
Current Developments in Mathematics, 2014

The regularity of minimal surfaces in higher
codimension

Camillo De Lellis

Abstract. In this paper we review the regularity theory for area min-
imizing m-dimensional currents in codimension higher than 1, which
bounds the dimension of the singular set with m − 2. In recent joint
works with Emanuele Spadaro we have revisited the pioneering pro-
gram of Almgren, bringing some new techniques from metric analysis
and some new ideas to deal with the most intricate aspects of the proof.
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1. Introduction

The Plateau’s problem investigates those surfaces of least area spanning
a given contour. It is one of the most classical problems in the calculus
of variations, it lies at the crossroad of several branches of mathematics
and it has generated a large amount of mathematical theory in the last one
hundred years. The problem itself and its various generalizations have found
fundamental applications in several mathematical and scientific branches.
Since it is a prototype of a vast family of questions with geometric and
physical significance, the techniques developed to analyze it have proved to
be very useful in a variety of other situations.

The original formulation is attributed to the Belgian physicist Plateau,
although it was considered earlier by Lagrange, and it regards 2-dimensional
surfaces spanning a given one-dimensional contour γ in the 3-dimensional
space: among these surfaces one is interested in those which minimize the
area (and, more in general, on the critical points of the area, although in
this survey we will restrict our attention to “absolute” minimizers). Plateau
considered such “minimal surfaces” to model soap films. However it is very
natural to generalize the question and look for surfaces of dimension m
which minimize the m-dimensional volume among those spanning a given
contour of dimension m − 1 in R

m+n, or in more general ambient spaces.
Such generalizations have not only an intrinsic mathematical beauty, but
they have proved to be very fruitful. In this note we will restrict ourselves to
ambient spaces which are complete oriented Riemannian manifolds Σ and
since all the considerations will be of a local nature we will often assume
that Σ itself is isometrically embedded in some euclidean space (of dimension
m+n). In this way the competitor surfaces (classical or generalized) spanning
the contour γ will always be (suitable generalizations of) subsets of the
standard euclidean space, constrained to be subsets of Σ. Although this is
not very elegant from a geometric point of view, it allows us to avoid a lot
of technicalities.

The very formulation of the Plateau’s problem has proved to be a quite
challenging mathematical question. In particular, how general are the sur-
faces that one should consider? What is the correct concept of “spanning”
and the correct concept of “m-dimensional volume” that one should use?
The author believes that there are no final answers to these two questions:
many different significant ones have been given in the history of our subject
and, depending upon the context, the features of one formulation might be
considered more important than those of the others.

The several different formulations of the Plateau’s problem could be
subdivided in three large classes.

• The parametric formulations: the competitor surfaces are supposed
to be images of maps defined on a given domain (or on a class
of domains) and the volume can then be computed through the
parametrization using the standard “area formula”. The notion of
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“spanning” reduces to imposing that the trace of the maps on the
chosen domain is a parametrization of the contour γ. This was
the first successful attempt at giving a suitable existence theory
for 2-dimensional area minimizing surfaces, pioneered by Douglas
and Rado in the thirties ([42], [58]; see the monograph [41] for a
modern introduction to the subject).

• The set-theoretical formulations: the competitor surfaces are sup-
posed to be just (closed) sets and the notion of m-dimensional
volume is then given by the Hausdorff measure (or some other
measure-theoretic generalization of the m-dimensional volume of
a submanifold). The first to pioneer and implement successfully
such formulations was Reifenberg in [59]. The notion of spanning
is usually much more involved in this context; among the most re-
cent proposals let us mention the elegant one of Harrison (cf. [54])
and the ones of David (cf. [18]). For a rather general compactness
principle which could be useful in several set-theoretic frameworks
we refer to the recent papers [26] and [38].

• The functional-analytic formulations: the surfaces are mostly viewed
as objects acting on a given (linear) space of smooth test functions,
usually via integration. In this note we address the most popular
functional analytic formulations, De Giorgi’s theory of sets of finite
perimeter ([19, 20]; we refer to [23] for a recent English transla-
tion) and Federer and Fleming’s theory of integral currents ([47]),
and we will discuss extensively the corresponding existence and
regularity theories.

In all these approaches there are two first fundamental issues that a sat-
isfactory variational theory needs to address: existence and regularity. Of
course these are by no means the only important aspects of Plateau’s prob-
lem: however almost all the other necessarily build on these two important
pieces of information, namely that

(a) there is a minimizer for a large class of boundaries;
(b) the minimizer is sufficiently regular, so that one can compute in-

teresting geometric quantities and infer additional conclusions.

The success of the Federer and Fleming’s theory is due to the vast applica-
bility of its existence part in all dimensions and codimensions. Thanks to the
efforts of several outstanding mathematicians a rather far-reaching (and sat-
isfactory) regularity theory was achieved in the seventies in codimension 1
(see for instance [53]). This theory has been digested by the subsequent
generations of scholars working in differential geometry and PDEs, leading
ultimately to many breakthroughs in different problems in geometry, PDEs
and mathematical physics. On the contrary the most important conclusion
in the higher codimension case can be attributed to the monumental work
of a single person, F. J. Almgren Jr. ([5]). Unlike the codimension one case,
only a relatively small portion of the monstrous proof of Almgren has been
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truly understood. In a recent series of papers Emanuele Spadaro and the
author have given a new, much shorter, account of Almgren’s regularity
program, relying on the several advances in geometric measure theory of the
last two decades and on some new ideas. The aim of this note is to give a
rather detailed picture of the several issues that this program must face and
of how they are resolved.

We will start by reviewing the basic definitions and the most important
results of the theory of Federer and Fleming, showing how it gives a natural
and very elegant existence theory for the Plateau’s problem in any dimension
and codimension (see Section 2). As part of our exposition we will isolate the
features of the codimension 1 case, where in fact the Federer-Fleming theory
is equivalent to De Giorgi’s theory of sets of finite perimeter. In Section 3 we
will review the first considerations in the regularity theory and summarize
the state of the art in the subject. We will then review the regularity theory
for minimizers in codimension 1, focusing on its most important steps, cf.
Section 4. In Section 5 we will discuss what are the obstructions to a direct
generalization of the codimension 1 regularity theory to higher codimension.
In the (several!) remaining sections we will discuss the details of the proofs
of Almgren’s theorem as presented in the papers [29, 30, 33, 31, 32].

This survey has been conceived to be accessible also to those scholars
who do not have any knowledge of the theory of currents: I will only assume
that the reader is familiar with some basic concepts of functional analysis,
measure theory and differential geometry. The reader who is already famil-
iar with geometric measure theory (and more precisely with the theory of
currents) is instead encouraged to read the survey [25] or the recent lecture
notes [72]. In particular the next three sections can be thought as a gentle
introduction to some of the classical works of the fifties, sixties and seven-
ties regarding what we have called the “functional analytic” approach to
the Plateau’s problem. Obviously the understanding of many issues will be-
come increasingly difficult for the novice as we go deeper in the description
of Almgren’s program: nonetheless I tried to make all the exposition self
contained providing, when necessary, a brief account of the main technical
tools used in the statements.

It is the belief of the author that there is a general misconception of
geometric measure theory, namely that it is a highly technical and obscure
subject. Although I certainly agree that the proofs are long and difficult,
the main concepts are in fact rather elegant and in most cases they can be
introduced without invoking too much theory. The main reason behind the
misconception is the lack of introductory textbooks in the area. The books
available are conceived for experts and they aim at developing a far-reaching
and self-contained theory from the very beginning: motivated by this neces-
sity they introduce a lot of terminology and notation to deal with all possible
technicalities in the very first chapters, sacrificing the readability and the
intuitive picture at a very early stage. On the other hand many “gentle”
introductions to geometric measure theory are “invitations” for very young
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students and they have the opposite tendency of neglecting any discussion of
the most complicated parts. In this survey I have tried to avoid as much as
possible the introduction of a lot of notation and of many concepts, keeping
such things to the absolute minimum needed to understand the main points
of the arguments. On the other hand I will deal with the most complicated
parts of the proofs, trying to single out the key ideas that overcome the main
difficulties.

2. The Federer-Fleming theory of integral currents

2.1. Currents, boundaries and mass. The idea of treating (ori-
ented) surfaces as linear functionals on a suitable space of smooth objects
dates back at least to De Rham, cf. [40]. More precisely, consider a smooth
m-dimensional oriented surface Γ (with or without boundary) in R

m+n and
denote by Dm the space of smooth, compactly supported m-forms. Γ defines
naturally a linear map

(1) Dm � ω �→
∫
Γ
ω .

This motivates the following

Definition 2.1 (Current, De Rham, cf. [68, Definition 26.1]). An m-
dimensional current T is a continuous linear map T : Dm → R. Here the
continuity condition must be understood in the following sense: T (ωk) →
T (ω) whenever {ωk} ⊂ Dm is a sequence such that

(a) there is an open set Ω ⊂⊂ R
m+n with spt(ωk) ⊂ Ω for every k;

(b) ωk → ω in Cj(Ω) for every j.

If we regard smooth functions as 0-forms, then 0-dimensional currents
are simply the usual distributions. The reader familiar with them (or in
general with certain type of functional analysis) will recognize that the def-
inition above follows a rather standard path and will not be surprised if we
introduce a corresponding “dual topology” on the space of currents: more
precisely we will say that a sequence of currents T k (of the same dimension
m) converges to T if T k(ω) → T (ω) for every ω ∈ Dm (cf. [68, eq. 26.12]).

Very naturally the concept of boundary is defined “enforcing” Stokes’
Theorem, pretty much as the derivative of a distribution is defined “enforc-
ing” integration by parts formulae.

Definition 2.2 (Boundary, De Rham, cf. [68, eq. 26.3]). We say that an
(m− 1)-dimensional current S is the boundary of an m-dimensional current
T if

(2) T (dω) = S(ω) for every ω ∈ Dm−1.

S will then be denoted by ∂T .

The class of smooth oriented submanifolds Γ ⊂ R
m+n with smooth

boundaries can then naturally be viewed as a subset of the space of m-
dimensional currents. In order to distinguish between any such Γ and its
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“action” as linear functional via integration of forms, we will use the nota-
tion �Γ� for the current, namely �Γ� (ω) :=

∫
Γ ω (cf. [68, eq. 26.2]). If we

consider points P ∈ R
m+n as 0-dimensional submanifolds, consistently with

our convention we will denote by �P � the usual Dirac delta at P , although
a more common symbol would be δP .

Observe also that the definitions above generalize to any Riemannian
ambient manifold Σ in place of Rm+n. However, if Σ is embedded in R

m+n

another way to introduce currents T in Σ is to consider them as currents
T in the euclidean space R

m+n whose support spt(T ) is contained in Σ. As
usual the support spt(T ) is the complement of the maximal open set U for
which T (ω) = 0 whenever spt(ω) ⊂ U (cf. [45, Section 4.1]).

We next need to introduce a suitable concept of m-dimensional volume.
When Γ is a smooth surface, its volume Volm(Γ), as defined in the usual
textbooks on integration of forms, can be computed with the area formula
and coincides with its Hausdorff m-dimensional measure (cf. [68, Section
2.8]). There is however a definition of volume which exploits the natural
duality between forms and submanifolds. Recall that a simple m-vector is
an element of Λm(Rm+n) of the form v1∧. . .∧vm. Moreover there is a natural
definition of length of a simple m-vector: |v1∧ . . .∧vm| is the m-dimensional
Hausdorff measure of the parallelogram spanned by the vectors v1, . . . , vm.

Definition 2.3 (Comass, cf. [45, Section 1.8]). Let ω ∈ Dm. Then the
comass of ω is the norm

‖ω‖c := max
{
〈ω(p), v1 ∧ . . . ∧ vm〉 : |v1 ∧ . . . ∧ vm| = 1, p ∈ R

m+n
}
.

Now, it can be easily checked that, when Σ is a smooth submanifold of
R
m+n, then

(3) Volm(Σ) = sup

{∫
Σ
ω : ω ∈ Dm and ‖ω‖c ≤ 1

}
.

This motivates the

Definition 2.4 (Mass, cf. [45, Section 4.1.7]). Given an m-dimensional
current T we denote by M(T ) its mass, namely the quantity

(4) M(T ) = sup {T (ω) : ‖ω‖c ≤ 1} .

An important feature of this definition is that the mass can be localized.
More precisely for any open set Ω we can define

(5) ‖T‖(Ω) = sup {T (ω) : spt(ω) ⊂ Ω and ‖ω‖c ≤ 1} .

When T is a current of finite mass, namely M(T ) < ∞, ‖T‖ turns out to
be a Radon measure and obviously M(T ) = ‖T‖(Rm+n) (cf. [45, Sections
4.1.5 and 4.1.7]).

It is now a simple exercise in functional analysis to prove the following
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Theorem 2.5. Let Z be an (m−1)-dimensional current for which there
is T̄ with ∂T̄ = Z and M(T̄ ) < ∞. Then there is a T0 such that ∂T0 = Z
and

M(T0) = min{M(T ) : ∂T = Z} .
If spt(T̄ ) ⊂ K for some closed set K we also have the existence of a T0

such that ∂T0 = Z, spt(T0) ⊂ K and

M(T0) = min{M(T ) : ∂T = Z and spt(T ) ⊂ K} .

Theorem 2.5 is however not very satisfactory from the “classical” point
of view, as it rather often gives many minimizers which are not classical
surfaces.

Example 2.6. Consider for instance the south and north poles S and
N in the standard sphere S

2 ⊂ R
3 and let Z be the 0-dimensional current

�N�−�S�. For any meridian γ joining S toN the corresponding current �γ� is
a minimizer of the mass among all currents T with ∂T = Z and spt(T ) ⊂ S

2.
However the same holds for any convex combination λ �γ� + (1 − λ) �η�
where η is any other meridian and λ ∈ [0, 1]. In fact one can push this
idea even further. Let us parametrize the meridians as {γt}t∈S1 , where t is
the intersection of γt with the equator {x3 = 0} ∩ S

2. If μ is a probability
measure on S

1, then the current

T0(ω) :=

∫
S1

�γt� (ω) dμ(t)

is also a minimizer of the mass (among those currents T with spt(T ) ⊂ S
2

and ∂T = Z).

This does not seem a serious issue as there are anyway “classical min-
imizers” in the example above. However, we have the following remarkable
theorem (for a very short and elegant proof we refer to [78]).

Theorem 2.7 (Lavrentiev gap, Young [82]). For every smooth closed
embedded curve γ in R

4 define

M(γ) := inf
{
Vol2(Σ) : Σ is immersed, oriented and ∂Σ = γ

}
(6)

m(γ) := min {M(T ) : ∂T = �γ�} .(7)

Then there are γ’s for which M(γ) > m(γ).

Before going on with our discussions we stop a moment to introduce
some simple concepts and notations which will be very useful later on. First
of all we observe that, if F is a smooth proper map between two Euclidean
spaces R

N and R
k, the pullback F �ω of an element ω ∈ Dm(Rk) is an

element of Dm(RN ). By duality this gives naturally a notion of pushforward
of currents, namely F�T (ω) = T (F �ω) (cf. [68, eq. 26.20]). The assumption

that F is proper is needed to guarantee that F �ω has compact support if ω
has compact support. This is however not needed when spt(T ) is compact:
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since this will be mostly the case, in several occasions we will push currents
forward via maps which are just smooth.

Next, if Ω ⊂ R
N is an open set and we denote by Dm(Ω) the space

of smooth m-forms with compact support in Ω, we can naturally define a
concept of current in Ω (with corresponding “local” notions of boundary
and mass), cf. [45, Section 4.1.7]). Moreover, when Ω ⊂ Ω′ are open and T
is a current on Ω′ we can easily restrict its action to forms supported in Ω:
for such restriction we use the notation T Ω. Observe that, whenever T has
finite mass, T Ω has also finite mass and we have the relation ‖T‖(Ω) =
M(T Ω) (cf. [68, eq. 26.9]). It is also the case that, when T has finite mass,
T Ω can be given a meaning as a current in the original domain Ω′: of
course this might “add” some extra boundary “located” in ∂Ω. Since we
will always consider currents of (at least locally) finite mass, we will not
insist too much on their domain of definition and always assume they are
defined in duality with forms ω ∈ Dm(Rm+n).

In the future, to make our discussion simple, we will say that two currents
T and S agree on an open subset Ω if T Ω = S Ω.We use a similar notation
on Borel measures μ (which we always assume to be defined on some subset
K of the Euclidean space): given a μ-measurable E ⊂ K, we use the symbol
μ E for the measure μ E(A) := μ(A ∩ E).

Another operation which is well defined on currents is the product (cf.
[68, Definition 26.16]). In turn this allows, for any given current S in R

m+n

and any given point P ∈ R
m+n, to define the current T which is the cone

with base S and vertex P (cf. [68, eq. 26.26]). The common notation for
such T will be P××S. The construction is not complicated but requires a
certain amount of notation and terminology: we will instead give an intuitive
definition in the special case of integer rectifiable currents later.

2.2. The Federer-Fleming theory. If we want to rule out minimizers
as in Example 2.6 it seems desirable to introduce a restricted class of currents
which, roughly speaking, “allows only integer multiplicities”.

Definition 2.8 (Integral currents, Federer-Fleming, cf. [45, Definition
27.1]). A current T is integer rectifiable if there are a sequence of oriented C1

surfaces Σi ⊂ R
m+n, a sequence of pairwise disjoint closed subsets Ki ⊂ Σi

and a sequence of positive integers ki such that∑
i

kiVol
m(Ki) < ∞(8)

T (ω) =
∑
i

ki

∫
Ki

ω ∀ω ∈ Dm .(9)

T is integral if both T and ∂T are integer rectifiable.

Remark 2.9. It is not very hard to see that under the assumptions
above M(T ) =

∑
i kiVol

m(Ki) and thus it is implicit in the definition that
integer rectifiable currents have finite mass. This is however not always a
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desirable feature: for instance an entire smooth graph would not be an inte-
ger rectifiable current according to the definition above. For this reason, it
is customary to consider integer rectifiable those currents T for which a rep-
resentation as above can be found for the restriction T Ω to any bounded
open set Ω ⊂ R

m+n. In the rest of the note we will then use the term integer
rectifiable (and integral) for this larger class.

