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We consider the Cauchy problem for the heat diffusion equation
in the whole Euclidean space consisting of two media with differ-
ent constant conductivities, where initially one has temperature
0 and the other has temperature 1. Suppose that the interface is
connected and uniformly of class C6. We show that if the inter-
face has a time-invariant constant temperature, then it must be a
hyperplane.

1. Introduction

Let Ω ⊂ R
N be a domain with N ≥ 2. Suppose that ∂Ω ̸= ∅ and ∂Ω is con-

nected. Denote by σ = σ(x) (x ∈ R
N ) the conductivity distribution of the

whole medium given by

(1.1) σ =

{

σs in Ω,

σm in R
N \ Ω,

where σs, σm are positive constants with σs ̸= σm.
Let u = u(x, t) be the unique bounded solution of the Cauchy problem

for the heat diffusion equation:

(1.2) ut = div(σ∇u) in R
N × (0,+∞) and u = XRN\Ω on R

N × {0},

where XRN\Ω denotes the characteristic function of the set RN \ Ω.
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When ∂Ω is in particular a hyperplane, for instance,

Ω = {x = (x1, . . . , xN ) ∈ R
N : x1 > 0} and

∂Ω = {x = (x1, . . . , xN ) ∈ R
N : x1 = 0},

then we observe that

(1.3) u(x, t) =

√
σm√

σs +
√
σm

for every (x, t) ∈ ∂Ω× (0,+∞).

Indeed, the uniqueness of the solution of problem (1.2) yields that the so-
lution u does not depend on the variables x2, . . . , xN . The heat kernel for
N = 1 is explicitly given by [GOO, p. 478]. Denote by G(x1, y1, t) the heat
kernel written as

G(x1, y1, t) =

{

E−(x1− y1, t)+

√
σm −√

σs√
σm+

√
σs
E−(x1 + y1, t)

}

X{x1≤0,y1≤0}

+
2
√
σm√

σm +
√
σs
E−

(

x1−
√
σm√
σs
y1, t

)

X{x1≤0,y1>0}

+

{

E+(x1− y1, t)+

√
σs −

√
σm√

σs +
√
σm

E+(x1+ y1, t)

}

X{x1>0,y1>0}

+
2
√
σs√

σm +
√
σs
E+

(

x1−
√
σs√
σm

y1, t

)

X{x1>0,y1≤0},

where E±(z, t) are the Gaussian kernels with conductivities σs, σm respec-
tively on R given by

E+(z, t)= (4πtσs)
− 1

2 exp

(

− z2

4tσs

)

and E−(z, t)= (4πtσm)−
1

2 exp

(

− z2

4tσm

)

and each X{·} denotes the characteristic function of the set {·}. Then the
value of u on ∂Ω× (0,+∞) is explicitly given by

u(0, x2, . . . , xN , t) =

∫ 0

−∞
G(0, y1, t) dy1

=

∫ 0

−∞

{

E−(−y1, t) +
√
σm −√

σs√
σm +

√
σs
E−(y1, t)

}

dy1

=

√
σm√

σs +
√
σm

.

The main purpose of the present paper is to show that the converse also
holds true.
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Theorem 1.1. Let u be the solution of problem (1.2). Suppose that ∂Ω is

uniformly of class C6. If there exists a constant k satisfying

(1.4) u(x, t) = k for every (x, t) ∈ ∂Ω× (0,+∞),

then ∂Ω must be a straight line when N = 2 and it must be a hyperplane

when N ≥ 3.

Here ∂Ω is said to be uniformly of class C6 if each point of ∂Ω is equipped
with the N -dimensional ball of a fixed radius centered at the point in which
∂Ω is represented as the graph of a function whose C6 norm is less than a
fixed number. We note that if the solution u of problem (1.2) satisfies (1.4)

for a constant k, then k must equal
√
σm√

σs+
√
σm

, which is the same as in (1.3),

by Proposition 2.2 in section 2.
We mention a remark on the case where σs = σm. If σs = σm and N ≥ 3,

then Theorem 1.1 does not hold. A counterexample is given in [MPS, p.
4824]. Indeed, let H be a helicoid in R

3. When ∂Ω = H× R
N−3 (∂Ω = H

for N = 3), by the symmetry of H the solution u satisfies

(1.5) u =
1

2
on ∂Ω× (0,+∞).

For convenience, we give a proof of this fact in subsection A of the Appen-
dices. Moreover, when σs = σm, without loss of generality when σs = σm =
1, by using the results of [MPS, N] together with the explicit representation
of the solution via Gaussian kernel, we have

Theorem 1.2. Let u be the unique bounded solution of the following

Cauchy problem for the heat equation:

(1.6) ut = ∆u in R
N × (0,+∞) and u = XRN\Ω on R

N × {0}.

Suppose that ∂Ω is of class C0. If there exists a constant k satisfying (1.4),
then ∂Ω must be a straight line when N = 2, it must be either a hyperplane or

a helicoid when N = 3, and it must be a minimal hypersurface when N ≥ 4.

