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Let Ω be a Stein space with a compact smooth strongly pseudo-
convex boundary. We prove that the boundary is spherical if its
Bergman metric over Reg(Ω) is Kähler-Einstein.

1. Introduction

For any bounded domain in D ⊂ Cn, its Bergman metric is a canonical bi-
holomorphically invariant Kähler metric over D. Cheng-Yau [CY80] proved
that there exists a complete Kähler-Einstein metric on a bounded pseudo-
convex domain in Cn with a C2-smooth boundary. A well-known open ques-
tion initiated from the work of Cheng-Yau [CY80] asks when the Bergman
metric on a smoothly bounded domain coincides with its Cheng-Yau Kähler-
Einstein metric. Cheng conjectured in [C79] that the Bergman metric of a
smoothly bounded strongly pseudoconvex domain is Kähler-Einstein if and
only if the domain is biholomorphic to the ball. This conjecture was solved
by Fu-Wong [FW97] and Nemirovski-Shafikov [NS06] in the case of complex
dimension two and was verified in a recent paper of Huang-Xiao [HX16]
for any dimensions. Recently, Ebenfelt-Xiao-Xu [EXX20] introduced a new
characterization of the two-dimensional unit ball B2, more generally, two-
dimensional finite ball quotients B2/Γ in terms of algebracity of the Bergman
kernel. There have been also other related studies on versions of the Cheng’s
conjecture in terms of metrics defined by other important canonical potential
functions as in the work of Li [L1, L2, L3].

On a complex space Ω with possible singularities, Kobayashi [Kob] de-
fined the Bergman kernel form on its smooth part Reg(Ω) which is natu-
rally identified with the Bergman kernel function in the domain case. The
Kobayashi Bergman kernel form can be similarly used to define a Kähler
form on Reg(Ω) under certain geometric conditions on Ω, which are always
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the case when Ω is a Stein space with a compact smooth strongly pseudo-
convex boundary. In this paper, we address the generalized Cheng question
of understanding the geometric implication when the Bergman metric of a
Stein space with a compact strongly pseudoconvex boundary has the Ein-
stein property.

To state our main theorem, we first introduce a few notations. Let Ω
be a Stein space of dimension n with possibly isolated singularity and write
Reg(Ω) for its regular part. Write Λn(Reg(Ω)) for the space of the holo-
mophic (n, 0)-forms on Reg(Ω) and define the Bergman space of Ω as fol-
lows:

A2(Ω) :=

{

f ∈ Λn(Reg(Ω)) : (−1)
n2

2

∫

Reg(Ω)
f ∧ f <∞

}

.

Then A2(Ω) is a Hilbert sapce with the inner product:

(f, g) = (−1)
n2

2

∫

Reg(Ω)
f ∧ g, for all f, g ∈ Λn(Reg(Ω)).

We assume that A2(Ω) ̸= {0}. Let {fj}N1 be an orthonormal basis of A2(Ω)

and define the Bergman kernel to be KΩ =
∑N

j=1 fj ∧ f j . Here, N is either
a natural number or ∞. In a local holomorphic coordinate chart (U, z) on
Reg(Ω), we have

KΩ = kΩ(z, z)dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn in U.

Assume further that KΩ is nowhere zero on Reg(Ω). We define a Hermitian
(1, 1)-form on Reg(Ω) by ωB

Ω = i∂∂ log kΩ(z, z). We call ωB
Ω the Bergman

metric on Ω if it indeed induces a positive definite metric on Reg(Ω).
Notice that if Ω is a Stein space with a compact smooth strongly pseu-

doconvex boundary then Ω can be compactly embedded into a closed Stein
subspace of a certain complex Euclidean space. Then A2(Ω) is of infinite
dimension and it indeed defines a Bergman metric on Reg(Ω).

Our main purpose of this paper is to generalize results obtained in
[FW97] and [HX16] to Stein spaces with possible singularities:

Theorem 1.1. Let Ω be a Stein space with a compact smooth strongly
pseudoconvex boundary. If its Bergman metric ωB

Ω on Reg(Ω) is Kähler-
Einstein then ∂Ω is spherical.
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2. Proof of Theorem 1.1

In this section, we start with a strongly pseudoconvex complex manifold
M with a compact strongly pseudoconvex boundary. We denote by E the
exceptional set in M in the sense of Grauert [G62], that is, there exists a
blowing down map π :M → Ω from M to a Stein space Ω with isolated
singularities such that π−1(Sing(Ω)) = E and π :M \ E → Ω \ Sing(Ω) is a
biholomorphic map. Here, we denote by Sing(Ω) the set of singularities in
Ω and define Reg(Ω) := Ω \ Sing(Ω). Since the boundary of M is strongly
pseudoconvex then by a Theorem of Oshawa [Oh84] and Hill-Nacinovich
[HN05, Theorem 3.1] there exists a larger complex manifold M ′ ⊃M , that
contains M as its open subset.

Let Ωn,0(M) be the space of smooth (n, 0)-forms onM which are smooth
up to the boundary. Let Ωn,0

c (M) be the subspace of Ωn,0(M) with elements
having compact support in M . We define the L2 inner product on Ωn,0

c (M)
as following

(f, g) = (−1)
n2

2

∫

M
f ∧ g for all f, g ∈ Ωn,0

c (M).

Let L2
(n,0)(M) be the completion of Ωn,0

c (M) under the above inner product.

We denote by Hs(M), s ∈ R the Sobolev space of order s on M (see [FK72,
Appendix]). Write Λn(M) for the space of the holomorphic n-forms on M
and we define the Bergman space of M to be

A2(M) =

{

f ∈ Λn(M) : (−1)
n2

2

∫

M
f ∧ f <∞

}

.

Then A2(M) is a closed subspace of L2
(n,0)(M).