Observe that the space of integer rectifiable currents is not any more
a linear space and there is no simple functional-analytic principle which
provides a good compactness property. A fundamental result in the theory
of Federer and Fleming is that, nonetheless, the space of integral currents is
compact in a suitable sense.

Theorem 2.10 (Compactness of integral currents, Federer-Fleming, cf.
[68, Theorem 32.2]). If {T k} is a sequence of integral m-dimensional cur-
rents such that

sup
k
(M(T k) +M(∂T k)) < ∞ ,

then there is a subsequence, not relabeled, and an integral m-dimensional
current T such that Tk → T .

As a corollary we achieve

Corollary 2.11. Let Z be an (m − 1)-dimensional integer rectifiable
current and T̄ an m-dimensional integral current with ∂T̄ = Z and M(T̄ ) <
∞. Then there is an integer rectifiable current T0 such that ∂T0 = Z and

M(T0) = min{M(T ) : T is int. rect. and ∂T = Z} .
If spt(T̄ ) ⊂ K for some closed set K we also have the existence of an

integer rectifiable current T0 such that ∂T0 = Z, spt(T0) ⊂ K and

M(T0) = min{M(T ) : T is int. rect., ∂T = Z and spt(T ) ⊂ K} .
Indeed both Theorem 2.10 and Corollary 2.11 can be extended to a fairly

large class of metric spaces, cf. [9].
Theorem 2.10 does not exhaust the major results of the foundational

paper of Federer and Fleming. Indeed we wish to mention three other impor-
tant cornerstones. First of all, the rectifiability of the boundary can be recov-
ered from that of the current under the only assumption that the boundary
has finite mass.

Theorem 2.12 (Boundary rectifiability, Federer-Fleming, cf. [68, The-
orem 30.3]). If T is integer rectifiable and M(∂T ) < ∞, then T is integral.

Secondly, the “Lavrentiev gap” phenomenon of Lemma 2.7 is not present:
any integral current can be suitably approximated by a sequence of “poly-
hedral chains” with integer coefficients. This is the content of the so-called
Deformation lemma (see [68, Theorem 29.1 and Corollary 29.3]). Its precise
statement would require the introduction of some terminology and goes be-
yond the scopes of this note. We record, however, a rather useful corollary
of the Deformation Lemma.
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Theorem 2.13 (Isoperimetric inequality, Federer-Fleming, cf. [68, Theo-
rem 30.1]). There are constants C(m,n) with the following property. Assume
S is an integer rectifiable m-dimensional current in R

m+n with ∂S = 0. Then
there is an integral current T with ∂T = S and M(T ) ≤ C(M(S))(m+1)/m.

Observe the following interesting corollary of the latter inequality: if S
is an integer rectifiable cycle (namely ∂S = 0), then it is a boundary. In
fact a major achievement of the Federer-Fleming theory is that the integral
homology theory which derives from the chain complex of integral currents
is equivalent to the standard homology theories with integer coefficients in
all Riemannian manifolds (cf. [45, Section 4.4.1]). As a consequence, each
integral homology class in a compact smooth Riemannian manifold can be
represented by an integral cycle with least mass. Moreover, the theory can
be generalized to other coefficient groups (cf. [45, Section 4.46]).

We finish this section by introducing a few other objects which will be
very convenient in the rest of the note. First of all looking back at the
Definition 2.8 it is tempting to introduce a “density” for an integer rectifi-
able current at every point x belonging to any of the sets Ki appearing in
Definition 2.8. The natural choice would be the number ki. This can indeed
be done, but it raises the question whether the corresponding density de-
pends only on the current T and not instead on the chosen decomposition. In
fact it is not difficult to show that this definition of density is unique in a suit-
able measure-theoretic sense and we record an important characterization
of it in the next lemma. Here we denote by ωm the m-dimensional volume
of the unit m-dimensional ball and by Hm the Hausdorff m-dimensional
measure.

Lemma 2.14. If T is an integer rectifiable current, then the number

(10) Θ(T, p) := lim
r↓0

‖T‖(Br(p))

ωmrm

exists and it is a positive integer for ‖T‖-a.e. p. Moreover, if the sets Ki

and the integers ki are as in Definition 2.8, then ‖T‖ =
∑

i kiHm Ki and
Θ(T, p) = ki for Hm-a.e. p ∈ Ki.

Next it is tempting to attach a tangent plane to T at the points p ∈ Ki: a
natural candidate would be the tangent plane to the oriented C1 submanifold
Σi. Again this raises the question whether such definition is truly intrinsic.
As for the density we can answer this question through a characterization
which follows a “blow-up procedure”. In order to give the corresponding
statement we introduce two conventions:

• First of all, we will consider all m-dimensional planes π as oriented.
Thus, for each π we have a unique integral current �π�.

• Given a current T we will denote by Tp,r the result of translating
it so that p becomes the origin and enlarging it of a factor r−1.
Formally, if ιp,r denotes the map x �→ (x − p)/r, then Tp,r :=
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(ιp,r)�T . Note that when T = �Γ� for some smooth surface Γ then
Tp,r = �ιp,r(Γ)�.

The procedure of “zooming in a particular point” and taking limits of
(subsequences of) the corresponding rescalings is called “blowing-up” the
current T and it is a device which is employed recurrently in the regularity
theory.

Lemma 2.15. If T is an integer rectifiable current, then for ‖T‖-a.e. p
there is a unique plane π(p) such that

(11) Tp,r → Θ(T, p) �π(p)� as r ↓ 0.

π(p) will then be called the tangent plane to T at p. Moreover, if the sets Ki

and the submanifolds Σi are as in Definition 2.8, π(p) = TpΣi (the classical
oriented tangent to Σi at p) for Hm-a.e. p ∈ Ki.

If π(p) is as above and e1, . . . , em is a positively oriented orthonormal
base for it, it is customary to introduce the simple m-vector

�T (p) := e1 ∧ . . . ∧ em :

this defines a Borel map from R
m+n into Λm(Rm+n), the m-th exterior

product of the standard euclidean space. We will use �T extensively for such
map and observe that we have the simple identity

T (ω) =

∫
〈ω(p), �T (p)〉 d‖T‖(p) =

∫
〈ω(p), �T (p)〉Θ(T, p) dHm(p) ,

where 〈, 〉 denotes the usual duality pairing between m-vectors and m-
covectors. This measure theoretic representation allows us to restrict integer
rectifiable currents to subsets E ⊂ R

m+n which are just Borel measurable
(rather than open). Namely we define

T E(ω) :=

∫
E
〈ω(p), �T (p)〉 d‖T‖(p) .

Remark 2.16. Since Λm(Rm+n) can be endowed with a natural scalar
product (namely through 〈e1 ∧ . . . ∧ em, f1 ∧ . . . ∧ fm〉 = det〈ei, fj〉: here
we use 〈, 〉 for the Euclidean scalar product!), T can be seen as a measure
taking values in Λm(Rm+n): ‖T‖ is then the total variation measure of T and
�T‖T‖ its “polar (or Radon-Nikodým) decomposition” (cf. [68, eq. 26.7 and
Definition 27.1]). However, this will not play any crucial role in our discussion
and the reader who is not familiar with Radon-Nikodým decompositions can
safely ignore this remark.

The extra structure given by Definition 2.8 to integer rectifiable currents
allows to generalize readily several computations which are valid for C1 sub-
manifolds. The simple recipe is just to use the decomposition of Definition
2.8 to chop an integer rectifiable current in pieces Ki of C

1 submanifolds:
the corresponding computations can then be carried on each Ki and patched
suitably. The reader who is not familiar with such a procedure does not have
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to worry whether the corresponding result depends or not on the chosen de-
composition: in essentially all important cases it does not, although the
corresponding proof might be delicate.

An instructive example is the cone with basis T and vertex p, which
from now on will be denoted by p××T . As already mentioned, there is an
intrinsic definition for this object whatever the current T is (see [45, Section
4.1.1]). In the case of integer rectifiable currents, however, we can use the
idea above to reduce the definition of p××T to the standard one for immersed
C1 surfaces. First of all, if F : Ω → R

m+n is a C1 map with Ω ⊂ R
m compact,

we can define the m-dimensional current

T (Ω) := F� �Ω� (ω) :=
∫
Ω
F �ω .

If p ∈ R
m+n is a point, then we can define the map G : Ω× [0, 1] by

(x, t) �→ (1− t)p+ tF (x)

and the (m + 1)-dimensional current G� �[0, 1]× Ω�: this current coincides
obviously with our intuitive picture of the cone p×× (F� �Ω�). Now, given an
integer rectifiable current T , we can decompose it into compact subsets of
C1 embedded surfaces as in Definition 2.8, define the corresponding cone
with vertex p for each such piece and then sum them all: the result is p××T .

2.3. The codimension 1 case: Sets of finite perimeter. Integral
currents of codimension 1 have a special feature: they can be seen, locally,
as boundaries of integral currents of “top dimension”. By definition, integer
rectifiable currents T of dimension m+n are represented by

∑
ki �Ei�, where

the Ei’s are pairwise disjoint closed subsets of Rm+n: the action of �Ei� on
a “top form” fdx1 ∧ . . . ∧ dxm+n is then given by the standard Lebesgue
integral

�Ei� (fdx1 ∧ . . . ∧ dxm+n) =

∫
Ei

f(x) dx .

The current ∂T can then be thought as
∑

i ki∂ �Ei�, i.e. as an integral com-
bination of “boundaries of sets”. In this form the Federer-Fleming theory for
codimension 1 currents existed already since few years before the appearing
of the foundational paper [47]: the corresponding objects, introduced by De
Giorgi in [19] and [23] following some pioneering ideas of Caccioppoli (see
[12]), are called sets of finite perimeter or Caccioppoli sets. The relevant
definition is

Definition 2.17 (Caccioppoli sets, De Giorgi, cf. [8, Definition 3.35]).
A measurable set E ⊂ Rm+1 with finite Lebesgue measure is a set of finite
perimeter if its indicator function 1E is a function of bounded variation,
namely if

P(E) := sup

{∫
E
divX : X ∈ C∞

c (Rm+1,Rm+1) and ‖X‖C0 ≤ 1

}
< ∞ .

P(E) is called the perimeter of E.
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Like the mass, the perimeter can be localized to define a Radon measure.
In fact such measure coincides with the total variation of the distributional
derivative D1E , which is usually denoted by ‖D1E‖ (cf. [8, Theorem 3.3.6]).
If E is a smooth set and Ω is an open set, then ‖D1E‖(Ω) is them-dimensional
volume of that portion of ∂E which lies in Ω. For this reason it is customary
to use the notation P(E,Ω) for the relative perimeter ‖D1E‖(Ω) when Ω is
an open set and E is a Caccioppoli set (again cf. [8, Definition 3.3.5]).

The fundamental link between the two theories is then given by the
following

Proposition 2.18 (cf. [68, Theorem 27.6 and Corollary 27.8]). Let E
be a measurable subset of Rm+1 with finite Lebesgue measure. �E� is then
an integral current if and only if E is a Caccioppoli set. Moreover, in this
case M(∂ �E�) = P(E).

Consider next an m-dimensional integer rectifiable current T with finite
mass and let Bρ(x) ⊂ R

m+1 be such that spt(∂T ) ∩Bρ(x) = 0. Then there
are countably many sets of finite perimeter Ei and positive integer ki such
that

(i) ‖T‖(Bρ(x)) =
∑

i kiP(Ei,Bρ(x));
(ii) T =

∑
ki∂ �Ei� on Bρ(x).

Theorem 2.10, Corollary 2.11, Theorem 2.12 and Theorem 2.13 are all
generalizations of theorems proved by De Giorgi for sets of finite perimeter
(see [8, Sections 3.3 and 3.5]).

3. First considerations in the regularity theory

Going back to the Plateau’s problem, a current T as in the second state-
ment of Corollary 2.11 must have the following local minimality property:

(AM) If S is an integral current of dimension m+1 supported in K, then
M(T + ∂S) ≥ M(T ).

Such currents will be called area minimizing in K (cf. [68, Definition 33.1])
and in the rest of the paper K will always be some (sufficiently smooth)
embedded Riemannian manifold of dimension m + n̄, denoted by Σ. The
number n̄ will be considered the codimension of the area minimizing current
T .

The rest of this note will be dedicated to the question: what kind of reg-
ularity is implied by (AM)? Since we will always argue at the local level and
the problem is scaling invariant, we can assume all sorts of nice properties
upon Σ (for instance that it is a global graph of a smooth function with good
bounds on its Ck norms): it is therefore natural to expect that the answer
will not depend upon the nature of Σ, but rather upon the codimension
n̄. We next state the best theorems proved so far concerning the regularity
of area minimizing currents, but before coming to them we summarize the
relevant definitions in the following
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Definition 3.1. Let Ω ⊂ R
m+n be open and Σ ⊂ R

m+n be a smooth
complete submanifold without boundary of dimension m + n̄. We say that
an m-dimensional integer rectifiable current T is area minimizing in Σ ∩ Ω
if

• spt(T ) ⊂ Σ;
• M(T+∂S) ≥ M(T ) for every (m+1)-dim. integral S with spt(S) ⊂
Σ ∩ Ω.

Definition 3.2. We say that p ∈ spt(T ) \ spt(∂T ) is an interior regular
point if there is a positive radius r > 0, a smooth embedded submanifold Γ of
Σ and a positive integer Q such that T Br(p) = Q �Γ�. The set of interior
regular points, which of course is relatively open in spt(T ) \ spt(∂T ), is
denoted by Reg(T ). Its complement spt(T )\(spt(∂T )∪Reg(T )), the interior
singular set of T , is denoted by Sing(T ).

The first theorem summarizes the achievements of several outstanding
mathematicians from the end of the sixties till the nineties: De Giorgi, Alm-
gren, Fleming, Simons, Federer, Bombieri, Giusti and Simon. It is fair to say
that, with the notable exception of Simon’s rectifiability result, the various
aspects of the following theorem have been well digested in the mathematical
communities of elliptic PDEs and geometric analysis.

Theorem 3.3 (Regularity in codimension 1). Assume that Ω, Σ and T
are as in Definition 3.1 and that n̄ = 1. Then

(i) For m ≤ 6 Sing(T ) ∩ Ω is empty (Fleming & De Giorgi (m=2),
Almgren (m=3), Simons (4 ≤ m ≤ 6), see [21, 48, 22, 3, 71] and
also [60, 75]);

(ii) For m = 7 Sing(T ) ∩ Ω consists of isolated points (Federer, see
[46]);

(iii) For m ≥ 8 Sing(T ) ∩ Ω has Hausdorff dimension at most m − 7
(Federer, [46]) and it is countably (m−7)-rectifiable, namely, up to
a set of Hm−7-measure zero, it can be covered by countably many
C1 surfaces of dimension m− 7 (Simon, [69]);

(iv) The above results are optimal, namely for every m ≥ 7 there are
area minimizing integral currents T in the euclidean space Rm+1 for
which Sing(T ) has positive Hm−7 measure (Bombieri-De Giorgi-
Giusti, [11]).

As already mentioned, after discussing the features of the codimension 1
case, the rest of the note will be devoted to the understanding of the higher
codimension, i.e. n̄ ≥ 2. For this case the best results are the following.

Theorem 3.4 (Regularity in codimension n̄ ≥ 2). Assume that Ω, Σ
and T are as in Definition 3.1 and that n̄ ≥ 2. Then

(i) For m = 1 Sing(T ) ∩ Ω is empty;
(ii) For m ≥ 2 Sing(T ) ∩ Ω has Hausdorff dimension at most m − 2

(Almgren, [5]);
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(iii) The above result is optimal, namely for every m ≥ 2 there are
area minimizing integral currents T in R

m+2 for which Sing(T )
has positive Hm−2 measure (Federer, [44]).

Almgren’s result was subsequently sharpened by Chang (cf. [13]) for
2-dimensional area minimizing currents.

Theorem 3.5 (m = 2, n̄ ≥ 2). Assume that Ω, Σ and T are as in
Definition 3.1, that n̄ ≥ 2 and m = 2. Then Sing(T )∩Ω consists of isolated
points.

In Section 5 we will discuss extensively the difficulties that any argument
for (ii) must face. Almgren’s original typewritten proof was more than 1700
pages long and was published posthumously thanks to the efforts of his
students Scheffer and Taylor in a book of almost 1000 pages. In this note
we will describe the main steps of Almgren’s program following the papers
[29, 30, 33, 31, 32] by Emanuele Spadaro and the author.

Chang’s result builds heavily on Almgren’s book. Moreover Chang’s pa-
per [13] does not provide the proof of one major step of the argument, the
existence of a “branched center manifold”: the construction of such object
requires the understanding of 4/5 of Almgren’s monograph and a suitable
modification of its most obscure and involved part, which gives the con-
struction of the “non-branched center manifold” (cf. Sections 11 and 12
below). Building upon [29, 30, 33, 31, 32], in joint papers with Emanuele
Spadaro and Luca Spolaor we will give the first proof of the existence of a
“branched center manifold” and extend Chang’s theorem to a large class of
objects which are almost minimizing in a suitable sense, cf. [37, 34, 35, 36].
That proof (and Chang’s theorem) will however not be discussed in this sur-
vey.

In the rest of this section we will delve into the preliminaries of the
regularity theory, namely the monotonicity formula and its consequences,
which are common to both the codimension 1 and the higher codimension
cases.

Often, we will discuss generalizations of the regularity theorems to sta-
tionary and sometimes to stable objects. We give thus their formal definition
here. Recall that we can push-forward currents through maps. In what fol-
lows, given a smooth compactly supported vector field X on R

m+n we will
consider the one parameter family Φt of diffeomorphisms generated by X,
in other words the flux of X:

(12)

{
d
dtΦt(x) = X(Φt(x))

Φ0(x) = x .