Here ∂Ω is said to be of class C0 if each point of ∂Ω has a neighborhood
in R

N in which ∂Ω is represented as the graph of a continuous function.
The proof of Theorem 1.1 consists of two steps. In the first step, we show

that the mean curvature of ∂Ωmust vanish with the aid of the barriers for the
Laplace-Stieltjes transform of the solution. These barriers are constructed
in [CMS, S] under the assumption that ∂Ω is uniformly of class C6. Hence,
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with the aid of the interior estimates for solutions of the minimal surface
equation we notice that ∂Ω is uniformly of class Cℓ for every ℓ ∈ N. This
fact enables us to construct more precise barriers in view of the formal
WKB approximation for the Laplace-Stieltjes transform of the solution. The
second step is devoted to proving that all the elementary functions of the
principal curvatures of ∂Ω must vanish with the aid of the more precise
barriers. Note that we use the fact that σs ̸= σm only in the second step,
that is, even if σs = σm, we can prove that the mean curvature of ∂Ω must
vanish.

The following sections are organized as follows. In section 2, we quote
a lemma from [CMS] and a proposition from [S]. Sections 3 and 4 are de-
voted to the proofs of Theorems 1.1 and 1.2 respectively. We also added
two Appendices at the end. In subsection A we show how (1.5) follows from
the symmetry properites of the helicoid, while in subsection B, we quote a
maximum principle for elliptic equations with discontinuous conductivities
from [S] and give its proof.

2. Preliminaries

Let us introduce the distance function δ = δ(x) of x ∈ R
N to ∂Ω by

(2.1) δ(x) = dist(x, ∂Ω) for x ∈ R
N .

We quote a lemma concerning the solutions of problem (1.2) from [CMS,
Lemma 4.1], which simply comes from the maximum principle and the Gaus-
sian bounds for the fundamental solution of ut = div(σ∇u) due to Aronson
[A, Theorem 1, p. 891] (see also [FS, p. 328]). Although [CMS, Lemma 4.1]
concerns the case where Ω is bounded, exactly the same proof is applicable
even if Ω is unbounded. For ρ > 0, we set

Ωρ = {x ∈ Ω : δ(x) ≥ ρ} and Ωc
ρ = {x ∈ R

N \ Ω : δ(x) ≥ ρ}.

Lemma 2.1. Let u be the solution of problem (1.2) with a general conduc-

tivity σ = σ(x) (x ∈ R
N ) satisfying

0 < µ ≤ σ(x) ≤M for every x ∈ R
N ,

where µ,M are positive constants. Then the following propositions hold true:

(1) The solution u satisfies

(2.2) 0 < u < 1 in R
N × (0,+∞).
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(2) For every ρ > 0, there exist two positive constants B and b depending
only on N,µ,M, σs, σm and ρ such that

0 < u(x, t) < Be−
b

t for every (x, t) ∈ Ωρ × (0,+∞)

and 0 < 1− u(x, t) < Be−
b

t for every (x, t) ∈ Ωc
ρ × (0,+∞).

Since a proposition [CMS, Proposition E], where the boundary of the
domain is compact, also plays a key role in [CMS], in [S, Proposition 2.3]
the proposition was modified in order to deal also with the case where ∂Ω
is unbounded. Denote by Br(x) an open ball in R

N with radius r > 0 and
centered at a point x ∈ R

N .

Proposition 2.2 ([S]). Let Ω be a possibly unbounded domain in R
N , and

let z0 ∈ ∂Ω. Assume that there exists ε > 0 such that ∂Ω ∩Bε(z0) is of class
C2 and ∂Ω divides Bε(z0) into two connected components. Let σ = σ(x) (x ∈
R
N ) be a general conductivity satisfying

0<µ≤σ(x)≤M for every x∈R
N , and σ(x)=

{

σs if x ∈ Bε(z0) ∩ Ω,

σm if x ∈ Bε(z0) \ Ω,

where µ,M, σs, and σm are positive constants. Let u be the bounded solu-

tion of problem (1.2) for this general conductivity σ. Then, as t→ +0, u

converges to the number
√
σm√

σs+
√
σm

uniformly on ∂Ω ∩B 1

2
ε(z0).

Proof. For convenience, we mention how to reduce the present case to the
case where ∂Ω is bounded and of class C2. Since ∂Ω ∩Bε(z0) is of class C

2,
we can find a bounded domain Ω∗ with C2 boundary ∂Ω∗ satisfying

Ω ∩B 2

3
ε(z0) ⊂ Ω∗ ⊂ Ω and B 2

3
ε(z0) ∩ ∂Ω ⊂ ∂Ω∗.

Let us define the conductivity σ∗ = σ∗(x) (x ∈ R
N ) by

(2.3) σ∗ =

{

σs in Ω∗,

σm in R
N \ Ω∗.

Let u∗ = u∗(x, t) be the bounded solution of problem (1.2) where Ω and σ
are replaced with Ω∗ and σ∗, respectively. Then, by [CMS, Proposition E], as

t→ +0, u∗ converges to the number
√
σm√

σs+
√
σm

uniformly on ∂Ω ∩B 1

2
ε(z0).
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We observe that the difference v = u− u∗ satisfies

vt = div(σ∗∇v) in B 2

3
ε(z0)× (0,+∞),(2.4)

|v| < 1 in R
N × (0,+∞),(2.5)

v = 0 on B 2

3
ε(z0)× {0}.(2.6)

Set

N =

{

x ∈ R
N : dist(x, ∂B 2

3
ε(z0)) <

1

100
ε

}

(

= B 203

300
ε(z0) \B 197

300
ε(z0)

)

.