Let P : L2
(n,0)(M) → A2(M) be the orthogonal projection which we call

the Bergman projection of M . The reproducing kernel of the Bergman pro-
jection is denoted by KM (z, w). Let {fj}∞j=1 be an orthnormal basis of

A2(M). Let pr1 :M ×M →M and pr2 :M ×M →M be the natural pro-
jection from the product space. Then the reproducing kernel of the Bergman
projection P is a (n, n)-form on M ×M which can be written as

KM (z, w) =

∞
∑

j=1

pr∗1fj ∧ pr∗2fj =
∞
∑

j=1

fj(z) ∧ fj(w), ∀(z, w) ∈M ×M.

Here, fj(z) and fj(w) are considered as a (n, 0)-forms at (z, w) for each
j. Then KM (z, z) can be considered as a 2n-form on M which is called
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the Bergman kernel form on M . Both KM (z, w) and the Bergman kernel
KM (z, z) are independent of the choice of the orthonormal basis of A2(M).
In a local coordinate chart (U, z) of M with z = (z1, . . . , zn) we have

(2.1) KM (z, z) = kM (z, z)dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn,

where kM (z, z) =
∑∞

j=1 |f̂j(z)|2 with fj = f̂j(z)dz1 ∧ · · · ∧ dzn. Then ωB
M =

∂∂ log kM is a well defined Hermitian (1, 1)-form onM whereKM is nonzero.
We call ωB

M the Bergman metric over the subset where it is positive definite.
Since the Bergman metric over Reg(Ω) is well defined, thus ωB

M is a

well defined Bergman metric on M \ E. Write gM
αβ

= ∂2 log kM

∂zα∂zβ
and define

GM (z) := det(gM
αβ

). Then the Ricci tensor of the Bergman metric on M \ E
is given by

RM
αβ

(z) = −∂
2 logGM (z)

∂zα∂zβ
.

The Bergman metric on M \ E is called Kähler-Einstein when RM
αβ

= cgM
αβ

for some constant c. It is well-known that the constant c is necessary negative
(as we will also see later). Since ωB

M = π∗ωB
Ω overM \ E, thus ωB

M is Kähler-
Einstein over M \ E if and only if ωB

Ω is Kähler-Einstein over Reg(Ω).
Now, an equivalent version of Theorem 1.1 is as follows:

Theorem 2.1. Let M be a complex manifold with a compact smoothly
stronlgy pseudoconvex boundary. If the Bergman metric on M \ E is Kahler-
Einstein, then ∂M is spherical.

With Theorem 2.1 at our disposal and by a similar argument as in the
[NS06] and [HX16], we have the following:

Corollary 2.2. Let M be a Stein manifold with a compact smooth strongly
pseudoconvex boundary. If the Bergman metric on M is Kahler-Einstein,
then M is biholomorphic to the ball.

3. Localization of Bergman kernel forms

Assume now thatM is a complex manifold with a compact smooth strongly
pseudo-convex boundary. Fix w0 ∈M . Then KM (z, w0) is a holomorphic
(n, 0)-form with respect to z and is L2-integrable.

Let w = (w1, · · · , wn) be coordinates in a neighborhood of w0. We ex-
plain the meaning of L2-integrablity of KM (z, w0): Write dw = dw1 ∧ · · · ∧
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dwn and dw = dw1 ∧ · · · dwn. Write

KM (z, w0) = k̃M (z, w0) ∧ dw|w0
.

Then k̃M (z, w0) is a (n, 0)-form onM . By saying KM (z, w0) is L
2-integrable

with respect to z we meant that

(−1)
n2

2

∫

M
k̃M (z, w0) ∧ k̃M (z, w0) <∞.

The L2-integrability of K(z, w0) does not depend on the choice of coordi-
nates w.

For any p ∈ ∂M , there exists a coordinate chart (U, z) of M ′ centered
at p. Take a smooth strongly pseudocovnex domain D ⊂M ∩ U such that

(3.1) D ∩B(p, 2δ) =M ∩B(p, 2δ)

where B(p, 2δ) = {q ∈ U : |z(q)| < 2δ} with |z| =
√

|z1|2 + · · ·+ |zn|2 and δ
being sufficiently small. We then have the following localization result for
which there is no need to assume that the Bergman metric of M is Kähler-
Einstein.

Proposition 3.1. For p ∈ ∂M , let D ⊂M be a strongly pseudoconvex do-
main satisfying (3.1). Let kM (z, z), kD(z, z) be given as in (2.1). Then

(3.2) kM (z, z) = kD(z, z) + ϕ(z),

where ϕ(z) ∈ C∞(B(p, δ) ∩M).

Proof. We will follow the Fefferman [Fe74] localization method developed in
the domain case. For clarity, we proceed in two steps.

Step 1. Let (U,w) be a coordinate chart centered at p where
w=(w1, · · · , wn) are holomorphic coordinates. Write dw|w = dw1 ∧ · · · ∧
dwn|w, ∀w ∈ U . We fix w ∈ B(p, r) ∩M and set

fw(z) = KM (z, w)−KD(z, w)χD(z), z ∈M,

where χD is the characteristic function of D. Write fw(z) = f̃w(z) ∧ dw|w
and g̃w(z) = ∂f̃w where f̃w(z) is a L2-integrable (n, 0)-form on M , f̃w ⊥
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A2(M) and g̃w is a (n, 1)-form in H−1(M) with

supp g̃w ⊂ ∂D \ ∂M.

By the smoothing property, there is a sequence of (n, 0)-form {f̃ εw} on M
which are smooth up to M such that f̃ εw → f̃w in the L2 space. Set g̃εw =
∂f̃ εw. Since supp g̃w ⊂ ∂D \ ∂M , we can assume that supp g̃εw is contained
in a ε-neighborhood of ∂D \ ∂M . Moreover,

(3.3) f̃ εw → f̃w in L2
(n,0)(M), g̃εw → g̃w in H−1(M).

