β, γ are holomorphic 1-forms on Σ with values in ΛC≥0
ρ . The

1-form ξ is called “the potential”.

• A base point z0 ∈ Σ.

• An initial condition ϕ ∈ ΛSL(2,C)ρ.

The recipe. The DPW method consists in the following steps:

1) Let rz0 be any point above z0 in the universal cover rΣ of Σ. Solve on
rΣ the following Cauchy problem:

(5)

{

dΦ = Φξ
Φ(rz0) = ϕ.

Then Φ : rΣ −→ ΛSL(2,C)ρ is called “the holomorphic frame”.

2) Compute pointwise on rΣ the Iwasawa decomposition of Φ:

(F (z), B(z)) := IwaΦ(z),

for z ∈ rΣ. The unitary part F of this decomposition is called “the
unitary frame”.

3) Define f : rΣ −→ H3 via the Sym-Bobenko formula:

f(z) = F (z, e−q)F (z, e−q)
∗
=: SymqF (z)

where F (z, λ0) := F (z)(λ0).

Then f is a CMC H > 1 (H = coth q) conformal immersion from rΣ to H3.
Its Gauss map (in the direction of the mean curvature vector) is given by

N(z) = F (z, e−q)σ3F (z, e
−q)

∗
=: NorqF (z)

where σ3 is defined in (3). The differential of f is given by

(6) df(z) = 2 sinh(q)b(z)2F (z, e−q)

(

0 β(z, 0)

β(z, 0) 0

)

F (z, e−q)∗
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where b(z) > 0 is the upper-left entry of B(z) |λ=0. The metric of f is given
by

ds2f (z) = 4 sinh(q)2b(z)4 |β(z, 0)|2

and its Hopf differential at z ∈ rΣ reads

(7) −2 sinh q β(z, 0)⊗ γ(z, 0).

Remark 2. The results of this paper hold for any H > 1. We thus fix now
H > 1 and q = arcothH. Hence,

e−q =

√

H − 1

H + 1
.

Rigid motions. Let C ∈ ΛSL(2,C)ρ and define the new holomorphic

frame rΦ = CΦ with unitary part rF and induced immersion rf = Symq
rF .

If C ∈ ΛSU(2)ρ, then rF = CF and rΦ gives rise to the same immersion as Φ
up to an isometry of H3:

rf(z) = C(e−q) · f(z).

If C /∈ ΛSU(2)ρ, this transformation is called a “dressing” and may change
the surface.

Gauging. Let G : rΣ −→ Λ+SL(2,C)ρ holomorphic and define the new po-
tential:

pξ = ξ ·G := G−1ξG+G−1dG.

The potential pξ is a DPW potential and this operation is called “gauging”.

The data (Σ, ξ, z0, ϕ) and
(

Σ, pξ, z0, ϕ G(z0)
)

give rise to the same immersion.

The monodromy problem. Since the immersion f is only defined on the
universal cover rΣ, one might ask for conditions ensuring that it descends to a

well-defined immersion on Σ. For any deck transformation τ ∈ Deck
(

rΣ/Σ
)

,

define the monodromy of Φ with respect to τ as:

Mτ (Φ) := Φ(τ(z))Φ(z)−1 ∈ ΛSL(2,C)ρ.

This map is independent of z ∈ rΣ since ξ is well-defined on Σ (see (5)). The
standard sufficient conditions for the immersion f to be well-defined on Σ
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is the following set of equations, called the monodromy problem in H3:

(8) ∀τ ∈ Deck
(

rΣ/Σ
)

,

{

Mτ (Φ) ∈ ΛSU(2)ρ,
Mτ (Φ)(e

−q) = ±I2.

Use the point rz0 defined in step 1 of the DPW method to identify the funda-
mental group π1(Σ, z0) with Deck(rΣ/Σ). Let {γi}i∈I be a set of generators
of π1 (Σ, z0). Then the problem (8) is equivalent to

(9) ∀i ∈ I,

{

Mγi
(Φ) ∈ ΛSU(2)ρ,

Mγi
(Φ)(e−q) = ±I2.

Example: the standard sphere. The DPW method can produce spher-
ical immersions of Σ = C ∪ {∞} with the potential

ξS(z, λ) =

(

0 λ−1dz
0 0

)

and initial condition ΦS(0, λ) = I2. The potential is not regular at z = ∞
because it has a double pole there. However, the immersion will be regular
at this point because ξS is gauge-equivalent to a regular potential at z = ∞.
Indeed, consider on C∗ the gauge

G(z, λ) =

(

z 0
−λ 1

z

)

.

The gauged potential is then

ξS ·G(z, λ) =
(

0 λ−1z−2dz
0 0

)

which is regular at z = ∞. The holomorphic frame is

(10) ΦS(z, λ) =

(

1 λ−1z
0 1

)

and its unitary factor is

FS(z, λ) =
1

√

1 + |z|2

(

1 λ−1z
−λz 1

)

.

The induced CMC-H immersion is

fS(z) =
1

1 + |z|2
(

1 + e2q|z|2 2z sinh q
2z sinh q 1 + e−2q|z|2

)

.
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It is not easy to see that fS(Σ) is a sphere because it is not centered at I2.
To solve this problem, notice that FS(z, e

−q) = R(q) rFS(z)R(q)
−1 where

(11) R(q) :=

(

e
q

2 0

0 e
−q

2

)

∈ SL(2,C)

and

rFS(z) :=
1

√

1 + |z|2

(

1 z
−z 1

)

∈ SU(2).

Apply an isometry by setting

rfS(z) := R(q)−1 · fS(z)

and compute

rfS(z) =
1

1 + |z|2
(

e−q + eq|z|2 2z sinh q
2z sinh q eq + e−q|z|2

)

= (cosh q)I2 +
sinh q

1 + |z|2
(

|z|2 − 1 2z
2z 1− |z|2

)

i.e.

(12) rfS(z) = geod(I2, vS(z))(q)

with geod defined in (4) and where in the basis (σ1, σ2, σ3) of TI2H
3,

(13) vS(z) :=
1

1 + |z|2
(

2Re z, 2 Im z, |z|2 − 1
)

describes a sphere of radius one in the tangent space of H3 at I2 (it is the
inverse stereographic projection from the north pole). Hence, rfS(Σ) is a
sphere centered at I2 of hyperbolic radius q and fS (Σ) is a sphere of same
radius centered at geod(I2, σ3)(q).

One can compute the normal map of fS :

NS(z) := NorqFS(z) = R(q) · rNS(z)

where

rNS(z) := Norq

(

rFS(z)
)

=
1

1 + |z|2
(

e−q − eq|z|2 −2z cosh q
−2z cosh q e−q|z|2 − eq

)

= −(sinh q)I2 − (cosh q)vS(z) = − ˙geod (I2, vS(z)) (q).
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Note that this implies that the normal map Norq is oriented by the mean
curvature vector.

1.3. Delaunay surfaces

Constant mean curvature H > 1 surfaces of revolution in H3 have been de-
scribed in the DPW framework in [21]. We recall here the basic facts needed
for our purpose and parametrise the data by the weight of the induced sur-
face.

The data. Let Σ = C∗, ξr,s(z, λ) = Ar,s(λ)z
−1dz where

(14) Ar,s(λ) :=

(

0 rλ−1 + s
rλ+ s 0

)

, r, s ∈ R, λ ∈ S
1,

and initial condition Φr,s(1) = I2. With these data, the holomorphic frame
reads

Φr,s(z) = zAr,s .

The unitary frame Fr,s can be expressed in terms of elliptic functions (see
[21]) and the DPW method states that the map fr,s = Symq(Fr,s) is a CMC

H immersion from the universal cover ĂC∗ of C∗ into H3.

Monodromy. Computing the monodromy along γ(θ) = eiθ for θ ∈ [0, 2π]
gives

M (Φr,s) := Mγ (Φr,s) = exp (2iπAr,s) .

Recall that r, s ∈ R to see that iAr,s ∈ Λsu(2)ρ, and thus M (Φr,s) ∈
ΛSU(2)ρ: the first equation of (9) is satisfied. To solve the second one, one
can determine r and s such that Ar,s(e

−q)2 = 1
4 I2, which will imply that

M (Φr,s) (e
−q) = −I2. This condition is equivalent to

(15) r2 + s2 + 2rs cosh q =
1

4
.

Seeing this equation as a polynomial in r and computing its discriminant
(1 + 4s2 sinh2 q > 0) ensures the existence of an infinite number of solutions:
given a pair (r, s) ∈ R2 solving (15), fr,s is a well-defined CMC immersion
from C∗ into H3 with mean curvature H = coth q.
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Surface of revolution. Let (r, s) ∈ R2 satisfying (15) and let θ ∈ R.
Then,

Φr,s

(

eiθz
)

= exp (iθAr,s) Φr,s(z).

Using iAr,s ∈ Λsu(2)ρ and diagonalising Ar,s(e
−q) gives

fr,s

(

eiθz
)

= exp
(

iθAr,s(e
−q)
)

· fr,s(z)
=
(

Hr,s exp (iθD)H−1
r,s

)

· fr,s(z)

where

Hr,s =
1√
2

(

1 −2 (req + s)
2 (re−q + s) 1

)

, D =

(

1
2 0
0 −1

2

)

.

Noting that exp (iθD) acts as a rotation of angle θ around the axis
geod(I2, σ3) and that Hr,s acts as an isometry of H3 independent of θ shows
that exp (iθAr,s(e

−q)) acts as a rotation around the axis Hr,s · geod(I2, σ3)
and that fr,s is CMC H > 1 immersion of revolution of C∗ into H3 and by
definition (as in [14]) a Delaunay immersion.

The weight as a parameter. For a fixed H > 1, CMC H Delaunay
surfaces in H3 form a family parametrised by the weight [21]. This weight
can be computed in the DPW framework: given a solution (r, s) of (15), the
weight w of the Delaunay surface induced by the DPW data (C∗, ξr,s, 1, I2)
reads

(16) w = 8πrs sinh q

(see [21] or [6] for details).

Lemma 1. Writing t := w
2π and assuming t ̸= 0, equations (15) and (16)

imply that

(17)







t ≤ T1,
r2 = 1

8

(

1− 2Ht± 2
√
T1 − t

√
T2 − t

)

,
s2 = 1

8

(

1− 2Ht± 2
√
T1 − t

√
T2 − t

)

with

T1 =
tanh q

2

2
<

1

2 tanh q
2

= T2.
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Proof. First, note that (15) and (16) imply

r2 + s2 =
1

4
(1− 2t coth q) =

1

4
(1− 2Ht)

and thus

(18) t ≤ H

2
< T2.

If r = 0, then t = 0. Thus r ̸= 0 and

s =
t

4r sinh q
.

Equation (15) is then equivalent to

r2 +
t2

16r2 sinh2 q
+
Ht

2
=

1

4
⇐⇒ r4 − 1− 2Ht

4
r2 +

t2

16 sinh2 q
= 0.

Using coth q = H, the discriminant of this quadratic polynomial in r2 is

∆(t) =
1

16

(

1− 4Ht+ 4t2
)

which in turn is a quadratic polynomial in t with discriminant

r∆ =
H2 − 1

16
> 0

because H > 1. Thus

∆(t) =
(T1 − t)(T2 − t)

4
because H = coth q. Using (18), ∆(t) ≥ 0 if and only if t ≤ T1 and

r2 =
1

8

(

1− 2Ht± 2
√

(T1 − t)(T2 − t)
)

.

By symmetry of equations (15) and (16), s2 is as in (17). □

We consider the two continuous parametrisations of r and s for t ∈
(−∞, T1) such that (r, s) satisfies equations (15) and (16) with w = 2πt:

(19)

{

r(t) := ±1
2
√
2

(

1− 2Ht+ 2
√
T1 − t

√
T2 − t

) 1

2 ,

s(t) := t
4r(t) sinh q

.

Choosing the parametrisation satisfying r > s maps the unit circle of C∗

onto a parallel circle of maximal radius, called a “bulge” of the Delaunay
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surface. As t tends to 0, the immersions tend towards a parametrisation of
a sphere on every compact subset of C∗, which is why we call this family
of immersions “the spherical family”. When r < s, the unit circle of C∗

is mapped onto a parallel circle of minimal radius, called a “neck” of the
Delaunay surface. As t tends to 0, the immersions degenerate into a point on
every compact subset of C∗. Nevertheless, we call this family the “catenoidal
family” because applying a blowup to the immersions makes them converge
towards a catenoidal immersion of R3 on every compact subset of C∗ (see
Section 4.1 for more details). In both cases, the weight of the induced surfaces
is given by w = 2πt.

