A characterization of a hyperplane in two-phase heat conductors

Lorenzo Cavallina, Shigeru Sakaguchi, and Seiichi Udagawa

Abstract

We consider the Cauchy problem for the heat diffusion equation in the whole Euclidean space consisting of two media with different constant conductivities, where initially one has temperature 0 and the other has temperature 1 . Suppose that the interface is connected and uniformly of class C^{6}. We show that if the interface has a time-invariant constant temperature, then it must be a hyperplane.

1. Introduction

Let $\Omega \subset \mathbb{R}^{N}$ be a domain with $N \geq 2$. Suppose that $\partial \Omega \neq \emptyset$ and $\partial \Omega$ is connected. Denote by $\sigma=\sigma(x)\left(x \in \mathbb{R}^{N}\right)$ the conductivity distribution of the whole medium given by

$$
\sigma= \begin{cases}\sigma_{s} & \text { in } \Omega \tag{1.1}\\ \sigma_{m} & \text { in } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

where σ_{s}, σ_{m} are positive constants with $\sigma_{s} \neq \sigma_{m}$.
Let $u=u(x, t)$ be the unique bounded solution of the Cauchy problem for the heat diffusion equation:

$$
\begin{equation*}
u_{t}=\operatorname{div}(\sigma \nabla u) \quad \text { in } \mathbb{R}^{N} \times(0,+\infty) \text { and } u=\mathcal{X}_{\mathbb{R}^{N} \backslash \Omega} \text { on } \mathbb{R}^{N} \times\{0\} \tag{1.2}
\end{equation*}
$$

where $\mathcal{X}_{\mathbb{R}^{N} \backslash \Omega}$ denotes the characteristic function of the set $\mathbb{R}^{N} \backslash \Omega$.

[^0]When $\partial \Omega$ is in particular a hyperplane, for instance,

$$
\begin{aligned}
\Omega & =\left\{x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}: x_{1}>0\right\} \text { and } \\
\partial \Omega & =\left\{x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}: x_{1}=0\right\},
\end{aligned}
$$

then we observe that

$$
\begin{equation*}
u(x, t)=\frac{\sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}} \text { for every }(x, t) \in \partial \Omega \times(0,+\infty) \tag{1.3}
\end{equation*}
$$

Indeed, the uniqueness of the solution of problem (1.2) yields that the solution u does not depend on the variables x_{2}, \ldots, x_{N}. The heat kernel for $N=1$ is explicitly given by [GOO, p. 478]. Denote by $G\left(x_{1}, y_{1}, t\right)$ the heat kernel written as

$$
\begin{aligned}
G\left(x_{1}, y_{1}, t\right) & =\left\{E_{-}\left(x_{1}-y_{1}, t\right)+\frac{\sqrt{\sigma_{m}}-\sqrt{\sigma_{s}}}{\sqrt{\sigma_{m}}+\sqrt{\sigma_{s}}} E_{-}\left(x_{1}+y_{1}, t\right)\right\} \mathcal{X}_{\left\{x_{1} \leq 0, y_{1} \leq 0\right\}} \\
& +\frac{2 \sqrt{\sigma_{m}}}{\sqrt{\sigma_{m}}+\sqrt{\sigma_{s}}} E_{-}\left(x_{1}-\frac{\sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}} y_{1}, t\right) \mathcal{X}_{\left\{x_{1} \leq 0, y_{1}>0\right\}} \\
& +\left\{E_{+}\left(x_{1}-y_{1}, t\right)+\frac{\sqrt{\sigma_{s}}-\sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}} E_{+}\left(x_{1}+y_{1}, t\right)\right\} \mathcal{X}_{\left\{x_{1}>0, y_{1}>0\right\}} \\
& +\frac{2 \sqrt{\sigma_{s}}}{\sqrt{\sigma_{m}}+\sqrt{\sigma_{s}}} E_{+}\left(x_{1}-\frac{\sqrt{\sigma_{s}}}{\sqrt{\sigma_{m}}} y_{1}, t\right) \mathcal{X}_{\left\{x_{1}>0, y_{1} \leq 0\right\}}
\end{aligned}
$$

where $E_{ \pm}(z, t)$ are the Gaussian kernels with conductivities σ_{s}, σ_{m} respectively on \mathbb{R} given by

$$
E_{+}(z, t)=\left(4 \pi t \sigma_{s}\right)^{-\frac{1}{2}} \exp \left(-\frac{z^{2}}{4 t \sigma_{s}}\right) \text { and } E_{-}(z, t)=\left(4 \pi t \sigma_{m}\right)^{-\frac{1}{2}} \exp \left(-\frac{z^{2}}{4 t \sigma_{m}}\right)
$$

and each $\mathcal{X}_{\{\cdot\}}$ denotes the characteristic function of the set $\{\cdot\}$. Then the value of u on $\partial \Omega \times(0,+\infty)$ is explicitly given by

$$
\begin{aligned}
u\left(0, x_{2}, \ldots, x_{N}, t\right) & =\int_{-\infty}^{0} G\left(0, y_{1}, t\right) d y_{1} \\
& =\int_{-\infty}^{0}\left\{E_{-}\left(-y_{1}, t\right)+\frac{\sqrt{\sigma_{m}}-\sqrt{\sigma_{s}}}{\sqrt{\sigma_{m}}+\sqrt{\sigma_{s}}} E_{-}\left(y_{1}, t\right)\right\} d y_{1} \\
& =\frac{\sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}}
\end{aligned}
$$

The main purpose of the present paper is to show that the converse also holds true.

Theorem 1.1. Let u be the solution of problem 1.2. Suppose that $\partial \Omega$ is uniformly of class C^{6}. If there exists a constant k satisfying

$$
\begin{equation*}
u(x, t)=k \text { for every }(x, t) \in \partial \Omega \times(0,+\infty) \tag{1.4}
\end{equation*}
$$

then $\partial \Omega$ must be a straight line when $N=2$ and it must be a hyperplane when $N \geq 3$.

Here $\partial \Omega$ is said to be uniformly of class C^{6} if each point of $\partial \Omega$ is equipped with the N-dimensional ball of a fixed radius centered at the point in which $\partial \Omega$ is represented as the graph of a function whose C^{6} norm is less than a fixed number. We note that if the solution u of problem (1.2) satisfies (1.4) for a constant k, then k must equal $\frac{\sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}}$, which is the same as in 1.3), by Proposition 2.2 in section 2 .

We mention a remark on the case where $\sigma_{s}=\sigma_{m}$. If $\sigma_{s}=\sigma_{m}$ and $N \geq 3$, then Theorem 1.1 does not hold. A counterexample is given in MPS, p. 4824]. Indeed, let \mathcal{H} be a helicoid in \mathbb{R}^{3}. When $\partial \Omega=\mathcal{H} \times \mathbb{R}^{N-3}(\partial \Omega=\mathcal{H}$ for $N=3$), by the symmetry of \mathcal{H} the solution u satisfies

$$
\begin{equation*}
u=\frac{1}{2} \text { on } \partial \Omega \times(0,+\infty) \tag{1.5}
\end{equation*}
$$

For convenience, we give a proof of this fact in subsection A of the Appendices. Moreover, when $\sigma_{s}=\sigma_{m}$, without loss of generality when $\sigma_{s}=\sigma_{m}=$ 1 , by using the results of [MPS, N] together with the explicit representation of the solution via Gaussian kernel, we have

Theorem 1.2. Let u be the unique bounded solution of the following Cauchy problem for the heat equation:

$$
\begin{equation*}
u_{t}=\Delta u \quad \text { in } \mathbb{R}^{N} \times(0,+\infty) \text { and } u=\mathcal{X}_{\mathbb{R}^{N} \backslash \Omega} \quad \text { on } \mathbb{R}^{N} \times\{0\} \tag{1.6}
\end{equation*}
$$

Suppose that $\partial \Omega$ is of class C^{0}. If there exists a constant k satisfying (1.4, then $\partial \Omega$ must be a straight line when $N=2$, it must be either a hyperplane or a helicoid when $N=3$, and it must be a minimal hypersurface when $N \geq 4$.

