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We propose a conjecture that the monodromy group of a sin-
gular hyperbolic metric on a non-hyperbolic Riemann surface is
Zariski dense in PSL(2, R). By using meromorphic differentials
and affine connections, we obtain evidence of the conjecture that
the monodromy group of the singular hyperbolic metric cannot
be contained in four classes of one-dimensional Lie subgroups of
PSL(2, R). Moreover, we confirm the conjecture if the Riemann
surface is the once punctured Riemann sphere, the twice punctured
Riemann sphere, a once punctured torus or a compact Riemann
surface.

1. Introduction

We investigate the monodromy groups of singular hyperbolic metrics on Rie-
mann surfaces, not necessarily compact, in terms of some analytic property
of the underlying surfaces. This project lies in the intersection of algebra,
analysis and geometry of Riemann surfaces, and establishes a new connection
between Differential Geometry and Potential Theory on Riemann surfaces.
We also use techniques from some research works on cone spherical metrics
during the course of the investigation.

Y.F. is supported in part by China Scholarship Council. Y.S. is supported in part
by the National Natural Science Foundation of China (Grant No. 11931009) and
Anhui Initiative in Quantum Information Technologies (Grant No. AHY150200).
J.S. is partially supported by National Natural Science Foundation of China (Grant
Nos. 12001399 and 11831013) and the International Postdoctoral Exchange Fellow-
ship Program 2021 by the Office of China Postdoctoral Council. B.X. is supported
in part by the Project of Stable Support for Youth Team in Basic Research Field,
CAS (Grant No. YSBR-001) and the National Natural Science Foundation of China
(Grant Nos. 11571330, 11971450 and 12071449). Both Y.S. and B.X. are supported
in part by the Fundamental Research Funds for the Central Universities (Grant No.
WK3470000015).

1827



✐

✐

“7-Xu” — 2024/7/26 — 11:40 — page 1828 — #2
✐

✐

✐

✐

✐

✐

1828 Feng, Shi, Song, and Xu

1.1. Background of singular hyperbolic metrics

There have been many studies on singular hyperbolic metrics. Nitsche [21],
Heins [11], Yamada [28], Chou and Wan [2, 3] proved that an isolated singu-
larity of a hyperbolic metric must be either a cone singularity or a cusp one.
Actually, if the curvature of a conformal Riemannian metric on a punctured
neighbourhood is bounded below and above by two negative constants re-
spectively, then the isolated singularity of the metric must be either a cone
singularity or a cusp one (see [11, 13, 20]). We gave the explicit expressions
of hyperbolic metrics near isolated singularities in [6, 7] by using Complex
Analysis.

Let Σ be a Riemann surface, not necessarily compact, and D =∑∞
i=1(θi − 1)pi an R-divisor on Σ such that 0 ≤ θi ̸= 1, where {pi}∞i=1 is

a discrete closed subset of Σ. We call ds2 a singular hyperbolic metric rep-
resenting D if and only if

• ds2 is a conformal metric of Gaussian curvature −1 on Σ \ suppD,
where we denote {pi}∞i=1 by suppD.

• If θi > 0, then ds2 has a cone singularity at pi with cone angle 2πθi >
0. That is, in a neighborhood U of pi, ds

2 = e2u|dz|2, where z is a
complex coordinate of U with z(pi) = 0 and u− (θi − 1) ln |z| extends
continuously to z = 0.

• If θi = 0, then ds2 has a cusp singularity at pi. That is, in a neigh-
borhood V of pi, ds

2 = e2u|dz|2, where z is a complex coordinate of
V with z(pi) = 0 and u+ ln |z|+ ln (− ln |z|) extends continuously to
z = 0.

It was a classical problem about the existence and uniqueness of a hy-
perbolic metric with finitely many prescribed singularities on a compact
Riemann surface. By the Gauss-Bonnet formula, if ds2 is a hyperbolic met-
ric representing the divisor D =

∑n
i=1(θi − 1)pi with θi ≥ 0 on a compact

Riemann surface Σ, then there holds χ(Σ) +
∑n

i=1(θi − 1) < 0, where χ(Σ)
is the Euler number of Σ. More than half a century ago, by using Potential
Theory, Heins [11] proved the following.

Theorem 1.1. There exists a unique hyperbolic metric representing an R-
divisor D =

∑n
i=1(θi − 1)pi with θi ≥ 0 on a compact Riemann surface Σ if

and only if χ(Σ) +
∑n

i=1(θi − 1) < 0.
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Nearly three decades later, by using the PDE method, both McOwen
[19] and Troyanov [25] proved the same theorem for hyperbolic metrics with
only cone singularities. And McOwen [20, Theorems I and II] proved more
general results than Theorem 1.1, which give the existence and uniqueness
of conformal metrics with prescribed curvature and singularities on compact
Riemann surfaces.

1.2. Developing maps and subharmonic functions

From the viewpoint of a combination of Complex Analysis and G-structure
([8, Theorem 2.12] and [15, Theorem 2.2]), the concept of developing map is
naturally associated to a singular hyperbolic metric. In this manuscript, we
focus on the algebraic property of developing maps of singular hyperbolic
metrics on Riemann surfaces, which turns out to be interwoven with the an-
alytic property of underlying surfaces. To give all the details of the story, we
need to at first present the existence and the basic properties of developing
maps for singular hyperbolic metrics.

Theorem 1.2 ([15, Theorem 2.2]). Let ds2 be a singular hyperbolic
metric representing D on a Riemann surface Σ. Then there exists a mul-
tivalued locally univalent holomorphic map f : Σ \ suppD −→ H = {z ∈ C :
ℑ z > 0} called a developing map of ds2 such that ds2 = f∗ds20, where ds20 =
|dz|2/(ℑz)2 is the hyperbolic metric on the upper half-plane H and the mon-
odromy representation of f gives a homomorphism Mf : π1

(
Σ \ suppD

)
→

PSL(2,R), whose image has a well defined conjugacy class in PSL(2,R).