If the vector field X is tangent to a given submanifold Σ, then obviously
Φt maps Σ into itself. For a current T supported in Σ, an admissible one
parameter family of deformations is then given by Tt = (Φt)�T where the
generator X is assumed to be tangent to Σ and to vanish on spt(∂T ). Notice
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in particular that, for an area minimizing current T in Σ, we would have

(13)
d

dt
M(Tt) = 0

and

(14)
d2

dt2
M(Tt) ≥ 0 .

Definition 3.6. An integer rectifiable current T with spt(T ) ⊂ Σ is
called

• stationary if (13) holds for any admissible deformation described
above;

• stable if both (13) and (14) hold for any admissible deformation
described above.

3.1. Compactness. A first basic fact about area minimizing currents
is that, under the same assumptions of the compactness theorem of Federer
and Fleming, they are also a compact class. It is not difficult to form an
intuition about this: assume that a sequence of integral currents Tk has a
uniform bound on the mass in a certain open set Ω, namely supk ‖Tk‖(Ω) <
∞ and that ∂Tk vanishes in Ω. By the compactness theorem of Federer
and Fleming (in fact a suitable localized version of Theorem 2.10), we can
assume that Tk converges to an integer rectifiable current T in Ω, which has
no boundary in Ω. The mass is lower semicontinuous and thus

(15) M(T ) ≤ lim inf
k

‖Tk‖(Ω) .

Next assume that each Tk is area minimizing in R
m+n. If we had a strict

inequality, we could imagine to use T as a competitor for Tk, after “gluing
Tk and T” close to ∂Ω: the gain in mass from T to Tk is a certain positive
number, whereas the “gluing” costs less and less as k → ∞ because the
currents Tk come “closer” to T . The result would contradict the minimizing
property of Tk for k large enough and we conclude therefore that the lim inf
in the right hand side of (15) is a limit and that equality holds.

The discussion above is correct, but a rigorous proof requires all the
power of the Federer-Fleming theory, in particular of the Deformation lemma.
It is also clear that for the same reason it should not be possible to lower
the mass of T by perturbing it in a compact subset of Ω, i.e. T is area
minimizing in Ω. A similar conclusion holds also in case the Tk’s are area
minimizing in a given smooth submanifold Σ. Actually we could allow the
ambient manifold to vary with k: if we denote it with Σk and we assume
that it converges smoothly (C2 suffices) to a smooth Σ, then the limiting
current will be area minimizing in Σ. We summarize our discussion in the
following

Theorem 3.7 (Compactness of area minimizing currents, cf. [68, Theo-
rem 34.5]). Let Σk be a sequence of C2 submanifolds of Rm+n of dimension
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m+ n̄ which converge in C2 to Σ and let Tk be a sequence of integer rectifi-
able area minimizing currents in Σk of dimension m with supk M(Tk) < ∞.
Assume that ∂Tk = 0 on some open set Ω and that Tk Ω → T . Then

• T is area minimizing in Ω ∩ Σ;

• ‖Tk‖ Ω
∗
⇀ ‖T‖ in the sense of Radon measures.

3.2. The monotonicity formula and its consequences. A pivotal
role in the regularity theory for area minimizing currents and, more in gen-
eral, for all known generalizations of the concept of critical point for the area
functional, is the so-called monotonicity formula. We start with the follow-
ing simple observation: assume a certain area minimizing current T in R

m+n

is in fact a smooth surface Γ (namely T = �Γ�) and fix a point p ∈ Γ \ ∂Γ
and a radius r < dist(x, ∂Γ). Assume moreover that ∂Br(p) intersects Γ
transversally. If we replace Γ in the ball Br(p) with the cone having vertex
p and boundary Γ ∩ ∂Br(p) we must increase the volume of Γ. Namely

(16) Volm(Γ ∩Br(p)) ≤
r

m
Volm−1(Γ ∩ ∂Br(p)) .

On the other hand the coarea formula implies that

(17) Volm−1(∂Br(p) ∩ Γ) ≤ d

dt

∣∣∣∣
t=r

Volm(Bt(p) ∩ Γ)

and we reach easily the conclusion that

(18)
d

dr

Volm(Γ ∩Br(p))

rm
≥ 0 .

In fact this is a very crude argument: a more careful computation using
the stationarity of Γ, i.e. the vanishing of the first variation of the area
functional, gives the much more precise formula

Volm(Γ ∩Br(p))

rm
− Volm(Γ ∩Bs(p))

sm
(19)

=

∫
Γ∩(Br(p)\Bs(p))

|(x− p)⊥|2
|x− p|m+2

dVolm(x) ,

where (x− p)⊥ denotes the component of the vector x− p which is orthog-
onal to the tangent space TxΓ. A similar formula, which includes a further
correction due to the second fundamental form of Σ, is valid for minimal
surfaces in smooth submanifolds Σ ⊂ R

m+n.
The formula (19), in the framework above an a-priori estimate, is in-

deed valid for area minimizing currents as well (and in general for a very
powerful generalization of the concept of “stationary surface”, called sta-
tionary varifold, see [1]; cf. also [68, Section 4.3]). Observe indeed that for
an integer-rectifiable current T it is rather easy to make sense of the right
hand side of (19): since at ‖T‖-a.e. x we have a well defined tangent plane,
we can define (x− p)⊥ for ‖T‖-a.e. x.

A first obvious consequence of the monotonicity formula is that the den-
sity of an area minimizing current is in fact defined at every point: thus
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from now on we will use Θ(T, p) (cf. (10)) as a well defined quantity for
every p �∈ spt(∂T ). Indeed it is a simple exercise to show that Θ is an upper
semicontinuous function (and this because, modulo some small technicali-
ties, the map p → ‖T‖(Br(p)) is continuous at each fixed r).

We next describe another crucial consequence of the monotonicity for-
mula. Let T be an area minimizing current (in the euclidean space, to sim-
plify our discussion) and p ∈ spt(T )\ spt(∂T ). Recall the homothetic rescal-
ings Tp,r. It is obvious that each Tp,r is an area minimizing current. Observe
also that:

• For each bounded open set Ω, we clearly have spt(∂Tp,r) ∩ Ω = ∅,
provided r is small enough;

• For each R > 0 we have a uniform bound for ‖Tp,r‖(BR(0)): the
latter is indeed the number r−m‖T‖(BRr(p)), which is bounded
independently of r thanks to the monotonicity formula.

Thus, by Theorem 3.7, for every fixed bounded open Ω we can extract a
subsequence {Tp,rk}rk↓0 which converges in Ω to an area minimizing current
T0. Actually, by a standard diagonal argument we can find a “global” limit
current T0 which is an integral current on each bounded open subset of
R
m+n, which has no boundary and whose restriction to any bounded open

set Ω is area minimizing. Although strictly speaking T0 violates our definition
of area minimizing current (because it does not have finite mass on the entire
euclidean space), we will still use the term area minimizing by a slight abuse
of notation.

The monotonicity formula and Theorem 3.7 imply that ‖T0‖(Br(p)) =
Θ(T, p)rm for every r > 0. If T0 were regular, namely a classical surface
Γ (with multiplicity), we would conclude that the right hand side of (19)
vanishes when p = 0: note that this is only possible if for every x ∈ Γ
the segment joining x with the origin is contained in Γ, namely if Γ is a
cone with vertex at the origin. The same conclusion can be drawn without
knowing any a-priori regularity for T0. It is customary to use the term area
minimizing cone for such objects and to call them tangent cones to T at
p if there is a sequence rk ↓ 0 such that Tp,rk → T0. This motivates the
following

Definition 3.8. An area minimizing cone of dimension m is an integer
rectifiable current S of dimension m with the following properties

• ∂S = 0 and S0,r = S for every positive r;
• S Ω is area minimizing for any bounded open set Ω.

Next, if T and S are two currents such that, for some p ∈ spt(T ) and some
rk ↓ 0, Tp,rk converges to S, we then say that S is tangent to T at p.

Rather than giving the precise formulation of the monotonicity formula
for area minimizing currents in a submanifold Σ (i.e. with the exact re-
mainder), we record in the following proposition all the most important
consequences.



REGULARITY OF MINIMAL SURFACES 171

Theorem 3.9 (Tangent cones, cf. [68, Section 7.3]). Let T be an area
minimizing integral current of dimension m in a C2 submanifold Σ. Then

(i) r �→ eCrr−m‖T‖(Br(p)) is a monotone function for each p �∈ spt(∂T ),
provided r ∈ ]0, dist(p, spt(∂T )[ and C is a suitable constant, which
only depends on the size of the second fundamental form of Σ;

(ii) The density Θ(T, p) is well defined at every p �∈ spt(∂T ), it is at
least 1 at each point p ∈ spt(T ) \ spt(∂T ) and it is upper semicon-
tinuous;

(iii) For every p �∈ spt(∂T ) and every sequence rk ↓ 0 there is a sub-
sequence, not relabeled, and an area minimizing cone T0 such that
Tp,rk → T0; T0 �= 0 if and only if p ∈ spt(T ).

Note that Lemma 2.15 already guarantees that at ‖T‖-a.e. p ∈ spt(T ) \
spt(∂T ) there is a unique tangent cone, which is an integer multiple (such
multiple being Θ(T, p)) of an m-dimensional plane π(p). In order to make
our discussion shorter, from now on a tangent cone will be called flat if it is
a multiple of an m-dimensional plane (note that the multiple will necessarily
turn out to be a nonzero integer). It is obvious that at every p ∈ Reg(T )
there is a unique tangent cone and it is flat. On the other hand if there is even
a single tangent cone at p which is not flat, then necessarily p ∈ Sing(T )!
At first glance a pretty plausible conjecture is that regular points coincide
indeed with those points where at least one tangent cone is flat. We will see
that this is true in codimension 1 (the first deep regularity theorem, due to
De Giorgi [21]), but not necessarily in higher codimension. In codimension
1 the theorem of De Giorgi gives right away that Hm(Sing(T )) = 0, thanks
to the following elementary, but powerful, corollary of Theorem 3.9.

Corollary 3.10 (cf. [68, Sections 4.3 and 7.3]). Let T be an area min-
imizing current of dimension m. Then at Hm-a.e. p ∈ spt(T ) \ spt(∂T )
Θ(T, p) ∈ N \ {0} and there is a unique flat tangent cone to T at p.

Moreover, the convergence of area minimizing currents can be improved
in the following sense: If Tk, Σk and Ω are as in Theorem 3.7, then spt(Tk)
converges to spt(T ) locally (i.e. on every compact subset of Ω) in the sense
of Hausdorff.

Before coming to the next section, let us look at what is perhaps the
most intriguing open problem in the regularity theory of minimal surfaces.
Observe that Theorem 3.9 does not imply the uniqueness of the tangent
cone at a given point, namely it leaves the possibility that, for two different
sequences rk ↓ 0 and sk ↓ 0, the limits of Tp,rk and Tp,sk do not coincide.
This seems wasteful from the point of view of area, but proving it turns out
to be the most challenging open problem in the field. More precisely the
following conjecture is widely open

Conjecture 3.11. The tangent cone to an area minimizing current T
is unique at every point p ∈ spt(T ) \ spt(∂T ).
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The conjecture has been proved for 2-dimensional currents T in any
codimension by White in his remarkable paper [77] and it has been shown
by Simon in codimension 1 at any isolated singularity in the fundamental
work [67]. The latter result is indeed a consequence of a remarkably general
approach, which applies to other variational problems (such as the unique-
ness of tangent maps to energy minimizing maps) but also to the study of
the asymptotic behaviour of solutions to parabolic equations, see [67].

4. The regularity theory in codimension 1

The first breakthrough in the regularity theory is due to De Giorgi: he
realized in his fundamental work [21] that the existence of one flat tangent
plane at p is enough to conclude that p is a regular point in codimension
1. His theorem was then extended to any codimension by Almgren in [2]
(see also [65]) under an important assumption on the density which we will
discuss extensively in a moment (indeed, it is possible to extend the validity
even to general Hilbert spaces, cf. [7]). In fact Almgren’s statement covers
many more geometric functionals, which satisfy an appropriate ellipticity
assumption. In the framework of minimal surfaces the most important gen-
eralization of De Giorgi’s ε-regularity theorem is due to Allard in [1] (cf.
also [68, Chapter 4] and [24]): his theorem, valid for a far reaching gener-
alization of classical stationary surfaces (namely integer rectifiable varifolds
with sufficiently summable generalized mean curvature) is the starting point
of a variety of applications of the minimal surface theory to geometric and
topological problems.

We will state here the De Giorgi-Almgren ε-regularity theorem in all
dimensions and codimensions and we will later emphasize why its conse-
quences are much stronger in codimension 1. As already mentioned, we are
dealing with an ε-regularity theorem: under the assumption that a certain
particular quantity is sufficiently small at a given scale, we will conclude the
regularity of the current at a smaller scale. The quantity which plays such
a pivotal role is the excess of the current T , which we now define:

Definition 4.1. Let T be an integer rectifiable m-dimensional current
and π be an m-dimensional plane, oriented by the unit simple m-vector �π.
The excess of T in the ball Bρ(p) with respect to π is the quantity

(20) E(T,Bρ(p), π) :=
1

ωmρm

∫
Bρ(p)

|�T (x)− �π|2 d‖T‖(x) .

The excess in Bρ(p) is

(21) E(T,Bρ(p)) := min{E(T,Bρ(p), π) : π is an oriented m-plane} .
The excess is then an integral measure of the oscillation of the tangent

plane to the current. We use the notation AΣ for the second fundamental
form of Σ and the standard [ · ]0,α for the Hölder seminorms (cf. [52]).
Finally, we will often deal with m-dimensional balls in m-dimensional planes
π and we introduce therefore the notation Br(p, π) for the set Br(p)∩(p+π).
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Theorem 4.2. Let T be an m-dimensional integer-rectifiable area min-
imizing current in a C2 submanifold Σ of dimension m+ n̄. There are con-
stants α > 0, ε > 0 and C, depending only upon m and n̄, such that the
following holds. Assume that for some ρ > 0 and some m-dimensional plane
π we have

(a) ∂T B2ρ(p) = 0;
(b) Θ(T, p) = Q and Θ = Q ‖T‖-a.e. on B2ρ(p), for some positive

integer Q;
(c) ‖T‖(B2ρ(p)) ≤ (Qωm + ε)(2ρ)m;
(d) E := E(T,B2ρ(p), π) < ε and ρA := ρmaxΣ∩B2ρ(p) |AΣ| < ε.

Then T Bρ(p) = Q �Γ� for a surface Γ which is the graph of a suitable C1,α

function u : Br(p, π) → π⊥. Moreover [Du]0,α ≤ C(E1/2 + ρA)ρ−α.

Since in the future we will deal very often with oriented graphs of func-
tions and the corresponding currents, we will use the following notation:
Gr(u) will denote the set-theoretic graph of the function u and Gu will de-
note the induced current (for the latter to be well defined we need some
regularity for u, which will be discussed in detail later).

4.1. De Giorgi’s idea. The crucial point of the proof of Theorem 4.2
is that, under the above assumptions, the current T is close to the graph of
an harmonic function. The implementation of this idea is not at all trivial,
since it is not at all obvious how we should approximate T with a graph
in the first place. Secondly, the various assumptions play a key role and we
will see that, in codimension higher than 1, none of them can be dropped:
in particular, in higher codimension assumption (b) is crucial to be able to
find a (single valued) graph which is sufficiently close to T , cf. Example 5.3.

However, leaving these points aside, assume for the moment that T is
the graph Gu of a Lipschitz function u : p + π → π⊥. For every Ω ⊂ π
we can compute the mass of T in the cylinder C := Ω × π⊥ using the area
formula:

M(T C) =

∫
Ω

√
1 + |Du|2 +

∑
k≥2

∑
[det(Mk(Du))]2

where with Mk(Du) we denote an arbitrary k × k minor of Du.
The assumption that the excess E(T,Bρ(p), π) is small is similar to the

requirement that the derivative Du is small (and certainly it does imply that
|Du| is small on most of Br(p, π)). The Taylor expansion of the integrand
then gives

M(T C) = |Ω|+ 1

2

∫
Ω
|Du|2 +O(|Du|4) .

In addition it is not difficult to see that M(T C)−|Ω| = 1
2

∫
C |�T−�π|2 d‖T‖.

Thus we can assume that u is rather close to a minimizer of the Dirichlet
energy, i.e. that it is close to an harmonic function.
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Following similar computations we can compare E(T,B2ρ, π) to the av-
erage integral

−
∫
B2ρ(p,π)

|Du|2 .

and E(T,Bρ(p)) to a similar “optimized” quantity

min
A

−
∫
Bρ(p,π)

|Du−A|2 = −
∫
Bρ(p,π)

∣∣∣Du−−
∫
Bρ(p,π)

Du
∣∣∣2 .

For harmonic functions v we have the following decay estimate, which could
be proved using the expansion of the trace v|∂Bρ(p,π) in spherical harmonics
(see [74, Chapter 5, Section 2])

(22) −
∫
Bρ(p,π)

∣∣∣Dv −−
∫
Bρ(p,π)

Dv
∣∣∣2 ≤ 1

4
−
∫
B2ρ(p,π)

|Dv|2 .

We could then hope to transfer such decay to the current in the form

(23) E(T,Bρ(p)) ≤ 2−2+2δE(T,B2ρ(p), π) ,

where the constant δ > 0 takes into account (quite a few) error terms.
Note however that we could optimize on the plane in the right hand of

(23) to achieve

(24) E(T,Bρ(p)) ≤ 2−2+2δE(T,B2ρ(p)) .

In turn this latter estimate would imply that the assumption (d) of Theorem
4.2 holds also in the ballBρ(p). Since all other assumptions are automatically
satisfied at any scale smaller than 2ρ (the monotonicity formula plays a
crucial role here), we could then iterate the argument to obtain the decay

E(T,Br(p)) ≤ Cr2−2δ .