By comparing v with the solutions of the Cauchy problem for the heat
diffusion equation with conductivity σ∗ and initial data ±2XN for a short
time, with the aid of the Gaussian bounds due to Aronson [A, Theorem 1,
p. 891] (see also [FS, p. 328]), we see that there exist two positive constants
B and b such that

(2.7) |v(x, t)| ≤ Be−
b

t for every (x, t) ∈ B 1

2
ε(z0)× (0,∞).

Therefore, since u∗ satisfies the conclusion, u also does. □

3. Proof of Theorem 1.1

First of all, Proposition 2.2 yields that the constant k in (1.4) is determined
by

(3.1) k =

√
σm√

σs +
√
σm

.

Since ∂Ω is uniformly of class C6, there exist two positive numbers r and
K such that, for every point p ∈ ∂Ω, there exist an orthogonal coordinate
system z and a function φ ∈ C6(RN−1) such that the zN coordinate axis lies
in the inward normal direction to ∂Ω at p, the origin is located at p, C6 norm
of φ in R

N−1 is less than K, φ(0) = 0, ∇φ(0) = 0 and the set Br(p) ∩ Ω is
written as in the z coordinate system

{z ∈ Br(0) : zN > φ(z1, . . . , zN−1)}.
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Since ∂Ω is uniformly of class C6 as explained above, by choosing a number
δ0 > 0 sufficiently small and setting

N−= {x ∈ Ω : 0 < δ(x) < δ0} and N+= {x ∈ R
N \ Ω : 0 < δ(x) < δ0},

(3.2)

where δ(x) is the distance function given by (2.1), we see that

σ =

{

σs in N−,

σm in N+

,(3.3)

δ ∈ C6(N±), sup
{∣

∣

∣

∣

∂αδ

∂xα
(x)

∣

∣

∣

∣

: x ∈ N±, |α| ≤ 6

}

< +∞,(3.4)

for every x ∈ N± there exists a unique z = z(x) ∈ ∂Ω(3.5)

with δ(x) = |x− z|,
z(x) = x− δ(x)∇δ(x) for all x ∈ N±,(3.6)

max
1≤j≤N−1

|κj(z)| <
1

2δ0
for every z ∈ ∂Ω,(3.7)

where κ1(z), . . . , κN−1(z) denote the principal curvatures of ∂Ω at a point
z ∈ ∂Ω with respect to the inward normal direction to ∂Ω. It is shown in
[GT, Lemmas 14.16 and 14.17, p. 355] that

(3.8) |∇δ(x)| = 1 and ∆δ(x) =



















−
N−1
∑

j=1

κj(z(x))
1−κj(z(x))δ(x)

for x ∈ N−,

N−1
∑

j=1

κj(z(x))
1+κj(z(x))δ(x)

for x ∈ N+.

We introduce elementary functions of the principal curvatures at z ∈ ∂Ω by

(3.9) Hi(z) =
∑

j1<···<ji

κj1(z) · · ·κji(z) for i = 1, . . . , N − 1,

where 1
N−1H1(z) corresponds to the mean curvature of ∂Ω at z ∈ ∂Ω with

respect to the inward normal direction to ∂Ω. Then we notice that, for
every i = 1, . . . , N − 1, the composite function Hi = Hi(z(x)) satisfies that
for x ∈ N±

(3.10) Hi ∈ C4(N±), sup
{
∣

∣

∣

∣

∂αHi(z(x))

∂xα

∣

∣

∣

∣

: x ∈ N±, |α| ≤ 4

}

< +∞
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and

(3.11) ∇δ(x) · ∇Hi(z(x)) = 0 for x ∈ N±.

Moreover, as in the proof of [S, Theorem 1.1], by introducing an increasing
sequence of bounded subdomains in each of N± together with an increasing
sequence of bounded harmonic functions on each of the subdomains, we can
construct a function ψ = ψ(x), as the limit of the sequence, on each of N±
satisfying

∆ψ=0 in N±, ψ=0 on ∂Ω, ψ=2 on ∂N± \ ∂Ω and 0 < ψ < 2 in N±,
(3.12)

even if each of N± is unbounded.

Figure 1: The geometric setting used in the proof.