By abuse of notation, we just call the conjugacy class of image of Mf

the monodromy group of ds2. Any two developing maps of ds2 are related
by a fractional linear transformation in PSL(2,R).

We recall the classification of Riemann surfaces in terms of the existence
of a non-constant negative subharmonic function, which is a basic concept
in Potential Theory.

Definition 1.3 ([5, p.179]). Let Σ be a Riemann surface. We call Σ elliptic
if and only if Σ is compact. We call Σ parabolic if and only if Σ is not compact
and Σ does not carry a negative non-constant subharmonic function. We call
Σ hyperbolic if and only if Σ carries a negative non-constant subharmonic
function. We call Σ non-hyperbolic in short if it is either elliptic or parabolic.

For the convenience of readers, we list quite a few examples of parabolic/
hyperbolic Riemann surfaces as follows.
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• Each finitely punctured compact Riemann surface is parabolic, since
a subharmonic function on such a surface extends to the original com-
pact surface and then it must be constant.

• The maximal abelian cover of a punctured torus is a parabolic Rie-
mann surface by a theorem of Uludağ [27, p.298].

• The unit disk D := {z ∈ C : |z| < 1} is a hyperbolic Riemann surface
since log |z| is a negative subharmonic function on it. Hence, sub-
domains of D are also hyperbolic.

• The maximal abelian cover of the thrice punctured Riemann sphere is
hyperbolic by a result of McKean-Sullivan [18, Section 4]. See Section
3 for the definition of maximal abelian cover.

1.3. G-metrics

Thompson-Wick [24, Section 2] classified all the connected Lie subgroups of
GL(2,R) up to conjugacy. As a consequence, we could obtain all the four
classes of connected Lie subgroups of SL(2,R) as

{(
1 t
0 1

)
: t ∈ R

}
,

{(
et 0
0 e−t

)
: t ∈ R

}
,

{(
cos t sin t
− sin t cos t

)
: t ∈ R

}
and

{(
et s
0 e−t

)
: t ∈ R, s ∈ R

}
.

Moreover, by a direct computation, we also reach the following proposition.

Proposition 1.4. Up to conjugacy, we can classify all the positive dimen-
sional proper Lie subgroups of PSL(2, R) as the following five classes:

• the two-dimensional subgroup L =

{(
a b
0 a−1

)
: a > 0, b ∈ R

}
;

• the family {H1c : c > 0} of one-dimensional Lie subgroups H1c ={(
cn t
0 c−n

)
: n ∈ Z, t ∈ R

}
;

• the one-dimensional subgroup H2 =

{(
a 0
0 a−1

)
: a > 0

}
;

• the one-dimensional subgroup H ′
2 = H2

⋃ {(
0 b

−b−1 0

)
: b > 0

}
;
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• the one-dimensional subgroup H3=

{(
cos t sin t
− sin t cos t

)
: t∈R

}
/{±I2}.

We note that H ′
2 has two connected components and H2 is its identity com-

ponent. Denote by L0 the normal subgroup H11 =

{(
1 t
0 1

)
: t ∈ R

}
of L.

Definition 1.5. Let ds2 be a singular hyperbolic metric representing the
divisor D =

∑∞
i=1(θi − 1)pi, 0 ≤ θi ̸= 1 on a Riemann surface Σ, and G a

positive dimensional proper Lie subgroup of PSL(2, R). We call ds2 a G-
metric if the monodromy group of ds2 lies in the conjugacy class of G.
We call the monodromy group of ds2 is Zariski dense in PSL(2,R) if it is
not contained in the conjugacy class of any positive dimensional proper Lie
subgroup of PSL(2,R).

1.4. Main results and the conjecture

We state the main results and the conjecture of this manuscript as follows.

Theorem 1.6. Let ds2 be a singular hyperbolic metric on a non-hyperbolic
Riemann surface Σ. Then the following two statements hold:

• ds2 is not a G-metric if G is a Lie subgroup of PSL(2, R) which is
conjugate to H2, H

′
2, H3 or L0.

• If Σ is a compact Riemann surface, C, C \ {0} or a punctured torus,
then the monodromy group of ds2 is Zariski dense in PSL(2,R).

This theorem stimulates us to propose the following conjecture.

Conjecture 1.7. The monodromy group of a singular hyperbolic metric
on a non-hyperbolic Riemann surface is Zariski dense in PSL(2,R).

Remark 1.8. The compact Riemann surface case of Theorem 1.6 can be
thought of as an analogue of [4, Theorem 7], where G. Faltings proved the
Zariski dense property in PSL(2, C) for the monodromy groups of permis-
sible connections belonging to certain uniformization data on a compact
Riemann surface. However, we could not mimick the proof of [4, Theorem 7]
by Faltings for this case because the cone angles of the singular hyperbolic
metric in Theorem 1.6 don’t lie in {2π/n : n ∈ Z>1} in general.

We investigate G-metrics as G varies among all the positive dimen-
sional proper Lie subgroups of PSL(2,R) in the remaining sections of this
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manuscript. In Section 2, we prove that there exists no H3-metric on a
non-hyperbolic Riemann surface, and construct a family of H3-metrics with
countably many cone singularities on the unit disc. We show the non-exis-
tence of either H2-metric or H ′

2-metric on a non-hyperbolic Riemann surface
in Sections 3 and 4, respectively. In Section 5, we prove that there exists no
L-metric on a compact Riemann surface, C, C \ {0} or a punctured torus.
We also show that any L-metric on the unit disk is automatically an L0-
metric in this section. We prove Theorem 1.6 as a consequence of the results
proved in Sections 2-5 and make a discussion about Conjecture 1.7 in the
last section.