Fix a Hermitian metric g on M ′. For 0 ≤ q ≤ n, let L2
(n,q)(M) be the

space of L2-integrable (n, q)-forms with respect to g. When q = 0, this defi-
nition of the space L2

(n,0)(M) is the same as defined in Section 2. We denote

by N (q) the ∂-Neumann operator with respect to □
(q). For convenience, we

denote N (q) by N when it dose not cause any confusing. SinceM is strongly
pseudoconvex, then by the local regularity of N(see [Ke72] and [FK72]) we
have

(3.4) ∥ξNg̃εw∥s ≤ Cs(∥ξ1g̃εw∥s + ∥g̃εw∥−1), ∀s ≥ 0,

with {Cs} constants independent of w. Here, ξ(z), ξ1(z) ∈ C∞
0 (B(p, 32δ)) and

ξ1|suppξ ≡ 1, ξ|B(p,δ) ≡ 1. Since B(p, 2δ) ∩ ∂D \ ∂M = ∅, then ξ1g̃εw ≡ 0 when
ε is sufficiently small. Thus,

(3.5) ∥ξNg̃εw∥s ≤ Cs∥g̃εw∥−1.

By (3.3) and (3.5), {ξNg̃εw} is a Cauchy sequence in Hs(M) for any s ≥ 0.
Assume that ξNg̃εw → h in Hs(M) for any s ≥ 0. Then h ∈ C∞(M). On
the other hand, f̃ εw − P f̃ εw = ∂

∗
Ng̃εw where P : L2

(n,0)(M) → A2(M) is the
Bergman projection. Then

(3.6) ξ(f̃ εw − P f̃ εw) = ξ∂
∗
Ng̃εw = ∂

∗
(ξNg̃εw)− [ξ, ∂

∗
](ξ1Ng̃

ε
w).

By (3.5), we have

(3.7) ∥ξ(f̃ εw − P f̃ εw)∥s ≤ Cs∥g̃εw∥−1.

We claim that {∥g̃w∥−1} has uniform bound with respect to w ∈
B(p, δ) ∩M . We next give a proof of this Claim as follows:

Choose a real function ρ∈C∞(M ′) such that ρ≡ 1 in a 2σ-neighborhood
of ∂D \ ∂M denoted by Vσ inM ′. Write KD(z, w) = K̃D(z, w) ∧ dw|w for all
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w ∈M ∩B(p, δ). Since supp g̃w ⊂ ∂D \ ∂M , then ∀ϕ =
∑n

j=1 ϕjdz1 ∧ · · · ∧
dzn ∧ dzj ∈ Ω

(n,1)
c (M) we have (g̃w, ϕ) = (g̃w, ρϕ) and

(g̃w, ρϕ) = (∂f̃w, ρϕ) = (∂(K̃D(z, w)χD(z)), ρϕ)

= (K̃D(z, w)χD(z), ∂
∗
(ρϕ)) =

∫

D
K̃D(z, w) ∧ ∂∗(ρϕ)(3.8)

=

∫

V2σ

kD(z, w)dz1 ∧ · · · ∧ dzn ∧ ∂∗(ρϕ),

where K̃D(z, w) = kD(z, w)dz1 ∧ · · · ∧ dzn. Since d(V2σ, B(p, δ)) > 0 when
σ, δ are sufficinetly small then by a result of Kerzman [Ke72, Theorem 2] we
have

(3.9) sup
z∈Vσ

|kD(z, w)| ≤ C, ∀w ∈M ∩B(p, δ)

where C is a constant independent of w. Then from (3.8) and (3.9) we
have

(3.10) |(gw, ϕ)| ≤ C1∥ϕ∥1, ∀w ∈ B(p, δ) ∩M,

where the constant C1 does not depend on w ∈ B(p, δ) ∩M . Thus, we get
the conclusion of the Claim.

On the other hand, P f̃ εw → 0 in L2(M) as f̃w ⊥ A2(M). By (3.6) and the
Rellich lemma, we have ξ(f̃ εw − P f̃ εw) → hs in Hs(M) ∀s ≥ 0 for a certain
hs. Then by (3.3) we have hs = ξf̃w. Thus, from the above Claim and by
taking the limit in (3.7), we have

(3.11) ∥ξf̃w∥s ≤ C̃s.

Here, the constant C̃s does not depend on w ∈ B(p, r) ∩M .

Step 2. Write fw(z) = f̃w(z)dw|w and g̃w = ∂f̃w. Then D
α
wg̃w = ∂Dα

wf̃w for
any multi-index α = (α1, . . . , αn). Here, ∂ is defined with respect to the z-
direction. We still have Dα

wf̃w ⊥ A2(M) for any w ∈M ∩B(p, δ). Then by
a similar argument in Step 1, we have

(3.12) ∥ξDα
wf̃w∥s ≤ C̃s.

Here, constants C̃s do not depend on w ∈M ∩B(p, δ). Then by Sobolev
embedding theorem, we have that

(3.13) |ξDα
zD

β
wf̃w(z)| ≤ Cα,β , ∀α, β, ∀z ∈M,w ∈M ∩B(p, δ),
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where Cα,β are constants. Since ξ|B(p,δ) ≡ 1, thus (3.13) implies that f̃w(z)

is smooth up to B(p, δ) ∩M ×B(p, δ) ∩M . Thus, we get the conclusion of
the proposition if we take z = w ∈ B(p, δ) ∩M . □

Remark 3.2. It is an interesting question if we can work directly on the
Stein space to get the localization of the Bergman kernel forms. This de-
pends on the regularity of the ∂-Neumann operator on the Stein space.
Whereas the theory of the ∂-Neumann operator is very well developed on
complex manifolds, not much is known about the situation on singular com-
plex spaces. Ruppenthal [Ru11] has proved that the ∂-Neumann operator
Nn,1 : L

2
(n,1)(Reg(Ω)) → L2

(n,1)(Reg(Ω)) is a compact operator on the Stein
space Ω with only isolated singularities and compact strongly pseudocon-
vex boundary. It is still unknown if Nn,1 can gain more regularity which is
crucial in our proof.