As in the proofs of [CMS, Theorem 1.5 in section 5], we introduce the
function w = w(x, λ) by the Laplace-Stieltjes transform of u(x, ·) restricted
on the semiaxis of real positive numbers

w(x, λ) = λ

∫ ∞

0
e−λtu(x, t) dt for (x, λ) ∈ R

N × (0,+∞).
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Observe from (1.1), (1.2), (1.4) and (3.1) that for every λ > 0

σs∆w − λw = 0 in Ω,(3.13)

σm∆(1− w)− λ(1− w) = 0 in R
N \ Ω,(3.14)

0 < w < 1 in R
N ,(3.15)

w =
√
σm√

σs+
√
σm

and σs
∂w
∂ν

∣

∣

− = σm
∂w
∂ν

∣

∣

+
on ∂Ω,(3.16)

where ν denotes the outward unit normal vector to ∂Ω, + denotes the limit
from outside of Ω and − that from inside of Ω. Moreover, it follows from (2)
of Lemma 2.1 that there exist two positive constants B̃ and b̃ satisfying:

0<w(x, λ)≤ B̃e−b̃
√
λ for every (x, λ)∈ (∂N− \ ∂Ω)× (0,+∞),

(3.17)

0< 1−w(x, λ)≤ B̃e−b̃
√
λ for every (x, λ)∈ (∂N+ \ ∂Ω)× (0,+∞).

(3.18)

3.1. Proving that the mean curvature of ∂Ω vanishes

Let us first consider w on N−. Since w satisfies (3.13) and the first equality
of (3.16), in view of the formal WKB approximation of w for sufficiently
large τ = λ

σs

w(x, λ)∼
√
σm√

σs+
√
σm

e−
√
τδ(x)

∞
∑

j=0

Aj(x)τ
− j

2 with some coefficients {Aj(x)},

we introduce two functions f1,± = f1,±(x, λ) defined for (x, λ) ∈ N− ×
(0,+∞) by

f1,±(x, λ) =
√
σm√

σs +
√
σm

e
−

√
λ√
σs

δ(x)
[

A0(x) +

√
σs√
λ
A1,±(x)

]

,

where

A0(x)=







N−1
∏

j=1

[

1−κj(z(x))δ(x)
]







− 1

2

,

(3.19)

A1,±(x)=
∫ δ(x)

0

[

1

2
∆A0(x(τ))± 1

]

exp

(

−1

2

∫ δ(x)

τ

∆δ(x(τ ′))dτ ′
)

dτ,
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with x(τ) = z(x)− τ ν(z(x)) for 0 < τ < δ(x). We observe that for x ∈ N−

(3.20)

N−1
∏

j=1

[

1− κj(z(x))δ(x)
]

= 1 +

N−1
∑

i=1

(−1)iHi(z(x))(δ(x))
i.

With (3.8), (3.11) and (3.20) at hand, by straightforward computations we
obtain that

∇δ · ∇A0=− 1

2
(∆δ)A0, ∇δ · ∇A1,±=− 1

2
(∆δ)A1,±+

1

2
∆A0± 1 in N−,

(3.21)

σs∆f1,±−λf1,±=
σs
√
σm√

σs +
√
σm

e
−

√
λ√
σs

δ(x)
(

∓2+

√
σs√
λ
∆A1,±

)

in N−,

(3.22)

and

(3.23) A0 = 1, A1,± = 0, f1,± =

√
σm√

σs +
√
σm

on ∂Ω,

for every λ > 0. Moreover, (3.4), (3.7), (3.10) and (3.20) yield that

(3.24) |∆A1,±| ≤ c1 in N−

for some positive constant c1. Therefore, it follows from (3.22), (3.24), (3.17)
and the definition of f1,± that there exist two positive constants λ1 and η1
such that

σs∆f1,+ − λf1,+ < 0 < σs∆f1,− − λf1,− in N−,(3.25)

max{|f1,+|, |f1,−|, w} ≤ e−η1

√
λ on ∂N− \ ∂Ω,(3.26)

for every λ ≥ λ1.
For every (x, λ) ∈ N− × (0,+∞), we define the two functions w1,± =

w1,±(x, λ) by

(3.27) w1,±(x, λ) = f1,±(x, λ)± ψ(x)e−η1

√
λ,
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where ψ(x) is given by (3.12). Then, in view of (3.13), (3.16), (3.23), (3.25)
and (3.26), we notice that

σs∆w1,+−λw1,+< 0=σs∆w−λw<σs∆w1,−−λw1,− in N−,

w1,+ = w = w1,− =
√
σm√

σs+
√
σm

on ∂Ω,(3.28)

w1,− < w < w1,+ on ∂N− \ ∂Ω,

for every λ ≥ λ1, and hence we get that

(3.29) w1,− < w < w1,+ in N−,

for every λ ≥ λ1, by the comparison principle (see Proposition B.1 in Ap-
pendix). Thus, combining (3.29) with (3.28) yields that

(3.30)
∂w1,+

∂ν
≤ ∂w

∂ν

∣

∣

∣

−
≤ ∂w1,−

∂ν
on ∂Ω,

for every λ ≥ λ1.
Therefore, by recalling the definition of w1,±, it follows from (3.21),

(3.23) and (3.8) that, for every λ ≥ λ1, we have the following chain of in-
equalities on ∂Ω:

σs
√
σm√

σs +
√
σm







−1

2

N−1
∑

j=1

κj −
√
σs√
λ

(

1

2
∆A0 + 1

)







+ σs
∂ψ

∂ν
e−η1

√
λ

≤ σs
∂w

∂ν

∣

∣

∣

−
−

√
σs
√
σm√

σs +
√
σm

√
λ

≤ σs
√
σm√

σs +
√
σm







−1

2

N−1
∑

j=1

κj −
√
σs√
λ

(

1

2
∆A0 − 1

)







− σs
∂ψ

∂ν
e−η1

√
λ.(3.31)

This implies that on ∂Ω

− σs
√
σm

2(
√
σs+

√
σm)

N−1
∑

j=1

κj =σs
∂w

∂ν

∣

∣

∣

−
−

√
σs
√
σm√

σs+
√
σm

√
λ+O(1/

√
λ) as λ→+∞.