2. H3-metrics

In this section, we use the Poincaré disk model
(
D, 4|dz|2

(1−|z|2)2
)
rather than the

upper half plane model
(
H, |dz|2/(ℑ z)2

)
to investigate an H3-metric ds2

representing an R-divisor D on a Riemann surface Σ. Hence, there exists
a developing map f : Σ \ suppD −→ D of the metric ds2 such that ds2 =
f∗

(
4|dz|2/(1− |z|2)2

)
. Moreover, the monodromy of f lies in

U(1) =
{
z 7→ e

√
−1 tz : t ∈ [0, 2π)

}
.

Hence we may also call the metric ds2 a U(1)-metric. Motivated by [1],
we characterize a U(1)-metric in terms of a meromorphic one-form on Σ
satisfying some geometric properties (Lemma 2.1). We can also construct a
nonconstant bounded subharmonic function by using a developing map of a
U(1)-metric on Σ, which implies that Σ must be hyperbolic (Theorem 2.3).
In addition, using some meromorphic one-forms, we can construct a family
of U(1)-metrics on D (Proposition 2.4).

Lemma 2.1. Let ds2 be a U(1)-metric representing an R-divisor D =∑∞
i=1(θi − 1)pi on a Riemann surface Σ, and f : Σ \ suppD −→ D a devel-

oping map of ds2 with monodromy in U(1). Then the logarithmic differential
ω := d(log f) = df

f
of f extends to a meromorphic one-form on Σ which sat-

isfies the following properties:

(1) If p ∈ Σ \ suppD is a pole of ω, then p is a simple pole of ω with
residue 1.

(2) ds2 has no cusp singularity. Moreover, if ds2 has a cone singularity at
p ∈ suppD with cone angle 0 < 2πα /∈ 2π Z, then p is a simple pole of
ω with residue α.
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(3) If p is a cone singularity of ds2 with the angle 2πm ∈ 2π Z>1, then p is
either a zero of ω with order m− 1 or a simple pole of ω with residue
m.

(4) The real part ℜω of ω is exact outside the set of poles of ω: 2ℜω =
d(log |f |2).

We call ω a character one-form of the U(1)-metric ds2.

Proof. Since the developing map f : Σ \ suppD → D is a multi-valued holo-
morphic function with monodromy in U(1), its logarithmic differential
ω = df

f
is a (single-valued) meromorphic one-form on Σ \ suppD. Then we

prove the four properties of ω in what follows, from which ω extends to a
meromorphic one-form on Σ.

(1) Suppose that p ∈ Σ \ suppD is a pole of ω. We choose a function el-
ement f near p. Since f is a univalent holomorphic function near p,
there exists a complex coordinate z near p with z(p) = 0 such that

f = az + b, a ̸= 0. Then ω = f′(z)
f(z) dz =

a
az+bdz. Since p is a pole of ω,

we have b = 0 and then f = az, ω = dz
z
. Hence, p is a simple pole of ω

with residue 1.

(2) Since the developing map f of ds2 has monodromy in U(1), ds2 has
only cone singularities ([6, §3]). Suppose that p is a cone singularity of
ds2 with angle 0 < 2πα /∈ 2π Z. By [6, Lemma 2.4], we can choose a
function element f near p and a complex coordinate z near p such that
f = azα+b

czα+d with ad− bc = 1. Since f has monodromy in U(1), there

exists θ ∈ R such that e2π
√
−1θf = e2π

√
−1θ azα+b

czα+d = ae2π
√

−1αzα+b
ce2π

√
−1αzα+d

. This
is equivalent to the system:





ace2π
√
−1α(1− e2π

√
−1θ) = 0

(ade2π
√
−1α + bc)− e2π

√
−1θ(bce2π

√
−1α + ad) = 0 .

bd(1− e2π
√
−1θ) = 0

Solving it, we find that either c = b = 0 or a = d = 0. If a = d = 0, then
f = b

czα
, which contradicts that f takes values in D. Thus c = b = 0,

that is, f(z) equals µzα(µ ̸= 0), f(0) = 0. Hence ω = α
z
dz and p is a

simple pole of ω with residue α.

(3) Suppose that ds2 has a cone singularity at p with angle 2πm ∈ 2π Z>1.
By [6, Lemma 2.4], we can choose a complex coordinate z near p such

that f = azm+b
czm+d with ad− bc = 1, and ω = f′(z)

f(z) dz =
mzm−1

(azm+b)(czm+d)dz.
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If bd ̸= 0, then p is a zero of ω with orderm− 1, and limz→p f(z) =
b
d
∈

D \ {0}. If bd = 0, then we have b = 0 and d ̸= 0 since f takes values
in D. Hence, f(z) = azm

czm+d and p is a simple pole of ω with residue m.

(4) By a simple computation, we have 2ℜω = d (log f) + d (log f) =
d log |f |2. By (1-3), |f |2 is a single-valued smooth function outside
the poles of ω, where ℜω is also exact. □

Remark 2.2. An H3-metric with non-trivial monodromy has a unique
character one-form.

Theorem 2.3. There exists no H3-metric on a non-hyperbolic Riemann
surface.

