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Carlotto-Li have generalized Marques’ path connectedness result
for positive scalar curvature R > 0 metrics on closed 3-manifolds
to the case of compact 3-manifolds with R > 0 and mean convex
boundary H > 0. Using their result, we show that the space of
asymptotically flat metrics with nonnegative scalar curvature and
mean convex boundary on R3\B3 is path connected. The argument
bypasses Cerf’s theorem, which was used in Marques’ proof but
which becomes inapplicable in the presence of a boundary. We also
show path connectedness for a class of maximal initial data sets
with marginally outer trapped boundary.

1. Introduction

Let MR>0 be the space of positive scalar curvature metrics on X endowed
with the smooth topology, and Diff(X) the group of diffeomorphisms acting
on X. Marques [Mar12] proves the following fundamental result.

Theorem 1.1 (Marques [Mar12]). Let X be a closed 3-manifold ad-
mitting a metric of positive scalar curvature. Then MR>0/Diff(X) is path
connected.

Marques’ beautiful proof combines Perelman’s Ricci flow with surgery
[Per02], the conformal method, and Gromov-Lawson’s gluing [GLJ80].

Based on this and using a deep theorem of Cerf [Cer68] that implies
the path connectedness of Diff+(D

3), the group of orientation preserving
diffeomorphisms of the (closed) 3-disc D3, Marques proves that the space
of asymptotically flat metrics on R3 with zero scalar curvature is path con-
nected, and furthermore that the space of asymptotically flat vacuum and
maximal solutions to the constraint equations of general relativity on R3 is
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path connected in a suitable topology. This improves the result of Smith-
Weinstein [SW04], who prove a similar result within a more restrictive class
of metrics.

Recently, Carlotto-Li [CL19] studied the space of positive scalar cur-
vature metrics with mean convex boundary, MR>0,H>0, on compact 3-
manifolds with boundary.1 After characterizing the topology of such mani-
folds, they prove the following fundamental generalization of Theorem 1.1.

Theorem 1.2 (Carlotto-Li [CL19]). Let X be a compact 3-manifold
with boundary that admits a metric with positive scalar curvature and mean
convex boundary. Then MR>0,H>0/Diff(X) is path connected.

Their delicate argument proceeds in two stages. They first combine
Miao’s desingularization with the doubling of Gromov-Lawson to double
the manifold across its boundary in a controlled way. They then study the
resulting double using a sequence of equivariant Ricci flows. Their result
extends to MR>0,H≥0/Diff(X) and MR≥0,H≥0/Diff(X), though the latter
behaves differently when X is diffeomorphic to S1 × S1 × I.

In analogy with Marques’ second result concerning R3, we show that
Theorem 1.2 implies the following, where B3 denotes the open topological
3-ball.

Theorem 1.3. Let Mk,p,ρ
R=0,H=0 be the space of asymptotically flat metrics

on R3\B3 as defined in Definition 2.1. Then Mk,p,ρ
R=0,H=0 is path connected

in the W k,p
ρ topology.

Remark 1.4. Thus given an asymptotically flat manifold with R = 0, H =
0, it is possible to continuously deform it to the Riemannian Schwarzschild
manifold (MS , gS), i.e., MS = R3\B1(0) with gS = (1 + 1

r )
4gE , whilst main-

taining R = 0, H = 0. Explicit paths of this kind to gS have been exploited to
obtain geometric inequalities as in Bray’s proof of the Riemannian Penrose
inequality [Bra01].

To prove Theorem 1.3, we construct a path between two arbitrary met-
rics in Mk,p,ρ

R=0,H=0, which we denote by g−1 and g2. We apply Lemma 4.2 to
g−1 and g2 separately, to obtain a pair of smooth metrics g0 and g1 satisfy-
ing a list of desirable properties. The rest of the argument lies in connecting
g0 and g1. This involves using Lemma 4.3 to endow S3\B3 (the compact
model of R3\B3) with two metrics g0, g1 in such a way that g0, g1 can be

1H is measured pointing out of X.
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joined by a continuous path of Yamabe positive metrics by [Esc92] and The-
orem 1.2. To finish the proof we need to invert the path on S3\B3 to a
path in Mk,p,ρ

R=0,H=0 on R3\B3. This is done in Lemma 4.5, which explicitly
constructs the relevant diffeomorphisms.