2. Perturbed Delaunay immersions

In this section, we study the immersions induced by a perturbation of De-
launay DPW data with small non-vanishing weights in a neighbourhood
of z = 0. Our results are the same whether we choose the spherical or the
catenoidal family of immersions. We thus drop the index r, s in the Delaunay
DPW data and replace it by a small value of t = 4rs sinh q in a neighbour-
hood of t = 0 such that

t < Tmax :=
tanh q

2

2
=

1

2

(

H −
√

H2 − 1
)

.

For all ϵ > 0, we denote

Dϵ := {z ∈ C | |z| < ϵ} , D∗
ϵ := Dϵ\ {0} .

Definition 1 (Perturbed Delaunay potential). Let ρ > eq, 0 <
T < Tmax and ϵ > 0. A perturbed Delaunay potential is a continuous
one-parameter family (ξt)t∈(−T,T ) of DPW potentials defined for (t, z) ∈
(−T, T )×D∗

ϵ by

ξt(z) = Atz
−1dz + Ct(z)dz

where At ∈ Λsl(2,C)ρ is a Delaunay residue as in (14) satisfying (19) and
the map (t, z) 7−→ Ct(z) ∈ Λsl(2,C)ρ is C1 (and thus holomorphic with re-
spect to z for all t) and satisfies C0(z) = 0 for all z.

Theorem 3. Let ρ > eq, 0 < T < Tmax, ϵ > 0 and ξt be a perturbed Delau-
nay potential C2 with respect to (t, z). Let Φt be a holomorphic frame asso-
ciated to ξt for all t via the DPW method. Suppose that the family of initial
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conditions ϕt is C2 with respect to t, with ϕ0 = rzA0

0 , and that the monodromy
problem (9) is solved for all t ∈ (−T, T ). Let ft = Symq (UniΦt). Then,

1) For all δ > 0, there exist 0 < ϵ′ < ϵ, T ′ > 0 and C > 0 such that for
all z ∈ D∗

ϵ′ and t ∈ (−T ′, T ′)\{0},

dH3

(

ft(z), f
D
t (z)

)

≤ C|t||z|1−δ

where fDt is a Delaunay immersion of weight 2πt.

2) There exist T ′ > 0 and ϵ′ > 0 such that for all 0 < t < T ′, ft is an
embedding of D∗

ϵ′.

3) The limit axis as t tends to 0 of the Delaunay immersion fDt oriented
towards the end at z = 0 is given by:

1√
2

(

1 −eq
e−q 1

)

· geod (I2,−σ3) in the spherical family (r > s),

geod (I2,−σ1) in the catenoidal family (r < s).

Let ξt and Φt as in Theorem 3 with ρ, T and ϵ fixed. This Section is
dedicated to the proof of Theorem 3.

The topology used to define the above Ck regularities is the one induced
by the Banach structure of the domain and codomain of the given maps.
The C2-regularity of ξt essentially means that Ct(z) is C2 with respect to
(t, z). Together with the C2-regularity of ϕt, it implies that Φt is C2 with
respect to (t, z). Thus M(Φt) is also C2 with respect to t. These regularities
and the fact that there exists a solution Φt solving the monodromy problem
are used in Section 2.1 to deduce an essential piece of information about
the potential ξt (Proposition 4). This step then allows us to write in Section
2.2 the holomorphic frame Φt in a MzAP form given by the Frobenius
method (Proposition 5), and to gauge this expression, in order to gain an
order of convergence with respect to z (Proposition 6). During this process,
the holomorphic frame will loose one order of regularity with respect to t,
which is why Theorem 3 asks for a C2-regularity of the data. Section 2.3 is
devoted to the study of dressed Delaunay frames MzA in order to ensure
that the immersions ft will converge to Delaunay immersions as t tends to
0, and to estimate the growth of their unitary part around the end at z = 0.
Section 2.4 proves that these immersions do converge, which is the first point
of Theorem 3. Before proving the embeddedness in Section 2.6, Section 2.5
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is devoted to the convergence of the normal maps. Finally, we compute the
limit axes in Section 2.7.

Note that many estimates in this section resemble the ones given in [13]
for perturbed Delaunay ends in R3. However, as stated in Remark 3.8. of
[13], the techniques used in R3 do not extend directly to H3 due to the fact
that the Sym points e±q are no longer on the unit circle. Hence, one interest
of this section is to extend these estimates to a uniform annulus.

2.1. A property of the potentials

We begin by diagonalising At in a unitary basis (Proposition 3) in order to
simplify the computations in Proposition 4, in which we use the Frobenius
method for a fixed value of λ = e±q. This will ensure the existence of the C1

map P 1 ∈ ΛSL(2,C)ρ that will be used in Section 2.2 to define the factor P
in the MzAP form of Φt.

Proposition 3. There exist eq < R < ρ and 0 < T ′ < T such that for
all t ∈ (−T ′, T ′), At = HtDtH

−1
t with Ht ∈ ΛSU(2)R and iDt ∈ Λsu(2)R.

Moreover, Ht and Dt are smooth with respect to t.

Proof. For all λ ∈ S1,

− detAt(λ) =
1

4
+
tλ−1(λ− eq)(λ− e−q)

4 sinh q
(20)

=
1

4
+

t

4 sinh q

(

λ+ λ−1 − 2 cosh q
)

∈ R.

Extending this determinant as a holomorphic function on Aρ, there exists
T ′ > 0 such that

(21)

∣

∣

∣

∣

− detAt(λ)−
1

4

∣

∣

∣

∣

<
1

4
∀(t, λ) ∈ (−T ′, T ′)× Aρ

With this choice of T ′, the function µt : Aρ −→ C defined as the positive-
real-part square root of (− detAt) is holomorphic on Aρ and real-valued
on S1. Note that µt is also the positive-real-part eigenvalue of At and thus
At = HtDtH

−1
t with

(22) Ht(λ) =
1√
2

(

1 −(rλ−1+s)
µt(λ)

rλ+s
µt(λ)

1

)

, Dt(λ) =

(

µt(λ) 0
0 −µt(λ)

)

.
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Let eq < R < ρ. For all t ∈ (−T ′, T ′), µt ∈ ΛCR and the map t 7→ µt is
smooth on (−T ′, T ′). Moreover, Ht ∈ ΛSU(2)R, iDt ∈ Λsu(2)R and these
functions are smooth with respect to t. □

Remark 3. The bound t < T ′ ensures that that 4 detAt(λ) is an integer
only for t = 0 and λ = e±q. These points make the Frobenius system reso-
nant, but they are precisely the points that bear an extra piece of informa-
tion due to the hypotheses on M(Φt)(e

q) and Φ0. Allowing the parameter t
to leave the interval (−T ′, T ′) would bring other resonance points and make
Section 2.2 invalid. This is why Theorem 3 does not state that the end of
the immersion ft is a Delaunay end for all t.

Remark 4. At t = 0, the change of basis Ht in the diagonalisation of At

takes different values whether r > s (spherical family) or r < s (catenoidal
family). One has:

(23) H0(λ) =
1√
2

(

1 −λ−1

λ 1

)

in the spherical case,

(24) H0(λ) =
1√
2

(

1 −1
1 1

)

in the catenoidal case.

In both cases, µ0 =
1
2 , and thus D0 is the same.

A basis of ΛM(2,C)ρ. Let R and T ′ given by Proposition 3. Iden-
tify ΛM(2,C)ρ with the free ΛCρ-module M(2,ΛCρ) and define for all
t ∈ (−T ′, T ′) the basis

Bt = Ht (E1, E2, E3, E4)H
−1
t =: (Xt,1, Xt,2, Xt,3, Xt,4)

where

E1 =

(

1 0
0 0

)

, E2 =

(

0 1
0 0

)

, E3 =

(

0 0
1 0

)

, E4 =

(

0 0
0 1

)

.

For all t ∈ (−T ′, T ′), write

(25) Ct(0) =

(

tc1(t) λ−1tc2(t)
tc3(t) −tc1(t)

)

=

4
∑

j=1

tpcj(t)Xt,j .

The functions cj ,pcj are C1 with respect to t ∈ (−T ′, T ′) and take values in
ΛCR. Moreover, the functions ci(t) holomorphically extend to Dρ.
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Proposition 4. There exists a continuous function rc3 : (−T ′, T ′) −→ ΛCR

such that for all λ ∈ S1 and t ∈ (−T ′, T ′),

pc3(t) = t(λ− eq)(λ− e−q)rc3(t).

Proof. It suffices to show that pc3(0) = 0 and that the holomorphic extension
of pc3(t) satisfies pc3(t, e

±q) = 0 for all t.
To show that pc3(0) = 0, recall that the monodromy problem (9) is solved

for all t and note that M(Φ0) = −I2, which implies that, as a function of
t, the derivative of M(Φt) at t = 0 is in Λsu(2)ρ. On the other hand, using
the proof of Theorem 5.1.2. in [11] (or Proposition 8 in [25]),

dM(Φt)

dt
|t=0=

(∫

γ

Φ0
dξt
dt

|t=0 Φ
−1
0

)

M(Φ0)

where γ is a generator of π1(D
∗
ϵ , z0). Expanding the right-hand side gives

−
∫

γ

zA0
dAt

dt
|t=0 z

−A0z−1dz −
∫

γ

zA0
dCt(z)

dt
|t=0 z

−A0dz ∈ Λsu(2)ρ.

Using [11] once again, note that the first term is the derivative of M(zAt)
at t = 0, which is in Λsu(2)ρ because M(zAt) ∈ ΛSU(2)ρ and M(zA0) =
−I2. Therefore, the second term is also in Λsu(2)ρ. Diagonalising A0 with
Proposition 3 and using H0 ∈ ΛSU(2)R gives

2iπRes
z=0

(

zD0H−1
0

d

dt
Ct(z) |t=0 H0z

−D0

)

∈ Λsu(2)R.

But using Equation (25),

zD0H−1
0

d

dt
Ct(z) |t=0 H0z

−D0 = zD0H−1
0





4
∑

j=1

pcj(0)X0,j



H0z
−D0

=

4
∑

j=1

pcj(0)z
D0Ejz

−D0

=

(

pc1(0) zpc2(0)
z−1pc3(0) pc4(0)

)

.

Thus

2iπ

(

0 0
pc3(0) 0

)

∈ Λsu(2)R

which gives pc3(0) = 0.
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Let λ0 ∈ {eq, e−q} and t ̸= 0. Using the Frobenius method (Theorem 4.11
of [23] and Lemma 11.4 of [22]) at the resonant point λ0 ensures the existence
of ϵ′ > 0, B,M ∈ M(2,C) and a holomorphic map P : Dϵ′ −→ M(2,C) such
that for all z ∈ D∗

ϵ′ ,















Φt(z, λ0) =MzBzAt(λ0)P (z),
B2 = 0,
P (0) = I2,
[At(λ0), dzP (0)] + dzP (0) = Ct(0, λ0)−B.

Compute the monodromy of Φt at λ = λ0:

M(Φt)(λ0) =M exp(2iπB)zB exp(2iπAt(λ0))z
−BM−1

= −M exp(2iπB)M−1.

Since the monodromy problem (9) is solved, this quantity equals −I2. Use
B2 = 0 to show that B = 0 and thus







Φt(z, λ0) =MzAt(λ0)P (z),
P (0) = I2,
[At(λ0), dzP (0)] + dzP (0) = Ct(0, λ0).

Diagonalise At(λ0) with Proposition 3 and write dzP (0) =
∑

pjXt,j to get
for all 1 ≤ j ≤ 4

pj ([Dt(λ0), Ej ] + Ej) = tpcj(t, λ0)Ej .

In particular, using µt(λ0) = 1/2,

tpc3(t, λ0) = p3 ([Dt(λ0), E3] + E3) = 0.

□

Note that with the help of equations (25) and (23) or (24), and one can
compute the series expansion of pc3(0):

pc3(0) =
−λ−1

2
c2(0, 0) +O(λ0) if r < s,

pc3(0) =
1

2
c3(0, 0) +O(λ) if r > s.
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Hence,

(26) sc2(t, 0) + rc3(t, 0) −→
t→0

0.