Given our intuition that E(T,Br(p)) is essentially a mean square oscilla-
tion of the tangent plane, the latter decay is a Morrey-type estimate which
suggests C1,1−δ regularity of the current.

Remark 4.3. The above analysis leads to guess that the exponent α in
Theorem 4.2 can be taken arbitrarily close to 1, at the price of making the
threshold ε suitably small and the constant C fairly large. This is indeed the
case and the interested reader can check [28, Corollary 2.4 and Appendix
A] for a proof which follows closely the argument outlined above.

The subsequent generalizations of Almgren [2, 4], Allard [1] and other
authors (cf. for instance [10] and [65]) of De Giorgi’s ε-regularity statement
have lost the feature of implying directly (24) and seem to need a more
careful argument to reach the conclusion that α is arbitrarily close to 1: a
sacrifice to flexibility, since the latter results can be applied to much more
general objects and situations. Moreover, any C1,α graph which is stationary
for the area functional enjoys higher regularity as a simple consequence of
the Schauder estimates. Thus a loss of sharpness in the exponent α would
anyway play no important role in the classical results.
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We will see however that in codimension higher than 1 De Giorgi’s orig-
inal (variational) idea and its important byproduct that the decay of the
excess can be assumed to be “almost quadratic” play both a crucial role in
the proof of Theorem 3.4.

4.2. First consequences of the ε-regularity theorem. It is rather
simple to see that the conditions (a), (c) and (d) will be met at a sufficiently
small radius ρ as soon as p ∈ spt(T ) \ spt(∂T ) and there is at least one flat
tangent cone at p. However condition (b) discriminates severely between the
codimension 1 case (n̄ = 1) and the higher codimensions. Indeed, Proposi-
tion 2.18 shows that in codimension 1 a current without boundary can be
described as a “superposition” of boundaries of finitely many Caccioppoli
sets Ei (in the case of currents in Riemannian manifolds, a similar statement
holds as well).

In fact from Proposition 2.18(i) it is not difficult to conclude that, when
T is area minimizing, each current ∂ �Ei� in the decomposition is as well area
minimizing. Intuitively one does not expect integer multiplicities higher than
2 for boundaries of sets, at least not at most points: for instance it is not
difficult to prove that the density Θ(∂ �E� , p) equals 1 at ‖∂ �E� ‖-a.e. p
when E is a set of finite perimeter. Ultimately it is then possible to prove
the following corollary (cf. [68, Section 7.37]).

Corollary 4.4. If T is an area minimizing current of dimension m
in a C2 submanifold Σ of dimension m+1, then any point p at which there
is a flat tangent cone is a regular point.

In particular we conclude immediately that ‖T‖(Sing(T )) = 0 and, by
Corollary 3.10, that Hm(Sing(T )) = 0. In higher codimension the argu-
ments above do not apply and we will see that indeed Corollary 4.4 fails. It
is nonetheless possible to conclude a weaker statement because, by the up-
per semicontinuity of the density and an elementary topological argument,
Assumption (b) of Theorem 4.2 can still be verified in a rather large set.

Corollary 4.5 (cf. [68, Theorem 36.2]). If T is an area minimizing
current of dimension m in a C2 submanifold Σ of dimension larger than
m+ 1, then Reg(T ) is dense in spt(T ) \ spt(∂T ).

Indeed this statement has been recently extended to any Hilbert space,
cf. [7].

Remarkably, Corollary 4.5 was the best regularity result available be-
fore the appearance of Almgren’s manuscript [5] with its proof of Theorem
3.4. In fact this is the current situation for stationary integer rectifiable m-
dimensional varifolds: Allard’s theorem gives the regularity up to a meager
closed set, even in codimension 1, and this is up to now the best regularity
result available in the literature for stationary objects. In particular it is
not known that the singular set is Hm-negligible, not even in the simplest
setting of stationary 2-dimensional varifolds in 3 dimensions. For stable hy-
persurfaces a rather satisfactory theory is instead available thanks to the
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pioneering works of Schoen - Simon - Yau [66] and Schoen - Simon [64] and
to the recent ones of Wickramasekera [80].

4.3. Full regularity for m ≤ 6 and n̄ = 1: Simons’ theorem. Let
us now focus on the case of codimension n̄ = 1. Corollary 4.4 naturally leads
to discuss the existence of area minimizing (hyper-)cones which are not flat.
On the one hand, their nonexistence would imply via Corollary 4.4 that
Sing(T ) is empty. On the other hand, it is rather easy to see that non-flat
area minimizing cones must be necessarily singular at the origin.

The investigations upon these questions were started by De Giorgi and
Fleming who could show full regularity for m = 2, cf. [48] and [22]. More-
over, De Giorgi showed that the problem of deciding whether every codimen-
sion 1 area minimizing cone in R

m+1 is flat is equivalent to decide whether
any entire minimal (hyper-) graph in R

m+2 is affine, the so-called Bernstein
problem. The result of De Giorgi and Fleming was subsequently improved
by Almgren ([3], m = 3) and finally by Simons in [71] to show full regularity
for m ≤ 6.

It must be noticed the following: if one shows that in dimension m ≤ m0

there is no singular area minimizing hypercone, then any area minimizing
hypercone of dimension m + 1 is necessarily regular except possibly at the
origin: thus the cross-section is a minimal (i.e. stationary) embedded hyper-
surface of the standard m+1-dimensional sphere (this fact will be discussed
in a couple of sections as the starting point of the so-called Federer’s reduc-
tion argument). On the other hand, any cone whose cross section is a minimal
hypersurface of the standard m+1-dimensional sphere is stationary for the
area functional in R

m+2. However if such a cone is area minimizing, then it
must also be stable, in the sense of Definition 3.6. The famous theorem of
Simons is the following statement.

Theorem 4.6 (Simons). Let 2 ≤ m ≤ 6. Any stable minimal hyper-
surface of Rm+1 which is a cone over a minimal submanifold of ∂B1(0) is
necessarily an m-dimensional plane.

4.4. Simons’ cone and the Theorem of Bombieri-De Giorgi-
Giusti. In his celebrated paper [71] Simons provided also an example which
showed the optimality of his theorem. More precisely he showed that the cone
over S3 × S

3 ⊂ S
7, namely

(25) S := {x ∈ R
8 : x21 + x22 + x23 + x24 = x25 + x26 + x27 + x28}

is stationary and stable. The surface is usually called Simons’ cone in the
literature which followed [71]. Later Bombieri, De Giorgi and Giusti in [11]
showed that S is indeed an area minimizing cone and were thus able to settle
the Bernstein problem in all dimensions.

Theorem 4.7 (Bombieri-De Giorgi-Giusti). S in (25) is an area min-
imizing current in R

8 and therefore for any n ≥ 8 there are functions
u : Rn → R which satisfy the minimal surface equation and are not affine.
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We refer the reader to the recent paper [39] for an elegant and simple
proof of Theorem 4.7

4.5. m ≥ 7 and Federer’s reduction argument. We have already
mentioned that any area minimizing cone of dimension 7 in R

8 is necessarily
smooth outside the origin because the only area minimizing cones in R

7

are (multiple of) hyperplanes. We wish to illustrate this statement as an
introduction to a powerful idea of Federer, which has been applied to several
problems in geometric analysis.

Consider an m-dimensional current T without boundary in R
m+n̄ and

assume it is invariant under translation in a given direction v, which for
simplicity we set to be the first vector e1 of the standard orthonormal basis:
we then say that S “splits off a line”. It is not difficult to see that, in this case,
the current T is the product of a current S of dimensionm−1 in R

m−1+n and
a line, namely the 1-dimensional current on R which is given by integration
of the top 1-form and we denote by �R�: �R� (fdx1) =

∫
f(x1) dx1. It is

rather intuitive that �R� × S is locally area minimizing (i.e. its restriction
to bounded open sets is area minimizing) if and only S is.

Consider now an area mininimizing cone T in R
8 and let p ∈ spt(T )\{0}.

Then it is not difficult to see that any tangent cone to T at p splits off a
line, because it will be invariant under translations in the direction p. We
summarize our discussion in the following key

Lemma 4.8 (cf. [68, Lemma 35.5 and proof of Theorem 35.3]). If S0

is a tangent cone to an area minimizing m-dimensional cone S in R
m+n̄

at a point p �= 0, then S0 splits off a line, namely S0 = �R� × Z for some
(m− 1)-dimensional area minimizing cone Z in R

m−1+n̄.

Fix now an area minimizing hypercone S of dimension 7 (i.e. m = 7
and n̄ = 1). Fix S0 as in the lemma above and observe that Z is an area
minimizing hypercone of dimension 6: as such we conclude from Simons’
theorem that S0 must then be a plane. Thus we can apply Corollary 4.4
and conclude that either S is regular or it has an isolated singularity at the
origin.

This in turn shows that the singular set Sing(T ) of an area minimizing
7-dimensional current T in R

8 is discrete (cf. [45, Section 5.4.17]). Indeed,
let p ∈ Sing(T ) and consider any tangent cone S at p. Let r > 0 and Tp,r be
a rescaling of S which is sufficiently close to S. By the regularity of S, there
is a radius ρ > 0 such that the excess of S in B2ρ(q) is smaller than ε/2 at
any point q with |q| = 1. If Tp,r is sufficiently close to S, the excess of Tp,r in
B2ρ(q) will be smaller than ε and we can apply the ε-regularity theorem to
conclude that Tp,r is regular in Bρ(q). In fact the rigorous argument must
treat also the conditions (b) and (c) of Theorem 4.2 on the multiplicity:
these can be settled thanks to the codimension 1 assumption. Our discussion
leads naturally to the following statement, which requires just an appropriate
compactness argument on the set of tangent cones at p: there are positive
constants r, ρ > 0 such that, if 0 < |p−q| < r, then T is regular in Bρ|p−q|(q).
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We in fact highlight a general important principle behind the above dis-
cussion, a very well-known and widely used effect of ε-regularity statements:

Proposition 4.9. Let T , Σ, Tk and Σk be as in Theorem 3.7 and assume
that the codimension n̄ is 1. If T is regular in Ω, then for any open set
Γ ⊂⊂ Ω, Tk is regular in Γ for k large enough.

For the sake of our future discussions we will rephrase the proposition
above in the following equivalent way, underlying that “singularities persist
in the limit”: we will stress later on that this persistence can be seen as the
major difference between the codimension 1 and the higher codimension.

Proposition 4.10 (Persistence of singularities in codimension 1). Let
Ω, T , Σ, Tk and Σk, be as in Theorem 3.7 and assume that the codimension
n̄ is 1. If pk ∈ Sing(Tk) and pk → p ∈ Ω, then p ∈ Sing(T ).

The basic ideas that singularities must persist in the limit and that
repeated “blow-ups” reduce the dimension have been used by Federer to
give a first rough description of Sing(T ) when n̄ = 1 and m > 7. He used
the resulting “scheme”, called Federer’s reduction argument (cf. [46] and
[68, Appendix A]), to prove the following

Theorem 4.11 (Federer). Let m, n̄, T and Σ be as in Theorem 3.3. If
m = 7 then Sing(T ) is discrete. If m ≥ 8, then Hm−7+α(Sing(T )) = 0 for
every α > 0, namely Sing(T ) has Hausdorff dimension at most m− 7.

The following is a rough sketch of Federer’s argument. Assume the ex-
istence of an area minimizing current T of dimension m ≥ 8 in R

m+1 such
that, for some positive α, Hm−7+α(Sing(T )) > 0. An elementary measure
theoretic argument shows the existence of many points p for which

lim sup
r↓0

Hm−7+α(Sing(T ) ∩Br(p))

rm−7+α
> 0

(in fact the above property holds for Hm−7+α-a.e. p ∈ Sing(T ), cf. [68,
Theorem 3.2]).

We can thus assume the existence of an area minimizing cone T0 and of
a subsequence of rescalings Tp,rk converging to it for which

Hm−7+α(Sing(Tp,rk) ∩ B̄1) ≥ η

for some positive η. After taking a further subsequence, not relabeled, we
can assume that Sing(Tp,rk) ∩ B̄1 converges to some compact set F in the
Hausdorff distance: Proposition 4.9 implies then that F ⊂ Sing(T0). We
would like to infer that Hm−7+α(Sing(T0)) ≥ η > 0. However the Hausdorff
measures are not upper semicontinuous under convergence in the Hausdorff
distance. This is resolved by using a suitable variant, the Hm−7+α

∞ measure:
the latter turns out to be upper semicontinuous while it has the same null-
sets as the Hm−7+α measure (and the same “density property” used above;
cf. [68, Appendix A]).
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Summarizing, from the existence of an area minimizing current T of
dimension m with a singular set of positive Hm−7+α measure we have con-
cluded the existence of an m-dimensional area minimizing cone T0 with the
same property. We can now repeat this argument again with T0 in place of
T , blowing up at some point q distinct from the origin. We conclude that,
for some appropriate tangent cone S to T0 at q, Hm−7+α(Sing(S)) > 0. On
the other hand S splits off a line and it is easy to see that this implies the
existence of an area minimizing current Z of dimension m − 1 in R

m such
that Hm−8+α(Sing(Z)) > 0.

The process can be iterated until we end up with a 7-dimensional area
minimizing current T̄ in R

8 which has a singular set of positive Hα measure.
Since α > 0, this contradicts what we have already proved, namely that in
this case T̄ has (at most) isolated singularities.

4.6. Simon’s rectifiability result.We complete our survey of the regu-
larity results in codimension 1 by mentioning Simon’s spectacular achieve-
ment: combining his fundamental theorem about the uniqueness of tangent
cones at isolated singularities with several additional innovative ideas, he
was able to show that, when n̄ = 1, Sing(T ) can be covered, up to a set
of Hm−7-measure zero, by a countable collection of C1 (m− 7)-dimensional
submanifolds, cf. [69]. A new proof of Simon’s theorem, which avoids the dis-
cussion of the uniqueness of tangent cones at isolated singularities, has been
very recently found by Naber and Valtorta, see [57]. This is till now the best
description available for the behavior of the singular set in codimension 1.

5. Federer’s theorem and the failure of ε-regularity in
codimension n̄ ≥ 2

5.1. Holomorphic subvarieties as area minimizing currents. We
start by recalling that holomorphic subvarieties of C

k+j , namely zeros of
holomorphic maps u : Ck+j → C

j (k and j being, respectively, the com-
plex dimension and codimension of the variety) can be given a natural ori-
entation. In what follows we identify C

k+j with R
2k+2j in the usual way:

if z1, . . . , zk+j are complex coordinates and xj = Re zj , yj = Im zj , we let

x1, y1, . . . , xk+j , yk+j be the standard coordinates of R2k+2j . Recall then that

an holomorphic subvariety Γ of Ck+j of complex dimension k is a (real an-
alytic) submanifold of R2k+2j \ Sing(Γ) of (real) dimension m = 2k, where
Sing(Γ) is an holomorphic subvariety of complex dimension k − 1.

Furthermore, at each point p ∈ Γ \ Sing(Γ), the (real) tangent 2k-dim.
plane TpΓ can be identified with a complex k-dimensional plane of Cn. If
v1, . . . , vk is a complex basis of TpΓ, we can then define a canonical orienta-
tion for TpΓ using the simple 2k-vector

Re v1 ∧ Im v1 ∧ . . . ∧ Re vk ∧ Im vk .

This allows us to define the current �Γ� by integrating forms over the ori-
ented submanifold Γ \ Sing(Γ). It is also easy to check that ∂ �Γ� = 0, the
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reason being that the “singular set” Sing(Γ) is a set of (locally) finite H2k−2

measure.
The discussion can be “localized” to holomorphic subvarieties in open

subsets Ω of C
k+j (and more generally in complex hermitian manifolds).

Note also that, if Ω′ is a bounded open subset of the domain Ω where Γ is
defined, then �Γ� has finite mass in Ω′ and it is thus an integer rectifiable
current. The following fundamental observation is due to Federer and is
based on a classical computation of Wirtinger ([81]).

Theorem 5.1 (Federer, cf. [45, Section 5.4.19]). Let Γ1, . . .ΓN be holo-
morphic subvarieties of complex dimension k in Ω ⊂ C

k+j and let k1, . . . , kN
be positive integers. Then the current T := k1 �Γ1� + . . . + kN �ΓN � is area
minimizing in the sense that M(T Ω′) ≤ M(T Ω′ + ∂S) for any open
Ω′ ⊂⊂ Ω and any 2k + 1-dimensional integral current S with spt(S) ⊂ Ω′.

Indeed the above theorem holds in general Kähler manifolds, cf. [45,
5.4.19].

5.2. Branching phenomena. Before giving an idea of why Theorem
5.1 holds we want to illustrate the deep consequences that it has in the
regularity theory for area minimizing currents in codimension higher than
1. Holomorphic subvarieties give easy counterexamples to Corollary 4.4 when
n̄ > 1: assumption (b) in Theorem 4.2 is absolutely crucial in this case. As
a byproduct even Proposition 4.10 fails and singularities might disappear in
the limit when we deal with sequences of area minimizing currents: in the
rest of this note we will see that the core difficulty in the proof of Theorem
3.4 is precisely this phenomenon of “disappearance of singularities”. We
illustrate these points with three explicit examples.

Example 5.2. Let δ > 0 be a small number and consider the holomor-
phic curve

Γδ := {(z, w) ∈ C
2 : z2 = δw}

and the plane

(26) π := {(z, w) ∈ C
2 : z = 0} .

There is no neighborhood of 0 where Γδ is the graph of a function z = f(w),
in spite of the fact that E(�Γδ� ,B1(0), π) converges to 0 as δ ↓ 0. In fact the
conclusion of Theorem 4.2 does not apply: although each Γδ is smooth and
it is graphical in Bρ(0) for any ρ, there is no uniform control of the C1,α

norm of the graph in terms of the excess. Observe that the currents Γδ do
not satisfy the condition (c) in Theorem 4.2, although they satisfy (a), (b)
and (d).