(3.32)

Next, we consider 1− w on N+. By the similar arguments as above, since

1− w =

√
σs√

σs +
√
σm

on ∂Ω,
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we can construct barriers for 1− w on N+ with the aid of (3.18) by replacing
σs with σm. Thus, proceeding similarly yields that on ∂Ω

σm
√
σs

2(
√
σs+

√
σm)

N−1
∑

j=1

κj =σm
∂w

∂ν

∣

∣

∣

+
−

√
σs
√
σm√

σs+
√
σm

√
λ+O(1/

√
λ) as λ→+∞,

(3.33)

where we have taken into account both the sign of the mean curvature with
(3.8) and the normal direction to ∂Ω. Therefore, by combining (3.32) and
(3.33) with the second equality of (3.16) we conclude that on ∂Ω

H1 =

N−1
∑

j=1

κj = O(1/
√
λ) as λ→ +∞,

and hence the mean curvature of ∂Ω must vanish, that is, ∂Ω is a minimal
hypersurface properly embedded in R

N (see (3.9) for H1). In particular
when N = 2, the curvature of the curve ∂Ω vanishes and the conclusion of
Theorem 1.1 holds.

Note that in this subsection 3.1 we did not use the fact that σs ̸= σm.

3.2. Proving that all the principal curvaures of ∂Ω vanish and
∂Ω must be a hyperplane

We may consider the case where N ≥ 3. It suffices to show that Hi = 0 on
∂Ω for every i = 1, . . . , N − 1. Since we already know in subsection 3.1 that
H1 = 0 on ∂Ω, we start induction with supposing that there exists a number
p ∈ {2, . . . , N − 1} satisfying

(3.34) H1 = · · · = Hp−1 = 0 on ∂Ω.

Then we will prove that Hp = 0 on ∂Ω. By subsection 3.1, ∂Ω must be
real analytic and moreover, by the interior estimates for solutions of the
minimal surface equation (see [GT, Corollary 16.7, p. 407]), we see that
∂Ω is uniformly of class Cℓ for every ℓ ∈ N, and hence (3.4) and (3.10) are
improved as follows: For every ℓ ∈ N,

(3.35) sup

{
∣

∣

∣

∣

∂αδ

∂xα
(x)

∣

∣

∣

∣

: x ∈ N±, |α| ≤ ℓ

}

< +∞,



✐

✐

“9-Sakaguchi” — 2024/7/26 — 15:28 — page 1879 — #13
✐

✐

✐

✐

✐

✐

A characterization of a hyperplane 1879

and

(3.36) sup

{
∣

∣

∣

∣

∂αHi(z(x))

∂xα

∣

∣

∣

∣

: 1 ≤ i ≤ N − 1, x ∈ N±, |α| ≤ ℓ

}

< +∞.

Therefore we can introduce the following more precise barriers fn,± =
fn,±(x, λ) for w on N− such that for (x, λ) ∈ N− × (0,+∞) and for every
n ≥ 2

fn,±(x, λ) =
√
σm√

σs +
√
σm

e
−

√
λ√
σs

δ(x)

[

A0(x) +

n−1
∑

j=1

(√
σs√
λ

)j

Aj(x)

+

(√
σs√
λ

)n

An,±(x)

]

,

where A0 is given by (3.19) and for j = 1, · · · , n− 1,

Aj(x) =

∫ δ(x)

0

[

1

2
∆Aj−1(x(τ))

]

exp

(

−1

2

∫ δ(x)

τ

∆δ(x(τ ′))dτ ′
)

dτ,

(3.37)

An,±(x) =
∫ δ(x)

0

[

1

2
∆An−1(x(τ))± 1

]

exp

(

−1

2

∫ δ(x)

τ

∆δ(x(τ ′))dτ ′
)

dτ

with x(τ) = z(x)− τ ν(z(x)) for 0 < τ < δ(x).
With (3.8), (3.11) and (3.20) at hand, by straightforward computations

we obtain that, in N− (compare with (3.21)–(3.24)):

∇δ · ∇A0 = −1

2
(∆δ)A0,(3.38)

∇δ · ∇Aj = −1

2
(∆δ)Aj +

1

2
∆Aj−1 for j = 1, . . . , n− 1,(3.39)

∇δ · ∇An,± = −1

2
(∆δ)An,± +

1

2
∆An−1 ± 1,(3.40)

(3.41)

σs∆fn,± − λfn,± =
σs
√
σm√

σs +
√
σm

(√
σs√
λ

)n−1

e
−

√
λ√
σs

δ(x)
(

∓2 +

√
σs√
λ
∆An,±

)