The following map will be useful in the next section:

t ∈ (−T ′, T ′) 7−→ P 1(t) := tpc1(t)Xt,1 +
tpc2(t)

1 + 2µt
Xt,2(27)

+
tpc3(t)

1− 2µt
Xt,3 + tpc4(t)Xt,4.

For all t, Proposition 4 ensures that the map P 1(t, λ) holomorphically ex-
tends to AR. Taking a smaller value of R if necessary, P 1(t) ∈ ΛM(2,C)R
for all t. Moreover,

trP 1(t) = tpc1(t) + tpc4(t) = trCt(0) = 0.

Thus P 1 ∈ C1((−T ′, T ′),Λsl(2,C)R).

2.2. The zAP form of Φt

The map P 1 defined above allows us to use the Frobenius method in a loop
group framework and in the non-resonant case, that is, for all t (Proposi-
tion 5). The techniques used in [18] will then apply in order to gauge the
MzAP form and gain an order on z (Proposition 6).

Proposition 5. There exists ϵ′ > 0 such that for all t ∈ (−T ′, T ′) there
existMt ∈ ΛSL(2,C)R and a holomorphic map Pt : Dϵ′ −→ ΛSL(2,C)R such
that for all z ∈ D∗

ϵ′,

Φt(z) =Mtz
AtPt(z).

Moreover, Mt is C1 with respect to t, M0 = I2, Pt(z) is C1 with respect to
(t, z) (and hence holomorphic in z for all t), P0(z) = I2 for all z and Pt(0) =
I2 for all t.

Proof. For all k ∈ N∗ and t ∈ (−T ′, T ′), define the linear map

Lt,k : ΛM(2,C)ρ −→ ΛM(2,C)ρ
X 7−→ [At, X] + kX.
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Use the bases Bt and restrict Lt,k to ΛM(2,C)R to get

MatBt
Lt,k =









k 0 0 0
0 k + 2µt 0 0
0 0 k − 2µt 0
0 0 0 k









.

Note that

detLt,k = k2(k2 − 4µ2t ).

Equation (21) implies that |µt|2 < 1 and thus, for all k ≥ 2, detLt,k is an
invertible element of ΛCR which implies that Lt,k is invertible for all t ∈
(−T ′, T ′) and k ≥ 2.

Write

Ct(z) =
∑

k∈N
Ct,kz

k.

With P 0 := I2 and P 1 as in Equation (27), define for all k ≥ 1:

P k+1(t) := L−1
t,k+1





∑

i+j=k

P i(t)Ct,j



 .

so that the sequence (P k)k∈N ⊂ C1 ((−T ′, T ′),Λsl(2,C)ρ) satisfies the follow-
ing recursive system for all t ∈ (−T ′, T ′):

{

P 0(t) = I2,
Lt,k+1(P

k+1(t)) =
∑

i+j=k P
i(t)Ct,j .

With Pt(z) :=
∑

P k(t)zk, the Frobenius method ensures convergence for all
t (see [23]). Restricting to a compact interval in (−T ′, T ′) if necessary, there
exists ϵ′ > 0 such that for all z ∈ D∗

ϵ′ and t ∈ (−T ′, T ′),

Φt(z, λ) =Mtz
AtPt(z)

where Mt ∈ ΛSL(2,C)R is C1 with respect to t, Pt(z) is C1 with respect to
t and z, and for all t, Pt : Dϵ′ −→ ΛSL(2,C)R is holomorphic and satisfies
Pt(0) = I2. Moreover, the map P 1 defined in (27) vanishes at t = 0 and thus
P0(z) = I2 for all z ∈ Dϵ′ , which implies that M0 = I2. □

Proposition 6. There exists ϵ′ > 0 such that for all t ∈ (−T ′, T ′) there
exist an admissible gauge Gt : Dϵ −→ Λ+SL(2,C)R, a change of coordi-

nates ht : Dϵ′ −→ Dϵ, a holomorphic map rPt : Dϵ′ −→ ΛSL(2,C)R and ĂMt ∈
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ΛSL(2,C)R such that for all z ∈ D∗
ϵ′,

h∗t (ΦtGt) (z) = ĂMtz
At rPt(z).

Moreover, ĂMt is C1 with respect to t, ĂM0 = I2 and there exists a uniform
C > 0 such that for all t and z,

∥

∥

∥

rPt(z)− I2

∥

∥

∥

ρ
≤ C|t||z|2.

Proof. The proof goes as in Section 3.3 of [18]. Expand P 1(t) given by Equa-
tion (27) as a series to get (this is a tedious but simple computation):

P 1(t, λ) =

(

0 stc2(t,0)+rtc3(t,0)
2s λ−1

stc2(t,0)+rtc3(t,0)
2r 0

)

+

(

O(λ0) O(λ0)
O(λ) O(λ0)

)

.

Define

pt := 2 sinh q(sc2(t, 0) + rc3(t, 0))

so that

gt := ptAt − P 1(t) ∈ Λ+sl(2,C)R

and recall Equation (26) together with P0 = I2 to show that g0 = 0. Thus

Gt := exp (gtz) ∈ Λ+SL(2,C)R

is an admissible gauge. Let ϵ′ < |pt|−1 for all t ∈ (−T ′, T ′). Define

ht : Dϵ′ −→ Dϵ

z 7−→ z
1+ptz

.

Then,

rξt := h∗t (ξt ·Gt) = Atz
−1dz + rCt(z)dz

is a perturbed Delaunay potential as in Definition 1 such that rCt(0) = 0 for
all t ∈ (−T ′, T ′). The holomorphic frame

rΦt := h∗t (ΦtGt)

satisfies drΦt = rΦt
rξt. With rCt(0) = 0, one can apply the Frobenius method

on rξt to get

rΦt(z) = ĂMtz
At rPt(z)
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with ĂM0 = I2 and
∥

∥

∥

rPt(z)− I2

∥

∥

∥

R
≤ C|t||z|2.

□

Conclusion. The new frame rΦt is associated to a perturbed Delaunay
potential (rξt)t∈(−T ′,T ′), defined for z ∈ D∗

ϵ′ , with values in Λsl(2,C)R and of
the form

rξt(z) = Atz
−1dz + pCt(z)zdz.

Note that rCt(z) ∈ Λsl(2,C)R is now C1 with respect to (t, z). The mon-
odromy problem (9) is solved for rΦt and for any rz0 in the universal
cover rD∗

ϵ′ ,
rΦ0(rz0) = rzA0

0 . Moreover, writing rft := Symq(Uni rΦt) and ft :=

Symq(UniΦt), then rft = h∗t ft with h0(z) = z. Hence in order to prove The-
orem 3 it suffices to prove the following proposition.

Proposition 7. Let ρ > eq, 0 < T < Tmax, ϵ > 0 and ξt be a perturbed De-
launay potential as in Definition 1. Let Φt be a holomorphic frame associated
to ξt for all t via the DPW method. Suppose that the monodromy problem
(9) is solved for all t ∈ (−T, T ) and that

Φt(z) =Mtz
AtPt(z)

where Mt ∈ ΛSL(2,C)ρ is C1 with respect to t, satisfies M0 = I2, and Pt :
Dϵ −→ ΛSL(2,C)ρ is a holomorphic map such that for all t and z,

∥Pt(z)− I2∥ρ ≤ C|t||z|2

where C > 0 is a uniform constant. Let ft = Symq (UniΦt). Then the three
points of Theorem 3 hold for ft.

We now reset the values of ρ, T and ϵ and suppose that we are given a
perturbed Delaunay frame ξt and a holomorphic frame Φt associated to it
and satisfying the hypotheses of Proposition 7.

2.3. Dressed Delaunay frames

In this section we study dressed Delaunay frames arising from the DPW
data (rC∗, ξDt , 1,Mt), where rC∗ is the universal cover of C∗ and

ξDt (z) := Atz
−1dz
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with At as in (14) satisfying (19), and Mt as in Proposition 6. The induced
holomorphic frame is

ΦD
t (z) =Mtz

At .

Note that the fact that the monodromy problem (9) is solved for Φt implies
that it is solved for ΦD

t because Pt is holomorphic on Dϵ. Let rD∗
1 be the

universal cover of D∗
1 and let

FD
t := UniΦD

t , BD
t := PosΦD

t , fDt := SymqF
D
t .

In this section, our goal is to prove the following proposition.

Proposition 8. The immersion fDt is a CMC H Delaunay immersion of
weight 2πt for |t| small enough. Moreover, for all δ > 0 and eq < R < ρ there
exists C, T ′ > 0 such that

∥

∥FD
t (z)

∥

∥

R
≤ C|z|−δ.

for all (t, z) ∈ (−T ′, T ′)× rD∗
1.

Delaunay immersion. We will need the following lemma, inspired by
[20].

Lemma 2. Let M ∈ SL(2,C) and A ∈ su(2) such that

(28) M exp(A)M−1 ∈ SU(2).

Then there exist U ∈ SU(2) and K ∈ SL(2,C) such that M = UK and
[K,A] = 0.

Proof. The matrix M∗M is Hermitian and positive-definite. Thus, there
exists Q ∈ SU(2) and D diagonal such that M∗M = QD2Q−1 with

D =

(

x 0
0 x−1

)

, x > 0.

Equation (28) together with A ∈ su(2) imply [M∗M,A] = 0, and hence
[D2, Q−1AQ] = 0. But Q−1AQ ∈ su(2), therefore D = I2 or Q

−1AQ is diag-
onal. In any case, [D,Q−1AQ] = 0. Defining K as the square root of M∗M ,
this implies [K,A] = 0. Setting U =MK−1 and checking that U∗U = I2
ends the proof. □
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Corollary 1. There exists T ′ > 0 such that for all t ∈ (−T ′, T ′),

Φt(z) = Utz
AtKt

where Ut ∈ ΛSU(2)R and Kt ∈ ΛSL(2,C)R for any eq < R < ρ.

Proof. Write M
(

ΦD
t

)

=Mt exp (At)M
−1
t with At := 2iπAt ∈ Λsu(2)ρ con-

tinuous on (−T, T ). The map

M 7−→
√
M∗M = exp

(

1

2
logM∗M

)

is a diffeomorphism from a neighbourhood of I2 ∈ ΛSL(2,C)ρ to another
neighbourhood of I2. Using the convergence of Mt towards I2 as t tends
to 0, this allows us to use Lemma 2 pointwise on Aρ and thus construct
Kt :=

√

M∗
t Mt ∈ ΛSL(2,C)R for all t ∈ (−T ′, T ′) and any eq < R < ρ. Let

Ut :=MtK
−1
t ∈ ΛSL(2,C)R and compute UtU

∗
t to show that Ut ∈ ΛSU(2)R.

Use Lemma 2 to show that [Kt(λ),At(λ)] = 0 for all λ ∈ S1. Hence [Kt,At] =
0 and thus ΦD

t = Utz
AtKt. □

Returning to the proof of Proposition 8, let θ ∈ R, z ∈ C∗ and eq < R <
ρ. Apply Corollary 1 to get

ΦD
t (e

iθz) = Ut exp(iθAt)U
−1
t ΦD

t (z)

and note that Ut ∈ ΛSU(2)R, iAt ∈ Λsu(2)R imply

(29) Rt(θ) := Ut exp(iθAt)U
−1
t ∈ ΛSU(2)R.

Hence

FD
t (eiθz) = Rt(θ)F

D
t (z)

and

fDt (eiθz) = Rt(θ, e
−q) · fDt (z).

Use Section 1.3 and note that Ut does not depend on θ to see that fDt is a
CMC immersion of revolution and hence a Delaunay immersion. Its weight
can be read from its Hopf diffferential, which in turn can be read from the
potential ξDt (see Equation (7)). Thus fDt is a CMC H Delaunay immersion
of weight 2πt, which proves the first part of Proposition 8.
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Restricting to a meridian. Note that for all t ∈ (−T ′, T ′) and z ∈ C∗,

∥

∥FD
t (z)

∥

∥

R
≤ C

∥

∥FD
t (|z|)

∥

∥

R

where

C = sup
{

∥Rt(θ)∥R | (t, θ) ∈ (−T ′, T ′)× [0, 2π]
}

depends only on R. We thus restrict FD
t to R∗

+ with pFD
t (x) := FD

t (|z|) (x =
|z|).