Example 5.3. Consider the holomorphic curve

Γ := {(z, w) ∈ C
2 : z2 = w3} .

The origin belongs to Sing(�Γ�). On the other hand:

• The unique tangent cone at 0 is given by 2 �π� for π as in (26).
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• The density of �Γ� equals 2 at 0;
• lim

r↓0
E(�Γ� ,Br(0), π) = 0.

Therefore:

• Corollary 4.5 is false for 2-dimensional area minimizing currents in
R
4: Γ is singular at the origin in spite of the existence of a flat

tangent cone there.
• Again Theorem 4.2 does not apply in any ball B2ρ(0). Note how-
ever that the only missing assumption is (b): the density Θ(�Γ� , p)
equals 1 at every point p ∈ Γ \ {0} and equals 2 at p = 0.

• Proposition 4.10 fails for 2-dimensional area minimizing currents in
R
4. Indeed 0 is a singular point for �Γ�0,r for every positive r > 0.

On the other hand �Γ�0,r → 2 �π� and thus 0 is not a singular point
of the limit: the singularity “has disappeared”.

Example 5.4. Consider finally the holomorphic curve

Ξ := {(z, w) ∈ C
2 : (z − w2)2 = w2015} .

All the considerations valid for the holomorphic curve Γ of Example 5.3 are
also valid for Ξ. Ξ does not add much for the moment to our discussion, but
it will play a crucial role later: observe that 0 is a singular point in spite
of the fact that Ξ is an almost imperceptible perturbation of the smooth
current 2

�
{z = w2}

�
.

We close this section by remarking that Theorem 5.1 gives also a great
abundance of singular area minimizing cones in higher codimension: the zero
set of any homogeneous polynomial P (z1, . . . , zk+1) in k+1 complex variables
is an area minimizing cone of dimension 2k in R

2k+2. More generally, for any
projective subvariety of Pk

C with complex dimension j we can construct a
corresponding area-minimizing cone in R

2k+2 of dimension 2j + 2. These
cones are singular except when the corresponding algebraic subvarieties are
affine. The easiest example of a singular area minimizing cone is thus the
union of an arbitrary number of complex lines in C

2. Such cones might
however be considered “mildly” singular: in C

3 the generic cone associated
to a projective curve of P

2
C has a singular set which behaves in rather

complicated way.

5.3. Calibrations and the proof of Theorem 5.1. We illustrate
here the simple, yet deep, principle lying behind Theorem 5.1. Recall first
the notion of comass of a form, given in Definition 2.3.

Definition 5.5 (Calibrations, cf. [55]). A calibration ω is a closed m-
form such that ‖ω‖c ≤ 1. An integer rectifiable current T is said to be

calibrated by a calibration ω if 〈ωp, �T (p)〉 = 1 for ‖T‖-a.e. p.
Observe in particular that M(T ) ≥ T (ω) whenever ω is a calibration

and that the equality sign holds if and only if T is calibrated by ω. The
following is then a trivial fact.
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Lemma 5.6. If T is calibrated by a calibration ω, then T is an area
minimizing current.

Proof. Let S be an (m+ 1)-dimensional integral current. Then

M(T ) =T (ω) = T (ω) + S(dω) = (T + ∂S)(ω) ≤ M(T + ∂S) . �

Holomorphic subvarieties are the primary example of calibrated currents
and this observation dates back essentially to Wirtinger. More precisely, if
z� = x�+ iy� are the standard coordinates in C

k+j , consider the Kähler form

ω := dx1 ∧ dy1 + . . .+ dxk+j ∧ dyk+j .

Wirtinger’s theorem can then be stated in the following form

Theorem 5.7 (Wirtinger, cf. [81]). If ω is the Kähler form and

ωk =
1

k!
ω ∧ . . . ∧ ω︸ ︷︷ ︸
k times

then ωk is a calibration. Moreover, 〈ωk, v1 ∧ . . . ∧ v2k〉 = |v1 ∧ . . . ∧ v2k| if
and only if v1, . . . , v2k is a positively oriented (R-)base of a complex plane.

Calibrations and calibrated submanifolds are a rich source of interesting
geometries: we refer the reader to [55] for several important examples.

6. Almgren’s stratification

From now on we will mostly have in mind the case of codimension n̄
strictly larger than 1 and we proceed with the investigations leading to
Theorem 3.4. One first simple step in the analysis of the singular set of the
area minimizing currents is an elegant generalization of Federer’s reduction
argument.

We start by taking a second look at Federer’s argument, roughly sketched
in Section 4.5. Given an area minimizing m-dimensional cone S we define its
spine as the vector space V of maximal dimension for which S can be written
as S′× �V �, where S′ is an area minimizing cone of dimension m−dim (V ).
Equivalently, V is the subset of those vectors v such that S is invariant under
translations in direction v and it is a simple exercise (using the monotonicity
formula) to show that V can be characterized as the subset of those points
p ∈ spt(S) such that Θ(S, p) = Θ(S, 0) or also as the subset of those points
q such that Sq,1 is a cone with vertex 0 (cf. [68, Proof of Lemma 35.5]).

At the intuitive level it is clear that S must have a certain “asymmetry”
in the directions which are transversal to V . The dimension of the spine of
S is called the building dimension of the cone S (cf. [79]). Note that such
building dimension equals m if and only if S is an integer multiple of an
m-dimensional plane, namely if and only if S is flat.

Consider now the situation where p and q are two points in the support
of an area minimizing current T such that at a scale r comparable to |p−q|,
Tp,r is close to some cone S and Tq,r is close to a certain other cone S′. Then
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p − q is “almost in the spine of T”, because (Tq,r)p−q,1 = Tp,r is “almost a
cone”. If the building dimension of S is a certain number m̄ and V is the
corresponding spine of S, we therefore conclude that (p− q)/|p− q| must be
very close to V . Summarizing:

• If at a given point p the current T is sufficiently close to a cone at
scale r, then all the points q surrounding p (i.e. at distance at most
r) and at which the current is close to some cone at scale r must
be contained in a neighborhood of size εr of the spine V of T .

This suggests to introduce the following stratification of points in the
support of T :

Definition 6.1. A point p ∈ spt(T ) belongs to the stratum Sk(T ) if
every tangent cone to T at p has building dimension at most k and if there
is at least one tangent cone to T at p with building dimension k.

Moreover, after “discretizing” all possible scales, we can subdivide fur-
ther the stratum Sk(T ) in a countable number of subsets according to the
scale at which the current T starts looking sufficiently close to a cone. The
consideration above implies that each such subset is contained, at all scales
smaller than a given one, in a small neighborhood of some k-dimensional
plane. It is therefore not difficult to imagine that we can bound the Haus-
dorff dimension of Sk(T ) with k.

The discussion above is essentially the content of Almgren’s generaliza-
tion of Federer’s argument, which we state in the following theorem.

Theorem 6.2 (Almgren’s stratification, cf. [79]). For any given area
minimizing current T the stratum Sk(T ) has Hausdorff dimension at most
k and S0(T ) is a discrete set.

Observe that the discussion of Section 4.5 proves that:

(F) Given any area minimizing cone S of codimension n̄ = 1, either
such cone is a multiple of an m-dimensional plane, or its building
dimension is at most m− 7.

As a corollary we conclude that for n̄ = 1 the strata

Sm−1(T ),Sm−2(T ), . . . ,Sm−6(T )

are all empty. Next, at any point p in the top stratum Sm(T ) there is a flat
tangent cone and thus, by Corollary 4.4, we actually know that Sm(T ) =
Reg(T ) (we stress again that this holds only under the assumption that
n̄ = 1: Example 5.3 gives a counterexample as soon as n̄ = 2 and m = 2). We
therefore conclude that Sing(T ) = S0(T )∪ . . .∪Sm−7(T ) and thus Theorem
3.3(ii)&(iii) is a corollary of Theorem 6.2.

Unfortunately from Section 5 we know that the identity Reg(T ) = Sm(T )
does not hold anymore when the codimension n̄ > 1. On the other hand we
surely have Reg(T ) ⊂ Sm(T ). We could call “branch points” for T those
points p ∈ Sm(T ) \ Reg(T ). The major concern in the rest of the note
will be to estimate the Hausdorff dimension of Sm(T ) \ Reg(T ). A simple
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consequence of Theorem 6.2 is that, in order to prove Theorem 3.4(ii), the
“only” concern is truly to bound the Hausdorff dimension of the set of branch
points by m− 2, because of the following lemma.

Lemma 6.3 (cf. [68, Theorem 35.3]). The stratum Sm−1(T ) is empty in
any codimension n̄.

Proof. It suffices to show that the building dimension of an area min-
imizing cone of dimension m cannot be m − 1. On the other hand if there
were an m-dimensional area minimizing cone with building dimension m−1,
then there would be a 1-dimensional cone S′ which is not flat. Now, it is
rather easy to show that any 1-dimensional cone S′ can be written as

S′ =

Q∑
i=1

��i� −
2Q∑

j=Q+1

��j� ,

where each �k is a half-line starting at the origin oriented so that ∂ ��k� = �0�.
Observe moreover that Q = Θ(S, 0). If we choose one i between 1 and Q and
one j between Q+1 and 2Q, we can write S′ = Z+S′′ where S′′ = ��i�−��j�:
since ∂S′′ = ∂Z = 0 and ‖S′′‖(B1)+‖Z‖(B1) = ‖S′‖(B1), S

′′ must be itself
area minimizing. On the other hand it is very simple to show that S′′ is
area minimizing if and only if �i and �j form, together, a single straight
line � passing through the origin. But then S′ = Q ���, contradicting the
assumption that S′ is singular at 0. �

The proof of Theorem 6.2 is rather elementary and “soft”. In spite of
this the idea is powerful and can be applied to several different problems in
geometric analysis; for instance, we refer the reader to Simon’s work on the
singularities of harmonic maps, [70], to White’s far-reaching generalization
of Theorem 6.2 and its applications to the mean-curvature flow, [79], and to
recent results about Riemannian manifolds with one-sided curvature bounds,
see for instance [15]. Recently, in a series of works (cf. [16, 14, 17]), the
method of Almgren has been extended to deal with the Minkowski content,
see also [49] for an abstract general version of this.

We finally mention that the cones with building dimension m − 2 can
be actually further characterized: it is not difficult to see that such cones
are necessarily unions of multiples of m-dimensional planes. The spines of
such cones are (m− 2)-dimensional subspaces. Due to the remarkable work
of White, [77], when m = 2 there is one such unique tangent cone at every
point p ∈ S0(T ). However, for m ≥ 3 the same uniqueness result is not yet
proved and in fact it is not even known whether at points p ∈ Sm(T )\Reg(T )
the flat tangent cone is the unique one!

7. Multiple valued functions minimizing the Dirichlet energy

As already noticed, in codimension 1 the regularity in a neighborhood
of a point with integer multiplicity Q where at least one tangent cone is flat
can be reduced to the case of multiplicity Q = 1, whereas the discussions of
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Section 5 show that this reduction is impossible in codimension larger than
1. Indeed, in the Examples 5.3 and 5.4 even the starting point of De Giorgi’s
strategy as described in Section 4.1 fails dramatically: no matter how small
is the neighborhood U of the origin that we choose, it is simply not possible
to approximate efficiently the corresponding current T in U with the graph
of a (single valued) function. However, in each of these examples the current
turns out to be a “multivalued” graph, where the number of values is in
fact determined by the multiplicity Q = Θ(T, 0). This discussion motivates
the starting idea of Almgren’s monograph: in order to go beyond an Al-
lard’s type statement (namely regularity in a dense relatively open subset
of spt(T ) \ spt(∂T )) we need to develop an efficient theory for “multiple
valued functions” minimizing a suitable generalization of the Dirichlet en-
ergy, where we can (and we will) consider the multiplicity to be a constant
preassigned positive integer Q.

7.1. The metric space of unordered Q-tuples. The obvious model
case to keep in mind is the following. Given two integers k,Q with
MCD(k,Q) = 1, look at the set valued map which assigns to each point
z ∈ C the set M(z) := {wk : wQ = z} ⊂ C. Obviously for each z we can
choose some arbitrary ordering {u1(z), . . . , uQ(z)} of the elements of the set
M(z). However, it is not possible to do it in such a way that the resulting
“selection maps” z �→ ui(z) are continuous: even at the local level, this is
impossible in every neighborhood of the origin.

Our example motivates the following definition. Given an integer Q we
define a Q-valued map from a set E ⊂ R

m into R
n as a function which to

each point x ∈ E associates an unordered Q-tuple of vectors in R
n. Following

Almgren, we consider the group PQ of permutations of Q elements and we

let AQ(R
n) be the set (Rn)Q modulo the equivalence relation

(v1, . . . , vQ) ≡ (vπ(1), . . . , vπ(Q)) ∀π ∈ P .

Hence a multiple valued map is simply a map taking values inAQ(R
n). There

is a fairly efficient formulation of this definition which will play a pivotal role
in our discussion, because the set AQ(R

n) can be naturally identified with
a subset of the set of measures (cf. [5] and [29, Definition 0.1]).

Definition 7.1 (Unordered Q-tuples). Denote by �Pi� the Dirac mass
in Pi ∈ R

n. Then,

AQ(R
n) :=

{
Q∑
i=1

�Pi� : Pi ∈ R
n for every i = 1, . . . , Q

}
.

Observe that with this definition each element of AQ(R
n) is in fact a

0-dimensional integral current. This set has also a natural metric structure;
cf. [5] and [29, Definition 0.2] (the experts will recognize the well-known
Wasserstein 2-distance, cf. [76]).
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Definition 7.2. For every T1, T2 ∈ AQ(R
n), with T1 =

∑
i �Pi� and

T2 =
∑

i �Si�, we set

(27) G(T1, T2) := min
σ∈PQ

√∑
i

∣∣Pi − Sσ(i)

∣∣2 .
Remark 7.3. Since we will often need to compute G(T,Q �0�) we intro-

duce the special notation |T | for the latter quantity. Observe, however, that
AQ(R

n) is not a linear space except for the special case Q = 1: the map
T → |T | is not a norm.

7.2. The generalized Dirichlet energy. Using the metric structure
on AQ(R

n) one defines obviously measurable, Lipschitz and Hölder maps
from subsets of Rm into AQ(R

n). However, if we want to approximate area
minimizing currents with multiple valued functions and “linearize” the area
functional in the spirit of De Giorgi, we need to define a suitable concept of
Dirichlet energy. We will now show how this can be done naturally. However,
the approach outlined below is not the one of Almgren.

Consider again the model case of Q = 2 and assume u : Ω → A2(R
n)

is a Lipschitz map. If, at some point x, u(x) = �P1� + �P2� is “genuinely
2-valued”, i.e. P1 �= P2, then there exist obviously a ball Br(x) ⊂ Ω and
two Lipschitz functions u1, u2 : Br(x) → R

n such that u(y) = �u1(y)� +
�u2(y)� for every y ∈ Br(x) (in this and similar situations, we will then say
that there is a regular selection for u in Br(x), cf. [29, Definition 1.1]). For
each separate function ui, the classical Theorem of Rademacher ensures the
differentiability almost everywhere.

Recall that our ultimate goal is to define the Dirichlet energy so that it
is a suitable approximation of the area of the graph of u. The “graph of u
over Br(x)” is simply the union of the graphs of the two functions ui. When
the derivatives Dui are close to 0, the area of each graph is close to∫

Br(x)

(
1 +

1

2
|Dui|2

)
.

Thus, the only suitable definition of Dirichlet energy of u on the domain
Br(x) is given by∫

Br(x)
|Du|2 :=

∫
Br(x)

(|Du1|2 + |Du2|2) .

By an obvious localization procedure, this definition can be extended to the
(open!) set Ω2 ⊂ Ω where u is “genuinely” 2-valued.

For each element z in the complement set Ω1 := Ω \Ω2, u(z) is a single
point counted with multiplicity 2. Then there is a Lipschitz map v : Ω1 → R

n

such that u(z) = 2 �v(z)� for every z ∈ Ω1. Again in view of our goal, the
only suitable definition of the Dirichlet energy of u over Ω1 is twice the
Dirichlet energy of v. We thus are left with only one possibility for the
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Dirichlet energy on the global set Ω:

Dir(u,Ω) :=

∫
Ω2

(|Du1|2 + |Du2|2) + 2

∫
Ω1

|Dv|2 .

This analysis can be obviously generalized to any positive integer Q,
leading to a general definition of Dirichlet energy for Lipschitz multiple
valued functions. The graphs of Lipschitz multiple valued functions carry
naturally a structure of integer rectifiable currents (see [30] and cf. [72,
Section 3.2] for a brief explanation). It is not difficult to see that, when the
Lipschitz constant is small, the Dirichlet energy defined in this section is the
second order approximation of the area of the corresponding graph, cf. [30,
Corollary 3.3].

Having established the correct notion of Dirichlet energy for Lipschitz
functions, one could define the Sobolev space W 1,2(Ω,AQ(R

n)) through a
“completion strategy”: a measurable map v : Ω → AQ(R

n) is in W 1,2 if
and only if there is a sequence of Lipschitz maps uk converging to v a.e.
and enjoying a uniform bound Dir(Ω, uk) ≤ C. The Dirichlet energy of v
is then defined via a “relaxation procedure”: Dir(Ω, v) is the infimum of all
constants C for which there is a sequence with the properties above.

7.3. The intrinsic approach to W 1,2 Q-valued maps. Although
the definition above is certainly very natural and gives a good geometric
intuition for the Dirichlet energy, it turns out that it is rather complicated
to work with it, in particular if one wants to recover the usual statements
of the Sobolev space theory for classical functions.

Instead, a rather efficient way to achieve such statements is to rely on a
more abstract definition of Dirichlet energy and Sobolev functions, as pro-
posed in [29]. A very general theory has been developed in the literature
for Sobolev maps taking values in abstract metric spaces, following the pio-
neering works of Ambrosio [6] and Reshetnyak [62, 61]. The careful reader
will notice, however, that there is a crucial difference between the definition
of Dirichlet energy in [62] and the one given below.