Here $\partial \Omega$ is said to be of class C^{0} if each point of $\partial \Omega$ has a neighborhood in \mathbb{R}^{N} in which $\partial \Omega$ is represented as the graph of a continuous function.

The proof of Theorem 1.1 consists of two steps. In the first step, we show that the mean curvature of $\partial \Omega$ must vanish with the aid of the barriers for the Laplace-Stieltjes transform of the solution. These barriers are constructed in [CMS, $\left[\right.$] under the assumption that $\partial \Omega$ is uniformly of class C^{6}. Hence,
with the aid of the interior estimates for solutions of the minimal surface equation we notice that $\partial \Omega$ is uniformly of class C^{ℓ} for every $\ell \in \mathbb{N}$. This fact enables us to construct more precise barriers in view of the formal WKB approximation for the Laplace-Stieltjes transform of the solution. The second step is devoted to proving that all the elementary functions of the principal curvatures of $\partial \Omega$ must vanish with the aid of the more precise barriers. Note that we use the fact that $\sigma_{s} \neq \sigma_{m}$ only in the second step, that is, even if $\sigma_{s}=\sigma_{m}$, we can prove that the mean curvature of $\partial \Omega$ must vanish.

The following sections are organized as follows. In section 2, we quote a lemma from [CMS] and a proposition from [S]. Sections 3 and 4 are devoted to the proofs of Theorems 1.1 and 1.2 respectively. We also added two Appendices at the end. In subsection A we show how (1.5) follows from the symmetry properites of the helicoid, while in subsection B, we quote a maximum principle for elliptic equations with discontinuous conductivities from $[\mathrm{S}]$ and give its proof.

2. Preliminaries

Let us introduce the distance function $\delta=\delta(x)$ of $x \in \mathbb{R}^{N}$ to $\partial \Omega$ by

$$
\begin{equation*}
\delta(x)=\operatorname{dist}(x, \partial \Omega) \text { for } x \in \mathbb{R}^{N} \tag{2.1}
\end{equation*}
$$

We quote a lemma concerning the solutions of problem (1.2) from [MS, Lemma 4.1], which simply comes from the maximum principle and the Gaussian bounds for the fundamental solution of $u_{t}=\operatorname{div}(\sigma \nabla u)$ due to Aronson [A, Theorem 1, p. 891] (see also [FS, p. 328]). Although [CMS, Lemma 4.1] concerns the case where Ω is bounded, exactly the same proof is applicable even if Ω is unbounded. For $\rho>0$, we set

$$
\Omega_{\rho}=\{x \in \Omega: \delta(x) \geq \rho\} \text { and } \Omega_{\rho}^{c}=\left\{x \in \mathbb{R}^{N} \backslash \Omega: \delta(x) \geq \rho\right\}
$$

Lemma 2.1. Let u be the solution of problem (1.2) with a general conductivity $\sigma=\sigma(x)\left(x \in \mathbb{R}^{N}\right)$ satisfying

$$
0<\mu \leq \sigma(x) \leq M \text { for every } x \in \mathbb{R}^{N}
$$

where μ, M are positive constants. Then the following propositions hold true:
(1) The solution u satisfies

$$
\begin{equation*}
0<u<1 \quad \text { in } \mathbb{R}^{N} \times(0,+\infty) \tag{2.2}
\end{equation*}
$$

(2) For every $\rho>0$, there exist two positive constants B and b depending only on $N, \mu, M, \sigma_{s}, \sigma_{m}$ and ρ such that

$$
\begin{array}{cll}
& 0<u(x, t)<B e^{-\frac{b}{t}} & \text { for every }(x, t) \in \Omega_{\rho} \times(0,+\infty) \\
\text { and } & 0<1-u(x, t)<B e^{-\frac{b}{t}} & \text { for every }(x, t) \in \Omega_{\rho}^{c} \times(0,+\infty) .
\end{array}
$$

Since a proposition [CMS, Proposition E], where the boundary of the domain is compact, also plays a key role in [CMS], in [S, Proposition 2.3] the proposition was modified in order to deal also with the case where $\partial \Omega$ is unbounded. Denote by $B_{r}(x)$ an open ball in \mathbb{R}^{N} with radius $r>0$ and centered at a point $x \in \mathbb{R}^{N}$.

Proposition 2.2 ([$\mathbf{S}]$). Let Ω be a possibly unbounded domain in \mathbb{R}^{N}, and let $z_{0} \in \partial \Omega$. Assume that there exists $\varepsilon>0$ such that $\partial \Omega \cap B_{\varepsilon}\left(z_{0}\right)$ is of class C^{2} and $\partial \Omega$ divides $B_{\varepsilon}\left(z_{0}\right)$ into two connected components. Let $\sigma=\sigma(x)(x \in$ \mathbb{R}^{N}) be a general conductivity satisfying
$0<\mu \leq \sigma(x) \leq M$ for every $x \in \mathbb{R}^{N}$, and $\sigma(x)= \begin{cases}\sigma_{s} & \text { if } x \in B_{\varepsilon}\left(z_{0}\right) \cap \Omega, \\ \sigma_{m} & \text { if } x \in B_{\varepsilon}\left(z_{0}\right) \backslash \Omega,\end{cases}$
where μ, M, σ_{s}, and σ_{m} are positive constants. Let u be the bounded solution of problem (1.2) for this general conductivity σ. Then, as $t \rightarrow+0, u$ converges to the number $\frac{\sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}}$ uniformly on $\partial \Omega \cap \overline{B_{\frac{1}{2}} \varepsilon\left(z_{0}\right)}$.

Proof. For convenience, we mention how to reduce the present case to the case where $\partial \Omega$ is bounded and of class C^{2}. Since $\partial \Omega \cap B_{\varepsilon}\left(z_{0}\right)$ is of class C^{2}, we can find a bounded domain Ω_{*} with C^{2} boundary $\partial \Omega_{*}$ satisfying

$$
\Omega \cap \overline{B_{\frac{2}{3}} \varepsilon\left(z_{0}\right)} \subset \Omega_{*} \subset \Omega \text { and } \overline{B_{\frac{2}{3}}\left(z_{0}\right)} \cap \partial \Omega \subset \partial \Omega_{*}
$$

Let us define the conductivity $\sigma_{*}=\sigma_{*}(x)\left(x \in \mathbb{R}^{N}\right)$ by

$$
\sigma_{*}= \begin{cases}\sigma_{s} & \text { in } \Omega_{*}, \tag{2.3}\\ \sigma_{m} & \text { in } \mathbb{R}^{N} \backslash \Omega_{*}\end{cases}
$$

Let $u_{*}=u_{*}(x, t)$ be the bounded solution of problem (1.2) where Ω and σ are replaced with Ω_{*} and σ_{*}, respectively. Then, by [CMS, Proposition E], as $t \rightarrow+0, u_{*}$ converges to the number $\frac{\sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}}$ uniformly on $\partial \Omega \cap \overline{B_{\frac{1}{2} \varepsilon}\left(z_{0}\right)}$.

We observe that the difference $v=u-u_{*}$ satisfies

$$
\begin{array}{ll}
v_{t}=\operatorname{div}\left(\sigma_{*} \nabla v\right) & \text { in } B_{\frac{2}{3}} \varepsilon \\
|v|<1 & \text { in } \left.\mathbb{R}_{0}\right) \times(0,+\infty), \\
v=0 & \text { on } B_{\frac{2}{3}} \varepsilon\left(z_{0}\right) \times\{0\} . \tag{2.6}
\end{array}
$$

Set

$$
\mathcal{N}=\left\{x \in \mathbb{R}^{N}: \operatorname{dist}\left(x, \partial B_{\frac{2}{3}} \varepsilon\left(z_{0}\right)\right)<\frac{1}{100} \varepsilon\right\}\left(=B_{\frac{203}{300} \varepsilon}\left(z_{0}\right) \backslash \overline{B_{\frac{197}{300}}\left(z_{0}\right)}\right) .
$$

By comparing v with the solutions of the Cauchy problem for the heat diffusion equation with conductivity σ_{*} and initial data $\pm 2 \mathcal{X}_{\mathcal{N}}$ for a short time, with the aid of the Gaussian bounds due to Aronson A, Theorem 1, p. 891] (see also [FS, p. 328]), we see that there exist two positive constants B and b such that

$$
\begin{equation*}
|v(x, t)| \leq B e^{-\frac{b}{t}} \quad \text { for every }(x, t) \in \overline{B_{\frac{1}{2}} \varepsilon}\left(z_{0}\right) \times(0, \infty) \tag{2.7}
\end{equation*}
$$

Therefore, since u_{*} satisfies the conclusion, u also does.