Grönwall over a period. Recalling the Lax Pair associated to FD
t (see

Appendix C in [18]), the restricted map pFD
t satisfies d pFD

t = pFD
t

xWtdx with

xWt(x, λ) =
1

x

(

0 λ−1rb2(x)− sb−2(x)
sb−2(x)− λrb2(x) 0

)

where b(x) is the upper-left entry of BD
t (x) |λ=0. Recall Section 1.2 and

define

gt(x) = 2 sinh q|r|b(x)2x−1

so that the metric of fDt reads gt(x)
2|dz|2. Let rfDt := exp∗ fDt . Then the

metric of rfDt satisfies

drs2 = 4r2(sinh q)2b4(eu)(du2 + dθ2)

at the point u+ iθ = log z. Using Proposition 13 of Section A gives

∫ St

0
2|r|b2(eu)du = π and

∫ St

0

du

2 sinh q|r|b2(eu) =
π

|t|

where St > 0 is the period of the profile curve of rft. Thus

∫ eSt

1
|rb2(x)x−1|dx =

π

2
=

∫ eSt

1
|sb−2(x)x−1|dx.

Using
∥

∥

∥

xWt(x)
∥

∥

∥

R
=

√
2
∣

∣sb−2(x)x−1
∣

∣+ 2R
∣

∣rb2(x)x−1
∣

∣ ,

we deduce

(30)

∫ eSt

1

∥

∥

∥

xWt(x)
∥

∥

∥

R
dx =

π

2
(2R+

√
2) < C
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where C > 0 is a constant depending only on ρ and T . Applying Grönwall’s
lemma to the inequality

∥

∥

∥

pFD
t (x)

∥

∥

∥

R
≤
∥

∥

∥

pFD
t (1)

∥

∥

∥

R
+

∫ x

1

∥

∥

∥

pFD
t (u)

∥

∥

∥

R

∥

∥

∥

xWt(u)
∥

∥

∥

R
|du|

gives
∥

∥

∥

pFD
t (x)

∥

∥

∥

R
≤
∥

∥

∥

pFD
t (1)

∥

∥

∥

R
exp

(∫ x

1

∥

∥

∥

xWt(u)
∥

∥

∥

R
|du|

)

.

Use Equation (30) together with the fact that rFD
0 (0) = FD

0 (1) = I2 and the
continuity of Iwasawa decomposition to get C, T > 0 such that for all t ∈
(−T ′, T ′) and x ∈ [1, eSt ]

(31)
∥

∥

∥

pFD
t (x)

∥

∥

∥

R
≤ C.

Control over the periodicity matrix. Let t ∈ (−T ′, T ′) and Γt :=
pFD
t (xeSt) pFD

t (x)−1 ∈ ΛSU(2)R for all x > 0. The periodicity matrix Γt does

not depend on x because xWt(xe
St) = xWt(x) (by periodicity of the metric in

the log coordinate). Moreover,

∥Γt∥R =
∥

∥

∥

pFD
t (eSt) pFD

t (1)−1
∥

∥

∥

R
≤
∥

∥

∥

pFD
t (eSt)

∥

∥

∥

R

∥

∥

∥

pFD
t (1)

∥

∥

∥

R
,

and using Equation (31),

(32) ∥Γt∥R ≤ C.

Conclusion. Let x < 1. Then there exist k ∈ N∗ and ζ ∈
[

1, eSt
)

such that
x = ζe−kSt . Thus using equations (31) and (32),

∥

∥

∥

pFD
t (x)

∥

∥

∥

R
≤
∥

∥

∥
Γ−k
t

∥

∥

∥

R

∥

∥

∥

pFD
t (ζ)

∥

∥

∥

R
≤ Ck+1.

Writing

k =
log ζ

St
− log x

St
,

one gets

Ck = exp

(

log ζ

St
logC

)

exp

(− logC

St
log x

)

≤ Cx−δt

where δt =
logC
St

does not depend on x and tends to 0 as t tends to 0 (because

St −→
t→0

+∞). Returning back to FD
t , we showed that for all δ > 0 there exist
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T ′ > 0 and C > 0 such that for all t ∈ (−T ′, T ′) and 0 < |z| < 1,

∥

∥FD
t (z)

∥

∥

R
≤ C|z|−δ

and Proposition 8 is proved.

2.4. Convergence of the immersions

In this section, we prove the first part of Theorem 3: the convergence of the
immersions ft towards the immersions fDt . Our proof relies on the Iwasawa
decomposition being a diffeomorphism in a neighbourhood of I2.

Behaviour of the Delaunay positive part. Let z ∈ rD∗
1. The Delaunay

positive part satisfies

∥

∥BD
t (z)

∥

∥

ρ
=
∥

∥FD
t (z)−1Mtz

At
∥

∥

ρ
≤
∥

∥FD
t (z)

∥

∥

ρ
∥Mt∥ρ

∥

∥zAt
∥

∥

ρ
.

Diagonalise At = HtDtH
−1
t as in Proposition 3. By continuity of Ht and

Mt, and according to Proposition 8, there exists C, T ′ > 0 such that for all
t ∈ (−T ′, T ′)

∥

∥BD
t (z)

∥

∥

R
≤ C|z|−δ

∥

∥z−µt
∥

∥

R
.

Recall Equation (20) and extend µ2t = − detAt to A rR
with ρ > rR > R. One

can thus assume that for t ∈ (−T ′, T ′) and λ ∈ A rR
,

|µt(λ)| <
1

2
+ δ,

which implies that
∣

∣

∣
z−µt(λ)

∣

∣

∣
≤ |z|−1

2
−δ.

This gives us the following estimate in the ΛCR norm (using Cauchy formula
and rR > R):

∥

∥z−µt
∥

∥

R
≤ C|z|−1

2
−δ

and

(33)
∥

∥BD
t (z)

∥

∥

R
≤ C|z|−1

2
−2δ.
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Behaviour of a holomorphic frame. Let

rΦt := BD
t

(

ΦD
t

)−1
Φt

(

BD
t

)−1
.

Recall Proposition 6 and use Equation (33) to get for all t ∈ (−T ′, T ′) and
z ∈ D∗

ϵ :

∥

∥

∥

rΦt(z)− I2

∥

∥

∥

R
=
∥

∥BD
t (z) (Pt(z)− I2)B

D
t (z)−1

∥

∥

R
≤ C|t||z|1−4δ.

Behaviour of the perturbed immersion. Note that

rΦt = BD
t

(

ΦD
t

)−1
Φt

(

BD
t

)−1

=
(

FD
t

)−1
Ft ×Bt

(

BD
t

)−1

and recall that the Iwasawa decomposition is differentiable at the identity
to get

∥

∥FD
t (z)−1Ft(z)− I2

∥

∥

R
=
∥

∥

∥
Uni rΦt(z)−Uni I2

∥

∥

∥

R
≤ C|t||z|1−4δ.

The map

rFt(z) := FD
t (z, e−q)−1Ft(z, e

−q) ∈ SL(2,C)

satisfies

(34)
∣

∣

∣

rFt(z)− I2

∣

∣

∣
≤
∥

∥FD
t (z)−1Ft(z)− I2

∥

∥

R
≤ C|t||z|1−4δ.

Lemma 3. There exists a neighbourhood V ⊂ SL(2,C) of I2 and C > 0
such that for all A ∈ SL(2,C),

A ∈ V =⇒ |tr (AA∗)− 2| ≤ C |A− I2|2 .

Proof. Consider exp : U ⊂ sl(2,C) −→ V ⊂ SL(2,C) as a local chart of
SL(2,C) around I2. Let A ∈ V . Write

f : SL(2,C) −→ R

X 7−→ tr (XX∗)

and a = logA ∈ U to get

|f(A)− f(I2)| ≤ df(I2) · a+ C|a|2.



✐

✐

“6-Raujouan” — 2023/12/25 — 11:36 — page 762 — #32
✐

✐

✐

✐

✐

✐

762 Thomas Raujouan

Notice that for all a ∈ sl(2,C),

df(I2) · a = tr(a+ a∗) = 0

to end the proof. □

Corollary 2. There exists a neighbourhood V ⊂ SL(2,C) of I2 and C > 0
such that for all F1, F2 ∈ SL(2,C),

F−1
2 F1 ∈ V =⇒ dH3 (f1, f2) < C

∣

∣F−1
2 F1 − I2

∣

∣ ,

where fi = Fi · I2 ∈ H3.

Proof. Just note that

dH3 (f1, f2) = cosh−1 (−⟨f1, f2⟩) = cosh−1

(

1

2
tr(f−1

2 f1)

)

and that

tr
(

f−1
2 f1

)

= tr
(

(F2F2
∗)−1 F1F1

∗
)

= tr rF rF ∗

where rF = F−1
2 F1. Apply Lemma 3 and use cosh−1(1 + x) ∼

√
2x as x→ 0

to end the proof. □

Without loss of generality, we can suppose from (34) that C|t||z|1−4δ is
small enough for rFt(z) to be in V for all t and z. Apply Corollary 2 to end
the proof of the first point in Theorem 3:

dH3

(

ft(z), f
D
t (z)

)

≤ C|t||z|1−4δ.

2.5. Convergence of the normal maps

Before starting the proof of the second part of Theorem 3, we will need to
compare the normal maps of our immersions. Let Nt := NorqFt and N

D
t :=

NorqF
D
t be the normal maps associated to the immersions ft and f

D
t . This

section is devoted to the proof of the following proposition.

Proposition 9. For all δ > 0 there exist ϵ′, T ′, C > 0 such that for all t ∈
(−T ′, T ′) and z ∈ D∗

ϵ ,

∥

∥

∥
Γ
fD

t (z)
ft(z)

Nt(z)−ND
t (z)

∥

∥

∥

TH3

≤ C|t||z|1−δ.
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The following lemma measures the deviation from Euclidean geometry
in the parallel transportation of unitary vectors.

Lemma 4. Let a, b, c ∈ H3, va ∈ TaH
3 and vb ∈ TbH

3 both unitary. Let A
be the hyperbolic area of the triangle (a, b, c). Then

∥

∥

∥
Γb
ava − vb

∥

∥

∥

TbH
3

≤ A+ ∥Γc
ava − Γc

bvb∥TcH
3 .

Proof. Just use the triangular inequality and Gauss-Bonnet formula in H2

to write:
∥

∥

∥
Γb
ava − vb

∥

∥

∥

TbH
3

=
∥

∥

∥
Γa
cΓ

c
bΓ

b
ava − Γa

cΓ
c
bvb

∥

∥

∥

TaH
3

≤
∥

∥

∥
Γa
cΓ

c
bΓ

b
ava − va

∥

∥

∥

TaH
3

+ ∥va − Γa
cΓ

c
bvb∥TaH

3

≤ A+ ∥Γc
ava − Γc

bvb∥TcH
3 .

□

Lemma 5 below clarifies how the unitary frame encodes the immersion
and the normal map.

Lemma 5. Let f = SymqF and N = NorqF . Denoting by (S(z), Q(z)) ∈
H++

2 ∩ SL(2,C)× SU(2) the polar decomposition of F (z, e−q), then

f = S2 and N = Γf
I2
(Q · σ3).

Proof. The formula for f is straightforward after noticing that QQ∗ = I2 and
S∗ = S. The formula for N is a direct consequence of Proposition 1. □

Proof of Proposition 9. Let δ > 0, t ∈ (−T ′, T ′) and z ∈ D∗
ϵ′ . Using

Lemma 4,
∥

∥

∥
Γ
fD

t (z)
ft(z)

Nt(z)−ND
t (z)

∥

∥

∥
≤ A+

∥

∥

∥
ΓI2
ft(z)

Nt(z)− ΓI2
fD

t (z)
ND

t (z)
∥

∥

∥

where A is the hyperbolic area of the triangle
(

I2, ft(z), f
D
t (z)

)

. Using
Heron’s formula in H2 (see [1], p.66), Proposition 8 and the first part of
Theorem 3,

A ≤ dH3

(

ft(z), f
D
t (z)

)

× dH3

(

I2, f
D
t (z)

)

≤ C|t||z|1−δ.

Moreover, denoting by Qt and Q
D
t the unitary parts of Ft(e

q) and FD
t (eq)

in their polar decomposition and using Lemma 5 together with Corollary 3
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and Equation (34),

∥

∥

∥
ΓI2
ft(z)

Nt(z)− ΓI2
fD

t (z)
ND

t (z)
∥

∥

∥
=
∥

∥Qt(z) · σ3 −QD
t (z) · σ3

∥

∥

TI2
H3

≤ C
∥

∥FD
t (z)

∥

∥

2

R

∥

∥FD
t (z)−1FD

t (z)− I2
∥

∥

R

≤ C|t||z|1−3δ.