Let BM (z) = GM (z)/kM (z, z). Then BM (z) is a globally-defined smooth
function on M although GM (z) and kM (z, z) are only locally given. The
following lemma is a generalization of a result of Diederich [Di70, Theorem
2]:

Lemma 3.3. BM (z) → (n+1)nπn

n! as z → ∂M .

Proof. By Lemma 3.1, for any p ∈ ∂M there exists a strongly pseudocovnex
domain D ⊂M which satisfies (3.1) such that

(3.14) kM (z, z) = kD(z, z) + ϕ(z)

where ϕ(z) ∈ C∞(B(p, δ) ∩M). Then

(3.15) log kM (z, z) = log kD(z, z) + log

(

1 +
ϕ(z)

kD(z, z)

)

, z ∈ D ∩B(p, δ).

Thus,

(3.16) gM
αβ

= gD
αβ

+
∂2

∂zα∂zβ
log

(

1 +
ϕ(z)

kD(z, z)

)

.

Since D can be seen as a strongly pseudoconvex domain in Cn with a smooth
boundary, then by Fefferman’s asymptotic expansion of Bergman kernels, we
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have

(3.17) kD(z, z) =
Φ(z)

rn+1(z)
+ Ψ(z) log r(z), z ∈ D.

where r is a Fefferman defining function for D and Φ,Ψ ∈ C∞(D) and
Φ(z) ̸= 0 for all z ∈ ∂D. Then

(3.18) log (1 +
ϕ

kD(z, z)
) = log

(

1 +
ϕ(z)rn+1

Φ+Ψrn+1 log r

)

= log (1 + frn+1)

where f = ϕ(z)
Φ+Ψrn+1 log r . Since n ≥ 2 and Φ|∂D ̸= 0, we have f ∈ C2(B(p, δ) ∩

M). By Taylor’s expansion,

(3.19) log(1 + frn+1) = frn+1 +O(f2r2(n+1)) as r → 0.

Thus, [log(1 + frn+1)]αβ → 0 as z → B(p, δ) ∩ ∂M for n ≥ 2. Then combin-
ing (3.18) and (3.19), one has

∂2

∂zα∂zβ
log

(

1 +
ϕ(z)

kD(z, z)

)

→ 0.

As a consequence,

(3.20)
GM (z)

GD(z)
→ 1

as z → ∂M ∩B(p, δ). From (3.14) we have

(3.21)
kM (z, z)

GM (z)
=
kD(z, z)

GM (z)
+

ϕ(z)

GM (z)
.

Combining (3.20) and (3.21) we have

(3.22)

∣

∣

∣

∣

kM (z, z)

GM (z)
− kD(z, z)

GD(z)

∣

∣

∣

∣

→ 0

as z → ∂M ∩B(p, δ). By [Di70, Theorem 2], we have

(3.23)
GD(z)

kD(z, z)
→ (n+ 1)nπn

n!

as z → ∂D. Substituting (3.23) into (3.22) we conclude the proof of the
lemma. □
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The following proposition is a generalization of a result of Fu-Wong
[FW97, Proposition 1.1] which gives a characterization when the Bergman
metric on M \ E is Kähler-Einstein.

Proposition 3.4. Let M be a relatively compact strongly pseudoconvex
complex manifold with a smooth boundary. The Bergman metric on M \ E
is Kahler-Einstein if and only if BM (z) = (n+1)nπn

n! for all z ∈M \ E.

Proof. If the Bergman metric on M \ E is Kähler-Einstein, then RM
ij

= cgM
ij

where c is a constant. By Lemma 3.1 and a direct calculation one has that
RM

ij
+ gM

ij
goes to zero as a tensor with respect to ωB

M when z → ∂M . Thus,

combining the Kähler-Einstein assumption one has c = −1 and this implies
that logBM (z) is a pluriharmonic function on M \ E. Now, for any holo-
morphic disk φ : ∆ →M \ E with φ is holomorphic in ∆ := {t ∈ C : |t| < 1},
smooth continuous up to ∆ and φ(∂∆) ⊂ ∂M , we have logBM (φ(t)) is har-
monic. Since it takes the constant value on the boundary by Lemma 3.3, it
takes a constant value log (n+1)nπn

n! over ∆. Now, since ∂M is strongly pseu-
doconvex, the union of such disks fills up an open subset of M \ E. Since

logBM is real analytic, we conclude that BM ≡ log (n+1)nπn

n! over M \ E.
If logBM (z) takes constant value, then the Bergman metric is obviously
Kähler-Einstien. □

LetD = {r > 0} be a strongly pseudoconvex domain given in (3.1) where
r is a defining for D. Then kD has following expansion

(3.24) kD(z, z) =
Φ(z)

rn+1(z)
+ Ψ(z) log r(z), z ∈ D

with Φ,Ψ ∈ C∞(D). Then from Proposition 3.4 we have the following

Lemma 3.5. Let M be a relatively compact strongly pseudoconvex complex
manifold with smooth boundary. Assume the Bergman metric on M \ E is
Kahler-Einstein. Then

(3.25) Ψ(z) = O(rk) on D ∩B(p, δ)

for any k > 0.
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Proof. By Proposition 3.4, we have the same identities as in [FW97, (1.1)].
Thus,