3. Proof of Theorem 1.1

First of all, Proposition 2.2 yields that the constant k in (1.4) is determined by

$$
\begin{equation*}
k=\frac{\sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}} \tag{3.1}
\end{equation*}
$$

Since $\partial \Omega$ is uniformly of class C^{6}, there exist two positive numbers r and K such that, for every point $p \in \partial \Omega$, there exist an orthogonal coordinate system z and a function $\varphi \in C^{6}\left(\mathbb{R}^{N-1}\right)$ such that the z_{N} coordinate axis lies in the inward normal direction to $\partial \Omega$ at p, the origin is located at p, C^{6} norm of φ in \mathbb{R}^{N-1} is less than $K, \varphi(0)=0, \nabla \varphi(0)=0$ and the set $B_{r}(p) \cap \Omega$ is written as in the z coordinate system

$$
\left\{z \in B_{r}(0): z_{N}>\varphi\left(z_{1}, \ldots, z_{N-1}\right)\right\} .
$$

Since $\partial \Omega$ is uniformly of class C^{6} as explained above, by choosing a number $\delta_{0}>0$ sufficiently small and setting
$\mathcal{N}_{-}=\left\{x \in \Omega: 0<\delta(x)<\delta_{0}\right\}$ and $\mathcal{N}_{+}=\left\{x \in \mathbb{R}^{N} \backslash \bar{\Omega}: 0<\delta(x)<\delta_{0}\right\}$, where $\delta(x)$ is the distance function given by (2.1), we see that
(3.5) for every $x \in \overline{\mathcal{N}_{ \pm}}$there exists a unique $z=z(x) \in \partial \Omega$

$$
\text { with } \delta(x)=|x-z|
$$

$$
z(x)=x-\delta(x) \nabla \delta(x) \text { for all } x \in \overline{\mathcal{N}_{ \pm}}
$$

$$
\max _{1 \leq j \leq N-1}\left|\kappa_{j}(z)\right|<\frac{1}{2 \delta_{0}} \text { for every } z \in \partial \Omega
$$

where $\kappa_{1}(z), \ldots, \kappa_{N-1}(z)$ denote the principal curvatures of $\partial \Omega$ at a point $z \in \partial \Omega$ with respect to the inward normal direction to $\partial \Omega$. It is shown in [GT, Lemmas 14.16 and 14.17 , p. 355] that

$$
|\nabla \delta(x)|=1 \text { and } \Delta \delta(x)= \begin{cases}-\sum_{j=1}^{N-1} \frac{\kappa_{j}(z(x))}{1-\kappa_{j}(z(x)) \delta(x)} & \text { for } x \in \mathcal{N}_{-} \tag{3.8}\\ \sum_{j=1}^{N-1} \frac{\kappa_{j}(z(x))}{1+\kappa_{j}(z(x)) \delta(x)} & \text { for } x \in \mathcal{N}_{+}\end{cases}
$$

We introduce elementary functions of the principal curvatures at $z \in \partial \Omega$ by

$$
\begin{equation*}
H_{i}(z)=\sum_{j_{1}<\cdots<j_{i}} \kappa_{j_{1}}(z) \cdots \kappa_{j_{i}}(z) \text { for } i=1, \ldots, N-1 \tag{3.9}
\end{equation*}
$$

where $\frac{1}{N-1} H_{1}(z)$ corresponds to the mean curvature of $\partial \Omega$ at $z \in \partial \Omega$ with respect to the inward normal direction to $\partial \Omega$. Then we notice that, for every $i=1, \ldots, N-1$, the composite function $H_{i}=H_{i}(z(x))$ satisfies that for $x \in \overline{\mathcal{N}_{ \pm}}$

$$
\begin{equation*}
H_{i} \in C^{4}\left(\overline{\mathcal{N}_{ \pm}}\right), \sup \left\{\left|\frac{\partial^{\alpha} H_{i}(z(x))}{\partial x^{\alpha}}\right|: x \in \overline{\mathcal{N}_{ \pm}},|\alpha| \leq 4\right\}<+\infty \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \delta(x) \cdot \nabla H_{i}(z(x))=0 \text { for } x \in \overline{\mathcal{N}_{ \pm}} . \tag{3.11}
\end{equation*}
$$

Moreover, as in the proof of [\mathbf{S}, Theorem 1.1], by introducing an increasing sequence of bounded subdomains in each of $\mathcal{N}_{ \pm}$together with an increasing sequence of bounded harmonic functions on each of the subdomains, we can construct a function $\psi=\psi(x)$, as the limit of the sequence, on each of $\mathcal{N}_{ \pm}$ satisfying
$\Delta \psi=0$ in $\mathcal{N}_{ \pm}, \psi=0$ on $\partial \Omega, \psi=2$ on $\partial \mathcal{N}_{ \pm} \backslash \partial \Omega$ and $0<\psi<2$ in $\mathcal{N}_{ \pm}$,
even if each of $\mathcal{N}_{ \pm}$is unbounded.

Figure 1: The geometric setting used in the proof.

As in the proofs of CMS, Theorem 1.5 in section 5], we introduce the function $w=w(x, \lambda)$ by the Laplace-Stieltjes transform of $u(x, \cdot)$ restricted on the semiaxis of real positive numbers

$$
w(x, \lambda)=\lambda \int_{0}^{\infty} e^{-\lambda t} u(x, t) d t \text { for }(x, \lambda) \in \mathbb{R}^{N} \times(0,+\infty)
$$

Observe from (1.1), (1.2), (1.4) and (3.1) that for every $\lambda>0$

$$
\begin{array}{cl}
\sigma_{s} \Delta w-\lambda w=0 & \text { in } \Omega \\
\sigma_{m} \Delta(1-w)-\lambda(1-w)=0 & \text { in } \mathbb{R}^{N} \backslash \bar{\Omega}, \\
0<w<1 & \text { in } \mathbb{R}^{N}, \\
w=\frac{\sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}} \text { and }\left.\sigma_{s} \frac{\partial w}{\partial \nu}\right|_{-}=\left.\sigma_{m} \frac{\partial w}{\partial \nu}\right|_{+} & \text {on } \partial \Omega, \tag{3.16}
\end{array}
$$

where ν denotes the outward unit normal vector to $\partial \Omega,+$ denotes the limit from outside of Ω and - that from inside of Ω. Moreover, it follows from (2) of Lemma 2.1 that there exist two positive constants \tilde{B} and \tilde{b} satisfying:

$$
\begin{equation*}
0<w(x, \lambda) \leq \tilde{B} e^{-\tilde{b} \sqrt{\lambda}} \quad \text { for every }(x, \lambda) \in\left(\partial \mathcal{N}_{-} \backslash \partial \Omega\right) \times(0,+\infty) \tag{3.17}
\end{equation*}
$$

$$
\begin{equation*}
0<1-w(x, \lambda) \leq \tilde{B} e^{-\tilde{b} \sqrt{\lambda}} \quad \text { for every }(x, \lambda) \in\left(\partial \mathcal{N}_{+} \backslash \partial \Omega\right) \times(0,+\infty) \tag{3.18}
\end{equation*}
$$