Carlotto-Li point out that their result implies a statement like Theo-
rem 1.3 by an argument along the lines of [Mar12]. Although this is true,
Marques’ argument alone does not strictly speaking yield the desired re-
sult for R3\B3. Towards the end of his proof, Marques employs the fact
that Diff+(D

3) is path connected, which follows from [Cer68]. Running the
same argument for R3\B3 eventually leads to one consider a possible path
between two elements of Diff∂(A

3), the group of boundary fixing diffeomor-
phisms of the closed 3-annulus A3 ≃ D3

r>r′\B
3
r′ . But as we show in Section 3,

Diff∂(A
3) is not path-connected and so the argument does not close. We get

around this issue by finding a more constructive proof that does not invoke
the homotopy type of diffeomorphism groups.

Remark 1.5. One wonders whether the arguments of Theorem 1.3 apply
to manifolds other than R3\B3, say (R3\B3) #X ′ for X ′ closed but not dif-
feomorphic to S3, or say with multiple boundary components R3\

⋃

i=1B
3
i .

Without modification however, the methods herein yield at best a result
modulo quotients by the relevant diffeomorphism groups.

Remark 1.6. We note that if the initial asymptotically flat metric is
smooth with R = 0, H = 0, then the path constructed in the proof of The-
orem 1.3 produces a continuous path of smooth metrics.

Theorem 1.3 gives the following.

Corollary 1.7. Let Mk,p,ρ
R≥0,H≥0 be the space of asymptotically flat metrics

on R3\B3 as defined in Definition 2.1. Then MR≥0,H≥0 is path connected

in the W k,p
ρ topology.

As in [Mar12], we also consider the constraint equations of general rela-
tivity, which are

16πµ = Rg + (Trgσ)
2 − |σ|2g,(1.1)

8πJ = divg (σ − (Trgσ)g)(1.2)

where g is a metric and σ a symmetric two-form on the manifold. We study
the set of asymptotically flat pairs (g, σ) on R3\B3 solving (1.1), (1.2) with
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µ = 0, J = 0 (vaccum) and Trgσ = 0 (maximal) along with the boundary
condition

(1.3) θ+ = −H +Trg(σ)− σ(ν, ν) = 0, H ≥ 0

where ν is the normal to ∂B3 pointing away from the asymptotically flat end.
In general relativistic terms, we say that ∂M is marginally outer trapped
when θ+ = 0.

Corollary 1.8. Let MBH be the space of pairs (g, σ) on R3\B3 defined in
Definition 2.1, which satisfy (1.1), (1.2), (1.3) with µ = 0, J = 0, Trgσ = 0.

Then MBH is path connected in the W k,p
ρ ⊕W k−1,p

ρ−1 topology.

Corollary 1.8 is relevant to general relativity because MBH represents a
certain class of initial data sets expected to give rise to a black hole space-
times. The path connectedness of MBH can be thought of as a necessary
condition for the so-called Final State Conjecture, which states that generic
black hole initial data sets asymptote to ones that isometrically embed into
the Kerr solution. The conjecture may be studied for initial data sets be-
longing to MBH . Assuming that the subset K ⊊ MBH of pairs (g, σ) that
isometrically embed into the Kerr spacetime lie in at most one component
of MBH , the disconnectedness of MBH would imply that certain initial
data sets describing black holes are unable to approach K in a continuous
way, which would spell trouble for the Final State Conjecture. Corollary 1.8
shows that no such tension arises.

2. Definitions and conventions

Bn is the topological open n-ball (not a metric ball), Dn is the closed topo-
logical n-disc, and An = Dn

r>r′\B
n
r′ is the closed 3-annulus.

If X is a manifold, Diff+(X) is the group of orientation preserving diffeo-
morphisms ofX, and ifX has a boundary, Diff∂(X) is the group of boundary
fixing diffeomorphisms on X.

Denote by gE the flat Euclidean metric on R3. For x ∈ R3, let w(x) =
(1 + |x|2)1/2. Then for any ρ ∈ R, any 1 < p <∞ and any open set Ω ⊂ R3,
the weighted Sobolev space W k,p

ρ (Ω) is the subset of W k,p
loc

(Ω) for which the
following norm is finite.

||u||W k,p
ρ,gE

(Ω) =
∑

|β|≤k

||w−ρ−n

p
+|β|∂βu||Lp(Ω)(2.1)
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Weighted spaces of continuous functions are defined by the norm

||u||Ck
ρ,gE

(Ω) =
∑

|α|≤k

sup
x∈Ω

w(x)−ρ+|α||∂αu(x)|(2.2)

and see [Max05, Lemma 2.1] for the standard embedding theorems in this
context.