(3.26) J(kM ) = (−1)nCnk
n+2
M on D ∩B(p, δ),

where Cn = (n+1)nπn

n! . On the other hand,

(3.27) kM = kD + ϕ(z)

when z ∈ B(p, δ) ∩D, where ϕ ∈ C∞(B(p, δ) ∩D). Substituting (3.24) and
(3.27) into (3.26) and by a similar argument as in the proof of [FW97,
Theorem 2.1] we get the conclusion of the lemma. □

Let Ω ⊂ Cn be a bounded strongly pseudocovnex domain with smooth
boundary. The following Monge-Ampere type equation on Ω was introduced
by Fefferman [Fe76]

J(u) ≡ (−1)n det

(

u uβ
uα uαβ

)

= 1 in Ω

u = 0 at ∂Ω

(3.28)

Fefferman proved that Ω has a smooth defining function rF which satisfies

J(rF ) = 1 +O(rn+1
F ).

We call rF a Fefferman’s defining function for Ω. Let us recall Fefferman’s
construction of such defining function. The existence of such an rF can be
established in the following steps: Starting with Ω = {r > 0} and dr|∂Ω ̸= 0,
Fefferman defined recursively

u1 =
r

(J(r))1/n+1
,

us = us−1

(

1 +
1− J(us−1)

[n+ 2− s]s

)

, 2 ≤ s ≤ n+ 1.
(3.29)

Each us satisfies J(us) = 1 +O(rs) and un+1 is what we call Fefferman
defining function.
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Lemma 3.6. There exists a Fefferman’s defining function rF for D such
that

(3.30) rF =

(

πn

n!
kM

)− 1

n+1

on D ∩B(p, σ).

for some small σ.

Proof. First, by Lemma 3.1 we have kM = kD + ϕ(z). Then from the
Bergman kernel expansion of kD we have

kM (z, z) = kD + ϕ =
Φ(z)

rn+1
+Ψ(z) log r + ϕ

=
Φ+ rn+1Ψ log r + rn+1ϕ

rn+1

(3.31)

when z ∈ D ∩B(p, δ). Since kM (z, z) > 0 one has

Φ + rn+1Ψ log r + rn+1ϕ > 0

for all z ∈ D ∩B(p, δ). Thus,

(3.32) (kM )−
1

n+1 (z) =
r

(Φ + rn+1Ψ log r + rn+1ϕ)
1

n+1

is well-defined on D ∩B(p, δ). Moreover, from Lemma 3.5 we have that

(kM )−
1

n+1 ∈ C∞(B(p, δ) ∩D). Then by partition of unity, we can choose a
defining funciton r0 for D such that

(3.33) r0 =

(

πn

n!
kM

)− 1

n+1

on D ∩B
(

p,
δ

2

)

.

This idea has been crucially used in Huang-Xiao [HX16] to construct a
Fefferman’s defining function which satisfy the Monge-Ampere equation.

Let rF be a Fefferman defining function for D. Then rF = hr0 for some
h ∈ C∞(D) and h > 0 on D. Since

J(rF ) = hn+1J(r0) on ∂D

and J(rF ) = 1 on ∂D, thus J(r0) ̸= 0 on ∂D. Thus, by continuity J(r0) ̸= 0
in a neighborhood of ∂D. So the set K = {z ∈ D : J(r0) = 0} is a compact
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subset of D. Choose a cut-off function χ such that χ ≡ 1 in a neighborhood
of ∂D and χ ≡ 0 in a neighborhood of K. Set

u1 = χ
r0

(J(r0))
1

n+1

.

Then we still have J(u1) = 1 on ∂D. We notice that the Kahler-Einstein

condition of the Bergman metric implies that J(π
n

n! kM )−
1

n+1 = 1 for z ∈ D,
so J(r0) ≡ 1 on D ∩B(p, δ2) by the construction of r0 in (3.33). Then

(3.34) J(u1) = 1 on D ∩B(p, σ),

for some σ < δ
2 . Then from Fefferman’s construction of Fefferman defining

function (3.29) we see that

(3.35) u1 = u2 = · · · = un+1 = r0 on D ∩B(p, σ).

Combing with (3.34) and changing the values of un+1 in a certain compact
subset of M if needed, we get the conclusion of the lemma. □

4. Proof of Theorem 2.1

We first recall the Moser normal [CM74] form theory and the notion of
Fefferman scalar invariants [Gr85]. Let X ⊂ Cn be a real analytic strongly
pseudoconvex hypersurface with p ∈ X. There exist coordinates (z, w) =
(z1, · · · , zn−1, w) such that in this new coordinates p↔ 0 and X is locally
defined by an equation of the form

(4.1) 2u = |z|2 +
∑

|α|≥2,|β|≥2,v≥0

Al
αβ
zαzβvl

where α = (α1, · · · , αn−1), β = (β1, · · · , βn−1) and A
l
αβ

satisfying

• Al
αβ

is symmetric with respect to the permutation of indices in α and

β, respectively;

• Al
αβ

= Al
βα;

• trAl
22

= 0, tr2Al
33

= 0, tr3Al
33

= 0.

Here, for p, q ≥ 2, Al
pq is the symmetric tensor [Al

αβ
]|α|=p,|β|=q on Cn−1 and

the traces are the usual tensorial traces with respect to δij . Here, (4.1) is
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called the normal form of X at p and {Al
αβ

} are called the normal form

coefficients. When X is merely smooth, the expansion (4.1) is in the formal
sense.