Definition 7.4 (Sobolev Q-valued functions, cf. [29, Definition 0.5]).
A measurable f : Ω → AQ is in the Sobolev class W 1,p (1 ≤ p ≤ ∞) if there
exist m functions ϕj ∈ Lp(Ω;R+) such that

(i) x �→ G(f(x), T ) ∈ W 1,p(Ω) for all T ∈ AQ;
(ii) |∂j G(f, T )| ≤ ϕj a.e. in Ω for all T ∈ AQ and for all j ∈ {1, . . . ,m}.
It is not difficult to show the existence of minimal functions ϕ̃j fulfilling

(ii), i.e. such that, for any other ϕj satisfying (ii), ϕ̃j ≤ ϕj a.e. (cf. [29,
Proposition 4.2]). Such “minimal bounds” will be denoted by |∂jf | and we
note that they are characterized by the following property (see again [29,
Proposition 4.2]): for every countable dense subset {Ti}i∈N of AQ and for
every j = 1, . . . ,m,

(28) |∂jf | = sup
i∈N

|∂j G(f, Ti)| almost everywhere in Ω.
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We are now ready to define the Dirichlet energy.

Definition 7.5 (cf, [29, Definition 0.6]). The function |Df |2 is defined
to be the sum of |∂jf |2. The Dirichlet energy of f ∈ W 1,2(U ;AQ) is then
defined by Dir(f, U) :=

∫
U |Df |2.

As already mentioned, this definition is equivalent to the one proposed
in the previous section (cf. [29, Proposition 4.4]). The main feature is that,
however, essentially all the conclusions of the usual Sobolev space theory for
single valued functions can be proved to be valid by routine modifications
of the arguments: among them we mention Sobolev and Morrey embed-
dings, compact embeddings, Poincaré inequalities, semicontinuity results,
trace properties (cf. [29, Chapter 4]).

One tool which instead is not available in the multivalued setting is the
usual regularization by convolution. However in several instances this can
be replaced by “gradient truncations” to produce regularizations that are
Lipschitz (cf. [29, Section 4.2]). This will be discussed in details in later sec-
tions, because it will play an important role. From now on, we will use often
standard tools available in the Sobolev space theory: unless we explicitly
mention that there is some extra work to do, the reader can safely assume
that the corresponding statements can be proved to be valid via “abstract
nonsense”.

One important point to be made is about the existence of “selections”.
A selection for a Q-valued function u is given by Q classical single valued

functions u1, . . . , uQ such that u(x) =
∑Q

i=1 �ui(x)�, cf. [29, Definition 1.1].
If the ui are measurable, continuous, Lipschitz, etc. the selection will be
called measurable, continuous, Lipschitz, etc. It is rather easy to show that
a measurable selection exists for any measurable u, cf. [29, Proposition 0.4].
Incidentally, this will be used repeatedly as we write∑

i

�ui�

for any given measurable Q-valued map u, tacitly assuming to have chosen
some measurable selection.

However continuous maps (resp. Sobolev, Lipschitz) do not possess in
general selections which are continuous (resp. Sobolev, Lipschitz). The pri-
mary examples are the maps stemming from holomorphic subvarieties al-
ready discussed at length. Only maps defined on 1-dimensional intervals are
a notable exception: in this case continuous, Hölder, Lipschitz and Sobolev
multivalued maps have always correspondingly regular selections: indeed
there is a linear bound relating the regularity of the selection to that of the
initial map in all these cases. For the case of Sobolev and Lipschitz maps the
proof is very elementary, cf. [29, Proposition 1.2]. For continuous and Hölder
maps the proof turns out to be much harder, cf. [5, Proposition 1.10] and
the simpler (and more general) approach of [27]. In the proof of Theorem
3.4 only the existence of Sobolev and Lipschitz selections play a role.
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In many instances, although we are not able to find a regular selection of
the Q-valued map u, we might be able to split it into two regular Qi-valued
maps, namely

u(x) = u1(x) + u2(x)

where u1 and u2 are as regular as u and Qi-valued for some positive integers
with Q1 +Q2 = Q. In this case we say that u “splits”or “decomposes” into
simpler maps, cf. [29, Definition 1.1].

7.4. The cornerstones of the theory of Dir-minimizers. We are
now ready to state the main results in the theory of Dir-minimizing maps.
In what follows, Ω is always assumed to be a bounded open set with a
sufficiently regular boundary (in fact, in order to give a complete account,
we should have defined the trace at ∂Ω of W 1,2 multiple valued functions;
we have avoided to enter in the details to keep our presentation short: the
interested reader can consult, for instance, [29, Definition 0.7]).

Theorem 7.6 (Existence for the Dirichlet Problem, cf. [29, Theorem
0.8]). Let g ∈ W 1,2(Ω;AQ). Then there exists a Dir-minimizing f ∈ W 1,2(Ω;
AQ) such that f |∂Ω = g|∂Ω.

Theorem 7.7 (Hölder regularity, cf. [29, Theorem 0.9]). There is a pos-
itive constant α = α(m,Q) with the following property. If f ∈ W 1,2(Ω;AQ)
is Dir-minimizing, then f ∈ C0,α(Ω′) for every Ω′ ⊂⊂ Ω ⊂ R

m. For two-
dimensional domains, we have the explicit constant α(2, Q) = 1/Q.

For the second regularity theorem we need the definition of the singular
set of f .

Definition 7.8 (Regular and singular points, cf. [29, Definition 0.10]).
A Dir-minimizing f is regular at a point x ∈ Ω if there exists a neighborhood
B of x and Q analytic functions fi : B → R

n such that

(29) f(y) =
∑
i

�fi(y)� for every y ∈ B

and either fi(y) �= fj(y) for every y ∈ B, or fi ≡ fj . The singular set Sing(f)
is the complement of the set of regular points.

Theorem 7.9 (Estimate of the singular set, cf. [29, Theorem 0.11]). Let
f be Dir-minimizing. Then, the singular set Sing(f) is relatively closed in
Ω. Moreover, if m = 2, then Sing(f) is at most countable, and if m ≥ 3,
then the Hausdorff dimension of Sing(f) is at most m− 2.

Note in particular the striking similarity between the estimate of the
size of the singular set in the case of multiple valued Dir-minimizers and
in that of area minimizing currents. It will be discussed later that, even in
the case of Dir-minimizers, there are singular solutions (which are no better
than Hölder continuous).

Complete and self-contained proofs of these theorems can be found in
[29]. The key tool for the estimate of the singular set is the celebrated
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frequency function (cf. with [29, Section 3.4]), which has been indeed used in
a variety of different contexts in the theory of unique continuation of elliptic
partial differential equations (see for instance the papers [50], [51]). This is
the central tool of our proofs as well. However, our arguments manage much
more efficiently the technical intricacies of the problem and some aspects
of the theory are developed in further details. For instance, we present in
[29, Section 3.1] the Euler-Lagrange conditions derived from first variations
in a rather general form. This is to our knowledge the first time that these
conditions appear somewhere in this generality.

Largely following ideas of [13] and of White, we improved the second
regularity theorem to the following optimal statement for planar maps.

Theorem 7.10 (Improved 2-dimensional estimate, cf. [29, Theorem
0.12]). Let f be Dir-minimizing and m = 2. Then Sing(f) is discrete.

This result was announced in [13]. However, to our knowledge the proof
has never appeared before [29].

A new addition to the regularity theory, which will have a lot of im-
portance in the subsequent discussions, is the following higher integrability
result.

Theorem 7.11 (Higher integrability of Dir-minimizers, cf. [33, Theorem
5.1]). Let Ω′ ⊂⊂ Ω ⊂⊂ R

m be open domains. Then, there exist p > 2 and
C > 0 such that

(30) ‖Du‖Lp(Ω′) ≤ C ‖Du‖L2(Ω) ∀Dir-minim. u ∈ W 1,2(Ω,AQ(R
n)).

We believe that several intricate arguments and complicated construc-
tions in the third chapter of Almgren’s monograph can be reinterpreted as
rather particular cases of this key observation (see for instance [5, Section
3.20]). Surprisingly, this higher integrability can be proved in a very simple
way by deriving a suitable reverse Hölder inequality and using a (nowadays)
very standard version of the classical Gehring’s Lemma.

Theorem 7.11 has been stated and proved for the first time in [33]. The
relevant reverse Hölder inequality has been derived using a comparison argu-
ment and hence relying heavily on the minimality of the Dir-minimizers. A
second proof, exploiting the Euler-Lagrange conditions to give a Caccioppoli-
type inequality, has been given in [73]. This last proof still uses the regularity
theory for Dir-minimizers. However, this occurs only at one step: one could
hope to remove this restriction and generalize the higher integrability to
“critical” points of the Dirichlet energy.

In [73] a yet different proof for the planar case is proposed, yielding
the optimal range of exponents p for which (30) holds. The optimality of
this result, as well as the optimality of Theorems 7.7 and 7.10, is shown by
another remarkable observation of Almgren. Besides giving area minimizing
currents, holomorphic varieties are locally graphs of Dir minimizingQ-valued
functions. In [5, Section 2.20] Almgren proves this statement appealing to
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his powerful approximation results for area minimizing currents. However
this is unnecessary and a rather elementary proof can be found in [73].

7.5. Hölder continuity of Dir-minimizers. The entire Section 8 will
be dedicated to the proof of Theorem 7.9, since it contains, in a simplified
setting, several of the themes of the proof of Theorem 3.4.

In this paragraph we will instead discuss briefly the ideas behind the
proof of Theorem 7.7. We first assume that u is a classical (single valued)
function and, for simplicity, that m ≥ 3 (the case m = 2 is somewhat
special and can be handled in a simpler way). Assume that u : B1(x) → R

n

is harmonic and compare its energy to the energy of the 0-homogeneous
extension v of its trace on ∂B1(x): we achieve the following crude inequality

(31)

∫
B1(x)

|Du|2 ≤
∫
B1(x)

|Dv|2 ≤ 1

m− 2

∫
∂B1(x)

|Du|2 .

A scaling-invariant version of the above inequality can be combined with
Fubini’s theorem to give the following differential inequality:

(32)

∫
Br(x)

|Du|2 ≤ r

m− 2

d

dr

∫
Br(x)

|Du|2 ,

which in turn gives the bound Dir(u,Br(x)) ≤ Crm−2. If we could improve
the constant in (32) to 1

m−2+2ε , the same reasoning would give the estimate

Dir(u,Br(x)) ≤ Crm−2+2ε, which by a standard Morrey-Campanto argu-
ment implies the ε-Hölder continuity of u. Now, for a single valued function
u the first inequality in (31) is certainly strict, since v does not satisfy the
Euler-Lagrange conditions of a minimizer. It is not difficult to see that the
very same conclusion can be drawn in the multivalued setting, where the
0-homogeneous extension is also well defined. The problem is to gain, in the
factor of the right hand side of (31), a constant ε > 0 which is independent
of the function (and, more importantly, of the central point x).

We can therefore focus on improving the constant in the right hand
side of (31) and without loss of generality we can assume x = 0. It is
easy to see that we can assume, again without loss of generality, that the
Dirichlet energy in B1(0) is normalized to 1. When u is single valued we
can also assume that u has average 0 after subtracting a second suitable
constant: the “uniform gain” from 1

m−2 to 1
m−2+2ε in (32) is then a simple

consequence of the standard compactness of Sobolev maps (via Poincaré
inequality). However, although there is a Poincaré inequality for multivalued
maps, we cannot “subtract” constant values in general. The only well defined
operation is the subtraction of the same value p from all Q sheets, namely
given u =

∑
i �ui� we can set

v(x) =

Q∑
i=1

�ui(x)− p� .



192 C. DE LELLIS

In particular we cannot expect compactness when we only control the Dirich-
let energy: for a general Sobolev map some sheets might be very far apart
on a large subset and be very close on another, very small, subset. How-
ever, it can be shown that if the average separation between some sheets of
a Dir-minimizer v is too large compared to its Dirichlet energy on a given
domain, then v must split into simpler functions in a smaller domain. This
allows to prove that there is a uniform gain in the constant of the right
hand side of the inequality of (31). The gain will depend upon Q, but this
is not an artifact of the proof: it can be shown that the Hölder exponent in
Theorem 7.7 does deteriorate to 0 as Q → ∞.

7.6. Almgren’s extrinsic maps. The metric G on AQ(R
n) is “locally

euclidean” at most of the points. Consider for instance the model case Q = 2
and a point P = �P1� + �P2� with P1 �= P2. Then, obviously, in a sufficiently
small neighborhood of P , the metric space A2(R

n) is isometric to (an open
subset of) the Euclidean space R

2n. This fails instead in any neighborhood
of a point of type P = 2 �P1�. On the other hand, if we restrict our attention
to the closed subset {2 �X� : X ∈ R

n}, we obtain a close subset isometric to
R
n.
A remarkable observation of Almgren is that AQ(R

n) is biLipschitz
equivalent to a deformation retract of the Euclidean space (cf. [5, Sec-
tion 1.3]). For a simple presentation of this fact we refer the reader to [29,
Section 2.1].

Theorem 7.12. There exists N =N(Q,n) and an injective ξ :AQ(R
n)→

R
N such that:

(i) Lip(ξ) ≤ 1;
(ii) if Q = ξ(AQ), then Lip(ξ−1|Q) ≤ C(n,Q).

Moreover there exists a Lipschitz map ρ :RN →Q which is the identity on Q.

In fact much more can be said: the set Q is a cone and a polytope.
On each separate face of the polytope the metric structure induced by G
is euclidean, essentially for the reasons outlined a few paragraphs above
(cf. again [5, Section 1.3] or [33, Section 6.1]). A simple, yet important,
observation of White is that the map ξ can be easily constructed so that the
Dirichlet energy of ξ ◦ u (as classical Euclidean map) coincides with that of
u (as multivalued map) for any u ∈ W 1,2.

Later on a more complicated version of the map ρ will play a rather im-
portant role. As already mentioned, for Q > 1 the space AQ(R

n) is not linear
and we cannot regularize Q-valued maps by convolution. Nonetheless we will
need a way to smooth W 1,2 maps suitably with a procedure which retains
some of the basic estimates available for convolutions with a standard molli-
fier (in particular when computing the energy of the regularizations). A pos-
sible approach is to smooth the euclidean map ξ◦u and then “project” it back
onto Q using ρ. However, projecting back might be rather costly in terms
of the energy since the Lipschitz constant of ρ is indeed rather far from 1.
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To bypass this problem, we follow Almgren and prove the existence of
“almost” projections, denoted by ρ�

δ , which are (1 + μ)-Lipschitz in the δ-
neighborhood of ξ(AQ(R

n)). These maps cannot be the identity on Q, but
they are at a uniform distance η from it. Almgren’s original proof is rather
complicated. In [33, Proposition 6.2] we have proposed a different proof
which uses heavily Kirszbraun’s extension theorem and seems to yield a
better estimate of μ and η in terms of δ (in particular in the version of [33]
these are suitable positive powers of δ).

8. The frequency function

In this section we review the ideas behind the proof of Theorem 7.9. As
already mentioned the argument will serve as a prototype for the argument
of Theorem 3.4 and for this reason we will be quite detailed.

8.1. First variations. There are two natural types of variations that
can be used to perturb Dir-minimizing Q-valued functions. The first ones,
which we call inner variations, are generated by right compositions with
diffeomorphisms of the domain. The second, which we call outer variations,
correspond to “left compositions”. More precisely, let f be a Dir-minimizing
Q-valued map.

(IV) Given ϕ ∈ C∞
c (Ω,Rm), for ε sufficiently small, x �→ Φε(x) = x +

εϕ(x) is a diffeomorphism of Ω which leaves ∂Ω fixed. Therefore,

(33) 0 =
d

dε

∣∣∣∣
ε=0

∫
Ω
|D(f ◦ Φε)|2.

(OV) Given ψ ∈ C∞(Ω × R
n,Rn) such that spt(ψ) ⊂ Ω′ × R

n for some
Ω′ ⊂⊂ Ω, we set Ψε(x) =

∑
i �fi(x) + εψ(x, fi(x))� and derive

(34) 0 =
d

dε

∣∣∣∣
ε=0

∫
Ω
|DΨε|2.

The identities (33) and (34) lead to interesting first variation conditions in
integral form. In order to state them we need anyway a suitable notation to
handle the “differential” of a multivalued map f =

∑
i �fi�. Following the

discussion in Section 7.2 it is possible, for a Lipschitz multivalued map, to
introduce a suitable notion of multivalued differential, which will be denoted
by Df . This will be a multiple valued map taking values in AQ(R

m×n),
which roughly speaking gives at each point the unordered Q-tuple of the
differentials of the different branches. There is a coherent way of finding a
measurable selection for both f andDf : the coherence has, as a consequence,
that when the map splits locally into single valued maps, the i-selection gi
of Df =

∑
i �gi� corresponds to the differential Dfi of the i-selection fi.

However, this is just one consequence: the coherence can be stated generally
even when differential selections do not exist and we refer the reader to
[29, Remark 1.11] for the precise definition. This representation allows to
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derive chain rules for multivalued maps which are just the analog of the
corresponding chain rules for classical maps, cf. [29, Section 1.3.1].

Proposition 8.1 (First variations, cf. [29, Proposition 3.1]). Let f :
Ω → AQ(R

n) be a Dir-minimizer. For every ϕ ∈ C∞
c (Ω,Rm), we have

(35) 2

∫ ∑
i

〈
Dfi : Dfi ·Dϕ

〉
−
∫

|Df |2 divϕ = 0.

For every ψ ∈ C∞(Ωx × R
n
u,R

n) such that

spt(ψ) ⊂ Ω′ × R
n for some Ω′ ⊂⊂ Ω,

and

(36) |Duψ| ≤ C < ∞ and |ψ|+ |Dxψ| ≤ C (1 + |u|) ,
we have ∫ ∑

i

〈
Dfi(x) : Dxψ(x, fi(x))

〉
dx(37)

+

∫ ∑
i

〈
Dfi(x) : Duψ(x, fi(x)) ·Dfi(x)〉 dx = 0.