Let M = R3\B3 be Euclidean space minus the unit ball. Besides the
Euclidean metric gE , we suppose that M is equipped with another Rieman-
nian, metric g ∈W k,p

loc
(M) such that (M, g) is complete. Here 1/p− k/n < 0

so that g is continuous. We call (M, g) asymptotically flat of order ρ < 0 if
g − gE ∈W k,p

ρ (M).

We denote byW k,p
ρ (M) =W k,p

ρ,g (M) the corresponding weighted function
spaces associated to the metric g. Analogously, we define the weighted func-
tion space Lp

ρ(M) and Ck
ρ (M), and C∞

ρ (M) = ∩∞
k=0C

k
ρ (M). These weighted

spaces are also serve to define an asymptotically flat initial data set for the
constraint equations. The only additional requirement is that σ, the second
fundamental form associated with the initial data set, behaves like a first
derivative of g ∈W k,p

ρ and thus belongs to W k−1,p
ρ−1 (M).

A metric g on an asymptotically flat manifold M with boundary ∂M is
conformally flat outside a compact set if there is a compact set containing
∂M outside of which the metric takes the form u4gE , where gE is the flat
metric metric.

Let us now define the main spaces of interest.

Definition 2.1. Let k be an integer ≥ 2, let −1 < ρ < 0, and p > 3/k.
Then

(i) Mk,p,ρ
R=0,H=0 denotes the set of metrics g ∈W k,p

ρ onM satisfying Rg = 0,
Hg = 0,

(ii) Mk,p,ρ
R≥0,H≥0 is defined in the same way except that we enlarge the cur-

vature restriction on g from Hg = 0 to Hg ≥ 0 and from Rg = 0 to
Rg ≥ 0,

(iii) MBH is defined as the set of pairs (g ∈W k,p
ρ , σ ∈W k−1,p

ρ−1 ) on M that
solve (1.1), (1.2), (1.3) with µ = 0, J = 0, Trgσ = 0.

3. Marques’ argument with a boundary

After proving Theorem 1.1 Marques turns to the case of asymptotically
flat metrics on R3 and proves the path connectedness of three spaces,
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MR=0, MR≥0, and MV where MV denotes the class of asymptotically flat
pairs (g, k) solving the vacuum, maximal constraint equations; Marques uses
weighted Hölder spaces rather than Sobolev, but this distinction is imma-
terial here. The hardest part of the argument concerns MR=0 and proceeds
in four stages.

(1) Based on work of Smith-Weinstein [SW04], Marques constructs a con-
tinuous path from any metric in MR=0 to a smooth, harmonically flat
metric g ∈ MR=0.

(2) With g in hand, Marques shows the existence of a diffeomorphism
ϕ : R3 → S3\{p} such that ϕ∗(g) = G4ḡ where ḡ is a metric on S3 with
positive Yamabe type and G is the Green’s function for the confor-
mal Laplacian Lḡ, i.e., a function on S3\{p} solving the distributional
equation Lḡ(G) = −4πδp.

(3) Using (2) and a theorem of Palais [Pal59] on extensions of local dif-
feomorphisms, Marques constructs a continuous family of diffeomor-
phisms ϕµ : R3 → S3\{p} with properties matching those in (2).

(4) The path connectedness of MR=0 results from combining (2) and
(3) with Theorem 1.1. The key step is to show that the diffeomor-
phisms so far constructed can be composed to produce a diffeomor-
phism F : R3 → R3 which can be realized by a continuous path of
diffeomorphisms Fµ : R3 → R3.

To show (4), Marques relies on a theorem of Cerf [Cer68] which implies that
Diff+(D

3) is path connected. It then remains to show that a diffeomorphism
F : R3 → R3 which is identity outside a compact set can be realized by a
continuous path µ ∈ [0, 1] of diffeomorphisms Fµ : R3 → R3, each identity
outside a compact set, such that Fµ=0 = id and Fµ=1 = F . Since each Fµ

gives an orientation preserving diffeomorphism of D3, the path connected-
ness of Diff+(D

3) guarantees the existence of the desired path Fµ.
So what of Marques’ argument for R3\B3?
At first sight, one can expect (1), (2), (3) to be suitably generalizable.

But with regards to (4), one would seek to show that composing the dif-
feomorphisms constructed produces a diffeomorphism F : R3\B3 → R3\B3

that is identity outside a compact set and identity within a neighborhood
of ∂B3, which permits preserving the mean curvature condition. To find a
continuous path of diffeomorphisms playing the role of Fµ, we thus consider
Diff∂(A

3). But at this point we run into the issue that Diff∂(A
3) has two
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connected components – a fact that can be derived from Hatcher’s Theorem
[Hat83].2

Theorem 3.1 (Hatcher’s Theorem). There is a weak homotopic equiv-
alence Diff(S3) ≃ O(4).