,

and on ∂Ω

(3.42) A0 = 1, A1 = · · · = An−1 = An,± = 0, fn,± =

√
σm√

σs +
√
σm

,
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for every λ > 0. Moreover, (3.35), (3.36), (3.7) and (3.20) yield that

(3.43) |∆An,±| ≤ cn in N−

for some positive constant cn. Then, by replacing f1,± with fn,±, we can use
the same comparison arguments as in (3.25) – (3.30) of subsection 3.1 to
conclude that there exist two positive constants λn and ηn satisfying

(3.44)
∂wn,+

∂ν
≤ ∂w

∂ν

∣

∣

∣

−
≤ ∂wn,−

∂ν
on ∂Ω

for every λ ≥ λn, where

(3.45) wn,±(x, λ) = fn,±(x, λ)± ψ(x)e−ηn

√
λ

with ψ(x) given by (3.12). Since ∆δ = 0 on ∂Ω, it follows from (3.8), (3.38)–
(3.40) and (3.42) that on ∂Ω

∂wn,±
∂ν

= −∇δ · ∇wn,±

=

√
σm√

σs +
√
σm

{ √
λ√
σs

− 1

2

n−1
∑

j=1

(√
σs√
λ

)j

∆Aj−1

− 1

2

(√
σs√
λ

)n

(∆An,± ± 2)

}

± ∂ψ

∂ν
e−ηn

√
λ.(3.46)

It follows from (3.34) that for x ∈ N−

(3.47)

N−1
∏

j=1

[

1− κj(z(x))δ(x)
]

= 1 +

N−1
∑

i=p

(−1)iHi(z(x))(δ(x))
i.

We choose, for instance, n = N − 1. Let us show that for every s ∈
{0, . . . , p− 2} as δ(x) → 0

∆As(x) = −2−(s+1)(−1)p(s+ 2)!

(

p

s+ 2

)

Hp(z(x)) (δ(x))
p−2−s(3.48)

+O
(

(δ(x))p−1−s
)

.
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By (3.47) and (3.19), we have that as δ(x) → 0

A0(x) = 1− 1

2
(−1)pHp(z(x))(δ(x))

p +O
(

(δ(x))p+1
)

.

Then, it follows from the first equality of (3.8) that as δ(x) → 0

∆A0(x) = −1

2
(−1)pHp(z(x))p(p− 1)(δ(x))p−2 +O

(

(δ(x))p−1
)

,

which means that (3.48) holds for s = 0. Suppose that (3.48) holds for s =
q − 1 ∈ {0, . . . , p− 2}. Then we have from (3.37) that

Aq(x)=

∫ δ(x)

0

[

−2−(q+1)(−1)p(q+1)!

(

p

q+1

)

Hp(z(x))τ
p−1−q +O

(

(τ)p−q
)

]

× exp

(

−1

2

∫ δ(x)

τ

∆δ(x(τ ′))dτ ′
)

dτ

= −2−(q+1)(−1)p(q + 1)!

(

p

q + 1

)

Hp(z(x))

∫ δ(x)

0
τp−1−qdτ

+O
(

(δ(x))p−q+1
)

= −2−(q+1)(−1)pq!

(

p

q

)

Hp(z(x))δ(x)
p−q +O

(

(δ(x))p−q+1
)

.

Thus it follows from the first equality of (3.8) that as δ(x) → 0

∆Aq(x) = −2−(q+1)(−1)pq!

(

p

q

)

Hp(z(x))(p− q)(p− q − 1)δ(x)p−q−2

+O
(

(δ(x))p−q−1
)

= −2−(q+1)(−1)p(q + 2)!

(

p

q + 2

)

Hp(z(x))δ(x)
p−q−2

+O
(

(δ(x))p−q−1
)

,

which means that (3.48) holds for s = q. Hence formula (3.48) holds true for
every s ∈ {0, . . . , p− 2}.

Formula (3.48) implies that on ∂Ω

∆As = 0 for s < p− 2 and ∆Ap−2 = −2−(p−1)(−1)pp!Hp,
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and hence it follows from (3.44) and (3.46) that on ∂Ω as λ→ ∞

σs
∂w

∂ν

∣

∣

∣

−
=

√
σs
√
σm√

σs +
√
σm

{√
λ+ p!2−p(−1)p(σs)

p

2Hpλ
− p−1

2

}

+O
(

λ−
p

2

)

.

(3.49)

Next, as in the end of subsection 3.1, we proceed to consider 1− w on
N+. By replacing w, σs with 1− w, σm, respectively and taking into account
both the sign of Hp and the normal direction to ∂Ω, by the same arguments
we infer that on ∂Ω as λ→ ∞

(3.50) σm
∂w

∂ν

∣

∣

∣

+
=

√
σs
√
σm√

σs +
√
σm

{√
λ+ p!2−p(σm)

p

2Hpλ
− p−1

2

}

+O
(

λ−
p

2

)

.

Here we used the fact that, corresponding to the choice of the normal di-
rection to ∂Ω, the sign of Hp changes if p is odd and it does not change if
p is even. Since σs ̸= σm, by combining (3.49) and (3.50) with the second
equality of (3.16) we conclude that on ∂Ω

Hp = O(1/
√
λ) as λ→ ∞,

and hence Hp must vanish on ∂Ω. Therefore we obtain that Hi = 0 on ∂Ω
for every i = 1, . . . , N − 1. This means that all the principal curvatures of
∂Ω vanish and thus ∂Ω must be a hyperplane.