Let D ⊂ Cn be a bounded strongly pseudoconvex domain with C∞-
smooth boundary with p = 0 ∈ ∂D. Using a Fefferman defining function r
in the asymptotic expansion of the Bergman kernel function

(4.2) kD(z, z) =
φ(z)

rn+1
+ ψ(z) log r,

if ∂D is in its normal form at p = 0, then any Taylor coefficient at 0 of φ of
order ≤ n, and that of ψ of any order is a universal polynomial in the normal
coefficients {Al

αβ
}. (See Boutet-Sjostrand [BS75] and a related argument in

[Fe79].) In particular, we have the following

Proposition 4.1 ([Ch81], [Gr85]). Let D be as above and suppose that
∂D is in the Moser normal form up to sufficiently high order. Let r be a
Fefferman defining function, and let ϕ, ψ be as in (4.2). Then φ = n!

πn +

O(r2). Write P2 =
φ− n!

πn

r2 |∂Ω. If n = 2, P2 = 0. If n ≥ 3, P2 = cn∥A0
22
∥2 for

some universal constant cn ̸= 0.

Proof of Theorem 2.1. For any p ∈ ∂M , let D and B(p, δ) be the sets as
chosen in lemma 3.1. Let rF be the Fefferman defining for D function as
chosen in lemma 3.6. By Fefferman’s Bergman asymptotic expansion on D,
we have

(4.3) kD(z, z) =
φ

rn+1
F

+ ψ log rF ,

where φ, ψ ∈ C∞(D) and φ|∂D ̸= 0. On the other hand, by lemma 3.1,

kM (z, z) = kD(z, z) + ϕ(z), z ∈ B(p, δ) ∩D

where ϕ ∈ C∞(B(p, δ) ∩D). Thus,

(4.4) kMr
n+1
F = φ+ ψrn+1

F log rF + ϕrn+1
F on B(p, δ) ∩D.

Substituting (3.30) to (4.4) we have

(4.5)
n!

πn
= φ+ ψrn+1

F log rF + ϕrn+1
F on D ∩B(p, σ).
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By [FW97, Lemma 2.2], we have

(4.6) φ− ϕrn+1
F − n!

πn
= O(rkF ), ψ = O(rkF ) on D ∩B(p, σ), ∀k > 0.

Thus,

(4.7) φ− n!

πn
= O(rn+1

F ) on D ∩B(p, σ).

When n = 2, ψ = O(rkF ) on D ∩B(p, σ), ∀k > 0 implies that ∂D ∩B(p, σ)
is spherical by a result of Burns-Graham [Gr85, pp.129] (also see [BdM90,
pp.23]). When n ≥ 3, it follows from (4.7) that P2 = 0 on ∂D ∩B(p, σ). By
Proposition 4.1, A0

22
= 0 at q ∈ D ∩B(p, σ) if ∂D is in the Moser normal

form up to sufficiently high order at q. By a classical result of Chern-Moser,
∂D ∩B(p, σ) is spherical. Thus, we get the conclusion of Theorem 2.1. □

Theorem 1.1 is a direct corollary of Theorem 2.1. Huang [H06] proved
that a Stein space with possible isolated normal singularities and with a
compact strongly pseudoconvex and algebraic boundary is biholomorphic to
a ball quotient. Then a direct corollary of Theorem 1.1 and [H06, Theorem
3.1] is the following

Corollary 4.2. Let Ω be a Stein space with isolated normal singularities
and a compact smoothly strongly pseudoconvex boundary ∂Ω. Assume the
∂Ω is CR equivalent to an algebraic CR manifold in a complex Euclidean
space. If the Bergman metric ωB

Ω on Reg(Ω) is Kahler-Einstein then Ω is
biholomorphic to a ball quotient Bn/Γ where Γ ⊂ Aut(Bn) is finite subgroup
with 0 ∈ Bn the only fixed point of any non-identity element of Γ.

5. Bergman metric on a ball quotient

Let Ω := Bn/Γ where Γ is a finite subgroup of Aut(Bn) with 0 as the unique
fixed point for each non-identity element. Then Ω is a Stein space with
only an isolated singularity. Let π : Bn → Bn/Γ be the standard branched
covering map. Write p = π(0). Let ωB be the Bergman metric on Ω.
Let A2(Ω) be the L2-integrable holomorphic (n, 0)-forms on Reg(Ω). Let
{αj}∞j=1 be an orthnormal basis of A2(Ω). Locally, write αj = ajdw, j ≥ 1

and kΩ(w,w) =
∑∞

j=1 |aj |2. Then ωB
Ω = i∂∂ log kΩ(w,w). Write π∗αj = fjdz

where dz = dz1 ∧ · · · ∧ dzn and {fj} are holomorphic functions on Bn \ {0}.
By the Hartogs extension theorem, {fj} can be holomorphically extended
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to Bn. Moreover, fj satisfies

fj ◦ γ(z) det γ = fj(z), ∀γ ∈ Γ, ∀z ∈ B
n.

Set A2
Γ(B

n) = {f ∈ A2(Bn) : f ◦ γ det γ = f, ∀γ ∈ Γ}. Then A2
Γ(B

n) is a
closed subspace of A2(Bn). Let PΓ : L2(Bn) → A2

Γ(B
n) be the orthogonal

projection. Let {fj}∞j=1 be an orthonormal basis of A2
Γ(B

n). Write

KΓ(z, w) =

∞
∑

j=1

fj(z)f j(w), z, w ∈ B
n.

KΓ(z, w) is then the Schwarz kernel of PΓ. That is,

PΓf =

∫

Bn

KΓ(z, w)f(w)dv

where dv is the Lebesgue measure on Cn. Define

QΓf =

∫

Bn

1

|Γ|
∑

γ∈Γ

K(γz, w) det γf(w)dv, ∀f ∈ L2(Bn)

where K(z, w) is the Bergman kernel function of the Bn. Then K(z, w) =
n!
πn

1
(1−z·w)n+1 and z · w = z1w1 + · · ·+ znwn. Then QΓf ∈ A2

Γ(B
n) for all f ∈

L2(Bn). Moreover,

(5.1)
1

|Γ|
∑

γ∈Γ

K(γz, τw) det γ det τ =
1

|Γ|
∑

γ∈Γ

K(γz, w) det γ, ∀τ ∈ Γ.