3.1. Proving that the mean curvature of $\partial \Omega$ vanishes

Let us first consider w on \mathcal{N}_{-}. Since w satisfies 3.13) and the first equality of (3.16), in view of the formal WKB approximation of w for sufficiently large $\tau=\frac{\lambda}{\sigma_{s}}$
$w(x, \lambda) \sim \frac{\sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}} e^{-\sqrt{\tau} \delta(x)} \sum_{j=0}^{\infty} A_{j}(x) \tau^{-\frac{j}{2}}$ with some coefficients $\left\{A_{j}(x)\right\}$, we introduce two functions $f_{1, \pm}=f_{1, \pm}(x, \lambda)$ defined for $(x, \lambda) \in \overline{\mathcal{N}_{-}} \times$ $(0,+\infty)$ by

$$
f_{1, \pm}(x, \lambda)=\frac{\sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}} e^{-\frac{\sqrt{\lambda}}{\sqrt{\sigma_{s}}} \delta(x)}\left[A_{0}(x)+\frac{\sqrt{\sigma_{s}}}{\sqrt{\lambda}} A_{1, \pm}(x)\right]
$$

where

$$
\begin{align*}
& A_{0}(x)=\left\{\prod_{j=1}^{N-1}\left[1-\kappa_{j}(z(x)) \delta(x)\right]\right\}^{-\frac{1}{2}} \tag{3.19}\\
& A_{1, \pm}(x)=\int_{0}^{\delta(x)}\left[\frac{1}{2} \Delta A_{0}(x(\tau)) \pm 1\right] \exp \left(-\frac{1}{2} \int_{\tau}^{\delta(x)} \Delta \delta\left(x\left(\tau^{\prime}\right)\right) d \tau^{\prime}\right) d \tau
\end{align*}
$$

with $x(\tau)=z(x)-\tau \nu(z(x))$ for $0<\tau<\delta(x)$. We observe that for $x \in \overline{\mathcal{N}_{-}}$

$$
\begin{equation*}
\prod_{j=1}^{N-1}\left[1-\kappa_{j}(z(x)) \delta(x)\right]=1+\sum_{i=1}^{N-1}(-1)^{i} H_{i}(z(x))(\delta(x))^{i} \tag{3.20}
\end{equation*}
$$

With (3.8), (3.11) and (3.20) at hand, by straightforward computations we obtain that
$\nabla \delta \cdot \nabla A_{0}=-\frac{1}{2}(\Delta \delta) A_{0}, \quad \nabla \delta \cdot \nabla A_{1, \pm}=-\frac{1}{2}(\Delta \delta) A_{1, \pm}+\frac{1}{2} \Delta A_{0} \pm 1$ in $\overline{\mathcal{N}_{-}}$,

$$
\begin{equation*}
\sigma_{s} \Delta f_{1, \pm}-\lambda f_{1, \pm}=\frac{\sigma_{s} \sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}} e^{-\frac{\sqrt{\lambda}}{\sqrt{\sigma_{s}}} \delta(x)}\left(\mp 2+\frac{\sqrt{\sigma_{s}}}{\sqrt{\lambda}} \Delta A_{1, \pm}\right) \text { in } \overline{\mathcal{N}_{-}} \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{0}=1, A_{1, \pm}=0, \quad f_{1, \pm}=\frac{\sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}} \quad \text { on } \partial \Omega \tag{3.23}
\end{equation*}
$$

for every $\lambda>0$. Moreover, (3.4), (3.7), (3.10) and (3.20) yield that

$$
\begin{equation*}
\left|\Delta A_{1, \pm}\right| \leq c_{1} \text { in } \overline{\mathcal{N}_{-}} \tag{3.24}
\end{equation*}
$$

for some positive constant c_{1}. Therefore, it follows from (3.22), (3.24), (3.17) and the definition of $f_{1, \pm}$ that there exist two positive constants λ_{1} and η_{1} such that

$$
\begin{align*}
& \sigma_{s} \Delta f_{1,+}-\lambda f_{1,+}<0<\sigma_{s} \Delta f_{1,-}-\lambda f_{1,-} \text { in } \overline{\mathcal{N}_{-}} \tag{3.25}\\
& \max \left\{\left|f_{1,+}\right|,\left|f_{1,-}\right|, w\right\} \leq e^{-\eta_{1} \sqrt{\lambda}} \text { on } \partial \mathcal{N}_{-} \backslash \partial \Omega \tag{3.26}
\end{align*}
$$

for every $\lambda \geq \lambda_{1}$.
For every $(x, \lambda) \in \overline{\mathcal{N}_{-}} \times(0,+\infty)$, we define the two functions $w_{1, \pm}=$ $w_{1, \pm}(x, \lambda)$ by

$$
\begin{equation*}
w_{1, \pm}(x, \lambda)=f_{1, \pm}(x, \lambda) \pm \psi(x) e^{-\eta_{1} \sqrt{\lambda}} \tag{3.27}
\end{equation*}
$$

where $\psi(x)$ is given by (3.12). Then, in view of (3.13), (3.16), (3.23), (3.25) and (3.26), we notice that

$$
\sigma_{s} \Delta w_{1,+}-\lambda w_{1,+}<0=\sigma_{s} \Delta w-\lambda w<\sigma_{s} \Delta w_{1,-}-\lambda w_{1,-} \quad \text { in } \mathcal{N}_{-},
$$

$$
\begin{array}{cl}
w_{1,+}=w=w_{1,-}=\frac{\sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}} & \text { on } \partial \Omega \tag{3.28}\\
w_{1,-}<w<w_{1,+} & \text { on } \partial \mathcal{N}_{-} \backslash \partial \Omega
\end{array}
$$

for every $\lambda \geq \lambda_{1}$, and hence we get that

$$
\begin{equation*}
w_{1,-}<w<w_{1,+} \text { in } \mathcal{N}_{-} \tag{3.29}
\end{equation*}
$$

for every $\lambda \geq \lambda_{1}$, by the comparison principle (see Proposition B. 1 in Appendix). Thus, combining (3.29) with (3.28) yields that

$$
\begin{equation*}
\frac{\partial w_{1,+}}{\partial \nu} \leq\left.\frac{\partial w}{\partial \nu}\right|_{-} \leq \frac{\partial w_{1,-}}{\partial \nu} \text { on } \partial \Omega \tag{3.30}
\end{equation*}
$$

for every $\lambda \geq \lambda_{1}$.
Therefore, by recalling the definition of $w_{1, \pm}$, it follows from 3.21, (3.23) and (3.8) that, for every $\lambda \geq \lambda_{1}$, we have the following chain of inequalities on $\partial \Omega$:

$$
\begin{align*}
& \frac{\sigma_{s} \sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}}\left\{-\frac{1}{2} \sum_{j=1}^{N-1} \kappa_{j}-\frac{\sqrt{\sigma_{s}}}{\sqrt{\lambda}}\left(\frac{1}{2} \Delta A_{0}+1\right)\right\}+\sigma_{s} \frac{\partial \psi}{\partial \nu} e^{-\eta_{1} \sqrt{\lambda}} \\
& \leq\left.\sigma_{s} \frac{\partial w}{\partial \nu}\right|_{-}-\frac{\sqrt{\sigma_{s}} \sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}} \sqrt{\lambda} \\
& \leq \frac{\sigma_{s} \sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}}\left\{-\frac{1}{2} \sum_{j=1}^{N-1} \kappa_{j}-\frac{\sqrt{\sigma_{s}}}{\sqrt{\lambda}}\left(\frac{1}{2} \Delta A_{0}-1\right)\right\}-\sigma_{s} \frac{\partial \psi}{\partial \nu} e^{-\eta_{1} \sqrt{\lambda}} \tag{3.31}
\end{align*}
$$

This implies that on $\partial \Omega$

$$
\begin{equation*}
-\frac{\sigma_{s} \sqrt{\sigma_{m}}}{2\left(\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}\right)} \sum_{j=1}^{N-1} \kappa_{j}=\left.\sigma_{s} \frac{\partial w}{\partial \nu}\right|_{-}-\frac{\sqrt{\sigma_{s}} \sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}} \sqrt{\lambda}+O(1 / \sqrt{\lambda}) \text { as } \lambda \rightarrow+\infty \tag{3.32}
\end{equation*}
$$