Note that in this subsection 3.2 we used the fact that σs ̸= σm.

4. Proof of Theorem 1.2

Let u be the solution of problem (1.6). From (1.4) we see that ∂Ω is a
stationary isothermic surface of u. Thus by [MPS, Theorem 2.2, p. 4825]
∂Ω must be a real analytic hypersurface embedded in R

N . Hence Propo-
sition 2.2 yields that k = 1

2 . Let x ∈ ∂Ω. Then it follows from the explicit
representation of u via Gaussian kernel that for every t > 0

1

2
= u(x, t) = (4πt)−

N

2

∫

RN

XΩc(ξ)e−
|x−ξ|2

4t dξ

= (4πt)−
N

2

∫ ∞

0
e−

r2

4t

(

∫

∂Br(x)
XΩc(ξ)dSξ

)

dr

= (4πt)−
N

2

∫ ∞

0
e−

r2

4t |Ωc ∩ ∂Br(x)|dr,
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where Ωc = R
N \ Ω, dSξ indicates the area element of the sphere ∂Br(x)

and |Ωc ∩ ∂Br(x)| does the (N − 1)-dimensional Hausdorff measure of the
set Ωc ∩ ∂Br(x). Thus we infer that

∫ ∞

0
e−

r2

4t

(

|Ωc ∩ ∂Br(x)| −
1

2
|∂Br(x)|

)

dr = 0 for every t > 0.

Since the Laplace transform is injective, we conclude that for each point
x ∈ ∂Ω

(4.1) |Ωc ∩ ∂Br(x)| −
1

2
|∂Br(x)| = 0 for almost every r > 0.

Then the following formula also holds true:

(4.2)
|Ωc ∩Br(x)|

|Br(x)|
=

1

2
for every r > 0 and x ∈ ∂Ω,

where the same symbol | · | indicates the N -dimensional Lebesgue measure
of sets.

When N ≥ 2, by [MPS, Theorem 1.2, p. 4823] (4.2) yields that ∂Ω must
have zero mean curvature. Hence, when N = 2, ∂Ω must be a straight line,
and when N ≥ 3, ∂Ω must be a minimal hypersurface embedded in R

N .
In view of the sufficient regularity of ∂Ω, it follows from (4.1) that for

every point p ∈ ∂Ω, there exist numbers δp > 0 and rp > 0 satisfying

|Ωc ∩ ∂Br(x)| −
1

2
|∂Br(x)| = 0 for every 0 < r < rp and x ∈ Bδ(p) ∩ ∂Ω.

(4.3)

When N = 3, by [N, Theorem, p. 234], (4.3) yields that ∂Ω must be either
a hyperplane or a helicoid. This completes the proof of Theorem 1.2. □

Appendices

First of all, let us give a proof of (1.5).

Appendix A. Proof of (1.5)

Let H ⊂ R
3 be the helicoid given by

{

(x1, x2, x3) = (ρ cos s, ρ sin s, s) : (ρ, s) ∈ R
2
}

.



✐

✐

“9-Sakaguchi” — 2024/7/26 — 15:28 — page 1884 — #18
✐

✐

✐

✐

✐

✐

1884 L. Cavallina, S. Sakaguchi, and S. Udagawa

(See [CMII, pp. 8–9] for the helicoid). Notice that H is the boundary of the
following unbounded domain:

(A.1) Ω =
{

(x1, x2, x3) ∈ R
3 : x2 cosx3 − x1 sinx3 > 0

}

.

We now introduce two isometries that are deeply related to the symme-
tries of H. For α ∈ R and x = (x1, x2, x3) ∈ R

3, we set:

kα(x) = (x1 cosα− x2 sinα, x1 sinα+ x2 cosα, x3 + α) ,

g(x) = (x1,−x2,−x3).(A.2)

Here kα is a screwing motion obtained by rotation of angle α in the x1-x2
plane, followed by a translation of length α in the x3 direction. Notice that
Ω and R

3 \ Ω are preserved by the action of kα, while they get switched by
that of g:

(A.3)
kα(Ω) = Ω, kα(R

3 \ Ω) = R
3 \ Ω,

g(Ω) = R
3 \ Ω, g(R3 \ Ω) = Ω.

Finally, since x2 cosx3 − x1 sinx3 = 0 for x ∈ H, the restrictions of g and kα
to H are related by the following formula:

g(x1, x2, x3) = (x1,−x2,−x3) = k−2x3
(x1, x2, x3) for all (x1, x2, x3) ∈ H.

(A.4)

Let u = u(x, t) be the unique bounded solution of the following Cauchy
problem for the heat diffusion equation:

(A.5) ut = ∆u in R
3 × (0,+∞) and u = XR3\Ω on R

3 × {0},

where Ω is the unbounded domain defined in (A.1). Moreover, for arbitray
real α, define the following functions:

vα(x, t)=u (kα(x), t) and w(x, t)=u (g(x), t) for (x, t) ∈ R
3 × (0,∞).