Proof. Let ds2 be an H3-metric representing an R-divisor D on a Riemann
surface Σ and f : Σ \ suppD −→ D a developing map with monodromy in
U(1). By the proof of Lemma 2.1, |f | is a single-valued function on Σ \
suppD and extends continuously to Σ. If p ∈ Σ is a cone singularity of
ds2 with angle 0 < 2πα /∈ 2π Z, then by (2) of Lemma 2.1, we can choose
a neighborhood U of p with complex coordinate z such that z(p) = 0 and
f(z) = zα. Hence, |f(z)| = |z|α is a subharmonic function on U . If p ∈ Σ
is either a smooth point or a cone singularity with angle 2πm ∈ 2π Z>1 of
ds2, by (1,3) of Lemma 2.1, we can choose a holomorphic function element
f in a neighborhood V of p such that |f(z)| = |f(z)| is subharmonic on V .
Therefore, |f(z)| is a bounded non-constant subharmonic function on Σ,
which implies that Σ is a hyperbolic Riemann surface. □

Using certain meromorphic one-forms with simple poles and positive
residues on the unit disc D, we construct a family of U(1)-metrics on D in
the following proposition.

Proposition 2.4. Let
∑∞

j=1 aj be a convergent series of positive real num-
bers, {z1, z2, . . .} a closed discrete subset of the unit disc D, and h : D → C

a holomorphic function such that ℜ
∫ z

h dz has an upper bound. Then

ω :=

(∑∞
j=1

aj

z−zj + h(z)

)
dz is a meromorphic one-form on the unit disc

D. And there exists a positive number T and a 1-parameter family of U(1)-
metrics on D,
{
dσ2λ := f∗λ

(
4|dz|2

(1− |z|2)2
)
, λ ∈ (0, T )

}
where fλ(z) = λ · exp

(∫ z

ω

)
,

such that ω is the common character one-form of these metrics dσ2λ.
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Proof. Since
∑∞

j=1 aj <∞, the series
∑∞

j=1
aj

z−zj is uniformly convergent in

any compact subset K of D \ {z1, z2, . . .}. Thus
∑∞

j=1
aj

z−zj + h(z) is a
meromorphic function on D with simple poles z1, z2, . . . whose residues are
a1, a2, . . ., respectively. By the uniform convergence of

∑∞
j=1

aj

z−zj on a path

in D \ {z1, z2, . . .}, we can do the term-by-term integration and obtain

exp

(∫ z

ω

)
=

∞∏

j=1

(z − zj)
aj ·

(
exp

∫ z

hdz

)
.

Since
∑∞

j=1 aj <∞ and ℜ
∫ z
h has an upper bound, there existsM > 0 such

that ∣∣∣∣ exp
∫ z

ω

∣∣∣∣ =
∞∏

j=1

|z − zj |aj · eℜ
∫

z
h < 2

∑∞
j=1

ajeℜ
∫

z
h < M.

Solving the equation ω = d (log f) on D \ {z1, z2, . . .}, up to a complex mul-
tiple with modulus one, we obtain a 1-parameter family of multi-valued lo-
cally univalent holomorphic functions fλ(z) = λ · exp

(∫ z
ω
)
, λ ∈ (0, T ) :=

(0, 1/M), which take values in D and have monodromy in U(1). Hence,

dσ2λ := f∗λ

(
4|dz|2

(1−|z|2)2
)
, λ ∈ (0, T ), form a 1-parameter family of U(1)-metrics

with character one-form ω. □

Remark 2.5. The condition
∑∞

j=1 aj <∞ is optimal in Proposition 2.4.
In fact, if

∑∞
j=1 aj = ∞, then, by taking zj = 1− 1/(j + 1), we find that

the series
∑∞

j=1
aj

z−zj diverges at z = 0.

3. H2-metrics

Let ds2 be an H2-metric on a Riemann surface Σ. In this section, we can
obtain a holomorphic one-form on Σ from ds2 (Lemma 3.4), and prove that
Σ must be hyperbolic (Theorem 3.5). To this end, we need to recall some
preliminary results.

Proposition 3.1. ([10, Proposition 1.36])
Suppose X is path-connected, locally path-connected, and semilocally

simply-connected. Then for every subgroup H ⊂ π1(X,x0) there is a cov-
ering space p : XH → X such that p∗(π1(XH , x̃0)) = H for a suitably chosen
basepoint x̃0 ∈ XH .

Definition 3.2. For a path-connected, locally path-connected, and semilo-
cally simply-connected space X, we call a path-connected covering space
X̃ → X abelian if it is normal and has abelian deck transformation group.
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In particular, the commutator subgroup [π1(X), π1(X)] determines a

path-connected covering space XAb p−→ X by Proposition 3.1. Since the
commutator subgroup is normal, XAb is a normal covering space. And
the deck transformation group of the covering XAb p−→ X is isomorphic to
π1(X)/[π1(X), π1(X)], which is abelian. Hence XAb is an abelian covering
space, which is called the maximal abelian covering of X.

Lemma 3.3. ([16, Theorem 2]) There exists no non-constant bounded har-
monic function on any abelian cover of a non-hyperbolic Riemann surface.

We construct a holomorphic one-form from an H2-metric on a Riemann
surface in the following lemma.

Lemma 3.4. Let ds2 be an H2-metric representing the divisor
D=

∑∞
i=1(θi − 1)pi, 0 ≤ θi ̸= 1 on a Riemann surface Σ and f : Σ \

suppD → H a developing map of ds2 with monodromy in H2. Then the
following statements hold.

(1) The logarithmic differential ω := df
f

of f is a holomorphic one-form
on Σ \ suppD, which extends to a holomorphic one-form on Σ, which
we call the character one-form of ds2.

(2) The singularities of ds2 must be cone singularities with angles lying in
2π Z>1. In particular, a cone singularity with angle 2πm ∈ 2π Z>1 of
ds2 is a zero of ω with order m− 1.

(3) The developing map f : Σ \ suppD → H extends to a multi-valued holo-
morphic function on Σ which also takes values in H.

Proof. (1) Take a point p ∈ Σ \ suppD and choose a function element f of
f near p. Since f has monodromy in H2 and takes values in H, ω := df

f

does not depend on the choice of f and ω = df
f

is a holomorphic one-
form on Σ \ suppD. We postpone to (2) the proof that ω extends to a
holomorphic one-form on Σ.