Corollary 3.2. Diff∂(A
3) has two connected components.

Proof. By Theorem 3.1 and the facts3 that there is a weak homotopic
equivalence Diff(S3) ≃ O(4)×Diff∂(D

3), and that Diff∂(D
3) → Diff(D3) →

Diff(S3) is a fibration, it follows that Diff∂(D
3) is weakly contractible. Now

consider the action on the standard embedding D3
r′ →֒ D3

r by Diff∂(D
3
r).

Letting Emb+(D
3
r′ , D

3
r) denote the space of orientation preserving embed-

dings of D3
r′ into D

3
r>r′ , this gives a fibration Diff∂(D

3
r) → Emb+(D

3
r′ , D

3
r)

with fiber of the standard embedding given by Diff∂(A
3). Putting these ob-

servations together, the long exact sequence of homotopy groups implies
that π0(Diff∂(A

3)) = π1(Emb+(D
3
r′ , D

3
r)). Since the derivative at the origin

gives a projection4 Emb+(D
3
r′ , D

3
r) → SO(3), and since π1(SO(3)) = Z\2Z,

it follows that Diff∂(A
3) has two connected components. □

In sum, the best case seems to be that Marques’ argument yields no more
than two connected components.

4. Proof

There are three main steps to the proof of Theorem 1.3. From now on M
denotes a manifold diffeomorphic to R3\B3.

1) Deformation. First we show Lemma 4.2, which gives a continuous
path ∈ Mk,p,ρ

R=0,H=0 from an arbitrary asymptotically flat metric to a
metric which is conformally flat outside a compact set.

2) Compactification. Then we show Lemma 4.3, which constructs a
diffeomorphism from M , now endowed with a metric (conformally flat
outside a compact set) with R = 0 and H = 0, to (S3\B3)\{p} such
that S3\B3 admits a metric of positive Yamabe type.

2We thank Sander Kupers for showing us that Corollary 3.2 can be shown without
Theorem 3.1.

3See for instance [Hat83] or more simply [Kup19, II].
4See for instance the proof of [Kup19, Lemma 9.2.3].
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3) Interpolation. In Lemma 4.5 we explicitly construct a continuous
family of diffeomorphisms from M to S3\B3 that permits combining
steps (1) and (2) whilst invoking Theorem 1.2 and [Esc92].

Steps (1), (2), (3) yield a proof of Theorem 1.3, whilst Corollaries 1.7, 1.8
follow relatively straightforwardly from Theorem 1.3.

4.1. Deformation

Before stating and proving Lemma 4.2, we recall the following result of
Maxwell. Let Fα,β denote the following operator ((∆− α)|M , (∂ν + β)|∂M )),
and let n be the dimension of M (3 in our case).

Proposition 4.1 (Maxwell [Max05]). Let (M, g) be asymptotically
flat of class W k,p

ρ , k ≥ 2, k > n/p, and suppose α ∈W k−2,p
ρ−2 and β ∈

W k−1− 1

p
,p. Then if 2− n<ρ< 0 the operator Fα,β :W k,p

ρ →W k−2,p
ρ−2 (M)×

W k−1− 1

p
,p(∂M) is Fredholm with index 0. Moreover if α, β ≥ 0 then F is an

isomorphism.

We now prove the following.

Lemma 4.2. Let g−1 ∈ Mk,p,ρ
R=0,H=0. There is a path µ ∈ [−1, 0] → gµ ∈

Mk,p,ρ
R=0,H=0 such that g0 is smooth, conformally flat outside a compact set,

minimal boundary, and moreover this path is continuous in the W k,p
ρ topol-

ogy.

Proof. Let η be a smooth cut-off function 0 ≤ η ≤ 1 such that η(t) = 1 for
t ≤ 1 and η(t) = 0 for t ≥ 2. Pick R0 such that metric ball BR0

(0) contains
∂M . Given the metric g−1 ∈ Mk,p,ρ

R=0,H=0, set ηR(t) = η(t/R) for R > R0, and
define the new metric

gR = (1− ηR)gE + ηRg−1(4.1)

We can now approximate gR with a smooth g′R such that ||gR − g′R||W k,p
ρ

is
arbitrarily small.