2.6. Embeddedness

In this section, we prove the second part of Theorem 3. We thus assume
that t > 0. We suppose that C, ϵ, T, δ > 0 satisfy Proposition 9 and the first
part of Theorem 3.

Lemma 6. Let rt > 0 such that the tubular neighbourhood of fDt (C∗) with
hyperbolic radius rt is embedded. There exists T > 0 and 0 < ϵ′ < ϵ such that
for all 0 < t < T , x ∈ ∂Dϵ and y ∈ D∗

ϵ′,

dH3

(

fDt (x), fDt (y)
)

> 4rt.

Proof. The convergence of fDt (C∗) towards a chain of spheres implies that
rt tends to 0 as t tends to 0. If fDt does not degenerate into a point, then
it converges towards the parametrisation of a sphere, and for all 0 < ϵ′ <
ϵ there exists T > 0 satisfying the inequality. If fDt does degenerate into
a point, then a suitable blow-up makes it converge towards a catenoidal
immersion on the punctured disk D∗

ϵ (see Section 4.1). This implies that for
ϵ′ > 0 small enough, there exists T > 0 satisfying the inequality. □

We can now prove embeddedness with the same method than [18]. Let
Dt := fDt (C∗) ⊂ H3 be the image Delaunay surface of fDt . We denote by
ηDt : Dt −→ TH3 the Gauss map of Dt. We also write Mt = ft(D

∗
ϵ ) and

ηt : Mt −→ TH3. Let rt be the maximal value of α such that the following
map is a diffeomorphism:

T : (−α, α)×Dt −→ TubαDt ⊂ H3

(s, p) 7−→ geod
(

p, ηDt (p)
)

(s).

According to Lemma 11, the maximal tubular radius satisfies rt ∼ t as t
tends to 0. Using the first part of Theorem 3, we thus assume that on D∗

ϵ ,

dH3

(

ft(z), f
D
t (z)

)

≤ αrt

where α < 1 is given by Lemma 12 of Section A.



✐

✐

“6-Raujouan” — 2023/12/25 — 11:36 — page 765 — #35
✐

✐

✐

✐

✐

✐

Constant mean curvature n-noids in hyperbolic space 765

Let πt be the projection from Tubrt Dt to Dt. Then the map

φt : D∗
ϵ −→ Dt

z 7−→ πt ◦ ft(z)

is well-defined and satisfies

(35) dH3

(

φt(z), f
D
t (z)

)

≤ 2αrt

because of the triangular inequality.

Lemma 7. For t > 0 small enough, φt is a local diffeomorphism on D∗
ϵ .

Proof. It suffices to show that for all z ∈ D∗
ϵ ,

(36)
∥

∥

∥
Γ
ft(z)
φt(z)

ηDt (φt(z))−Nt(z)
∥

∥

∥
< 1.

Using Lemma 4 (we drop the variable z to ease the notation),

∥

∥

∥
Γft
φt
ηDt (φt)−Nt

∥

∥

∥
≤ A+

∥

∥

∥
ΓfD

t
φt
ηDt (φt)− Γ

fD

t

ft
Nt

∥

∥

∥

where A is the area of the triangle
(

ft, f
D
t , φt

)

. Recall the isoperimetric
inequality in H2 (see [24]):

P2 ≥ 4πA+A2

from which we deduce

A ≤ P2 ≤
(

2dH3

(

ft, f
D
t

)

+ 2dH3

(

φt, f
D
t

))2 ≤ (6αrt)
2

which uniformly tends to 0 as t tends to 0. Using the triangular inequality
and Proposition 9,

∥

∥

∥
ΓfD

t
φt
ηDt (φt)− Γ

fD

t

ft
Nt

∥

∥

∥
≤
∥

∥

∥
ΓfD

t
φt
ηDt (φt)−ND

t

∥

∥

∥
+ C|t||z|1−δ

and the second term of the right-hand side uniformly tends to 0 as t tends
to 0. Because α satisfies Lemma 12 in Section A,

∥

∥

∥
ΓfD

t
φt
ηDt (φt)−ND

t

∥

∥

∥
< 1

which implies Equation (36). □
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Let ϵ′ > 0 given by Lemma 6. The restriction

rφt : φ−1
t (φt(D

∗
ϵ′)) ∩D∗

ϵ −→ φt (D
∗
ϵ′)

z 7−→ φt(z)

is a covering map because it is a proper local diffeomorphism between locally
compact spaces. To show this, proceed by contradiction as in R3 (see [18]): let
(xi)i∈N ⊂ φ−1

t (φt(D
∗
ϵ′)) ∩D∗

ϵ such that (rφt(xi))i∈N converges to p ∈ φt (D
∗
ϵ′).

Then (xi)i converges to x ∈ Dϵ. Using Equation (35) and the fact that fDt
has an end at 0, x ̸= 0. If x ∈ ∂Dϵ, denoting rx ∈ D∗

ϵ′ such that rφt(rx) = p,
one has

dH3

(

fDt (x), fDt (rx)
)

< dH3

(

fDt (x), p
)

+ dH3

(

fDt (rx), rφt(rx)
)

< 4αrt < 4rt

which contradicts the definition of ϵ′.
Let us now prove as in [18] that rφt is a one-sheeted covering map. Let

γ : [0, 1] −→ D∗
ϵ′ be a loop of winding number 1 around 0, Γ = fDt (γ) and

rΓ = rφt(γ) ⊂ Dt and let us construct a homotopy between Γ and rΓ. For
all s ∈ [0, 1], let σs : [0, 1] −→ H3 be a geodesic arc joining σs(0) = rΓ(s) to
σs(1) = Γ(s). For all s, r ∈ [0, 1], dH3 (σs(r),Γ(s)) ≤ αrt which implies that
σs(r) ∈ Tubrt Dt because Dt is complete. One can thus define the following
homotopy between Γ and rΓ

H : [0, 1]2 −→ Dt

(r, s) 7−→ πt ◦ σs(r)

where πt is the projection from Tubrt Dt to Dt. Using the fact that fDt is an
embedding, the degree of Γ is one, and the degree of rΓ is also one. Hence,
rφt is one-sheeted.

Finally, the map rφt is a one-sheeted covering map and hence a diffeo-
morphism, so ft (D

∗
ϵ′) is a normal graph over Dt contained in its embedded

tubular neighbourhood and ft (D
∗
ϵ′) is thus embedded, which proves the sec-

ond part of Theorem 3.

2.7. Limit axis

In this section, we prove the third part of Theorem 3 and compute the limit
axis of fDt as t tends to 0. Recall that fDt = Symq

(

Uni
(

Mtz
At
))

where

Mt tends to I2 as t tends to 0. Hence, the limit axis of fDt and rfDt :=
Symq

(

Uni
(

zAt
))

are the same. Two cases can occur, whether r > s or r < s.
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Spherical family. At t = 0, r = 1
2 and s = 0. The limit potential is thus

ξ0(z, λ) =

(

0 λ−1

2
λ
2 0

)

z−1dz.

Consider the gauge

G(z, λ) =
1√
2z

(

1 0
λ 2z

)

.

The gauged potential is then

ξ0 ·G(z, λ) =
(

0 λ−1dz
0 0

)

= ξS(z, λ)

where ξS is the spherical potential as in Section 1.2. Let rΦ := zA0G be the
gauged holomorphic frame and compute

rΦ(1, λ) = G(1, λ)

=
1√
2

(

1 0
λ 2

)

=
1√
2

(

1 −λ−1

λ 1

)(

1 λ−1

0 1

)

= H0(λ)ΦS(1, λ)

where ΦS and H0 are defined in (10) and (23). This means that rΦ = H0ΦS ,
Uni rΦ = H0FS and Symq(Uni rΦ) = H0(e

−q) · fS because H0 ∈ ΛSU(2)R.
Thus using equations (12) and (13),

rfD0 (∞) = Symq(Uni rΦ)(∞) = H0(e
−q) · fS(∞)

=
(

H0(e
−q)R(q)

)

· geod (I2, σ3) (q)
= H0(e

−q) · geod (I2, σ3) (2q).

And with the same method,

rfD0 (0) = H0(e
−q) · geod (I2, σ3) (0).

This means that the limit axis of rfDt as t→ 0, oriented from z = ∞ to z = 0
is given in the spherical family by

H0(e
−q) · geod (I2,−σ3) .
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Catenoidal family. We cannot use the same method as above, as the
immersion rfDt degenerates into the point I2. Use Proposition 12 of Section
4.1 to get

pf := lim
t→0

1

t
(ft − I2) = ψ ⊂ TI2H

3

where ψ is the immersion of a catenoid of axis oriented by −σ1 as z → 0.
This suffices to show that the limit axis oriented from the end at ∞ to the
end at 0 of the catenoidal family rfDt converges as t tends to 0 to the oriented
geodesic geod(I2,−σ1).

3. Gluing Delaunay ends to hyperbolic spheres

In this section, we follow step by step the method Martin Traizet used in
R3 ([25]) to construct CMC H > 1 n-noids in H3 and prove Theorem 1.
This method relies on the Implicit Function Theorem and aims to find a
pair (ξt,Φt) satisfying the hypotheses of Theorem 3 around each pole of
an n-punctured sphere. More precisely, the Implicit Function Theorem is
used to solve the monodromy problem around each pole and to ensure that
the potential is regular at z = ∞. The set of equations characterising this
problem at t = 0 is the same as in [25], and the partial derivative with
respect to the parameters is the same as in [25] at t = 0. Therefore, the
Implicit Function Theorem can be used exactly as in [25] and we do not
repeat it here. Showing that the surface has Delaunay ends involves slightly
different computations, but the method is the same as in [25], namely, find a
suitable gauge and change of coordinates around each pole of the potential
in order to retrieve a perturbed Delaunay potential as in Definition 1. One
can then apply Theorem 3. Finally, we show that the surface is Alexandrov-
embedded (and embedded in some cases) by adapting the arguments of [26]
to the case of H3.

3.1. The DPW data

LetH > 1, q = arcothH and ρ > eq. Let n ≥ 3, u1, · · · , un unitary vectors of
TI2H

3 and τ1, · · · , τn non-zero real weights. Suppose, by applying a rotation,
that ui ̸= ±σ3 for all i ∈ [1, n]. Let vS : C ∪ {∞} −→ S2 defined as in Equa-
tion (13) and πi := v−1

S (ui) ∈ C∗. Consider 3n parameters ai, bi, pi ∈ ΛC≥0
ρ

assembled into a vector x ∈
(

ΛC≥0
ρ

)3n
which stands in a neighbourhood of

a central value x0 ∈
(

ΛC≥0
ρ

)3n
so that the central values of ai and pi are τi

and πi. The central value of bi will be denoted νi. Introduce a real parameter
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t in a neighbourhood of 0 and define

βt(λ) := t (λ− eq)
(

λ− e−q
)

.

The potential we use is

ξt,x(z, λ) :=

(

0 λ−1dz
βt(λ)ωx(z, λ) 0

)

where

ωx(z, λ) :=

n
∑

i=1

(

ai(λ)

(z − pi(λ))2
+

bi(λ)

z − pi(λ)

)

dz.

The initial condition is the identity matrix, taken at the point z0 = 0 ∈ Ω
where

Ω = {z ∈ C | ∀i ∈ [1, n] , |z − πi| > ϵ}
and ϵ > 0 is a fixed constant such that the disks D(πi, 2ϵ) ⊂ C are disjoint
and do not contain 0. Although the poles p1, . . . , pn of the potential ξt,x
are functions of λ, ξt,x is well-defined on Ω for x sufficiently close to x0.
We thus define Φt,x as the solution to the Cauchy problem (5) with data
(Ω, ξt,x, 0, I2).

The main properties of this potential are the same as in [25], namely:
it is a perturbation of the spherical potential ξ0,x and the factor (λ− e−q)
in βt ensures that the second equation of the monodromy problem (8) is
solved.

Let {γ1, · · · , γn−1} be a set of generators of the fundamental group
π1(Ω, 0) and define for all i ∈ [1, n− 1]

Mi(t,x) := Mγi
(Φt,x).

Noting that

λ ∈ S
1 =⇒ λ−1 (λ− eq)

(

λ− e−q
)

= −2 (cosh q − Reλ) ∈ R,

the unitarity of the monodromy is equivalent to

ĂMi(t,x)(λ) :=
λ

βt(λ)
logMi(t,x)(λ) ∈ Λsu(2)ρ.