Next, we consider $1-w$ on \mathcal{N}_{+}. By the similar arguments as above, since

$$
1-w=\frac{\sqrt{\sigma_{s}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}} \text { on } \partial \Omega
$$

we can construct barriers for $1-w$ on \mathcal{N}_{+}with the aid of (3.18) by replacing σ_{s} with σ_{m}. Thus, proceeding similarly yields that on $\partial \Omega$
$\frac{\sigma_{m} \sqrt{\sigma_{s}}}{2\left(\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}\right)} \sum_{j=1}^{N-1} \kappa_{j}=\left.\sigma_{m} \frac{\partial w}{\partial \nu}\right|_{+}-\frac{\sqrt{\sigma_{s}} \sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}} \sqrt{\lambda}+O(1 / \sqrt{\lambda})$ as $\lambda \rightarrow+\infty$,
where we have taken into account both the sign of the mean curvature with (3.8) and the normal direction to $\partial \Omega$. Therefore, by combining (3.32) and (3.33) with the second equality of (3.16) we conclude that on $\partial \Omega$

$$
H_{1}=\sum_{j=1}^{N-1} \kappa_{j}=O(1 / \sqrt{\lambda}) \text { as } \lambda \rightarrow+\infty
$$

and hence the mean curvature of $\partial \Omega$ must vanish, that is, $\partial \Omega$ is a minimal hypersurface properly embedded in \mathbb{R}^{N} (see $(\sqrt{3.9})$ for H_{1}). In particular when $N=2$, the curvature of the curve $\partial \Omega$ vanishes and the conclusion of Theorem 1.1 holds.

Note that in this subsection 3.1 we did not use the fact that $\sigma_{s} \neq \sigma_{m}$.

3.2. Proving that all the principal curvaures of $\partial \Omega$ vanish and $\partial \Omega$ must be a hyperplane

We may consider the case where $N \geq 3$. It suffices to show that $H_{i}=0$ on $\partial \Omega$ for every $i=1, \ldots, N-1$. Since we already know in subsection 3.1 that $H_{1}=0$ on $\partial \Omega$, we start induction with supposing that there exists a number $p \in\{2, \ldots, N-1\}$ satisfying

$$
\begin{equation*}
H_{1}=\cdots=H_{p-1}=0 \text { on } \partial \Omega . \tag{3.34}
\end{equation*}
$$

Then we will prove that $H_{p}=0$ on $\partial \Omega$. By subsection 3.1, $\partial \Omega$ must be real analytic and moreover, by the interior estimates for solutions of the minimal surface equation (see [GT, Corollary 16.7, p. 407]), we see that $\partial \Omega$ is uniformly of class C^{ℓ} for every $\ell \in \mathbb{N}$, and hence (3.4) and (3.10) are improved as follows: For every $\ell \in \mathbb{N}$,

$$
\begin{equation*}
\sup \left\{\left|\frac{\partial^{\alpha} \delta}{\partial x^{\alpha}}(x)\right|: x \in \overline{\mathcal{N}_{ \pm}},|\alpha| \leq \ell\right\}<+\infty \tag{3.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup \left\{\left|\frac{\partial^{\alpha} H_{i}(z(x))}{\partial x^{\alpha}}\right|: 1 \leq i \leq N-1, x \in \overline{\mathcal{N}_{ \pm}},|\alpha| \leq \ell\right\}<+\infty \tag{3.36}
\end{equation*}
$$

Therefore we can introduce the following more precise barriers $f_{n, \pm}=$ $f_{n, \pm}(x, \lambda)$ for w on \mathcal{N}_{-}such that for $(x, \lambda) \in \overline{\mathcal{N}_{-}} \times(0,+\infty)$ and for every $n \geq 2$

$$
\begin{aligned}
f_{n, \pm}(x, \lambda)= & \frac{\sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}} e^{-\frac{\sqrt{\lambda}}{\sqrt{\sigma_{s}}} \delta(x)}\left[A_{0}(x)+\sum_{j=1}^{n-1}\left(\frac{\sqrt{\sigma_{s}}}{\sqrt{\lambda}}\right)^{j} A_{j}(x)\right. \\
& \left.+\left(\frac{\sqrt{\sigma_{s}}}{\sqrt{\lambda}}\right)^{n} A_{n, \pm}(x)\right]
\end{aligned}
$$

where A_{0} is given by 3.19 and for $j=1, \cdots, n-1$,

$$
\begin{align*}
& A_{j}(x)=\int_{0}^{\delta(x)}\left[\frac{1}{2} \Delta A_{j-1}(x(\tau))\right] \exp \left(-\frac{1}{2} \int_{\tau}^{\delta(x)} \Delta \delta\left(x\left(\tau^{\prime}\right)\right) d \tau^{\prime}\right) d \tau \tag{3.37}\\
& A_{n, \pm}(x)=\int_{0}^{\delta(x)}\left[\frac{1}{2} \Delta A_{n-1}(x(\tau)) \pm 1\right] \exp \left(-\frac{1}{2} \int_{\tau}^{\delta(x)} \Delta \delta\left(x\left(\tau^{\prime}\right)\right) d \tau^{\prime}\right) d \tau
\end{align*}
$$

with $x(\tau)=z(x)-\tau \nu(z(x))$ for $0<\tau<\delta(x)$.
With (3.8), (3.11) and (3.20) at hand, by straightforward computations we obtain that, in $\overline{\mathcal{N}_{-}}$(compare with (3.21)-(3.24)):

$$
\begin{align*}
& \nabla \delta \cdot \nabla A_{0}=-\frac{1}{2}(\Delta \delta) A_{0} \tag{3.38}\\
& \nabla \delta \cdot \nabla A_{j}=-\frac{1}{2}(\Delta \delta) A_{j}+\frac{1}{2} \Delta A_{j-1} \text { for } j=1, \ldots, n-1 \tag{3.39}\\
& \nabla \delta \cdot \nabla A_{n, \pm}=-\frac{1}{2}(\Delta \delta) A_{n, \pm}+\frac{1}{2} \Delta A_{n-1} \pm 1 \tag{3.40}
\end{align*}
$$

$$
\begin{equation*}
\sigma_{s} \Delta f_{n, \pm}-\lambda f_{n, \pm}=\frac{\sigma_{s} \sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}}\left(\frac{\sqrt{\sigma_{s}}}{\sqrt{\lambda}}\right)^{n-1} e^{-\frac{\sqrt{\lambda}}{\sqrt{\sigma_{s}}} \delta(x)}\left(\mp 2+\frac{\sqrt{\sigma_{s}}}{\sqrt{\lambda}} \Delta A_{n, \pm}\right) \tag{3.41}
\end{equation*}
$$

and on $\partial \Omega$

$$
\begin{equation*}
A_{0}=1, A_{1}=\cdots=A_{n-1}=A_{n, \pm}=0, \quad f_{n, \pm}=\frac{\sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}} \tag{3.42}
\end{equation*}
$$

for every $\lambda>0$. Moreover, (3.35), 3.36), 3.7) and (3.20) yield that

$$
\begin{equation*}
\left|\Delta A_{n, \pm}\right| \leq c_{n} \text { in } \overline{\mathcal{N}_{-}} \tag{3.43}
\end{equation*}
$$

for some positive constant c_{n}. Then, by replacing $f_{1, \pm}$ with $f_{n, \pm}$, we can use the same comparison arguments as in (3.25) - 3.30) of subsection 3.1 to conclude that there exist two positive constants λ_{n} and η_{n} satisfying

$$
\begin{equation*}
\frac{\partial w_{n,+}}{\partial \nu} \leq\left.\frac{\partial w}{\partial \nu}\right|_{-} \leq \frac{\partial w_{n,-}}{\partial \nu} \quad \text { on } \quad \partial \Omega \tag{3.44}
\end{equation*}
$$

for every $\lambda \geq \lambda_{n}$, where

$$
\begin{equation*}
w_{n, \pm}(x, \lambda)=f_{n, \pm}(x, \lambda) \pm \psi(x) e^{-\eta_{n} \sqrt{\lambda}} \tag{3.45}
\end{equation*}
$$

with $\psi(x)$ given by (3.12). Since $\Delta \delta=0$ on $\partial \Omega$, it follows from (3.8), (3.38)(3.40) and (3.42) that on $\partial \Omega$

$$
\begin{align*}
\frac{\partial w_{n, \pm}}{\partial \nu}= & -\nabla \delta \cdot \nabla w_{n, \pm} \\
= & \frac{\sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}}\left\{\frac{\sqrt{\lambda}}{\sqrt{\sigma_{s}}}-\frac{1}{2} \sum_{j=1}^{n-1}\left(\frac{\sqrt{\sigma_{s}}}{\sqrt{\lambda}}\right)^{j} \Delta A_{j-1}\right. \\
& \left.-\frac{1}{2}\left(\frac{\sqrt{\sigma_{s}}}{\sqrt{\lambda}}\right)^{n}\left(\Delta A_{n, \pm} \pm 2\right)\right\} \\
& \pm \frac{\partial \psi}{\partial \nu} e^{-\eta_{n} \sqrt{\lambda}} \tag{3.46}
\end{align*}
$$