For µ ∈ [−1, 0], we define gR,µ = (1 + µ)g′R − µg−1.
We now observe that by Proposition 4.1, F 1

8
Rg

−1
, 1
4
Hg

−1

is an isomor-

phism, and that consequently, for ||ĝ − g−1||W k,p
ρ

sufficiently small, F 1

8
Rĝ,

1

4
Hĝ

is also an isomorphism. So choosing ||g′R − gR|| sufficiently small and R large
enough, F 1

8
RgR,µ

, 1
4
HgR,µ

is an isomorphism.
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We may now consider the unique solution vR,µ to F 1

8
RgR,µ

, 1
4
HgR,µ

=

(18RgR,µ
,−1

4HgR,µ
).

Observe that ∆vR,µ = 1
8RgR,µ

(1 + vRµ
) = 1

8RgR,µ
u where u := 1 + vR,µ

and that ∂νvR,µ = −1
4HgR,µ

(1 + vR,µ) = −1
4HgR,µ

u. The path in Lemma 4.2
now follows by setting gµ = u4gR,µ. □

4.2. Compactification

Lemma 4.3. Let g be a smooth, asymptotically flat, conformally flat metric
outside a compact set with g = u4gE, onM ≃ R3\B3 with R = 0 and H = 0.
Denote by M a manifold diffeomorphic S3\B3 and p a point in the interior
of M . Then there exists a diffeomorphism ϕ :M →M\{p} and a smooth
function v :M → R such that

• outside a large ball in M we have ϕ = expg,p ◦Inv where Inv(x) := x
|x|2

is the inversion map,

• on M\{p} the metric g := ϕ∗(v
4g) extends smoothly to {p},

• the mean curvature of ∂M satisfies H = 0,

• (M, g) has positive Yamabe type.

Remark 4.4. This is the boundary version of [Mar12, Theorem 9.3], which
shows that an asymptotically flat manifold with positive scalar curvature
gives rise to a Yamabe positive metric on S3.

Proof. Let ϕ : R3 → S3\{p} be the inverse stereographic projection which
we restrict to M . We define v :M → R by

{

v(x) := 1
u(x)|x| for x near ∞,

v(x) := 1 for x in a neighborhood of Σ.
(4.2)

where Σ denotes the boundary of R3\B3. Clearly we can find v(x) which
smoothly interpolates between these two regions.

By construction g can be extended smoothly from M\{p} to M and we
have H = H due to v(x) = 1 in a neighborhood of Σ.

Moreover, it is easy to see that ϕ can be constructed such that ϕ =
exp ◦Inv outside a large ball.

Thus it remains to show that (M, g) has positive Yamabe type.
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For this, we begin with showing that G := ϕ∗(
1
v ) is a conformal Green’s

function on (M, g), that is

LgG = −4πδp and ∂νG = −
H̄

4
G = 0.(4.3)

Here L is again the conformal Laplacian LG = ∆G− 1
8RḡG. Observe that

∂νu = 0 and H̄ = 0, so the second condition of being a conformal Green’s
function is satisfied. Since the formula for scalar curvature under conformal
transformation yields

0 = R = −G5LgG,(4.4)

we obtain LgG = 0 outside {p}. Near {p} we have by construction G(y) =
1
|y| +O(1) where |y| denotes the distance from p to y with respect to g.

To show (4.3), we first let f be a smooth test function on M . In that
case, there exists, for every ϵ > 0, a δ ∈ (0, ϵ] such that |f(x)− f(p)| ≤ ϵ for
x ∈ Bδ(∞). Thus, we have

∫

Bδ(p)
f∆G =(f(p) +O(ϵ))

∫

Sδ(p)
∂νG(4.5)

=(f(p) +O(ϵ))(−4π +O(δ2))(4.6)

=− 4πf(p) +O(ϵ)(4.7)

which shows (4.3).
Escobar showed in [Esc92] that for some c ∈ R there exists a solution to

the Yamabe equation with boundary, i.e. there is a ζ :M → R+ such that
{

R
8 ζ −∆ζ = cζ5 for x ∈M,

∂νζ = −H
4 ϕ for x ∈ Σ.