Note that at t = 0, the expression above takes the same value as in [25], and
so does the regularity conditions. One can thus apply Propositions 2 and 3
of [25] which we recall in Proposition 10 below.
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Proposition 10. For t in a neighbourhood of 0, there exists a unique
smooth map t 7→ x(t) = (ai,t, bi,t, pi,t)1≤i≤n ∈ (ΛC≥0

ρ )3n such that x(0) = x0,
the monodromy problem and the regularity problem are solved at (t,x(t)) and
the following normalisations hold:

∀i ∈ [1, n− 1], Re(ai,t) |λ=0= τi and pi,t |λ=0= πi.

Moreover, at t = 0, x0 is a constant of C3n such that

νi =
−2τiπi
1 + |πi|2

and

n
∑

i=1

τiui = 0.

Now write ωt := ωx(t), ξt := ξt,x(t) and apply the DPW method to define

the holomorphic frame Φt associated to ξt on the universal cover rΩ of Ω
with initial condition Φt(0) = I2. Let Ft := UniΦt and ft := SymqFt. The
monodromy problem for Φt being solved, ft descends to a well-defined CMC
H immersion on Ω. Use Theorem 3 and Corollary 1 of [25] to extend ft
to Σt := C ∪ {∞}\ {p1,t(0), . . . , pn,t(0)} and define Mt = ft(Σt). Moreover,
with the same proof as in [25] (Proposition 4, point (2)), ai,t is a real constant
with respect to λ for all i and t.

3.2. Delaunay ends

Perturbed Delaunay potential. Let i ∈ [1, n]. We are going to gauge
ξt around its pole pi,t(0) and show that the gauged potential is a perturbed
Delaunay potential as in Definition 1. Let (r, s) : (−T, T ) −→ R2 be the con-
tinuous solution to (see Section 1.3 for details)







rs = tai,t,
r2 + s2 + 2rs cosh q = 1

4 ,
r > s.

For all t and λ, define ψi,t,λ(z) := z + pi,t(λ) and

Gt(z, λ) :=





√
z√

r+sλ
0

−λ

2
√
z
√
r+sλ

√
r+sλ√
z



 .



✐

✐

“6-Raujouan” — 2023/12/25 — 11:36 — page 771 — #41
✐

✐

✐

✐

✐

✐

Constant mean curvature n-noids in hyperbolic space 771

For T small enough, one can thus define on a uniform neighbourhood of 0
the potential

rξi,t(z, λ) := ((ψ∗
i,t,λξt) ·Gt)(z, λ)

=

(

0 rλ−1 + s
βt(λ)
r+sλ

(ψ∗
i,t,λωt(z))z

2 + λ
4(r+sλ) 0

)

z−1dz.

Note that by definition of r, s and βt,

(r + sλ) (rλ+ s) =
λ

4
+ βt(λ)ai,t

and thus
rξi,t(z, λ) = At(λ)z

−1dz + Ct(z, λ)dz

with At as in Equation (14) satisfies Equation (19) and Ct as in Definition 1.
The potential rξi,t is thus a perturbed Delaunay potential as in Definition 1.

Moreover, using Theorem 3 of [25], the induced immersion rfi,t satisfies

rfi,t = ψ∗
i,t,0ft.

Applying Theorem 3. The holomorphic frame rΦi,t := ΦtGi,t associated

to rξi,t satisfies the regularity and monodromy hypotheses of Theorem 3, but
at t = 0 and z = 1,

rΦi,0(1, λ) =

(

1 (1 + πi)λ
−1

0 1

)

(√
2 0

−λ√
2

1√
2

)

=
1√
2

(

1− πi (1 + πi)λ
−1

−λ 1

)

=:Mi(λ),

and thus rΦi,0(z) =Miz
A0 . Recall (23) and let Qi := Uni (MiH0). Using

Lemma 2.1. in [18], Qi can be made explicit and one can find a change
of coordinates h and a gauge G such that pΦi,t := H0Q

−1
i (h∗rΦi,t)G solves

dpΦi,t = pΦi,t
pξi,t where pξi,t is a perturbed Delaunay potential and pΦi,0(z) =

zA0 . Explicitely,

Qi(λ) =
1

√

1 + |πi|2

(

1 λ−1πi
−λπi 1

)

and

h(z) =
(1 + |πi|2)z
1− πiz

, G(z, λ) =
1√

1− πiz

(

1 0
−λπiz 1− πiz

)

.
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One can thus apply Theorem 3 on pξi,t and pΦi,t, which proves the existence
of the family (Mt)0<t<T of CMC H surfaces of genus zero and n Delaunay
ends, each of weight (according to Equation (16))

wi,t = 8πrs sinh q =
8πtai,t√
H2 − 1

,

which proves the first part of Theorem 1 (after a normalisation on t). Let
pfi,t := Symq(Uni pΦi,t) and pfDi,t the Delaunay immersion given by Theorem 3.

Limit axis. In order to compute the limit axis of ft at the end around
pi,t, let p∆i,t be the oriented axis of pfDi,t at w = 0. Then, using Theorem 3,

p∆i,0 = H0(e
−q) · geod (I2,−σ3) .

And using pfi,t(w) = H0(e
−q)Qi(e

−q)−1 · (h∗ft(z)),

p∆i,0 = H0(e
−q)Qi(e

−q)−1 ·∆i,0

and thus

∆i,0 = Qi(e
−q) · geod(I2,−σ3).

Computing MiH0 = ΦS(πi) as in (10), one has Qi = FS(πi). Hence

∆i,0 = geod (fS(πi),−NS(πi))

where NS is the normal map associated to ΦS . Using Equation (11), fS(z) =
R(q) · rfS(z) and NS(z) = R(q) · rNS(z) where rNS is the normal map of rfS .
Using Equation (12) and the fact that rfS is a spherical immersion gives

rNS(z) = Γ
rfS(z)
I2

(−vS(z))

and thus

∆i,0 = geod
(

R(q) · rfS(πi),−R(q) · rNS(πi)
)

= R(q) · geod
(

rfS(πi),Γ
rfS(πi)
I2

vS(πi)
)

= R(q) · geod (I2, ui) .

Apply the isometry given by R(q)−1 and note that R(q) does not depend
on i to prove point 2 of Theorem 1.
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3.3. Embeddedness

We suppose that t > 0 and that all the weights τi are positive, so that the
ends of ft are embedded. Recall the definition of Alexandrov-embeddedness
(as stated in [26]):

Definition 2. A surface M2 ⊂ M3 of finite topology is Alexandrov-
embedded if M is properly immersed, if each end of M is embedded, and
if there exists a compact 3-manifold W with boundary ∂W = S, n points
p1, · · · , pn ∈ S and a proper immersion F :W =W\{p1, · · · , pn} −→ M
whose restriction to S = S\{p1, · · · , pn} parametrises M .

The following lemma is proved in [26] in R3 and for surfaces with
catenoidal ends, but the proof is the same in H3 for surfaces with any type
of embedded ends. For any oriented surface M with Gauss map N and any
r > 0, the tubular map of M with radius r is defined by

T : (−r, r)×M −→ TubrM
(s, p) 7−→ geod(p,N(p))(s).

Lemma 8. LetM be an oriented Alexandrov-embedded surface of H3 with n
embedded ends. Let r > 0 and suppose that the tubular map of M with radius
r is a local diffeomorphism. With the notations of Definition 2, there exist a
hyperbolic 3-manifold W ′ containing W and a local isometry F ′ :W ′ −→ H3

extending F such that the tubular neighbourhood Tubr S is embedded in W ′.

In order to show thatMt is embedded, we will use the techniques of [26].
We thus begin by lifting Mt to R3 with the exponential map at the iden-
tity expI2 : R

3 −→ H3. This map is a diffeomorphism, so Mt is Alexandrov-

embedded if and only if its lift xMt to R3 given by the immersion

pft := exp−1
I2

◦ft : Σt −→ R
3

is Alexandrov-embedded.
Let T, ϵ > 0 such that ft (and hence pft) is an embedding of D∗(pi,t, ϵ)

for all i ∈ [1, n] and let fDi,t : C\{pi,t} −→ H3 be the Delaunay immersion

approximating ft in D
∗(pi,t, ϵ). Let pfDi,t := exp−1

I2
◦fDi,t. Apply an isometry of

H3 so that the limit immersion f0 maps Σ0 to a n-punctured geodesic sphere
of hyperbolic radius q centered at I2. Then pf0(Σ0) is a Euclidean sphere of
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radius q centered at the origin. Define

pNt : Σt −→ S2

z 7−→ d(exp−1
I2

)(ft(z))Nt(z).

At t = 0, pN0 is the normal map of pf0 (by Gauss Lemma), but not for t > 0
because the Euclidean metric of R3 is not the metric induced by expI2 .

Let
hi : R3 −→ R

x 7−→
〈

x,− pN0(pi,0)
〉

be the height function in the direction of the limit axis.
As in [26], one can show that

Claim 1. There exist δ < δ′ and 0 < ϵ′ < ϵ such that for all i ∈ [1, n] and
0 < t < T ,

max
C(pi,t,ϵ)

hi ◦ pft < δ < min
C(pi,t,ϵ′)

hi ◦ pft ≤ max
C(pi,t,ϵ′)

hi ◦ pft < δ′.

Define for all i and t:

γi,t :=
{

z ∈ D∗
pi,t,ϵ | hi ◦ pft(z) = δ

}

, γ′i,t :=
{

z ∈ D∗
pi,t,ϵ′ | hi ◦ pft(z) = δ′

}

.

From their convergence as t tends to 0,

Claim 2. The regular curves γi,t and γ
′
i,t are topological circles around pi,t.

Define Di,t, D
′
i,t as the topological disks bounded by γi,t, γ

′
i,t, and

∆i,t,∆
′
i,t as the topological disks bounded by pft(γi,t), pft(γ

′
i,t). Let Ai,t :=

Di,t\D′
i,t. Then

pft(Ai,t) is a graph over the plane {hi(x) = δ}. Moreover, for

all z ∈ D∗
i,t, hi ◦ pft(z) ≥ δ′ > δ. Thus

Claim 3. The intersection pft(D
∗
i,t) ∩∆i,t is empty.

Define a sequence (Ri,t,k) such that pft(D
∗
i,t) transversally intersects the

planes {hi(x) = Ri,t,k}. Define

γi,t,k :=
{

z ∈ D∗
i,t | hi ◦ pfi,t(z) = Ri,t,k

}

,

and the topological disks ∆i,t,k ⊂ {hi(x) = Ri,t,k} bounded by pft(γi,t,k). De-
fine Ai,t,k as the annuli bounded by γi,t and γi,t,k. Define Wi,t,k ⊂ R3 as the
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interior of pft(Ai,t,k) ∪∆i,t ∪∆i,t,k and

Wi,t :=
⋃

k∈N
Wi,t,k.

Hence,

Claim 4. The union pft(D
∗
i,t) ∪∆i,t is the boundary of a topological punc-

tured ball Wi,t ⊂ R3.

The union

pft (Σt\ (D1,t ∪ · · ·Dn,t)) ∪∆1,t ∪ · · · ∪∆n,t

is the boundary of a topological ball W0,t ⊂ R3. Take

Wt :=W0,t ∪W1,t ∪ · · · ∪Wn,t

to show that xMt, and hence Mt is Alexandrov-embedded for t > 0 small
enough.

Lemma 9. Let S ⊂ H3 be a sphere of hyperbolic radius q centered at
p ∈ H3. Let n ≥ 2 and {ui}i∈[1,n] ⊂ TpH

3. Let {pi}i∈[1,n] defined by pi =

S ∩ geod(p, ui)(R+). For all i ∈ [1, n], let Si ⊂ H3 be the sphere of hyper-
bolic radius q such that S ∩ Si = {pi}. For all (i, j) ∈ [1, n]2, let θij be the
angle between ui and uj.

If for all i ̸= j,

θij > 2 arcsin

(

1

2 cosh q

)

then Si ∩ Sj = ∅ for all i ̸= j.