(2) Since f has monodromy in H2, ds
2 has only cone singularities with

angles in 2π Z>1 ([6, §3]). Suppose that it has a cone singularity at p
with angle 2πm ∈ 2π Z>1. Then, by [6, Lemma 2.4], we can choose a
complex coordinate z near p such that f = azm+b

czm+d with ad− bc = 1, and

ω = mzm−1

(azm+b)(czm+d)dz. Since f takes values in H, we have bd ̸= 0 which

implies that p is a zero of ω with order m− 1, and limz→p f(z) =
b
d
∈

H. Hence, ω extends to a holomorphic one-form on Σ.
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(3) By (2), a function element of f extends to a cone singularity of ds2

analytically and achieves a value in H. Hence, f extends to a multi-
valued holomorphic function which also takes values in H. □

Theorem 3.5. There exists no H2-metric on a non-hyperbolic Riemann
surface.

Proof. Let ds2 be anH2-metric on a Riemann surface Σ. Then its developing
map f : Σ \ suppD −→ H extends to a multi-valued holomorphic function
on Σ which also takes values in H. Consider the maximal abelian covering
ΣAb p−→ Σ. Then p∗(π1(ΣAb, x̃0)) = [π1(Σ), π1(Σ)] for a suitably chosen base
point x̃0 ∈ ΣAb. Let [γ] be the homotopy class of a loop γ based at x̃0 and
f a function element of f near x0 = p(x̃0). Then the analytical continuation
f ◦ p[γ] of f ◦ p along γ equals f[p◦γ] = f[aba−1b−1] = f for some two loops a and b
based at x0 = p(x̃0). Since f ◦ p is a non-constant single-valued holomorphic
function on ΣAb taking values in H, both real and imaginary parts of f◦p−i

f◦p+i
are non-constant bounded harmonic functions on ΣAb. Thus Σ must be a
hyperbolic Riemann surface by Lemma 3.3. □

Remark 3.6. Let ds2 be an H2-metric on the unit disc D. Then it must
represent an effective divisor D and its developing map f extends to a multi-
valued holomorphic function on D. Since D is simply connected, f is a single-
valued holomorphic function on D and the effective divisor (f) associated
to f coincides with D. Hence, the study of H2-metrics on D is equivalent
to that of the critical sets of analytic self-maps of D. If suppD is a finite
subset of D, Heins [11, §19] observed that the developing map f for suppD
are precisely the finite Blaschke products with critical set suppD. Kraus [14]
gave a description of the critical sets of analytic self-maps of D, which are
countable in general.

4. H
′

2
-metrics

In this section, we construct a meromorphic quadratic differential from an
H ′

2 metric on a Riemann surface Σ (Lemma 4.1) and prove that Σ must be
hyperbolic (Theorem 4.3).

Firstly we recall some basic knowledge of quadratic differentials. A quad-
ratic differential q on Σ is a section of KΣ ⊗KΣ, a differential of type (2,0)
locally of the form φ(z)dz2, where KΣ is the canonical line bundle of Σ. It
is said to be holomorphic (or meromorphic) when φ(z) is holomorphic (or
meromorphic).
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Lemma 4.1. Let ds2 be an H ′
2-metric on a Riemann surface Σ, represent-

ing the divisor D =
∑∞

i=1(θi − 1)pi, 0 ≤ θi ̸= 1. Let f : Σ \ suppD → H be

a developing map of ds2, whose monodromy lies in H ′
2. Then q :=

(
df
f

)⊗2

is a holomorphic quadratic differential on Σ \ suppD which extends to a
meromorphic quadratic differential on Σ, called the character quadratic dif-
ferential of ds2. Moreover, we have the following.

(1) The singularities of ds2 must be cone singularities. Suppose that ds2

has a cone singularity at p ∈ suppD with the angle 2πα > 0, where α
is a non-integer. Then α = 1

2 + k, where k ∈ Z≥0. If k = 0, then p is
a simple pole of q; if k > 0, then p is a zero of q with order 2k − 1.

(2) If ds2 has a cone singularity at p ∈ suppD with angle 2πm ∈ 2π Z>1,
then p is a zero of q with order 2m− 2.

(3) The Z-divisor (q) associated to q is related to D by the equation (q) =
2 ·D.

Proof. Suppose that p ∈ Σ \ suppD, we choose a function element f of f near

p. Since f has monodromy in H ′
2 and takes values in H, q :=

(
df
f

)⊗2
does

not depend on the choice of f and q =
(
df
f

)⊗2
is a holomorphic quadratic

differential on Σ \ suppD. We postpone to (1-2) the proof that q extends to
a meromorphic quadratic differential on Σ.

(1) Since the monodromy of f lies in H ′
2, ds

2 has only cone singularities
([6, §3]). Suppose that ds2 has a cone singularity at p ∈ suppD with
angle 2πα > 0, where α is a non-integer. Then we can choose a function
element f near p and a complex coordinate z near p such that f = azα+b

czα+d
with ad− bc = 1. Since f has monodromy in H ′

2, by computation we
have α = 1

2 + k for some k ∈ Z≥0 and ad = −bc = 1/2, so f′ = αzα−1

(czα+d)2 ,

f(0) = b
d
∈ H, and q = α2z2α−2

(acz2α+bd)2dz
2. Therefore, if k = 0, then p is a

simple pole of ϕ; if k > 0, then p is a zero of ϕ with order 2k − 1.

(2) Suppose that ds2 has a cone singularity at p ∈ suppD with angle
2πm ∈ 2π Z>1. Then we choose a complex coordinate z near p such
that f = azm+b

czm+d with ad− bc = 1 and q = m2z2m−2

(azm+b)2(czm+d)2dz
2. Since f

takes values in H, we have bd ̸= 0, which implies that p is a zero of ϕ
with order 2m− 2, and limz→p f(z) =

b
d
∈ H.