(4.8)

The Yamabe type is then characterized by the sign of c. Thus, to show that
M has positive Yamabe type it suffices to show that c > 0. We compute

c

∫

M
Gζ5 =

∫

M
(−G∆ζ + 8GRζ)(4.9)

=−

∫

Σ
G∂νζ +

∫

M

(

⟨∇ζ,∇G⟩+
1

8
GRζ

)

(4.10)

=

∫

Σ

1

4
H̄Gζ −

∫

M
ζLgG+

∫

Σ
ζ∂νG(4.11)

=4πζ(p) > 0.(4.12)
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This finishes the proof. □

4.3. Interpolation

It remains to show that the path µ ∈ [0, 1] → gµ gives rise to a continuous

path from g0 to g1 in Mk,p,ρ
R=0,H=0. To do this, one needs to ‘invert’ Lemma

4.3 in a suitable way. This will be done using the usual blow up of gµ by
its conformal Green’s function Gµ. This blow up gives a new metric on
M\{p}, which in turn can be pulled back onto M by a continuous family of
diffeomorphisms ϕµ :M →M\{p}. The challenge is now to construct {ϕµ}.

Lemma 4.5. Let g0 and g1 be two metrics coming from Lemma 4.3, and let
gµ be a C∞-continuous path between these metrics. Moreover, let Gµ :M →
R be a continuous family of functions which satisfy in a small neighborhood
of p

Gµ(y) =
1

|y|gµ

+Aµ +Ok(|y|gµ
)(4.13)

where |y|gµ
denotes the distance of y to p with respect to gµ. Then there

exists a continuous path of diffeomorphisms ϕµ such that µ ∈ [0, 1] → gµ ≡
ϕ∗µ(G

4
µgµ) is a continuous path of asymptotically flat metrics gµ ∈ C∞(M) ∩

W k,p
ρ (M) on M .

Proof. Let ϕ :M →M\{p} be the diffeomorphism of Lemma 4.3. We choose
ϵ so small such that

• R3\B 1

ϵ

(0) is in the conformally flat regime of g0 and g1 so that g0 =

g1 = ψ∗gE in a small neighborhood around {p},

• ϕ = ψ ◦ Inv outside B 1

ϵ

(0) where ψ = expg
1
,p = expg

0
,p = expgE ,p in a

small neighborhood around {p},

• (R3\B 1

ϵ

(0)) ∩ Σ = ∅.

Our continuous family of diffeomorphisms ϕµ can now be defined as follows

ϕµ =

{

ϕ inside B 1

ϵ

(0)

ψµ ◦ Inv outside B 1

ϵ

(0)
(4.14)

where ψµ : Bϵ(0) →֒ S3 is a continuous path of maps, each diffeomorphic
onto their image, such that ψ0 = ψ1 = ψ on Bϵ(0). The task is now to show
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that gµ = ϕ∗µ(G
4
µgµ) is an asymptotically flat metric on M . To show this we

must construct ψµ suitably. To do so we set ψµ ≡ ψ ◦ fµ where fµ : Bϵ(0) →
Bϵ(0) is a diffeomorphism onto its image with f0 = f1 = Id. It now remains
to specify fµ.

On TpS
3 = R3 we have both the standard metric ψ∗gE and the metric

gµ(p). We choose an orthonormal basis {e1, e2, e3}µ for gE and rotate it
such a way that gµ(p) is diagonal, i.e. gµ(p) = diag(λ21, λ

2
2, λ

2
3)µ for some

numbers λi > 0. Note that the choice of orthonormal basis is continuous
with respect to µ. Although {e1, e2, e3}µ and (λ1, λ2, λ3)µ depend on µ, we
hereby suppress this to declutter the notation.

We now define fµ : Bϵ(0) → Bϵ(0)

fµ(x1, x2, x3) =

(

x1

λ̂1(r)
,
x2

λ̂2(r)
,
x3

λ̂3(r)

)

(4.15)

and where λ̂j , j = 1, 2, 3, are smooth, µ-dependent and satisfy

λ̂j(r) = λj(4.16)

for r =
√

x21 + x22 + x23 ≤ ξ where 0 < ξ < ϵ is chosen below. Moreover, we
impose that

λj(r) = 1(4.17)

for ϵ
2 ≤ x ≤ ϵ and that r

λ̂j(r)
is strictly monotone increasing. We can do this

by choosing ξ
2min{λ1,λ2,λ3}

< ϵ
2 . Since [0, 1] is compact, we can choose ξ uni-

form in µ. Moreover, fµ : Bϵ(0) → Bϵ(0) is a diffeomorphism that depends
continuously on µ, and ψµ is a diffeomorphism onto its image.

It now remains to show that the resulting metric gµ is asymptotically
flat. Note that this follows not immediately since ψµ(x) ̸= expgµ,p

(x).