Proof. Without loss of generality, we assume that p = I2. We use the ball
model of H3 equipped with its metric

ds2B(x) =
4ds2E

(

1− ∥x∥2E
)2

where dsE is the euclidean metric and ∥x∥E is the euclidean norm. In this
model, the sphere S is centered at the origin and has euclidean radius R =
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tanh q
2 . For all i ∈ [1, n], the sphere Si has euclidean radius

r =
1

2

(

tanh
3q

2
− tanh

q

2

)

=
tanh q

2

2 cosh q − 1
.

Let j ̸= i. In order to have Si ∩ Sj = ∅, one must solve

(R+ r) sin
θij
2

≥ r,

which gives the expected result. □

In order to prove the last part of Theorem 1, just note that

H = coth q =⇒ 1

2 cosh q
=

√
H2 − 1

2H
.

Suppose that the angle θij between ui and uj satisfies Equation (2) for all i ̸=
j. Then for t > 0 small enough, the proper immersion Ft given by Definition
2 is injective (because of the convergence towards a chain of spheres) and
hence Mt is embedded.

Remark 5. This means for example that in hyperbolic space, one can con-
struct embedded CMC n-noids with seven coplanar ends or more.

4. Gluing Delaunay ends to minimal n-noids

Again, this section is an adaptation of Traizet’s work in [26] applied to
the proof of Theorem 2. We first give in Section 4.1 a blow-up result for
CMC H > 1 surfaces in Hyperbolic space. We then introduce in Section 4.2
the DPW data giving rise to the surface Mt of Theorem 2 and prove the
convergence towards the minimal n-noid. Finally, using the same arguments
as in [26], we prove Alexandrov-embeddedness in Section 4.3.

4.1. A blow-up result

As in R3 (see [26]), the DPW method accounts for the convergence of CMC
H > 1 surfaces in H3 towards minimal surfaces of R3 (after a suitable blow-
up). We work with the following Weierstrass parametrisation:

(37) W (z) =W (z0) + Re

∫ z

z0

(

1

2
(1− g2)ω,

i

2
(1 + g2)ω, gω

)



✐

✐

“6-Raujouan” — 2023/12/25 — 11:36 — page 777 — #47
✐

✐

✐

✐

✐

✐

Constant mean curvature n-noids in hyperbolic space 777

Proposition 11. Let Σ be a Riemann surface, (ξt)t∈I a family of DPW
potentials on Σ and (Φt)t∈I a family of solutions to dΦt = Φtξt on the uni-
versal cover rΣ of Σ, where I ⊂ R is a neighbourhood of 0. Fix a base point
z0 ∈ rΣ and ρ > eq > 1. Assume that

1) (t, z) 7→ ξt(z) and t 7→ Φt(z0) are C1 maps into Ω1(Σ,Λsl(2,C)ρ) and
ΛSL(2,C)ρ respectively.

2) For all t ∈ I, Φt solves the monodromy problem (8).

3) Φ0(z, λ) is independent of λ:

Φ0(z, λ) =

(

a(z) b(z)
c(z) d(z)

)

.

Let ft = Symq (Uni(Φt)) : Σ −→ H3 be the CMC H = coth q immersion
given by the DPW method. Then, identifying TI2H

3 with R3 via the basis
(σ1, σ2, σ3) defined in (3),

lim
t→0

1

t
(ft − I2) =W

where W is a (possibly branched) minimal immersion with the following
Weierstrass data:

g(z) =
a(z)

c(z)
, ω(z) = −4(sinh q)c(z)2

∂ξ
(−1)
t,12 (z)

∂t
|t=0 .

The limit is for the uniform C1 convergence on compact subsets of Σ.

Proof. With the same arguments as in [26], (t, z) 7→ Φt(z), (t, z) 7→ Ft(z)
and (t, z) 7→ Bt(z) are C1 maps into ΛSL(2,C)ρ, ΛSU(2)ρ and ΛR

+SL(2,C)ρ
respectively. At t = 0, Φ0 is constant. Thus F0 and B0 are constant with
respect to λ:

F0 =
1

√

|a|2 + |c|2

(

a −c̄
c ā

)

, B0 =
1

√

|a|2 + |c|2

(

|a|2 + |c|2 āb+ c̄d
0 1

)

.

Thus F0(z, e
−q) ∈ SU(2) and f0(z) degenerates into the identity matrix. Let

bt := Bt,11 |λ=0 and βt the upper-right residue at λ = 0 of the potential ξt.
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Recalling Equation (6),

dft(z) = 2bt(z)
2 sinh qFt(z, e

−q)

(

0 βt(z)

βt(z) 0

)

Ft(z, e
−q)

∗
.

Hence (t, z) 7→ dft(z) is a C1 map. At t = 0, ξ0 = Φ−1
0 dΦ0 is constant with

respect to λ, so β0 = 0 and df0(z) = 0. Define rft(z) :=
1
t
(ft(z)− I2) for t ̸=

0. Then d rft(z) extends at t = 0, as a continuous function of (t, z) by

d rf0 =
d

dt
dft |t=0 = 2 sinh q

(

a −c
c a

)(

0 β′

β′ 0

)(

a c
−c a

)

= 2 sinh q

(

−acβ′ − acβ′ a2β′ − c2β′

a2β′ − c2β′ acβ′ + acβ′

)

where β′ = d
dt
βt |t=0. In TI2H

3, this gives

d rf0 = 4 sinh qRe

(

1

2
β′(a2 − c2),

−i
2
β′(a2 + c2),−acβ′

)

.

Writing g = a
c
and ω = −4c2β′ sinh q gives:

rf0(z) = rf0(z0) + Re

∫ z

z0

(

1

2
(1− g2)ω,

i

2
(1 + g2)ω, gω

)

.

□

As a useful example for Proposition 11, one can show the convergence
of Delaunay surfaces in H3 towards a minimal catenoid.

Proposition 12. Let q > 0, At = Ar,s as in (14) with r ≤ s satisfying (19).
Let Φt(z) := zAt and ft := Symq (UniΦt). Then

rf := lim
t→0

1

t
(ft − I2) = ψ

where ψ : C∗ −→ R3 is the immersion of a catenoid centered at (0, 0, 1), of
neck radius 1 and of axis orientd by the positive x-axis in the direction from
z = 0 to z = ∞.
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Proof. Compute

Φ0(z, λ) =





cosh
(

log z
2

)

sinh
(

log z
2

)

sinh
(

log z
2

)

cosh
(

log z
2

)





and

∂ξ
(−1)
t,12 (z)

∂t
|t=0=

z−1dz

2 sinh q

in order to apply Proposition 11 and get

rf(z) = rf(1) + Re

∫ z

1

(

1

2
(1− g2)ω,

i

2
(1 + g2)ω, gω

)

where

g(z) =
z + 1

z − 1
and ω(z) =

−1

2

(

z − 1

z

)2

dz.

Note that Φt(1) = I2 for all t to show that rf(1) = 0 and get

rf(z) = Re

∫ z

1

(

w−1dw,
−i
2
(1 + w2)w−2dw,

1

2
(1− w2)w−2dw

)

.

Integrating gives for (x, y) ∈ R× [0, 2π]:

rf(ex+iy) = ψ(x, y)

where

ψ : R× [0, 2π] −→ R3

(x, y) 7−→ (x, cosh(x) sin(y), 1− cosh(x) cos(y))

and hence the result. □

4.2. The DPW data

In this Section, we introduce the DPW data inducing the surface Mt of
Theorem 2. The method is very similar to Section 3 and to [26], which is
why we omit the details.
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The data. Let (g, ω) be the Weierstrass data (for the parametrisation
defined in (37)) of the minimal n-noidM0 ⊂ R3. If necessary, apply a Möbius
transformation so that g(∞) /∈ {0,∞}, and write

g(z) =
A(z)

B(z)
, ω(z) =

B(z)2dz
∏n

i=1(z − pi,0)2
.

Let H > 1, q > 0 so that H = coth q and ρ > eq. Consider 3n parameters
ai, bi, pi ∈ ΛC≥0

ρ (i ∈ [1, n]) assembled into a vector x. Let

Ax(z, λ) =

n
∑

i=1

ai(λ)z
n−1, Bx(z, λ) =

n
∑

i=1

bi(λ)z
n−1

and

gx(z, λ) =
Ax(z, λ)

Bx(z, λ)
, ωx(z, λ) =

Bx(z, λ)
2dz

∏n
i=1(z − pi(λ))2

.

The vector x is chosen in a neighbourhood of a central value x0 ∈ C3n so
that Ax0

= A, Bx0
= B and ωx0

= ω. Let pi,0 denote the central value of pi.
Introduce a real parameter t in a neighbourhood of 0 and write

βt(λ) :=
t(λ− eq)(λ− e−q)

4 sinh q
.

The potential we use is

ξt,x(z, λ) =

(

0 λ−1βt(λ)ωx(z, λ)
dzgx(z, λ) 0

)

defined for (t,x) sufficiently close to (0,x0) on

Ω = {z ∈ C | ∀i ∈ [1, n] , |z − pi,0| > ϵ} ∪ {∞}

where ϵ > 0 is a fixed constant such that the disks D(pi,0, 2ϵ) are disjoint.
The initial condition is

ϕ(λ) =

(

igx(z0, λ) i
i 0

)

taken at z0 ∈ Ω away from the poles and zeros of g and ω. Let Φt,x be the
holomorphic frame arising from the data (Ω, ξt,x, z0, ϕ) via the DPW method
and ft,x := Symq (UniΦt,x).

Follow Section 6 of [26] to show that the potential ξt,x is regular at the
zeros of Bx and to solve the monodromy problem around the poles at pi,0 for
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i ∈ [1, n− 1]. The Implicit Function Theorem allows us to define x = x(t) in
a small neighbourhood (−T, T ) of t = 0 satisfying x(0) = x0 and such that
the monodromy problem is solved for all t. We can thus drop from now on the
index x in our data. As in [26], ft descends to Ω and analytically extends
to C ∪ {∞}\ {p1,0, . . . , pn,0}. This defines a smooth family (Mt)−T<t<T of
CMC H surfaces of genus zero with n ends in H3.

The convergence of 1
t
(Mt − I2) towards the minimal n-noid M0 (point 2

of Theorem 2) is a straightforward application of Proposition 11 together
with

Φ0,11(z)

Φ0,21(z)
= g(z), −4 (sinh q) (Φ0,21(z))

2 ∂ξ
(−1)
t,12 (z)

∂t
= ω(z).

Delaunay residue. To show that ξt is a perturbed Delaunay potential
around each of its poles, let i ∈ [1, n] and follow Section 3.2 with

ψi,t,λ(z) = g−1
t (z + gt(pi,t(λ))) .

Define

rωi,t(z, λ) := ψ∗
i,t,λωt(z)

and

αi,t(λ) := Res
z=0

(zrωi,t(z, λ)).

Use Proposition 6, Claim 1 of [26] to show that for T small enough, αi,t is
real and does not depend on λ. Set







rs = tαi,t

4 sinh q
,

r2 + s2 + 2rs cosh q = 1
4 ,

r < s

and

Gt(z, λ) =





√
rλ+s√
z

−1
2
√
rλ+s

√
z

0
√
z√

rλ+s



 .

Define the gauged potential

rξi,t(z, λ) :=
(

(ψ∗
i,t,λξt) ·Gt

)

(z, λ)

and compute its residue to show that it is a perturbed Delaunay potential
as in Definition 1.
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Applying Theorem 3. At t = 0 and z = 1, writing πi := g(pi,0) to ease
the notation,

rΦi,0(1, λ) =

(

i (1 + πi) i
i 0

)

(

1√
2

−1√
2

0
√
2

)

=
i√
2

(

1 + πi 1− πi
1 −1

)

=:Mi,

and thus rξi,0(z) =Miz
A0 . Recall (24) and let Qi := Uni

(

MiH
−1
0

)

. Using
Lemma 2 of [26], Qi can be made explicit and one can find a change of

coordinates h and a gauge G such that pΦi,t := (QiH0)
−1
(

h∗rΦi,t

)

G solves

dpΦi,t = pΦi,t
pξi,t where pξi,t is a perturbed Delaunay potential and pΦi,0(z) =

zA0 . One can thus apply Theorem 3 on pξi,t and pΦi,t, which proves the ex-
istence of the family (Mt)−T<t<T of CMC H surfaces of genus zero and n
Delaunay ends, each of weight (according to Equation (16))

wi,t = 8πrs sinh q = 2πtαi,t,

which proves the first part of Theorem 2. Let pfi,t := Symq

(

Uni pΦi,t

)

and let

pfDi,t be the Delaunay immersion given by Theorem 3.