(3) The equation (q) = 2 ·D follows from (1-2).
□
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Theorem 4.2. ([5, p.181]). Let Σ be a Riemann surface and p a point on
Σ. There exists the Green function with singularity p on Σ if and only if Σ
is hyperbolic.

Theorem 4.3. There exists no H ′
2-metric on a non-hyperbolic Riemann

surface.

Proof. Let ds2 be an H ′
2-metric on a Riemann surface Σ, f : Σ \ suppD → H

a developing map of it with monodromy in H ′
2 and q =

(
df
f

)⊗2
the charac-

ter quadratic differential of ds2. By Lemma 4.1, we have (q) = 2D, where q
has at worst simple poles. As the proof of [23, Lemma 3.1], the quadratic
differential q induces the canonical double cover π : Σ̂ → Σ, branching over
critical points of q whose orders are odd, such that π∗ϕ = ω⊗2, where ω is a
holomorphic one-form on Σ̂. Define f̂ := f ◦ π, which is a multi-valued holo-

morphic function on Σ̂. Since π∗q = π∗
(
df
f

⊗2
)
=

(
df̂

f̂

)⊗2
= ω⊗2, we have

ω = d(log f̂) (up to sign). Hence, f̂ has monodromy in H2 and is a devel-
oping map of the pull-back metric π∗ds2 on Σ̂, which is then an H2-metric.
By Theorem 3.5, Σ̂ is a hyperbolic Riemann surface.

By Theorem 4.2, we can take the Green function G on Σ̂ with singularity
p ∈ Σ̂. Then G is a positive harmonic function on Σ \ {p}, G+ log |z| is
harmonic near p, where z is a complex coordinate centered at p. And G is
the minimal function satisfying the aforementioned two properties. Hence,
u := max {−1,−G} is a negative subharmonic function on Σ̂ and equals
constant −1 near p. Moreover, it is neither a constant nor harmonic by the
minimal property of G. Note that the double cover π is a branched Galois
cover whose deck transformation group is generated by the holomorphic
involution τ on Σ̂, where τ acts on π−1(x) as a swap for all point x outside
the critical points of q with odd order. Then

F (x) :=
u(y) + u ◦ τ(y)

2
, where x ∈ Σ and y ∈ π−1(x),

is a negative subharmonic function on Σ. We claim that F is nonconstant.
Otherwise, since both u and u ◦ τ are subharmonic and their sum 2F is
harmonic, we find that u must be harmonic. Contradiction! Hence F is a
nonconstant negative subharmonic function on Σ, which implies that Σ is a
hyperbolic Riemann surface. □

Remark 4.4. Though Theorem 3.5 is contained in Theorem 4.3, we in-
tentionally spent the preceding section to narrate the former theorem and



✐

✐

“7-Xu” — 2024/7/26 — 11:40 — page 1840 — #14
✐

✐

✐

✐

✐

✐

1840 Feng, Shi, Song, and Xu

its preliminary lemma (Lemma 3.4) in detail since they have independent
interest.

5. L-metrics

In this section, we investigate an L-metric ds2 on a Riemann surface Σ.
In the first subsection, we find that ds2 induces an affine connection on Σ
(Lemma 5.3), by which we prove that there exists no L-metric on a compact
Riemann surface (Corollary 5.4). In the second one, we prove that there
exists no L-metric on C, C \ {0} or a punctured torus. We pay special at-
tention to L0-metrics in the last subsection and prove the non-existence of
them on a non-hyperbolic Riemann surface.

5.1. There exists no L-metric on a compact Riemann surface

In Differential Geometry, an affine connection is a geometric concept on a
smooth manifold which connects nearby tangent spaces so that it allows us
to differentiate tangent vector fields ([26, Section 6]). However, an affine
connection in the following definition is a different one in Complex Analysis
which was introduced by Gunning [9] and Mandelbaum [17, p.264]. We will
use the latter in this subsection.

Definition 5.1 ([9], [17, p.264]). Let Σ be a Riemann surface, {Uα, zα} a
complex atlas on Σ, and ψαβ = zα ◦ z−1

β : zβ(Uα ∩ Uβ) → zα(Uα ∩ Uβ) the
coordinate transition functions. We call a family of meromorphic func-
tions {hα : Uα → C = C ∪∞} an affine connection on Σ if for all p ∈ Uα ∩
Uβ there holds hβ

(
zβ(p)

)
= hα

(
zα(p)

)
·
(
dzβ
dzα

)−1
+ θ1(ψαβ

(
zβ(p))

)
, where

θ1ψ(z) =
ψ′′(z)
ψ′(z) .

Let h = {hα} be an affine connection on Σ. For each point p in Uα,
we choose a small loop Γ winding around p on counterclockwise and de-
fine the residue of h at p by Res(h, p) = 1

2πi

∫
Γ hαdzα, and the residue of

h by Res(h) =
∑

p∈ΣRes(h, p) provided that there exist only finitely many
nonzero summands. Note that Res(h, p) is independent of the choice of rep-
resentatives for h ([17, p.270]).

Lemma 5.2. [17, Lemma 2] Let h = {hα} be an affine connection on a
compact Riemann surface X. Then Res(h) = −χ(X), where χ(X) is the
Euler number of X.
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Lemma 5.3. Let ds2 be an L-metric on a Riemann surface Σ, represent-
ing the divisor D =

∑∞
i=1(θi − 1)pi, 0 ≤ θi ̸= 1. Let f : Σ \ suppD −→ H be

a developing map of ds2, whose monodromy lies in L. Let {Uα, zα} be a
complex atlas on Σ and ψαβ = zα ◦ z−1

β : zβ(Uα ∩ Uβ) → zα(Uα ∩ Uβ) the co-
ordinate transition functions. Then we have the following.