For y in a neighborhood of p, define a metric ĝ by ĝ(y) = ψ∗(gµ(p)),
where we have interpreted ψ as map ψ : Bρ(0) ⊂ TpS

3 → S3 for some suffi-
ciently small ρ.

We now compare gµ and ĝ. For this purpose we take our previous or-
thogonal basis with respect to gµ(p), and orthonormal with respect to gE of
TpS

3 and scale it to be orthonormal with respect to gµ(p); that is, we set
ei =

1
λi
ei, i = 1, 2, 3, and exponentiate it onto S3 to obtain normal coordi-

nates on S3. By construction we have in these coordinate ĝij = δij and the
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normal coordinate formula yields

(gµ)ij(y) = δij +O2(|y|
2
gµ
)(4.18)

in a small neighborhood around {p}. Here the O2 denotes the higher order
estimates

∂k(gµ)ij = O(|y|), ∂k∂l(gµ)ij = O(1).(4.19)

Furthermore, ψµ = expĝµ,p in a small neighborhood of the origin. Next, we
pull back the normal coordinates under Dfµ to obtain an orthonormal basis
in TyR

3 for |y|gµ
very small. After scaling and inverting, this gives then an

orthonormal basis for TxR
3, |x| very large, which we denote by {ẽi}. We

compute

gµ(ẽi, ẽj) =((ψ ◦ fµ ◦ Inv)∗(G4
µḡµ))(x)(ẽi, ẽj)(4.20)

=
1

|x|4gµ

(

Gµ

(

ψ ◦ fµ

(

x

|x|2gµ

)))4

gµ

(

x

|x|2gµ

)

(ei, ej)(4.21)

Our assumptions on G together with equation (4.18) yield in particular

Gµ(y) =
1

|y|ĝµ
+O(1)(4.22)

and

|∇Gµ(y)|gµ
= O(|y|−2

ĝµ
), |∇2Gµ(y)|gµ

= O(|y|−3
ĝµ

).(4.23)

Combining this with the equation |ψ ◦ fµ(
x

|x|2gµ
)|ĝµ = 1

|x|gµ
implies

1

|x|4gµ

(

Gµ

(

ψ ◦ fµ

(

x

|x|2gµ

)))4

= 1 +O2(|x|
−1
gµ )(4.24)

and thus

gµ(ẽi, ẽj) = (1 +O2(|x|
−1
gµ ))(δij +O2(|x|

−2
gµ )) = δij +O2(|x|

−1
gµ ),(4.25)

i.e. gµ ∈ C∞(M) ∩ C2
−1(M) is asymptotically flat, which in turn implies gµ ∈

W 2,p
ρ (M). Higher k proceeds identically, and thus gµ ∈W k,p

ρ (M). □
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4.4. Proof of main theorems

Proof of Theorem 1.3. Take any two metrics g−1 and g2 in Mk,p,ρ
R=0,H=0 on

M . Our goal is to find a path gµ, µ ∈ [−1, 2] in Mk,p,ρ
R=0,H=0 connecting g−1

and g2.
Lemma 4.2 gives us a continuous path connecting g−1 to g0 and g2 to

g1 respectively, with g0, g1 smooth, R = 0, H = 0, conformally flat outside
a compact set containing ∂M .

Lemma 4.3 gives us a diffeomorphism from (M, g0) and (M, g1) onto
(S3\B3)\{p} that produces the manifold (S3\B3, g0) and (S3\B3, g1) where
g0 and g1 are of positive Yamabe type with minimal boundary.

Escobar’s work on the Yamabe problem with boundary [Esc92] guar-
antees that we can find a C∞-continuous path gµ, µ ∈ [0, 1/3] within the
conformal class of g0 to a metric with positive scalar curvature metric and
minimal boundary. Equally, we have a path from g1 to g2/3 with g2/3 having
positive scalar curvature and minimal boundary.

Theorem 1.2 of Carlotto-Li gives us a path gµ, µ ∈ [1/3, 2/3] between
these metrics. Next, we find as in [Esc92] conformal Green’s functions
Gµ, µ ∈ [0, 1], i.e., functions satisfying ∂νGµ − 1

4Hgµ
Gµ = 0 and ∆gµ

Gµ +
1
8Rgµ

Gµ = 4πδp where δp is the Dirac δ function. This places us in the set-
ting of Lemma 4.5, which allows us to lift the path gµ, µ ∈ [0, 1] to a path gµ
of asymptotically flat metrics of zero scalar curvature and minimal boundary.
Hence, we have constructed a continuous path gµ between g−1 and g2. □