Limit axis. In order to compute the limit axis of ft at the end around
pi,t, let p∆i,t be the oriented axis of pfDi,t at z = 0. Then, using Theorem 3,

p∆i,0 = geod (I2,−σ1) .

And using pfi,t(z) = (QiH0)
−1 · (h∗ft(z)),

p∆i,0 = (QiH0)
−1 ·∆i,0,

and thus

∆i,0 = (QH0) · geod(I2,−σ1).
Compute H0 · (−σ1) = σ3 and note that MiH

−1
0 = Φ0(πi) to get

∆i,0 = geod (I2, N0(pi,0))

where N0 is the normal map of the minimal immersion.

Type of the ends. Suppose that t is positive. Then the end at pi,t is
unduloidal if and only if its weight is positive; that is, αi,t is positive. Use
Proposition 6 of [26] to show that if the normal map N0 ofM0 points toward
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the inside, then αi,0 = τi where 2πτiN0(pi,0) is the flux of M0 around the
end at pi,0 (αi,0 = −τi for the other orientation). Thus if M0 is Alexandrov-
embedded, then the ends of Mt are of unduloidal type for t > 0 and of
nodoidal type for t < 0.

4.3. Alexandrov-embeddedness

In order to show that Mt is Alexandrov-embedded for t > 0 small enough,
one can follow the proof of Proposition 7 in [26]. Note that this proposition
does not use the fact that Mt is CMC H, but relies on the fact that the am-
bient space is R3. This leads us to lift ft to R

3 via the exponential map at the
identity, hence defining an immersion pft : Σt −→ R3 which is not CMC any-
more, but is Alexandrov-embedded if and only if ft is Alexandrov-embedded.
Let ψ : Σ0 −→M0 ⊂ R3 be the limit minimal immersion. In order to adapt
the proof of [26] and show that Mt is Alexandrov-embedded, one will need
the following Lemma.

Lemma 10. Let rft :=
1
t

pft. Then rft converges to ψ on compact subsets of
Σ0.

Proof. For all z,

expI2(
pf0(z)) = f0(z) = I2,

so pf0(z) = 0. Thus

lim
t→0

rft(z) =
d

dt
pft(z) |t=0 .

Therefore, using Proposition 12,

ψ(z) = lim
t→0

1

t
(ft(z)− I2)

= lim
t→0

1

t

(

expI2(
pft(z))− expI2(

pf0(z))
)

=
d

dt
expI2(

pft(z)) |t=0

= d expI2(0) ·
d

dt
pft(z) |t=0

= lim
t→0

rft(z).

□
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Appendix A. CMC surfaces of revolution in H
3

Following Sections 2.2 and 2.3 of [9],

Proposition 13. Let X : R× [0, 2π] −→ H3 be a conformal immersion of
revolution with metric g2(s)

(

ds2 + dθ2
)

. If X is CMC H > 1, then g is
periodic and denoting by S its period,

√

H2 − 1

∫ S

0
g(s)ds = π and

∫ S

0

ds

g(s)
=

2π2

|w|

where w is the weight of X, as defined in [14].

Proof. According to Equation (11) in [9], writing τ =

√
|w|√
2π

and g = τeσ,

(A.1)
(

σ′
)2

= 1− τ2
(

(

Heσ + ιe−σ
)2 − e2σ

)

where ι ∈ {±1} is the sign of w. The solutions σ are periodic with period
S > 0. Apply an isometry and a change of the variable s ∈ R so that

σ′(0) = 0 and σ(0) = min
s∈R

σ(s).

By symmetry of Equation (A.1), one can thus define

a := e2σ(0) = min
s∈R

e2σ(s) and b := e2σ(
S

2
) = max

s∈R
e2σ(s).

With these notations, Equation (A.1) can be written in a factorised form as

(A.2)
(

σ′
)2

= τ2(H2 − 1)e−2σ
(

b− e2σ
) (

e2σ − a
)

with

(A.3) a =
1− 2ιτ2H −

√

1− 4τ2(ιH − τ2)

2τ2(H2 − 1)

and

b =
1− 2ιτ2H +

√

1− 4τ2(ιH − τ2)

2τ2(H2 − 1)
.
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In order to compute the first integral, change variables v = eσ, y =
√
b− v2

and x = y√
b−a

and use Equation (A.2) to get

√

H2 − 1

∫ S

0
τeσ(s)ds = 2

√

H2 − 1

∫

√
b

√
a

τvdv

τ
√
H2 − 1

√
b− v2

√
v2 − a

= −2

∫ 0

√
b−a

dy
√

b− a− y2

= 2

∫ 1

0

dx√
1− x2

= π.

In the same manner with the changes of variables v = e−σ, y =
√
a−1 − v2

and x = y√
a−1−b−1

,

∫ S

0

ds

τeσ(s)
=

−2

τ
√
H2 − 1

∫ b−1/2

a−1/2

dv

v
√
b− v−2

√
v−2 − a

=
2

τ2
√
H2 − 1

∫

√
a−1−b−1

0

dy
√

b− a− aby2

=
2

τ2
√
H2 − 1

√
ab

∫ 1

0

dx√
1− x2

=
π

τ2

because ab = 1
H2−1 . □

Lemma 11. Let Dt be a Delaunay surface in H3 of constant mean curvature
H > 1 and weight 2πt > 0 with Gauss map ηt. Let rt be the maximal value
of R such that the map

T : (−R,R)×Dt −→ Tubrt ⊂ H3

(r, p) 7−→ geod(p, ηt(p))(r)

is a diffeomorphism. Then rt ∼ t as t tends to 0.

Proof. The quantity rt is the inverse of the maximal geodesic curvature of the
surface. This maximal curvature is attained for small values of t on the points
of minimal distance between the profile curve and the axis. Checking the
direction of the mean curvature vector at this point, the maximal curvature
curve is not the profile curve but the parallel curve. Hence rt is the minimal
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hyperbolic distance between the profile curve and the axis. A study of the
profile curve’s equation as in Proposition 13 shows that

rt = sinh−1 (τ exp (σmin)) = sinh−1
(

τ
√

a(τ)
)

.

But using Equation (A.3), as τ tends to 0, a ∼ τ2 = |t|, which gives the
expected result. □

Lemma 12. Let Dt be a Delaunay surface in H3 of weight 2πt > 0 with
Gauss map ηt and maximal tubular radius rt. There exist T > 0 and α < 1
such that for all 0 < t < T and p, q ∈ Dt satisfying dH3 (p, q) < αrt,

∥

∥Γq
pηt(p)− ηt(q)

∥

∥ < 1.

Proof. Let t > 0. Then for all p, q ∈ Dt,

∥

∥Γq
pηt(p)− ηt(q)

∥

∥ ≤ sup
s∈γt

∥IIt(s)∥ × ℓ(γt)

where IIt is the second fundamental form of Dt, γt ⊂ Dt is any path joining
p to q and ℓ(γt) is the hyperbolic length of γt. Using the fact that the
maximal geodesic curvature κt of Dt satisfies κt ∼ coth rt as t tends to zero,
there exists a uniform constant C > 0 such that

sup
s∈Dt

∥IIt(s)∥ < C coth rt.

Let 0 < α < (1 + C)−1 < 1 and suppose that dH3 (p, q) < αrt. Let σt :
[0, 1] → H3 be the geodesic curve of H3 joining p to q. Then σt([0, 1]) ⊂
Tubαrt and thus the projection πt : σt([0, 1]) → Dt is well-defined. Let γt :=
πt ◦ σt. Then

∥

∥Γq
pηt(p)− ηt(q)

∥

∥ ≤ C coth rt × sup
s∈σt

∥dπt(s)∥

≤ C coth rt × sup
s∈Tubαrt

∥dπt(s)∥ × dH3 (p, q)

≤ C coth rt ×
tanh rt

tanh rt − tanh(αrt)
× αrt

≤ Cαrt
tanh rt − tanh(αrt)

∼ Cα

1− α
< 1

as t tends to zero. □
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Appendix B. Remarks on the polar decomposition

Let SL (2,C)++ be the subset of SL(2,C) whose elements are hermitian
positive definite. Let

Pol : SL(2,C) −→ SL (2,C)++ × SU(2)
A 7−→ (Pol1(A),Pol2(A))

be the polar decomposition on SL(2,C). This map is differentiable and sat-
isfies the following proposition.

Proposition 14. For all A ∈ SL(2,C), ∥dPol2 (A)∥ ≤ |A|.

Proof. We first write the differential of Pol2 at the identity in an explicit
form. Writing

dPol2(I2) : sl(2,C) −→ su(2)
M 7−→ pol2(M)

gives

pol2

(

a b
c −a

)

=

(

i Im a b−c
2

c−b̄
2 −i Im a

)

.

Note that for all M ∈ sl(2C),

|pol2(M)|2 = 2 (Im a)2 +
1

4

(

|b− c|2 +
∣

∣c− b
∣

∣

2
)

≤ |M |2 − 1

2
|b+ c|2

≤ |M |2 .

We then compute the differential of Pol2 at any point of SL(2,C). Let
(S0, Q0) ∈ SL (2,C)++ × SU(2). Consider the differentiable maps

ϕ : SL(2,C) −→ SL(2,C)
A 7−→ S0AQ0

and
ψ : SU(2) −→ SU(2)

Q 7−→ QQ0.

Then ψ ◦ Pol2 ◦ ϕ−1 = Pol2 and for all M ∈ TS0Q0
SL(2,C),

dPol2 (S0Q0) ·M = pol2
(

S−1
0 MQ−1

0

)

Q0.
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Finally, let A ∈ SL(2,C) with polar decomposition Pol(A) = (S,Q).
Then for all M ∈ TASL(2,C),

|dPol2(A) ·M | =
∣

∣pol2
(

S−1MQ−1
)

Q
∣

∣ ≤ |S| × |M |

and thus using

S = exp

(

1

2
log (AA∗)

)

gives

∥dPol2(A)∥ ≤ |S| ≤ |A| .

□

Corollary 3. Let 0 < q < log ρ and F1, F2 ∈ ΛSU(2)ρ with unitary parts
Qi = Pol2(Fi(e

−q)). Let ϵ > 0 such that

∥

∥F−1
2 F1 − I2

∥

∥

ρ
< ϵ.

If ϵ is small enough, then there exists a uniform C > 0 such that for all
v ∈ TI2H

3,

∥Q2 · v −Q1 · v∥TI2
H3 ≤ C ∥F2∥2ρ ϵ.

Proof. Let v ∈ TI2H
3 and consider the following differentiable map

ϕ : SU(2) −→ TI2H
3

Q 7−→ Q · v.

Then

∥Q2 · v −Q1 · v∥TI2
H3 = ∥ϕ(Q2)− ϕ(Q1)∥TI2

H3

≤ sup
t∈[0,1]

∥dϕ(γ(t))∥ ×
∫ 1

0
|γ̇(t)| dt

where γ : [0, 1] −→ SU(2) is a path joining Q2 to Q1. Recalling that SU(2)
is compact gives

(B.4) ∥Q2 · v −Q1 · v∥TI2
H3 ≤ C |Q2 −Q1|
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where C > 0 is a uniform constant. But writing Ai = Fi(e
−q) ∈ SL(2,C),

|Q2 −Q1| = |Pol2(A2)− Pol2(A1)|

≤ sup
t∈[0,1]

∥dPol2(γ(t))∥ ×
∫ 1

0
|γ̇(t)| dt

where γ : [0, 1] −→ SL(2,C) is a path joining A2 to A1. Take for example

γ(t) := A2 exp
(

t log
(

A−1
2 A1

))

.

Suppose now that ϵ is small enough for log to be a diffeomorphism from
D(I2, ϵ) ∩ SL(2,C) to D(0, ϵ′) ∩ sl(2,C). Then

∥

∥A−1
2 A1 − I2

∥

∥ ≤
∥

∥F−1
2 F1 − I2

∥

∥

ρ
< ϵ

implies

|γ(t)| ≤ rC |A2| and |γ̇(t)| ≤ rC pC |A2| ϵ

where rC, pC > 0 are uniform constants. Using Proposition 14 gives

|Q2 −Q1| ≤ pC rC2 |A2|2 ϵ

and inserting this inequality into (B.4) gives

∥Q2 · v −Q1 · v∥TI2
H3 ≤ C pC rC2 |A2|2 ϵ ≤ C pC rC2 ∥F2∥2ρ ϵ.

□
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