(1) h := {hα := f ′′/f ′ : Uα → C} is an affine connection on Σ \ suppD,
which extends to an affine connection on Σ.

(2) A singularity of ds2 is either a cusp singularity or a cone one with
angle 2πm ∈ 2π Z>1. Moreover, both a cusp singularity and a cone
one with angle 2πm are simple poles of f ′′/f ′, where the residues of h
are −1 and m− 1, respectively.

Proof. (1) We choose a point p in
(
Uα ∩ Uβ

)
\ suppD and take a function

element f of f in a neighborhood of p in Uα ∩ Uβ , where f ′′/f ′ is a
single-valued function since f has monodromy in L. Since

f′(zβ(p)) = f′
(
zα(p)

)
ψ′
αβ

(
zβ(p)

)

and

f′′
(
zβ(p)

)
= f′

(
zα(p)

)
ψ′′
αβ

(
zβ(p)

)
+ f′′

(
zα(p)

)
×
(
ψ′
αβ

(
zβ(p)

))2
,

we have

hβ
(
zβ(p)

)
=

f′′
(
zβ(p)

)

f′
(
zβ(p)

) =
ψ′′
αβ

(
zβ(p)

)

ψ′
αβ

(
zβ(p)

) +
f′′
(
zα(p)

)

f′
(
zα(p)

) ψ′
αβ

(
zβ(p)

)

= θ1

(
ψαβ

(
zβ(p)

))
+ hα

(
zα(p)

)(dzα
dzβ

)
(p).

Hence, f ′′/f ′ defines an affine connection on Σ \ suppD. We postpone
to (2) the proof that it extends to Σ.

(2) Since the monodromy of f lies in L, a singularity of ds2 is either a
cusp singularity or a cone one with angle 2πm ∈ 2π Z>1 ([6, §3]). If p ∈
suppD is a cusp singularity of ds2, by [6, Lemma 2.4], we can choose a
function element f near p and a complex coordinate z near p such that
f = a log z+b

c log z+d with ad− bc = 1. Since the monodromy of f belongs to L,

then by computation we have c = 0, ad = 1 and f = a2 log z + ab. Since
ℜ log z < 0 as |z| << 1 and f takes values in H, we obtain a2 = −

√
−1r
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for some r > 0. Hence, hα = f′′

f′
= −1

z
in a neighborhood uα of p and

Res(h, p) = −1.
Suppose that ds2 has a cone singularity at p with angle 2πm ∈

2π Z>1. Then we can choose a function element f near p and a complex
coordinate z near p such that f = azm+b

czm+d with ad− bc = 1. Since f is an

open map, we have limz→p f(z) =
b
d
∈ H and bd ̸= 0. Hence, we obtain

f′(z) = mzm−1

(czm+d)2 ,
f′′

f′
= m−1

z
− 2cmzm−1

czm+d (d ̸= 0), and Res(h, p) = m− 1.

Therefore, h = {hα = f ′′

f ′ : Uα → C} extends to an affine connection
on Σ. □

Corollary 5.4. There exists no L-metric on a compact Riemann sur-
face X.

Proof. Suppose that ds2 is an L-metric representing an R-divisor D on X.
Then, by Lemma 5.3, it has either cusp singularities or cone singularities
with angles lying in 2π Z>1. Hence, the divisor D has form D =

∑j
i=1(mi −

1)pi +
n∑

i=j+1
(−1)pi, wheremi ∈ Z>1. By Lemma 5.3, we have Res(h, pi) =

mi − 1 as 1 ≤ i ≤ j, and Res(h, pi) = −1 as i > j. By Lemma 5.2, we ob-
tain −χ(X) =

∑j
i=1(mi − 1)− (n− j) and χ(X) +

∑n
i=1(θi − 1) = χ(X) +∑j

i=1(mi − 1)− (n− j) = 0, which contradicts Theorem 1.1. □

5.2. Non-existence of L-metrics on C, C \ {0} or a punctured
torus

To prove this, we need the following.

Theorem 5.5. ([27, p.298]) Let Σ be a Riemann surface such that none of
its abelian covers is hyperbolic. Then Σ is the Riemann sphere, C, C \ {0},
a torus or a punctured torus.

Theorem 5.6. There exists no L-metric on C, C \ {0} or a punctured
torus.

Proof. Let ds2 be an L-metric on a Riemann surface Σ and f : Σ \ suppD →
H a developing map of it with monodromy in L. By Lemma 5.3, the singu-
larity of ds2 is either a cusp singularity or a cone one with angle 2πm ∈ Z>1.
By the proof of Lemma 5.3, if p ∈ suppD is a cusp singularity of ds2, then
we can choose a function element f near p and a complex coordinate z near p
such that f = −

√
−1r log z + s, where r > 0 and s ∈ R. Since −ℑ f = r log |z|
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extends to a negative subharmonic function in a neighborhood of p, −ℑ f
forms a multi-valued negative subharmonic function on Σ with monodromy
inH2. Taking the maximal abelian covering ΣAb π−→ Σ, we obtain a negative
non-constant subharmonic function (−ℑ f) ◦ π on ΣAb, which implies that
ΣAb is a hyperbolic Riemann surface. By Theorem 5.5, the Riemann surface
Σ is not isomorphic to C, C, C \ {0}, a torus, or a punctured torus. □

5.3. L0-metric

In this subsection, we obtain a meromorphic one-form satisfying some ge-
ometric properties from an L0 metric on a Riemann surface (Lemma 5.8),
by which we show the non-existence of L0-metrics on a non-hyperbolic Rie-
mann surface (Theorem 5.9). To this end, we need a preliminary lemma as
follows.