8.2. The monotonicity of the frequency function. (35) and (36)
give particularly interesting identities when tested with functions which de-
pend on |x|. In what follows, ν will always denote the outer unit normal on
the boundary ∂B of a given ball. The following proposition gives the rele-
vant identities when we test with the singular functions ϕ(y) = 1Br(x)(y)y
and ψ(x, u) = u1Br(x)(y) (the proof follows from a standard regularization
of these ϕ and ψ).

Proposition 8.2 (cf. [29, Proposition 3.1]). Let x ∈ Ω and f : Ω →
AQ(R

n) be Dir-minimizing. Then, for a.e. 0 < r < dist(x, ∂Ω), we have

(m− 2)

∫
Br(x)

|Df |2 = r

∫
∂Br(x)

|Df |2 − 2 r

∫
∂Br(x)

∑
i

|∂νfi|2,(38)

∫
Br(x)

|Df |2 =
∫
∂Br(x)

∑
i

〈∂νfi, fi〉.(39)

We next introduce Almgren’s frequency function and state his celebrated
monotonicity estimate, which is a straightforward consequence of the iden-
tities (38) and (39). Recall the notation |f | for the function G(f,Q �0�).

Definition 8.3 (The frequency function, cf. [29, Definition 3.13]). Let
f be a Dir-minimizing function, x ∈ Ω and 0 < r < dist(x, ∂Ω). We define
the functions
(40)

Dx,f (r) =

∫
Br(x)

|Df |2, Hx,f (r) =

∫
∂Br

|f |2 and Ix,f (r) =
rDx,f (r)

Hx,f (r)
.

Ix,f is called the frequency function.
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When x and f are clear from the context, we will often use the shorthand
notation D(r), H(r) and I(r).

Theorem 8.4 (Monotonicity of the frequency function, cf. [29, Theorem
3.15]). Let f be Dir-minimizing and x ∈ Ω. Either there exists � > 0 such
that f |B�(x) ≡ 0 or Ix,f (r) is an absolutely continuous nondecreasing positive
function on ]0, dist(x, ∂Ω)[. This function takes a constant value α if and
only if f(y) is α-homogeneous in y − x.

This monotonicity is the main ingredient in the proof of both Theorems
3.4 and 7.9. An important observation, which was first made in [32], is that
the frequency function can be thought as a “singular limit” of smoother
objects, i.e. of regularized frequency functions, which are also monotone.
This simple remark (which is not present in Almgren’s monograph) gives
an important advantage: the regularized frequency functions enjoy better
continuity properties in terms of f .

Definition 8.5 (Regularized frequency functions). Assume φ is a Lip-
schitz nonnegative nonincreasing compactly supported function on [0, 1[
which is constant and positive in a neighborhood of 0 and define

D0,f (r) :=

∫
φ

(
|x|
r

)
|Df |2(x) dx

H0,f (r) := −
∫

φ′
(
|x|
r

)
|f |2(x)
|x| dx

I0,f (r) :=
rD0,f (r)

H0,f (r)
.

Theorem 8.6. Let f be Dir-minimizing and 0 ∈ Ω. Either there exists
� > 0 such that f |B�(0) ≡ 0 or I0,f (r) is an absolutely continuous nonde-
creasing positive function on ]0, dist(x, ∂Ω)[. This function takes a constant
value α if and only if f(x) is α-homogeneous in x.

We do not have a reference for the latter theorem, which follows from
a straightforward adaption of the arguments used in the proof of Theorem
8.4. A special case of Theorem 8.6, namely for a special choice of the cut-off
φ, is hidden in the computations of [32, Theorem 3.2] (cf. in particular [32,
Eq. (3.13)]).

8.3. The two fundamental consequences of the monotonicity
formula. Theorem 8.4 has two crucial consequences, when “blowing-up” a
given Dir-minimizing function. More precisely, consider a Dir-minimizing f
taking Q > 1 values and a point p in its domain. Without loss of generality
we can assume that p = 0. If the support of f(0) contains two different
points, then, by continuity, in a neighborhood U of 0 f splits into two sep-
arate functions u1 and u2 which are both W 1,2 and continuous. It is simple
to see that both must be minimizers of the Dirichlet energy in U . 0 is then
a good point, where we have reduced the complexity of the problem. For
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instance, if Q were 2 we would know that u1 and u2 are two classical (sin-
gle valued) harmonic functions. The “problematic points” are then those p
where f(p) = Q �q�.

We can therefore assume that f(0) = Q �q� for some q ∈ R
n. Now,

according to our definition of the singular set Sing(f), we have two possibil-
ities:

(a) f equalsQ copies of a classical harmonic function in a neighborhood
of 0;

(b) 0 is a singular point for f .

In general, an interesting object to look at is the average of the sheets of
f =

∑
i �fi�, namely 1

Q

∑
i fi. For this average we fix the notation η ◦ f . It

is not difficult to see that η ◦ f is a classical harmonic function. Indeed, if
we define

f̄ :=
∑
i

�fi − η ◦ f� ,

it is immediate to see that Dir(f) = Dir(f̄) + QDir(η ◦ f). In particular it
is not difficult to conclude that f̄ is also a Dir-minimizer, cf. [29, Lemma
3.23]. Looking at the latter function we can thus restate the alternative as:
either f̄ ≡ Q �0� in a neighborhood of the origin, or 0 is a singular point for
f̄ (and thus a singular point of f !).

The discussion above leads to the consideration that, without loss of
generality, we can assume η ◦ f ≡ 0. Assume further that the (more inter-
esting!) alternative (b) above holds. Then f does not vanish identically and
therefore both D0,f (r) and H0,f (r) are positive for some r. Using Theorem
7.7 it is not difficult to see that, under the assumption f(0) = Q �0�, we
have a uniform bound of the form

(41) H0,f (r) ≤ CrD0,f (r) ∀r ∈
]
0, dist(0,∂Ω)

2

[
,

where the constant C is independent of f . The obvious consequence of The-
orem 8.4 is that there is also a reverse control

(42) rD0,f (r) ≤ C̄H0,f (r)

although the latter constant C̄ depends upon the point (0 in this case) and
the function f . Indeed such constant approaches, for r ↓ 0, the limit I0(f) :=
limρ↓0 I0,ρ(f), which by (41) is bounded away from 0 and by Theorem 8.4
is finite: on the other hand we have no explicit (neither universal!) upper
bound, we insist that I0(f) depends upon f and the particular point (0 in
this case) where we are “blowing-up”.

Consider now the rescaled functions f0,r(x) := f(rx) and their renor-
malized versions

u0,r(x) :=
f0,r

Dir(f0,r, B1)
1/2

.

In particular the energy of u0,r is 1 in B1(0). However the L2 norm of |u0,r| is
also under control because of (41). We then have compactness for the family
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{u0,r}r. Fix a map ū which is the limit of any subsequence u0,rk with rk ↓ 0.
It is not difficult to see that a sequence of minimizers with such uniform con-
trols converge strongly in W 1,2 in any compact subset: namely the Dirichlet
energy of the limiting function is the limit of the Dirichlet energy of the
corresponding functions on any subdomain Ω which is compactly contained
in B1(0), cf. [29, Proposition 3.20]. However the minimizing property alone
does not guarantee strong convergence on the whole domain B1(0).

To understand the latter statement, consider for instance the planar
(single valued!) harmonic functions

fk(x1, x2) = Re (x1 + ix2)
k

and their normalizations

uk := fk/Dir(fk, B1(0)) .

It is very elementary to see that uk converges to 0 in B1(0): in fact most of
the Dirichlet energy of uk lies in a thin layer around the boundary ∂B1(0).
For k large the layer becomes thinner and thinner and all the energy is
“pushed” towards the boundary ∂B1(0). On the other hand it is easy to see
that the ratio

D0,uk
(1)

H0,uk
(1)

=
1

H0,uk
(1)

explodes, namely that the L2 norm of uk on ∂B1(0) converges to 0.
This highlights the first important consequence of the frequency func-

tion: the “reverse Poincaré” inequality (42) excludes that the energy of u0,r
concentrates towards the boundary. Any limit ū of a sequence u0,rk must
therefore have energy equal to 1. Since Theorem 7.7 guarantees uniform
convergence, we also conclude that ū(0) = Q �0�. Moreover, η ◦ ū ≡ 0 be-
cause η ◦ u0,r ≡ 0.

Thus 0 must be a singular point of ū as well: the only way ū could be
regular around 0 would be to take the value Q �0� identically in a neigh-
borhood of 0. However notice that I0,ū(r) = I0,f (0) =: α for every r. But
then Theorem 8.4 implies that ū is α-homogeneous, and if ū would van-
ish in a neighborhood of 0, then it would vanish on the entire ball B1(0),
contradicting the fact that the Dirichlet energy of ū is indeed 1.

The conclusion is that the singularity has persisted in the limit. Recall-
ing that our main concern in proving Theorem 3.4 was the disappearance of
singular points along sequences of converging currents, the reader will un-
derstand why the monotonicity of the frequency function is such an exciting
discovery. It must also be noticed that the monotonicity of the frequency
function was unknown even for classical single valued harmonic functions
before [5]: the shear observation that Almgren was able to discover a new
fundamental fact for classical harmonic functions around 1970 gives in my
opinion the true measure of his genius.

The second fundamental consequence of the monotonicity of the fre-
quency function is that I0,ū(r) is indeed constant in r and equals α := I0,f (0),
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which, as already noticed, gives that ū is α-homogeneous. In particular when
the domain is 2-dimensional, it is not difficult to classify all α-homogeneous
Dir-minimizers and to show that their only singularity is at the origin, cf.
[29, Proposition 5.1].

The careful reader will recognize the formal analogy with the two in-
gredients of Federer’s reduction argument illustrated in Section 4.5: pretty
much the same reasoning gives the proof of Theorem 7.9. There is however
one important difference: for a Q-valued minimizer f on a 2-dimensional con-
nected domain we do not conclude the discreteness of Sing(f), but rather
the weaker statement that

• either “multiplicity Q points” of f are isolated;
• or f collapses to Q �η ◦ f�.

Only in the case Q = 2 the statement above is equivalent to discreteness
of the singular set of f . When, for instance, Q = 3, we have not ruled out
that singular points with “2-sheeted branching” could converge towards a
singular point with a “3-sheeted” branching.

Thus, the argument sketched above gives, in the 2-dimensional case,
that Sing(f) is countable, but it does not imply its discreteness. The proof
of Theorem 7.10 needs much more work and in particular it passes through
the important additional conclusion that the tangent functions ū analyzed
above are unique, namely the renormalized blown-up functions u0,r have a
unique limit as r ↓ 0, cf. [29, Theorem 5.3]. At present this uniqueness is an
open problem when the dimension of the domain is higher than 2.

9. Approximation with multiple valued graphs

Following the intuition that a “sufficiently flat” area minimizing current
is close to the graph of a Dir-minimizing multivalued function, we wish there-
fore to find a first approximation of the current with a Lipschitz multivalued
graph.

9.1. Multivalued graphs as currents, projections and slices.
One first technical detail that we have to tackle is the integer rectifiable
current induced by multivalued maps. Assume therefore to have fixed a
measurable map u : Rm ⊃ Ω → AQ(R

n), u =
∑

i �ui�. The “set-theoretic”
graph of u is clearly

Gr(u) :=
{
(x, y) ∈ R

m × R
n : y = ui(x) for some i ∈ {1, . . . , Q}

}
,

or equivalently Gr(u) = {(x, y) : y ∈ spt(u(x))} (recall that u(x) is a 0-
dimensional current).

When u is sufficiently regular, we want to give to Gr(u) a structure as
integer rectifiable current. Following the discussion of Section 7.2 it is not
difficult to see that, when u is Lipschitz, Gr(u) can be decomposed in a
countable union of graphs of single valued Lipschitz functions, defined over
domains which might be very irregular (Borel sets, in general). In turn, a
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classical theorem of Whitney (cf. [45, Theorem 3.1.14]) allows to decom-
pose any Lipschitz graph in a countable union of C1 graphs modulo sets of
(Hausdorff) measure zero. We thus can give very naturally a structure of
integer rectifiable current (which we will denote by Gu) to Gr(u), adjusting
the multiplicity in a coherent fashion: in particular, if u = Q �v� for some
classical Lipschitz function v, then Gu = QGv (cf. [25] and [72, Section
3.2]).

In a similar fashion we can define the graph of a Lipschitz multivalued
function which is defined over a submanifold Σ of Rm. Now, if Ω is a smooth
open set, u is a Lipschitz multiple valued function and v denotes the re-
striction to the boundary ∂Ω, we expect ∂Gu = Gv. In the single valued
case this is a rather simple fact, since we can use Stokes’ theorem when u is
smooth and then conclude for general Lipschitz u via regularization. In the
multivalued setting this road cannot be followed because there is no regu-
larization of u, but an elementary proof can be found in [30] (cf. the more
general Theorem 2.1 therein).

Next we want to find under which conditions an integral current without
boundary in a given cylinder can be efficiently approximated by a Lipschitz
graph. To be more precise, we will denote by Cr(p) the cylinder Br(x)×Rn

when p = (x, y) ∈ R
m × R

n. In fact in the future we wish to consider
cylinders with bases parallel to different m-dimensional planes: having fixed
an m-dimensional plane π, we set Br(p, π) := Br(p)∩(p+π) and Cr(p, π) =
Br(p, π) + π⊥. The notation π0 will be reserved for the “horizontal plane”
R
m × {0} and we will use pπ and p⊥

π for the orthogonal projections onto π
and π⊥.

If T is an integral current without boundary in Cr(0), a Lipschitz u :
Br(0) → AQ(R

n) is an efficient approximation if M(T −Gu) is small (com-
pared to rm). Since Gu is, in a “loose” sense, a Q-fold cover of Br(0), we
obviously expect that a well-approximated current T is also a Q-fold cover.
There is a very efficient way to express this concept in the theory of currents:
assuming spt(T ) is bounded, we can define the current (pπ0)�T , which is the
push-forward of T on the horizontal plane π0. It is rather obvious that this
should be an m-dimensional integral current, with no boundary in Cr(0)
and thus should be an integer multiple of �Br(0, π0)� (incidentally, an inte-
gral m-dimensional current with no boundary and supported in a smooth,
connected m-dimensional submanifold Γ must be an integer multiple of �Γ�:
this is called the Constancy theorem in the literature, cf. [45, Sections 4.1.4
and 4.1.7]). The condition that T covers Q times the base of the cylinder
Cr(0) can then be expressed by

(43) (pπ0)�T Cr(0) = Q �Br(0, π0)� .

When T is given by a smooth submanifold Γ, the number Q can be com-
puted using the classical degree theory in the following way: given a generic
point y ∈ Br(0) we consider the finitely many points p1, . . . , pN in which
Γ intersects the fiber {y} × R

n (transversally) and assign ε(pi) = 1 if
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TpiΓ × π⊥
0 has the same orientation as R

m+n and ε(pi) = −1 otherwise.
Then Q =

∑
pi
ε(pi).

There is a way to formalize this concept for a generic current:
∑

iε(pi)�pi�
is the “slice” of the current �Γ�. The latter object can be defined for gen-
eral (integer rectifiable) currents T and it is usually denoted by 〈T,pπ0 , y〉:
roughly speaking it is the intersection of the current T with p−1

π0
({y}), cf.

[68, Section 6.28]. pπ0 might be replaced by a generic (Lipschitz) map whose
target is k-dimensional for some k ≤ m: the resulting slices will then by
(m − k)-dimensional currents. The graph of a Lipschitz function u always
intersects p−1

π0
({y}) = {y} × R

n “positively”, since the tangents to Gu do
not tilt much compared to the horizontal plane (this is obvious for a single
valued function but rather elementary even for a multivalued function). Our
discussion motivates then the introduction of the cylindrical excess. For rea-
sons which will be clear later, we also introduce the height of a current in
any given set.

Definition 9.1 (Cylindrical excess). Given an integer rectifiable m-
dimensional current T in Rm+n with finite mass and compact support and
m-planes π, π′, we define the excess of T in the cylinder Cr(x, π) compared
to π′ as

E(T,Cr(x, π), π
′) := (2ωm rm)−1

∫
Cr(x,π)

|�T − �π′|2 d‖T‖ .(44)

If π = π′, then we write E(T,Cr(x, π)).
The height function in a set A ⊂ R

m+m with respect to anm-dimensional
plane π is

h(T,A, π) := sup
x,y∈ spt(T )∩A

|pπ⊥(x)− pπ⊥(y)| .

9.2. The main approximation theorem. We are now ready to state
the main approximation theorem needed to carry on our program. To sim-
plify our notation pπ0 and p⊥

π0
will be denoted by p and p⊥.

Assumption 9.2. Σ ⊂ R
m+n is a C2 submanifold of dimension m+ n̄ =

m + n − l, which is the graph of an entire function Ψ : Rm+n̄ → R
l and

satisfies the bounds

(45) ‖DΨ‖0 ≤ c0 and A := ‖AΣ‖0 ≤ c0,

where c0 is a positive (small) dimensional constant. T is an integral current
of dimension m with bounded support contained in Σ and which, for some
open cylinder C4r(x) (with r ≤ 1) and some positive integer Q, satisfies

(46) p�T C4r(x) = Q �B4r(x)� and ∂T C4r(x) = 0 .

Theorem 9.3 (Strong approximation, cf. [33, Theorem 1.4]). There
exist constants C, γ1, ε1 > 0 (depending on m,n, n̄, Q) with the following
property. Assume that T is area minimizing, satisfies Assumption 9.2 in
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C4r(x) and E = E(T,C4 r(x)) < ε1. Then, there is a map f : Br(x) →
AQ(R

n), with Gr(f) ⊂ Σ, and a closed set K ⊂ Br(x) such that

Lip(f) ≤ CEγ1 + CAr,(47)

Gf (K × R
n) = T (K × R

n) and(48)

|Br(x) \K| ≤ C Eγ1
(
E + r2A2

)
rm,∣∣∣∣∣‖T‖(Cσ r(x))−Qωm (σ r)m − 1

2

∫
Bσ r(x)

|Df |2
∣∣∣∣∣(49)

≤ C Eγ1
(
E + r2A2

)
rm ∀ 0 < σ ≤ 1.