It follows from (3.34) that for $x \in \overline{\mathcal{N}_{-}}$

$$
\begin{equation*}
\prod_{j=1}^{N-1}\left[1-\kappa_{j}(z(x)) \delta(x)\right]=1+\sum_{i=p}^{N-1}(-1)^{i} H_{i}(z(x))(\delta(x))^{i} . \tag{3.47}
\end{equation*}
$$

We choose, for instance, $n=N-1$. Let us show that for every $s \in$ $\{0, \ldots, p-2\}$ as $\delta(x) \rightarrow 0$

$$
\begin{align*}
\Delta A_{s}(x)= & -2^{-(s+1)}(-1)^{p}(s+2)!\binom{p}{s+2} H_{p}(z(x))(\delta(x))^{p-2-s} \tag{3.48}\\
& +O\left((\delta(x))^{p-1-s}\right) .
\end{align*}
$$

By (3.47) and 3.19, we have that as $\delta(x) \rightarrow 0$

$$
A_{0}(x)=1-\frac{1}{2}(-1)^{p} H_{p}(z(x))(\delta(x))^{p}+O\left((\delta(x))^{p+1}\right)
$$

Then, it follows from the first equality of (3.8) that as $\delta(x) \rightarrow 0$

$$
\Delta A_{0}(x)=-\frac{1}{2}(-1)^{p} H_{p}(z(x)) p(p-1)(\delta(x))^{p-2}+O\left((\delta(x))^{p-1}\right)
$$

which means that (3.48) holds for $s=0$. Suppose that (3.48) holds for $s=$ $q-1 \in\{0, \ldots, p-2\}$. Then we have from (3.37) that

$$
\begin{aligned}
A_{q}(x)= & \int_{0}^{\delta(x)}\left[-2^{-(q+1)}(-1)^{p}(q+1)!\binom{p}{q+1} H_{p}(z(x)) \tau^{p-1-q}+O\left((\tau)^{p-q}\right)\right] \\
& \times \exp \left(-\frac{1}{2} \int_{\tau}^{\delta(x)} \Delta \delta\left(x\left(\tau^{\prime}\right)\right) d \tau^{\prime}\right) d \tau \\
= & -2^{-(q+1)}(-1)^{p}(q+1)!\binom{p}{q+1} H_{p}(z(x)) \int_{0}^{\delta(x)} \tau^{p-1-q} d \tau \\
& +O\left((\delta(x))^{p-q+1}\right) \\
= & -2^{-(q+1)}(-1)^{p} q!\binom{p}{q} H_{p}(z(x)) \delta(x)^{p-q}+O\left((\delta(x))^{p-q+1}\right) .
\end{aligned}
$$

Thus it follows from the first equality of (3.8) that as $\delta(x) \rightarrow 0$

$$
\begin{aligned}
\Delta A_{q}(x)= & -2^{-(q+1)}(-1)^{p} q!\binom{p}{q} H_{p}(z(x))(p-q)(p-q-1) \delta(x)^{p-q-2} \\
& +O\left((\delta(x))^{p-q-1}\right) \\
= & -2^{-(q+1)}(-1)^{p}(q+2)!\binom{p}{q+2} H_{p}(z(x)) \delta(x)^{p-q-2} \\
& +O\left((\delta(x))^{p-q-1}\right)
\end{aligned}
$$

which means that (3.48) holds for $s=q$. Hence formula (3.48) holds true for every $s \in\{0, \ldots, p-2\}$.

Formula 3.48 implies that on $\partial \Omega$

$$
\Delta A_{s}=0 \quad \text { for } s<p-2 \text { and } \Delta A_{p-2}=-2^{-(p-1)}(-1)^{p} p!H_{p}
$$

and hence it follows from (3.44) and (3.46) that on $\partial \Omega$ as $\lambda \rightarrow \infty$

$$
\begin{equation*}
\left.\sigma_{s} \frac{\partial w}{\partial \nu}\right|_{-}=\frac{\sqrt{\sigma_{s}} \sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}}\left\{\sqrt{\lambda}+p!2^{-p}(-1)^{p}\left(\sigma_{s}\right)^{\frac{p}{2}} H_{p} \lambda^{-\frac{p-1}{2}}\right\}+O\left(\lambda^{-\frac{p}{2}}\right) . \tag{3.49}
\end{equation*}
$$

Next, as in the end of subsection 3.1, we proceed to consider $1-w$ on \mathcal{N}_{+}. By replacing w, σ_{s} with $1-w, \sigma_{m}$, respectively and taking into account both the sign of H_{p} and the normal direction to $\partial \Omega$, by the same arguments we infer that on $\partial \Omega$ as $\lambda \rightarrow \infty$

$$
\begin{equation*}
\left.\sigma_{m} \frac{\partial w}{\partial \nu}\right|_{+}=\frac{\sqrt{\sigma_{s}} \sqrt{\sigma_{m}}}{\sqrt{\sigma_{s}}+\sqrt{\sigma_{m}}}\left\{\sqrt{\lambda}+p!2^{-p}\left(\sigma_{m}\right)^{\frac{p}{2}} H_{p} \lambda^{-\frac{p-1}{2}}\right\}+O\left(\lambda^{-\frac{p}{2}}\right) \tag{3.50}
\end{equation*}
$$

Here we used the fact that, corresponding to the choice of the normal direction to $\partial \Omega$, the sign of H_{p} changes if p is odd and it does not change if p is even. Since $\sigma_{s} \neq \sigma_{m}$, by combining (3.49) and (3.50) with the second equality of (3.16) we conclude that on $\partial \Omega$

$$
H_{p}=O(1 / \sqrt{\lambda}) \text { as } \lambda \rightarrow \infty,
$$

and hence H_{p} must vanish on $\partial \Omega$. Therefore we obtain that $H_{i}=0$ on $\partial \Omega$ for every $i=1, \ldots, N-1$. This means that all the principal curvatures of $\partial \Omega$ vanish and thus $\partial \Omega$ must be a hyperplane.

Note that in this subsection 3.2 we used the fact that $\sigma_{s} \neq \sigma_{m}$.