Lemma 5.7. ([22, Theorem 3.6.1]) Let U be an open subset of C, E a closed
polar set, and u a subharmonic function on U \ E. Suppose that each point
of U \ E has a neighbourhood N such that u is bounded above on N \ E.
Then u extends uniquely to a subharmonic function U .

Lemma 5.8. Let ds2 be an L0-metric on a Riemann surface Σ, represent-
ing the divisor D =

∑∞
i=1(θi − 1)pi, and f : Σ \ suppD → H a developing

map of ds2 with monodromy in L0. Then ω := df is a holomorphic one-
form on Σ \ suppD and extends to a meromorphic one-form on Σ, which
we call the character one-form of ds2. Moreover, we have the following.

(1) If ds2 has a cusp singularity at p ∈ suppD, then p is a simple pole of
ω with residue −

√
−1r, where r > 0.

(2) If ds2 has a cone singularity at p ∈ suppD with angle 2πm ∈ 2π Z>1,
then p is a zero of ω with order m− 1.

Proof. Take a point p on Σ \ suppD and choose a function element f of f near
p. Since f has monodromy in L0, ω = df does not depend on the choice of the
function element f. Hence ω = df is a holomorphic one-form on Σ \ suppD.
We postpone to (1-2) the proof that it extends to a meromorphic one-form
on Σ.

(1) By Lemma 5.3, ds2 has cusp singularities or cone ones with angles lying
in 2π Z>1. Let p ∈ suppD be a cusp singularity of ds2. By the proof of
Lemma 5.3, we can choose a function element f near p and a complex
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coordinate z near p such that f = −
√
−1r log z + s, where r > 0. So

ω = df = −
√
−1r
z

dz has a simple pole at p with residue −
√
−1r.

(2) Suppose that ds2 has a cone singularity at p with angle 2πm ∈ 2π Z>1.
We can choose a function element f near p and a complex coordinate z
near p such that f = azm+b

czm+d with ad− bc = 1, and ω = df = mzm−1

(czm+d)2dz.
Since f takes values in H, we can see that d ̸= 0, p is a zero of ω with
order m− 1, and limz→p f(z) = b

d
∈ H. □

Theorem 5.9. There exists no L0-metric on a non-hyperbolic Riemann
surface.

Proof. Let ds2 be an L0-metric ds2 on a Riemann surface Σ, and f : Σ \
suppD → H a developing map of ds2 with monodromy in L0. Then −ℑ f
is a negative non-constant harmonic function on Σ \ suppD and then it is
also subharmonic. Since an isolated point is polar, by Lemma 5.7, −ℑf
extends to a negative non-constant subharmonic function on Σ. Hence, Σ is
a hyperbolic Riemann surface. □

Proposition 5.10. An L-metric on D actually has monodromy in L0.

Proof. Let ds2 be an L-metric representing an R-divisor D on the unit disc D.
Let f : D \ suppD → H a developing map of ds2 with monodromy in L. By
Lemma 5.3, f ′′/f ′ is a meromorphic function on D whose residues are all in-

tegers. Hence, taking z0 ∈ D \ suppD, we find that f ′(z) = exp
(∫ z

z0

f ′′

f ′ dz
)
+

f ′(z0) is a meromorphic function on D, and then the monodromy of f lies
in L0. □

Example 5.11 ([15, Example 2.1]). Let
∑∞

j=1 aj be a convergent series of
positive numbers and {zj}∞j=1 ⊂ D a closed discrete subset. Then h(z) :=∑∞

j=1
aj

z−zj is a meromorphic function on the unit disc D and there exists
a real number λ0 and a 1-parameter family of L0-metrics representing the
same Z-divisor D = (h) on D. Hence, these metrics have cusp singularities
at zj ’s and a cone singularity of angle 2π

(
1 + ordw(h)

)
at a zero w of h.
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6. Proof of Theorem 1.6 and some discussions

Proof of Theorem 1.6. Let ds2 be a singular hyperbolic metric on a non-
hyperbolic Riemann surface Σ. The first statement follows from Theo-
rems 4.3, 2.3 and 5.9. The second one follows from the first one, Corol-
lary 5.4, Theorem 5.6, and the classification of positive dimensional proper
Lie subgroups of PSL(2, R) given in the introduction. □

We would like to make a discussion about Conjecture 1.7, which claims
that a singular hyperbolic metric on a non-hyperbolic Riemann surface has
Zariski dense monodromy in PSL(2, R). By Theorems 4.3, 2.3 and 5.9, the
conjecture is reduced to proving that the monodromy of a singular hyperbolic
metric on a non-hyperbolic Riemann surface does not lie in L. To show its
subtlety, let us consider a special parabolic Riemann surface – the thrice

punctured sphere C \ {0, 1}, whose maximal Abelian cover
(
C \ {0, 1}

)Ab

is a hyperbolic Riemann surface by a result of McKean-Sullivan [18, Section
4]. Hence, the argument for the non-existence of L-metrics in the proof of
Theorem 5.9 becomes invalid on C \ {0, 1}.

Both Proposition 2.4 and Example 5.11 show that the uniqueness of
hyperbolic metric representing a given R-divisor fails on D. However, the
hyperbolic metrics there are not complete in general even after adding their
cone singularities. We come up with the following.

Question 6.1. Let D =
∑∞

n=1 (θj − 1)pj be an R-divisor on D such that
0 ≤ θj ̸= 1 and {pn} is a discrete closed subset of D. When does there exist
a singular hyperbolic metric ds2 representing D such that it extends to a
complete metric on D \ {pn : θn = 0}? If yes, would it be unique? Hulin-
Troyanov [12, Theorem 8.2] answered these two questions affirmatively if
suppD is a finite subset of D.
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