In fact, τ t = τ−1 ∈ Γ, ∀τ ∈ Γ where τ t is the transpose matrix of τ , then

1

|Γ|
∑

γ∈Γ

K(γz, τw) det γ det τ =
cn
|Γ|

∑

γ∈Γ

1

(1− ztγt · τw)n+1
det γ det τ

=
cn
|Γ|

∑

γ∈Γ

1

(1− zt(τ tγ)tw)n+1
det(τ tγ)

=
1

|Γ|
∑

γ∈Γ

K(γz, w) det γ.

Here, cn = n!
πn .
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Lemma 5.1.

(5.2) QΓ = PΓ on L2(Bn); KΓ(z, w) =
1

|Γ|
∑

γ∈Γ

K(γz, w) det γ.

Proof. For all f ∈ L2(Bn), write f = f1 + f2 where f1 = PΓf and f1 ⊥ f2
and f2 ⊥ A2

Γ(B
n). By (5.1), one has

QΓf =
1

|Γ|

∫

Bn

∑

γ∈Γ

K(γz, w) det γf1(w)dv+
1

|Γ|

∫

Bn

∑

γ∈Γ

K(γz, w) det γf2(w)dv

=
1

|Γ|

∫

Bn

∑

γ∈Γ

K(γz, w) det γf1(w)dv

=
1

|Γ|
∑

γ∈Γ

det γf1(γz) = f1(z)

=PΓf.

(5.3)

As a consequence, QΓ and PΓ have the same Schwarz kernel. Thus, we get
the conclusion of the second part of the lemma. □

Write ωΓ = i∂∂ logKΓ(z, z). Then we have the following

Lemma 5.2.

(5.4) π∗ωB
Ω = ωΓ.

Moreover, ωB
Ω is Kähler-Einstein if and only if ωΓ is Kähler-Einstein on

Bn \ {0}.

Proof. Let {αj} be an orthnormal basis of A2(Ω). Write αj = ajdw and
π∗αj = fjdz on Bn \ {0}. Here w = (w1, · · · , wn) are local coordinates on
Reg(Ω) and dw = dw1 ∧ · · · ∧ dwn. We have aj ◦ π detπ′ = fj . Since Γ ⊂
Aut (Bn), then | detπ′|2 = 1. Thus,

|aj ◦ π|2 = |fj |2, ∀j.(5.5)

1

in2

∫

Bn

fjfkdz ∧ dz =
1

in2

∫

Bn

π∗αj ∧ π∗αk =
1

in2 |Γ|
∫

Ω
αj ∧ αk = |Γ|δjk.

(5.6)
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For any f ∈ A2
Γ(B

n), there exist an α ∈ A2(Ω) such that π∗α = f(z)dz.
Thus, { 1√

|Γ|
fj} is an orthonormal basis of A2

Γ(B
n). Then combine with (5.5)

(5.7) KΓ(z, z) =
1

|Γ|

∞
∑

j=1

|fj(z)|2 =
1

|Γ| |aj ◦ π|
2 =

1

|Γ|π
∗kΩ.

By taking the ∂∂ log on both sides of the above equation we get the conclu-
sion of the lemma. □

Assume that ωB
Ω is Kähler-Einstein. Then ωΓ is Kahler-Einstein on Bn \

{0}. The Bergman kernel on Bn is denoted by K(z, z). Then

K(z, z) =
n!

πn
1

(1− |z|2)n+1
.

By Lemma 5.1

KΓ(z, z) =
1

|Γ|
∑

γ∈Γ

K(γz, z) det γ =
1

|Γ|
n!

πn

∑

γ∈Γ

1

(1− γz · z)n+1
det γ

=
n!

πn
1

|Γ|

[

1

(1− |z|2)n+1
+Ψ(z)

]

,

(5.8)

where Ψ =
∑

γ ̸=id
1

(1−γz·z)n+1 det γ. Since 1− γz · z ̸= 0, ∀z ∈ ∂Bn when γ ̸=
id, it follows that Ψ(z) ∈ C∞(Bn). Then

(5.9) ωΓ = i∂∂ logKΓ = i∂∂ log
1

(1− |z|2)n+1
+ i∂∂ log (1 + Ψ̃)

where Ψ̃ = Ψ(z)(1− |z|2)n+1. Write ωΓ = i
∑n

i,j=1 gijdzi ∧ dzj . By direct
calculation,

(5.10) gij = (n+ 1)

{

δij
1− |z|2 +

zizj
(1− |z|2)2

}

+O((1− |z|2)n−1).

Here, O(f) indicates that there exist a constant C > 0 such that the term
can be bounded by C|f | near ∂Bn. Then

det gij = (n+ 1)n
1

(1− |z|2)n+1
+O((1− |z|2)−n+1)

= (n+ 1)n
1

(1− |z|2)n+1
[1 +O((1− |z|2)2)].

(5.11)



✐

✐

“3-Li” — 2024/7/26 — 14:09 — page 1687 — #19
✐

✐

✐

✐

✐

✐

Bergman-Einstein metric on a Stein space 1687

Then the Ricci curvature with respect to ωΓ is given by

ΘΓ = i∂∂ log det gij = −(n+ 1)i∂∂ log (1− |z|2) + ∂∂[O((1− |z|2)2)]
= −(n+ 1)i∂∂ log (1− |z|2) +O(1).