4. Proof of Theorem 1.2

Let u be the solution of problem (1.6). From (1.4) we see that $\partial \Omega$ is a stationary isothermic surface of u. Thus by MPS, Theorem 2.2, p. 4825] $\partial \Omega$ must be a real analytic hypersurface embedded in \mathbb{R}^{N}. Hence Proposition 2.2 yields that $k=\frac{1}{2}$. Let $x \in \partial \Omega$. Then it follows from the explicit representation of u via Gaussian kernel that for every $t>0$

$$
\begin{aligned}
\frac{1}{2} & =u(x, t)=(4 \pi t)^{-\frac{N}{2}} \int_{\mathbb{R}^{N}} \mathcal{X}_{\Omega^{c}}(\xi) e^{-\frac{|x-\xi|^{2}}{4 t}} d \xi \\
& =(4 \pi t)^{-\frac{N}{2}} \int_{0}^{\infty} e^{-\frac{r^{2}}{4 t}}\left(\int_{\partial B_{r}(x)} \mathcal{X}_{\Omega^{c}}(\xi) d S_{\xi}\right) d r \\
& =(4 \pi t)^{-\frac{N}{2}} \int_{0}^{\infty} e^{-\frac{r^{2}}{4 t}}\left|\Omega^{c} \cap \partial B_{r}(x)\right| d r
\end{aligned}
$$

where $\Omega^{c}=\mathbb{R}^{N} \backslash \Omega, d S_{\xi}$ indicates the area element of the sphere $\partial B_{r}(x)$ and $\left|\Omega^{c} \cap \partial B_{r}(x)\right|$ does the $(N-1)$-dimensional Hausdorff measure of the set $\Omega^{c} \cap \partial B_{r}(x)$. Thus we infer that

$$
\int_{0}^{\infty} e^{-\frac{r^{2}}{4 t}}\left(\left|\Omega^{c} \cap \partial B_{r}(x)\right|-\frac{1}{2}\left|\partial B_{r}(x)\right|\right) d r=0 \text { for every } t>0
$$

Since the Laplace transform is injective, we conclude that for each point $x \in \partial \Omega$

$$
\begin{equation*}
\left|\Omega^{c} \cap \partial B_{r}(x)\right|-\frac{1}{2}\left|\partial B_{r}(x)\right|=0 \text { for almost every } r>0 \tag{4.1}
\end{equation*}
$$

Then the following formula also holds true:

$$
\begin{equation*}
\frac{\left|\Omega^{c} \cap B_{r}(x)\right|}{\left|B_{r}(x)\right|}=\frac{1}{2} \text { for every } r>0 \text { and } x \in \partial \Omega \tag{4.2}
\end{equation*}
$$

where the same symbol $|\cdot|$ indicates the N-dimensional Lebesgue measure of sets.

When $N \geq 2$, by MPS, Theorem 1.2, p. 4823] (4.2) yields that $\partial \Omega$ must have zero mean curvature. Hence, when $N=2, \partial \Omega$ must be a straight line, and when $N \geq 3, \partial \Omega$ must be a minimal hypersurface embedded in \mathbb{R}^{N}.

In view of the sufficient regularity of $\partial \Omega$, it follows from (4.1) that for every point $p \in \partial \Omega$, there exist numbers $\delta_{p}>0$ and $r_{p}>0$ satisfying

$$
\begin{equation*}
\left|\Omega^{c} \cap \partial B_{r}(x)\right|-\frac{1}{2}\left|\partial B_{r}(x)\right|=0 \text { for every } 0<r<r_{p} \text { and } x \in B_{\delta}(p) \cap \partial \Omega \tag{4.3}
\end{equation*}
$$

When $N=3$, by [N, Theorem, p. 234], 4.3) yields that $\partial \Omega$ must be either a hyperplane or a helicoid. This completes the proof of Theorem 1.2 .

Appendices

First of all, let us give a proof of (1.5).

Appendix A. Proof of 1.5

Let $\mathcal{H} \subset \mathbb{R}^{3}$ be the helicoid given by

$$
\left\{\left(x_{1}, x_{2}, x_{3}\right)=(\rho \cos s, \rho \sin s, s):(\rho, s) \in \mathbb{R}^{2}\right\}
$$

(See [CMII, pp. 8-9] for the helicoid). Notice that \mathcal{H} is the boundary of the following unbounded domain:

$$
\begin{equation*}
\Omega=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{2} \cos x_{3}-x_{1} \sin x_{3}>0\right\} . \tag{A.1}
\end{equation*}
$$

We now introduce two isometries that are deeply related to the symmetries of \mathcal{H}. For $\alpha \in \mathbb{R}$ and $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$, we set:

$$
\begin{gather*}
k_{\alpha}(x)=\left(x_{1} \cos \alpha-x_{2} \sin \alpha, x_{1} \sin \alpha+x_{2} \cos \alpha, x_{3}+\alpha\right), \\
g(x)=\left(x_{1},-x_{2},-x_{3}\right) . \tag{A.2}
\end{gather*}
$$

Here k_{α} is a screwing motion obtained by rotation of angle α in the $x_{1}-x_{2}$ plane, followed by a translation of length α in the x_{3} direction. Notice that Ω and $\mathbb{R}^{3} \backslash \bar{\Omega}$ are preserved by the action of k_{α}, while they get switched by that of g :

$$
\begin{array}{r}
k_{\alpha}(\Omega)=\Omega, \quad k_{\alpha}\left(\mathbb{R}^{3} \backslash \bar{\Omega}\right)=\mathbb{R}^{3} \backslash \bar{\Omega}, \\
g(\Omega)=\mathbb{R}^{3} \backslash \bar{\Omega}, \quad g\left(\mathbb{R}^{3} \backslash \bar{\Omega}\right)=\Omega . \tag{A.3}
\end{array}
$$

Finally, since $x_{2} \cos x_{3}-x_{1} \sin x_{3}=0$ for $x \in \mathcal{H}$, the restrictions of g and k_{α} to \mathcal{H} are related by the following formula:
$g\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1},-x_{2},-x_{3}\right)=k_{-2 x_{3}}\left(x_{1}, x_{2}, x_{3}\right) \quad$ for all $\left(x_{1}, x_{2}, x_{3}\right) \in \mathcal{H}$.
Let $u=u(x, t)$ be the unique bounded solution of the following Cauchy problem for the heat diffusion equation:
(A.5) $\quad u_{t}=\Delta u \quad$ in $\mathbb{R}^{3} \times(0,+\infty)$ and $u=\mathcal{X}_{\mathbb{R}^{3} \backslash \Omega}$ on $\mathbb{R}^{3} \times\{0\}$,
where Ω is the unbounded domain defined in A.1). Moreover, for arbitray real α, define the following functions:
$v_{\alpha}(x, t)=u\left(k_{\alpha}(x), t\right) \quad$ and $\quad w(x, t)=u(g(x), t) \quad$ for $\quad(x, t) \in \mathbb{R}^{3} \times(0, \infty)$.
Since both k_{α} and g are isometries, by A.3 we deduce that v_{α} and w are bounded solutions of the following Cauchy problems.
(A.6) $\left(v_{\alpha}\right)_{t}=\Delta v_{\alpha} \quad$ in $\mathbb{R}^{3} \times(0,+\infty)$ and $v_{\alpha}=\mathcal{X}_{\mathbb{R}^{3} \backslash \Omega}$ on $\mathbb{R}^{3} \times\{0\}$,
(A.7) $\quad w_{t}=\Delta w \quad$ in $\mathbb{R}^{3} \times(0,+\infty)$ and $\quad w=\mathcal{X}_{\Omega}$ on $\mathbb{R}^{3} \times\{0\}$.

In particular, unique solvability of the Cauchy problems above yields

$$
\begin{equation*}
v_{\alpha}=u \quad \text { and } \quad u+w=1 \quad \text { in } \mathbb{R}^{3} \times(0, \infty), \quad \text { for all } \alpha \in \mathbb{R} \tag{A.8}
\end{equation*}
$$

Fix now an arbitrary pair $(x, t) \in \mathcal{H} \times(0, \infty)$ and choose $\alpha=-2 x_{3}$. By combining both identities in A.8 with A.4 we get the following chain of equalities.

$$
1=u(x, t)+u(g(x), t)=u(x, t)+u\left(k_{-2 x_{3}}(x), t\right)=2 u(x, t)
$$

That is, $u(x, t)=1 / 2$ for all $(x, t) \in \mathcal{H} \times(0, \infty)$. We have therefore proved (1.5) when $N=3$. The case $N \geq 4$ follows by separation of variables.

Appendix B. A maximum principle for unbounded domains

For convenience, we quote a maximum principle together with its proof for an elliptic equation in unbounded domains in \mathbb{R}^{N} from [S], Proposition A.3].