Proof of Corollary 1.7. Consider the following PDE

{

∆ϕ− 1
8Rϕ = 0 on R3 \B3,

∂νϕ+ 1
4Hϕ = 0 on ∂B3

(4.26)

where ϕ→ 1 at ∞. As in the proof of Lemma 4.2, we can use Proposition 4.1
to solve this equation. Thus we can conformally deform both the scalar cur-
vature and mean curvature to zero. This places us in the setting of Theorem
1.3, which finishes the proof. □

For Corollary 1.8, we start with the relevant space of interest, MBH ,
defined to be the set of all doubles (g, σ) satisfying the vacuum, maximal
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Figure 1: Lemma 4.2 gives g2 → g1 and g−1 → g0, and Lemma 4.3 gives
g1 → g1 and g0 → g0. The path from g1 to g0 follows from [Esc92] and
Theorem 1.2, and finally Lemma 4.5 gives the blue dashed line which permits
lifting the path of metrics on S3\B3 to a path of metrics on M = R3\B3.

constraint equations

R = |σ|2g, trg σ = 0, ∇iσ
i
j = 0(4.27)

such that g ∈W k,p
ρ is asymptotically flat, σ ∈W k−1,p

ρ−1 (M), and the surface

Σ ≡ ∂M satisfies H + σ(ν, ν) ≤ 0 and H ≥ 0 where ν is the normal to ∂B3

pointing away from the asymptotically flat end..

Proof of Corollary 1.8. Our task is to show that MBH is path connected in
W k,p

ρ (M)⊕W k−1,p
ρ−1 (M). To do so we consider the larger set M̃BH given by



✐

✐

“8-Lesourd” — 2024/7/26 — 15:22 — page 1864 — #16
✐

✐

✐

✐

✐

✐

1864 S. Hirsch and M. Lesourd

replacing R = |σ|2g with R ≥ |σ|2g and H ≥ −σ(ν, ν) ≥ 0. Consider now the
deformation

(g, σ) → (g, (1− µ)σ), µ ∈ [0, 1](4.28)

Since H ≥ −σ(ν, ν) ≥ 0 and R ≥ |σ|2g this deformation take place in M̃BH ,

from which it follows by Corollary 1.7 that M̃BH is path connected. We
consider the conformal deformations ĝ = u4g and σ̂ = u−2σ, which in turn
implies |σ̂|2ĝ = u−12|σ|2g. We would like to preserve the mean curvature con-

dition H ≥ −σ(ν, ν) ≥ 0 and the scalar curvature condition R = |σ|2g under
this conformal deformations. Recalling the formula for the change in mean
curvature

Ĥ = u−2H + 4u−3∂νu(4.29)

and scalar curvature

R̂ = u−4R− 8u−5∆u(4.30)

we are led to the Lichnerowicz equation

{

∆u− 1
8Ru+ 1

8 |σ|
2u−7 = 0 on R3 \B3,

∂νu+ 1
4Hu− 1

4σ(ν, ν)u
−3 = 0 on ∂B3

(4.31)

where u→ 1 at ∞.
To solve this equation we use the method of sub and super solutions

from [Max05, Proposition 3.5]. We note that u = 1 is a supersolution. Next,
as in the proof of Lemma 4.2, we solve the equation

{

−∆ψ + 1
8Rψ = −1

8R,

∂νψ + 1
4Hψ = −1

4H
(4.32)

where ψ → 0 at ∞ and ψ ∈W k,p
ρ . Denoting u = 1 + ψ we have 0 < u ≤ 1

and

−∆u+
1

8
Ru−

1

8
|σ|2u−7 = −

1

8
|σ|2u−7 ≤ 0.(4.33)

Moreover,

∂νψ +
1

4
H(1 + ψ)−

1

4
H(1 + ψ)−3 = −

1

4
H(1 + ψ)−3 ≤ 0.(4.34)
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and so u is a subsolution, and thus there exists a solution u ∈ 1 +W k,p
ρ with

0 < u ≤ 1.
Uniqueness now follows in a standard way. Namely, if u1 and u2 are

solutions, then by the Lichnerowicz equation, u1 − u2 satisfies

((

∆−
1

8

(

R− |σ|2
u−7
1 − u−7

2

u1 − u2

))

,

(

∂ν +
1

4
H

(

1−
u−3
1 − u−3

2

u1 − u2

)))

(4.35)

× (u1 − u2) = 0

By the isomorphism of Proposition 4.1, it follows that u1 = u2. □
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