(5.12)

Since ωΓ is Kahler-Einstein on Bn \ {0}, then ΘΓ = c0ωΓ where c0 is a con-
stant. From (5.9) and (5.12) we have

−(n+ 1)∂∂ log (1− |z|2) +O(1) = c0[−(n+ 1)∂∂ log (1− |z|2)(5.13)

+ ∂∂ log (1 + Ψ̃)].

Letting z → ∂Bn, we have c0 = −1.

Theorem 5.3. Set u = logKΓ. Then the Bergman metric on Reg(Ω) is
Kähler-Einstein with n ≥ 2 if u satisfies the following complex Monge-
Ampere equation

(5.14) det(uij) = ceu on B
n \ {0}, u|∂Bn

= ∞.

where c = (n+1)nπn|Γ|
n! . Conversely, if u satisfies (5.14), then the Bergman

metric on Reg(Ω) is Kähler-Einstein.

Proof. We only need to prove the necessary part. The proof is similar to
that for BM = const. From ΘΓ = −ωΓ, we have that log(detuij)− u is a
pluriharmonic function on Bn \ {0}. Write v = log(detuij)− u. Since n ≥ 2,
then v can be smoothly extended to Bn which is still denoted by v. Then v
is a pluriharmonic function on Bn. Thus, u = logKΓ satisfies the following

(5.15) detuij = eveu.

Substituting (5.11) to (5.15) we have
(5.16)

(n+ 1)n

(1− |z|2)n+1
[1 +O((1− |z|2)2)] = ev

n!

πn
1

|Γ|

[

1

(1− |z|2)n+1
+Ψ(z)

]

.

Letting z → ∂Bn, we have

ev → (n+ 1)nπn|Γ|
n!

.
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Since v is pluriharmonic on Bn, then

ev ≡ (n+ 1)nπn|Γ|
n!

, ∀z ∈ B
n.

Thus, u = logKΓ satisfies the following Monge-Ampere equation

(5.17) detuij = ceu,

where c = (n+1)nπn|Γ|
n! . □

We notice that if u = logKΓ satisfies (5.17) with KΓ(0, 0) ̸= 0, then by
continuity ωΓ is a well-defined complete Kaḧler-Einstein metric over Bn.
Hence, by the uniqueness of the Cheng-Yau metric [CY80], ωΓ is a hyperbolic
metric and thus by the uniformization theorem, we see that Γ = {id} and
thus Ω is biholomorphic to the ball. Namely, we have the following:

Corollary 5.4. Let Γ ⊂ Aut0(B
n) with n ≥ 2 be a non-trivial finite sub-

group with 0 as the only fixed point for each non-identity element of Γ. Let
KΓ be the function defined in (5.1). If KΓ(0, 0) ̸= 0, then the Bergman met-
ric of Reg(Bn/Γ) is not Kähler-Einstein.

Example 5.5. Suppose Ω = B3/Γ, where Γ = {γ1, γ2} and γ1 = id, γ2 =
diag(−1,−1,−1).

(5.18) KΓ =
3

π3

[

1

(1− |z|2)4 − 1

(1 + |z|2)4
]

=
4!

π3
|z|2(1 + |z|4)
(1− |z|4)4 .

Thus,

KΓ(0, 0) = 0.

Set u = logKΓ. Then

u = log
4!

π3
+ log |z|2 + log (1 + |z|4)− log (1− |z|4)4

= log
4!

π3
+ log |z|2 + 5|z|4 +O(|z|8).

(5.19)

By direct calculation,

u11 =
|z2|2
|z|4 +10|z|2+10|z1|2+O(|z|6), u12 = − 1

|z|4 z1z2+10z1z2+O(|z|6)

u21 = − 1

|z|4 z1z2+10z1z2+O(|z|6), u22 =
|z1|2
|z|4 +10|z|2+10|z2|2+O(|z|6).

(5.20)



✐

✐

“3-Li” — 2024/7/26 — 14:09 — page 1689 — #21
✐

✐

✐

✐

✐

✐

Bergman-Einstein metric on a Stein space 1689

Then detuij(0) = 20, butKΓ(0, 0) = 0. Thus, it follows that u = logKΓ does
not satisfy the Monge-Ampere equation (5.14). Hence, the Bergman metric
on Ω is not Kähler-Einstein.

When n = 1 and for any finite subgroup Γ ⊂ Aut(B1), assume |Γ| =
r, 1 ≤ r <∞. It is well known that Γ = {1, e2πi 1

r , · · · , e2πi r−1

r }. Thus, on B1

KΓ(z, z) =
1

π|Γ|
∑

γ∈Γ

1

(1− γz · z)2 det γ =
1

πr

r
∑

j=1

1

[1− e2πi
j

r |z|2]2
e2πi

j

r .

(5.21)

By Taylor’s expansion,

KΓ =
1

π

r
∑

j=1

∞
∑

k=0

(k + 1)e2πi
j

r
(k+1)|z|2k =

r

π

∞
∑

k=1

k|z|2(kr−1) =
r

π

|z|2(r−1)

(1− |z|2r)2 .

(5.22)

Set u = logKΓ. Then u11 = 2r2 |z|2(r−1)

(1−|z|2r)2 . Since c = 2πr, then one sees im-
mediately that

(5.23) u11 = ceu on B
1 \ {0}.

Notice that the sufficient part of Theorem 5.3 holds even for n = 1. We have
the following:

Proposition 5.6. For any finite subgroup Γ ⊂ Aut0(B
1), its Bergman met-

ric on Reg(B1/Γ) is Kähler-Einstein.

We finish off this paper by recalling the following generalized Cheng
conjecture formulated in [HX20]:

Conjecture 5.7. Let Ω be a normal Stein space with a compact spherical
boundary of complex dimension n ≥ 2. If the Bergman metric over Reg(Ω)
is Kähler-Einstein, then Ω is biholomorphic to Bn.
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