Proposition B.1. Let $D \subset \mathbb{R}^{N}$ be an unbounded domain, and let $\sigma=$ $\sigma(x)(x \in D)$ be a general conductivity satisfying

$$
0<\mu \leq \sigma(x) \leq M \quad \text { for every } x \in \mathbb{R}^{N}
$$

where μ, M are positive constants. Assume that $w \in H_{l o c}^{1}(D) \cap L^{\infty}(D) \cap$ $C^{0}(\bar{D})$ satisfies

$$
-\operatorname{div}(\sigma \nabla w)+\lambda w \geq 0 \quad \text { in } D \text { and } w \geq 0 \text { on } \partial D
$$

for some constant $\lambda>0$. Then $w \geq 0$ in D, and moreover, either $w>0$ in D or $w \equiv 0$ in D.

Remark B.2. When D is bounded, this proposition is well known and holds true for every $\lambda \geq 0$. However, when D is unbounded, this proposition is not true for $\lambda=0$. Indeed, a counterexample is given in [ABR, p. 37], where $N \geq 3, D=\left\{x \in \mathbb{R}^{N}:|x|>1\right\}, \sigma(x) \equiv 1$ and $w(x)=|x|^{2-N}-1$.

Proof of Proposition B.1. Define $v=v(x)$ by

$$
v(x)=e^{-\delta|x|} w(x) \text { for } x \in \bar{D}
$$

where $\delta>0$ is a constant which will be chosen later. Then $v \in H_{l o c}^{1}(D) \cap$ $L^{\infty}(D) \cap C^{0}(\bar{D})$ and moreover

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} v(x)=0 \tag{B.1}
\end{equation*}
$$

since $w \in L^{\infty}(D)$. For every $\varepsilon>0$, we consider a nonnegative function

$$
\varphi(x)=\max \{-\varepsilon-v(x), 0\} \text { for } x \in \bar{D}
$$

Since $v \in H_{l o c}^{1}(D) \cap L^{\infty}(D) \cap C^{0}(\bar{D})$ and $v \geq 0$ on ∂D, it follows from (B.1) that φ is compactly supported in D and $\varphi \in H_{0}^{1}(D)$, and hence $e^{-2 \delta|\cdot|} \varphi(\cdot) \in$ $H_{0}^{1}(D)$. Therefore we obtain

$$
\begin{align*}
0 & \leq \int_{D}\left\{\sigma(x) \nabla w(x) \cdot \nabla\left(\varphi(x) e^{-2 \delta|x|}\right)+\lambda w(x) \varphi(x) e^{-2 \delta|x|}\right\} d x \\
& =\int_{D \cap\{v<-\varepsilon\}} \sigma e^{-\delta|x|}\left\{\left(\delta v \frac{x}{|x|}+\nabla v\right) \cdot\left(\nabla \varphi-2 \delta \varphi \frac{x}{|x|}\right)+\frac{\lambda}{\sigma} v \varphi\right\} d x \tag{B.2}
\end{align*}
$$

Notice that

$$
\begin{aligned}
\varphi(x) & =\left\{\begin{array}{ll}
-\varepsilon-v(x) & \text { if } v(x)<-\varepsilon, \\
0 & \text { if } v(x) \geq-\varepsilon,
\end{array} \quad\right. \text { and } \\
\nabla \varphi(x) & = \begin{cases}-\nabla v(x) & \text { if } v(x)<-\varepsilon, \\
0 & \text { if } v(x) \geq-\varepsilon .\end{cases}
\end{aligned}
$$

By setting

$$
I=\sigma^{-1} e^{\delta|x|} \times \text { the integrand of the integral }(\bar{B} .2)
$$

we have

$$
\begin{aligned}
I & =-|\nabla v|^{2}-\frac{\lambda}{\sigma} v^{2}+2 \delta^{2} v^{2}+\delta v \frac{x}{|x|} \cdot \nabla v+\varepsilon\left(2 \delta^{2} v+2 \delta \frac{x}{|x|} \cdot \nabla v-\frac{\lambda}{\sigma} v\right) \\
& \leq-\left\{1-\delta\left(\frac{1}{2}+\varepsilon\right)\right\}|\nabla v|^{2}-\left\{\frac{\lambda}{\sigma}\left(1-\frac{\varepsilon}{2}\right)-\left(2 \delta^{2}+\frac{\delta}{2}\right)\right\} v^{2}+\varepsilon\left(\frac{\lambda}{2 \sigma}+\delta\right)
\end{aligned}
$$

Here we have used Cauchy's inequality $2 a b \leq a^{2}+b^{2}$ and the fact that $v<0$ in the integrand of (B.2). Therefore, since $0<\mu \leq \sigma(x) \leq M$, we can choose
$\delta>0$ sufficiently small to obtain that if $0<\varepsilon<1$ then

$$
I \leq-\frac{1}{4}\left(|\nabla v|^{2}+\frac{\lambda}{M} v^{2}\right)+\varepsilon\left(\frac{\lambda}{2 \mu}+\delta\right)
$$

and hence

$$
\mu \int_{D \cap\{v<-\varepsilon\}} e^{-\delta|x|}\left(|\nabla v|^{2}+\frac{\lambda}{M} v^{2}\right) d x \leq M \varepsilon\left(\frac{2 \lambda}{\mu}+4 \delta\right) \int_{D} e^{-\delta|x|} d x
$$

By choosing a sequence $\left\{\varepsilon_{n}\right\}$ with $\varepsilon_{n} \downarrow 0$ as $n \rightarrow \infty$ and letting $n \rightarrow \infty$, we conclude that

$$
\int_{D \cap\{v<0\}} e^{-\delta|x|}\left(|\nabla v|^{2}+\frac{\lambda}{M} v^{2}\right) d x=0
$$

and hence $v \geq 0$ in D. Therefore $w \geq 0$ in D. Once this is shown, the last part follows from the strong maximum principle (see [GT] Theorem 8.19, pp. 198-199]).

References

[A] D. G. Aronson, Bounds for the fundamental solutions of a parabolic equation, Bull. Amer. Math. Soc., 73 (1967), 890-896.
[ABR] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, (Second Edition), Springer-Verlag, New York, 2001.
[CMS] L. Cavallina, R. Magnanini and S. Sakaguchi, Two-phase heat conductors with a surface of the constant flow property, J. Geometric Analysis (2019), published online, https://doi.org/10.1007/s12220-019-00262-8.
[CMII] T. H. Colding and W. P. Minicozzi II, A Course in Minimal Surfaces, Amer. Math. Soc., Providence, Rhode Island, 2011.
[FS] E. Fabes and D. Stroock, A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash, Arch. Rational Mech. Anal., 96 (1986), 327-338.
[GOO] B. Gaveau, M. Okada and T. Okada, Second order differential operators and Dirichlet integrals with singular coefficients: I. Functional calculus of one-dimensional operators, Tohoku Math. J., 39 (1987), 465-504.
[GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, (Second Edition), Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.
[MPS] R. Magnanini, J. Prajapat and S. Sakaguchi, Stationary isothermic surfaces and uniformly dense domains, Trans. Amer. Math. Soc., 358 (2006), 4821-4841.
[N] J. C. C. Nitsche, Characterizations of the mean curvature and a problem of G. Cimmino, Analysis, 15 (1995), 233-245.
[S] S. Sakaguchi, Some characterizations of parallel hyperplanes in multi-layered heat conductors, J. Math. Pures Appl., 140 (2020), 185-210.

Mathematical Institute, Tohoku University
Aoba, Sendai 980-8578, Japan
E-mail address: cavallina.lorenzo.e6@tohoku.ac.jp

Research Center for Pure and Applied Mathematics
Graduate School of Information Sciences
Tohoku University, Sendai, 980-8579, Japan
E-mail address: sigersak@tohoku.ac.jp

Department of Mathematics, School of Medicine
Nihon University, Itabashi, Tokyo 173-0032, Japan
E-mail address: udagawa.seiichi@nihon-u.ac.jp
Received December 31, 2019
Accepted October 14, 2020

[^0]: This research was partially supported by the Grants-in-Aid for Scientific Research (B) ($\# 18 \mathrm{H} 01126$ and $\sharp 17 \mathrm{H} 02847$) and JSPS Fellows ($\# 18 \mathrm{~J} 11430$) of Japan Society for the Promotion of Science.