Since both kα and g are isometries, by (A.3) we deduce that vα and w are
bounded solutions of the following Cauchy problems.

(vα)t = ∆vα in R
3 × (0,+∞) and vα = XR3\Ω on R

3 × {0},(A.6)

wt = ∆w in R
3 × (0,+∞) and w = XΩ on R

3 × {0}.(A.7)
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In particular, unique solvability of the Cauchy problems above yields

(A.8) vα = u and u+ w = 1 in R
3 × (0,∞), for all α ∈ R.

Fix now an arbitrary pair (x, t) ∈ H × (0,∞) and choose α = −2x3. By
combining both identities in (A.8) with (A.4) we get the following chain of
equalities.

1 = u(x, t) + u(g(x), t) = u(x, t) + u (k−2x3
(x), t) = 2u(x, t).

That is, u(x, t) = 1/2 for all (x, t) ∈ H × (0,∞). We have therefore proved
(1.5) when N = 3. The case N ≥ 4 follows by separation of variables. □

Appendix B. A maximum principle for unbounded domains

For convenience, we quote a maximum principle together with its proof for
an elliptic equation in unbounded domains in R

N from [S, Proposition A.3].

Proposition B.1. Let D ⊂ R
N be an unbounded domain, and let σ =

σ(x) (x ∈ D) be a general conductivity satisfying

0 < µ ≤ σ(x) ≤M for every x ∈ R
N ,

where µ,M are positive constants. Assume that w ∈ H1
loc(D) ∩ L∞(D) ∩

C0(D) satisfies

−div(σ∇w) + λw ≥ 0 in D and w ≥ 0 on ∂D

for some constant λ > 0. Then w ≥ 0 in D, and moreover, either w > 0 in

D or w ≡ 0 in D.

Remark B.2. When D is bounded, this proposition is well known and holds

true for every λ ≥ 0. However, when D is unbounded, this proposition is not

true for λ = 0. Indeed, a counterexample is given in [ABR, p. 37], where

N ≥ 3, D = {x ∈ R
N : |x| > 1}, σ(x) ≡ 1 and w(x) = |x|2−N − 1.

Proof of Proposition B.1. Define v = v(x) by

v(x) = e−δ|x|w(x) for x ∈ D,
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where δ > 0 is a constant which will be chosen later. Then v ∈ H1
loc(D) ∩

L∞(D) ∩ C0(D) and moreover

(B.1) lim
|x|→∞

v(x) = 0,

since w ∈ L∞(D). For every ε > 0, we consider a nonnegative function

φ(x) = max{−ε− v(x), 0} for x ∈ D.

Since v ∈ H1
loc(D) ∩ L∞(D) ∩ C0(D) and v ≥ 0 on ∂D, it follows from (B.1)

that φ is compactly supported in D and φ ∈ H1
0 (D), and hence e−2δ|·|φ(·) ∈

H1
0 (D). Therefore we obtain

0 ≤
∫

D

{

σ(x)∇w(x)·∇
(

φ(x)e−2δ|x|
)

+ λw(x)φ(x)e−2δ|x|
}

dx

=

∫

D∩{v<−ε}

σe−δ|x|
{(

δv
x

|x| +∇v
)

·
(

∇φ− 2δφ
x

|x|

)

+
λ

σ
vφ

}

dx.(B.2)

Notice that

φ(x) =

{

−ε− v(x) if v(x) < −ε,
0 if v(x) ≥ −ε,

and

∇φ(x) =
{

−∇v(x) if v(x) < −ε,
0 if v(x) ≥ −ε.

By setting

I = σ−1eδ|x| × the integrand of the integral (B.2),

we have

I =− |∇v|2 − λ

σ
v2 + 2δ2v2 + δv

x

|x| · ∇v + ε

(

2δ2v + 2δ
x

|x| · ∇v −
λ

σ
v

)

≤−
{

1− δ

(

1

2
+ ε

)}

|∇v|2−
{

λ

σ

(

1− ε

2

)

−
(

2δ2+
δ

2

)}

v2+ ε

(

λ

2σ
+ δ

)

.

Here we have used Cauchy’s inequality 2ab ≤ a2 + b2 and the fact that v < 0
in the integrand of (B.2). Therefore, since 0 < µ ≤ σ(x) ≤M , we can choose
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δ > 0 sufficiently small to obtain that if 0 < ε < 1 then

I ≤ −1

4

(

|∇v|2 + λ

M
v2
)

+ ε

(

λ

2µ
+ δ

)

and hence

µ

∫

D∩{v<−ε}

e−δ|x|
(

|∇v|2 + λ

M
v2
)

dx ≤Mε

(

2λ

µ
+ 4δ

)
∫

D

e−δ|x|dx.

By choosing a sequence {εn} with εn ↓ 0 as n→ ∞ and letting n→ ∞, we
conclude that

∫

D∩{v<0}

e−δ|x|
(

|∇v|2 + λ

M
v2
)

dx = 0

and hence v ≥ 0 in D. Therefore w ≥ 0 in D. Once this is shown, the last
part follows from the strong maximum principle (see [GT, Theorem 8.19,
pp. 198–199]). □
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