If in addition h(T,C4r(x), π0) ≤ r, then

(50) osc (f) ≤ Ch(T,C4r(x), π0) + C(E
1/2 + rA) r ,

where osc (f) := sup{|p− q| : p ∈ spt(f(x)), q ∈ spt(f(y)), x, y ∈ Br(x)}.

We note that the theorem is scaling invariant and thus it suffices to prove
it in the case r = 1. Moreover, for simplicity we will mostly ignore Σ and
often assume that T is area minimizing in the whole euclidean space: this
will be of great help in illustrating the main ideas behind the proof, avoiding
some technicalities.

An elementary computation shows that, under Assumption 9.2,

E(T,Cr(x)) =
‖T‖(Cr(x))

ωmrm
−Q .

It is then natural to introduce the following “excess measure”:

Definition 9.4 (Excess measure, cf. [33, Definition 1.2]). For a current
T as in Assumption 9.2 we define the excess measure eT and its density dT :

eT (A) := ‖T‖(A× R
n)−Q |A| for every Borel A ⊂ Br(x),

dT (y) := lim sup
s→0

eT (Bs(y))

ωm sm
= lim sup

s→0
E(T,Cs(y)) .

9.3. BV estimate for slices and first approximation. It is rather
clear that the smallness of the cylindrical excess prevents the tangent plane
to T at p to have negative intersection with {p(p)}×R

n at most points p in
spt(T ). In fact this is a simple measure-theoretic fact: even without assuming
that T is area minimizing, it remains true that, under Assumption 9.2, most
slices 〈T,p, y〉 will be elements of AQ(R

n). The exceptions y to this property
will form a set of small measure.

It is instructive to see what happens if Q = 1 and T is assumed to be
a-priori the graph of a classical map v, assuming a Lipschitz bound like
Lip(v) ≤ 1. The cylindrical excess E is then comparable, up to constants, to
the L2 norm of Dv. It is a classical statement for a (single valued) Sobolev
map that a Lipschitz control holds on the restriction of the map on a fairly
large closed set, cf. for instance [43, Section 6.6.3]. Indeed a way to identify a
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good set on which such Lipschitz bound holds is to look at those points where
the Hardy-Littlewood maximal function of |Dv| is suitably small. Under our
idealized situation, |Dv|2 is indeed comparable to the excess density dT

introduced above. This motivates the introduction of a maximal function in
our setting

Definition 9.5 (Maximal function of the excess measure, cf. [33, Def-
inition 2.1]). Given a current T as in Assumption 9.2 we introduce the
“non-centered” maximal function of eT :

meT (y) := sup
y∈Bs(w)⊂B4r(x)

eT (Bs(w))

ωm sm
= sup

y∈Bs(w)⊂B4r(x)
E(T,Cs(w)).

Going on with our Sobolev space analogy, if we denote by E the square
of the L2 norm of |Dv| (normalized by rm) and we let K be the set where the
maximal function of |Dv|2 lies below the threshold E2γ1 , then the restriction
of v to K will have Lipschitz constant Eγ1 and the size of the complement
of K can be estimated with rmE1−2γ1 . Of course we can then extend v|K
outside K to a Lipschitz function with essentially the same Lipschitz bound.
Neglecting the effect of Ψ, it is then clear that, relying solely on Assumption
9.2, we can hope for estimate (47) if we replace the superlinear E1+γ1 in
(48) and (49) with, respectively, E1−2γ1 and E.

This heuristic discussion can be in fact made rigorous in a very direct
way relying on some recent developments in geometric measure theory. Re-
garding the slicing map 〈T,p, ·〉 as a map taking values into the space of
0-dimensional currents (endowed with a suitable metric) and using the for-
malism introduced by Ambrosio in [6] for BV maps with metric targets,
Jerrard and Soner have given in [56] a rather elementary way to prove that
such map is a function of bounded variation, with norm which can be con-
trolled with the mass of T and the mass of its boundary. Ambrosio and
Kirchheim used then this idea in [9] to develop part of their general theory
of metric currents and give a rather efficient and general approach to the
Federer-Fleming compactness theorem. The resulting computations must be
suitably adjusted to our setting. However the theory allows a quite direct
proof of the following

Proposition 9.6 (Lipschitz approximation, cf. [33, Proposition 2.2]).
There exists a constant C > 0 with the following property. Let T and Ψ
be as in Assumption 9.2 in the cylinder C4s(x). Set E = E(T,C4s(x)), let
0 < δ11 < 1 be such that 16mE < δ11, and define

K :=
{
meT < δ11

}
∩B3s(x) .

Then, there is u ∈ Lip(B3s(x),AQ(R
n)) such that Gr(u) ⊂ Σ for every

y ∈ B3s(x) and

Lip(u) ≤ C
(
δ
1/2
11 + ‖DΨ‖0

)
, osc (u) ≤ Ch(T,C4s(x), π0) + Cs‖DΨ‖0 ,

Gu (K × R
n) = T (K × R

n),
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|Br(x) \K| ≤ 10m

δ11
eT

(
{meT > 2−mδ11} ∩Br+r0s(x)

)
∀ r ≤ 3 s,(51)

where r0 = 16 m
√
E/δ11 < 1.

From Proposition 9.6 one derives immediately a version of Theorem 9.3
where the bound (47) is correct, whereas in the bound (48) the factor E1+γ1

must be replaced by E1−2γ1 and in the bound (49) E1+γ1 must be replaced
by E. In the rest of this section we will discuss why the area minimizing
assumption, which so far we have not yet used, allows to improve the bounds
to achieve Theorem 9.3.

9.4. Superlinear gain. Going back to our heuristic idea, in which T
is replaced by the graph of a single valued function v and the excess by
the square of the L2 norm, the “maximal function truncation” described in
the previous paragraph would deliver the desired superlinear estimates if we
knew that the L2+β norm of Dv were controlled by E1/2, namely by the L2

norm of Dv, for some β > 0. This amounts to a reverse Hölder inequality of
the form

(52) ‖Dv‖Lp ≤ C‖Dv‖L2 for some p > 2 .

In our setting one possible translation would be: the excess measure eT is
absolutely continuous and its density dT enjoys the estimate

(53) ‖dT ‖L1+ε(B2r(x)) ≤ CeT (B4r(x)) ≤ CrmE .

This is certainly not correct under the only Assumption 9.2: it is clear that in
order to hope for such a bound we need to use the hypothesis that T is area
minimizing. We do not know whether (53) is correct under the additional
assumption that T be area minimizing: even if it is, we expect that its proof
is rather difficult, see the discussion below. However, the cornerstone of our
approach to Theorem 9.3 is that the following slightly weaker form of (53)
is correct and can be achieved with a moderate effort.

Theorem 9.7 (Gradient Lp estimate, cf. [33, Theorem 1.3]). There exist
constants p1 > 1 and C, ε10 > 0 (depending on m,n, n̄, Q) with the following
property. Let T be as in Assumption 9.2 in the cylinder C4. If T is area
minimizing and E = E(T,C4) < ε10, then

(54)

∫
{d≤1}∩B2

dp1
T ≤ C Ep1−1

(
E +A2

)
.

From Theorem 9.7 and Proposition 9.6 we cannot conclude directly The-
orem 9.3 because we lack control on the set where dT is rather high (and
on the singular part of the measure eT !). We would rather need an estimate
which controls the regions where the tangent to T has high slope (compared
to π0). Theorem 9.7 can be indeed used to prove something of that kind:
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Theorem 9.8 (Almgren’s strong excess estimate, cf. [33, Theorem 6.1]).
There are constants ε11, γ11, C > 0 (depending on m,n, n̄, Q) with the fol-
lowing property. Assume T satisfies Assumption 9.2 in C4 and is area min-
imizing. If E = E(T,C4) < ε11, then

(55) eT (A) ≤ C
(
Eγ11 + |A|γ11

) (
E +A2

)
for every Borel A ⊂ B 9

8
.

Actually, in the case of a classical single valued map Theorem 9.8 could
be concluded directly by comparing the mass of the current T with that of a
suitable convolution of the approximating Lipschitz map. The effect of the
convolution is to smear high gradients and show that they are energetically
not favorable. As already discussed in Section 7.6 there is a surrogate of
convolution for multivalued maps u, but it is not as energetically favorable
as the classical convolution. In particular, to keep under control how much
the convolution of ξ ◦ u falls off the set Q (cf. Section 7.6) a crucial role is
played by Theorem 9.7.

9.5. Higher integrability and harmonicity. Going back to our anal-
ogy, we know that if T were the graph of a function, the minimality assump-
tion and the smallness of the excess should imply that v is close to an
harmonic function. Of course for single valued harmonic functions the re-
verse Hölder inequality (52) is true for any exponent p > 2. On the other
hand we already discussed that, for a suitable choice of p, the same reverse
Hölder inequality does hold in the multivalued setting as well, cf. Theorem
7.11. This suggests that in order to prove Theorem 9.7 we could first show
that the Lipschitz map of Proposition 9.6 is almost Dir-minimizing. Looking
at Theorem 9.3 it is rather intuitive that the “almost Dir-minimality” of f
should correspond to have a o(E) in place of E1+γ1 in (49), where o(E) is
any function of E which vanishes faster than E at 0. Now, using an energetic
comparison, such a gain would correspond to show that∫

Br(x)\K
|Df |2 = rmo(E) .

If this were not true we could run a contradiction argument over a sequence
of currents Tk with vanishing excess Ek and look at the normalized approxi-

mations uk := fk/E
1/2
k . We could also rescale the corresponding balls to have

radius 1 and center 0. The m-dimensional volume of the corresponding bad
sets B1 \Kk is converging to 0 and in spite of that

lim inf
k

∫
B1\Kk

|Duk|2 ≥ η

for some positive η. If we assume that uk is converging in L2 to some u, the
Dirichlet energy of u would then satisfy

lim inf
k

∫
B1

|Duk|2 ≥
∫
B1

|Du|2 + η .
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But then the graph of E
1/2
k u must have less mass than Tk and we could

hope to modify it and gain a comparison current which would contradict
the minimality of Tk, at least for k sufficiently large.

Recalling Section 7.5 there is a delicate point to address, namely that
for multiple valued functions a uniform control on the Dirichlet energy of a
sequence does not imply compactness, since the separation between sheets
could explode along the sequence. Nonetheless a careful analysis shows that
this program can be carried on. Incidentally it also shows that the approx-
imation of Theorem 9.3 is close to a Dir-minimizer, which we record in the
following theorem (for the notation (u,Ψ(x, u)), whose meaning should be
intuitively clear to the reader, we refer to [29, 33]).

Theorem 9.9 (Harmonic approximation). Let γ1 be the constant of The-
orem 9.3. Then, for every η̄, δ̄ > 0, there is a positive constant ε̄1 with the fol-
lowing property. Assume that T is as in Theorem 9.3, E := E(T,C4 r(x)) <

ε̄1 and rA ≤ E1/4+δ̄. If f is the map in Theorem 9.3 and we fix suitable co-
ordinates, then there exists a Dir-minimizing function u : Br(x) → AQ(R

n̄)
such that w := (u,Ψ(y, u)) satisfies

r−2

∫
Br(x)

G(f, w)2 +
∫
Br(x)

(|Df | − |Dw|)2(56)

+

∫
Br(x)

|D(η ◦ f)−D(η ◦ w)|2 ≤ η̄ E rm .

10. A first attempt to prove Theorem 3.4

In this section we summarize what we have achieved so far and propose
a first strategy to show Theorem 3.4. After resolving the first important
issues, we will have to face a major obstacle: more than half of Almgren’s
monograph is in fact dedicated to overcome this point and even in the proof
given by [29, 30, 33, 31, 32] the same phenomenon is responsible for
roughly one quarter of the combined length, namely paper [31].

The strategy to prove Theorem 3.4 starts similarly to Federer’s reduc-
tion argument. Assume that there is an area minimizing current T of di-
mension m ≥ 2, in a sufficiently smooth Riemannian manifold Σ, which has
a large singular set Sing(T ): more precisely we assume that, for some α > 0,
Hm−2+α(Sing(T )) > 0.

From Theorem 6.2 and Lemma 6.3 we conclude immediately that at
Hm−2+α-a.e. p ∈ Sing(T ) there is one flat tangent plane and the multiplicity
is integral. Let us introduce the notation DQ(T ) for those points in spt(T ) \
spt(∂T ) where the density of T is the positive integer Q. Similarly, we set
SingQ(T ) := DQ(T )∩Sing(T ). We then know that Sing1(T ) is empty. Indeed
the assumptions (a), (b) and (c) in Theorem 4.2 follow from the monotonicity
formula when ρ is sufficiently small. The second assumption in (d) is also
fulfilled: since we can assume that the second fundamental form of Σ is
bounded, for ρ sufficiently small we obviously have ρA < ε. It would remain
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to prove that the excess with respect to some plane is suitably small at a
sufficiently small scale. This is however not difficult since all tangent cones
at a point p with Θ(T, p) = 1 must be necessarily flat: it can be shown that
the only area minimizing m-dimensional cones S with ‖S‖(B1(0)) = ωm are
m-dimensional planes counted with multiplicity 1.

We stop for a moment to observe the following interesting consequence
of the above discussion. Let p be a point in spt(T ) where the multiplicity is Q
and assume that the surrounding points in spt(T ) have the same multiplicity
at a sufficiently small scale, say in Bρ(p). Then S := T/Q is a well defined
integer-rectifiable area minimizing current inBρ(p) and moreover p ∈ D1(S).
Thus S is regular in a neighborhood of p. We summarize the outcome of the
latter discussion in the following

Corollary 10.1. If S is an area minimizing cone with Θ(S, 0) = 1,
then S is a flat plane with multiplicity 1.

Let T be an area minimizing current in a C2 Riemannian manifold Σ.
If p ∈ DQ(T ) and there is a neighborhood U of p where the density is Q at
‖T‖-a.e. point, then p is a regular point.

We next recover our discussion and look at the current T which should
contradict Theorem 3.4. We infer from Corollary 10.1 that there must be
an integer Q > 1 such that SingQ(T ) has positive Hm−2+α-measure. Now,
recalling the approach of Federer’s reduction argument, we know that for
Hm−2+α

∞ -a.e. p ∈ SingQ(T ) we have

(57) lim inf
r↓0

Hm−2+α
∞ (Sing(T ) ∩Br(p))

rm−2+α
> 0 .

Moreover, by Theorem 6.2 we can assume that at least one tangent cone
at p is flat. We thus have a sequence of rescalings Tp,sk which are converging
to a flat plane and a sequence of rescalings Tp,rk for which (by (57))

(58) lim
k↑∞

Hm−2+α
∞ (Sing(Tp,rk) ∩B1(0)) = η > 0 .

Of course the sequence {sk} does not necessarily coincide (or is comparable
to) {rk}. However, it can be shown that, w.l.o.g., the two sequences can be
assumed to coincide (cf. [32] and [72, Section 4]). More precisely

Proposition 10.2 (cf. [32, Proposition 1.3]). If Theorem 3.4 were false
then there would be an area minimizing current T in a smooth Riemann-
ian manifold Σ, a point p ∈ SingQ(T ) and a sequence of rescalings Tp,rk

converging to a flat plane of multiplicity Q and such that (58) holds.

We will see in a moment the simple idea behind Proposition 10.2. Taking
it for granted, one could at this point hope to carry the following program:

(A) We apply Theorem 9.3 to construct a sequence of Lipschitz maps
fk whose graphs approximate efficiently Tp,rk ;



REGULARITY OF MINIMAL SURFACES 207

(B) After normalizing suitably fk, we apply Theorem 9.9 and, up to
extraction of a further subsequence, assume that it converges to a
Dir-minimizing multivalued map f∞;

(C) We finally use (58) to show that f∞ has a singular set of positive
Hm−2+α measure: this would contradict Theorem 7.9.

(C) is again a “persistence of singularity” statement. Unfortunately it is
not difficult to see that it is false in this form and thus the rough strategy
outlined above must be suitably adjusted. After dealing with Proposition
10.2 we will discuss in detail why (C) fails and propose therefore a new
strategy to prove Theorem 3.4.

10.1. The existence of a good sequence. The proof of Proposition
10.2 is still a suitable modification of Federer’s reduction argument. By the
discussion above, we first choose a point p ∈ SingQ(T ) and a sequence rk ↓ 0
where (58) holds. Assume without loss of generality that p = 0. If T0,rk
converges to a flat plane of multiplicity Q we are done. Otherwise we can
assume that it converges to some tangent cone S, which is singular and such
that Θ(S, 0) = Q. We now wish to show that Hm−2+α

∞ (SingQ(S)) > 0.

First of all, by the monotonicity formula, Hm−2+α
∞ (DQ(S)) > 0. Now, if

(59) Hm−2+α
∞ (SingQ(S)) = 0

then many of the points in DQ(S) should be regular: let us denote by
RegQ(S) the set of such points. Note that RegQ(S) is relatively open. If
S (RegQ(S)) has nonempty boundary, then such boundary consists of ele-

ments in SingQ(S) and we can expect that it has positive Hm−1 measure.
The latter statement can in fact be made rigorous and (provided α < 1),
(59) would imply that S′ = S (RegQ(S)) has no boundary. Hence S′ is an
area minimizing cone with multiplicity Q at every p ∈ spt(S′) \ {0} and
with multiplicity no larger than Q at the tip 0 (because ‖S′‖ ≤ ‖S‖). But
the upper semicontinuity of the density implies that Θ(S′, 0) ≥ Q: thus
‖S‖(B1(0)) = Qωm = ‖S′‖(B1(0)). This is possible if and only if S and
S′ coincide. We thus conclude that Corollary 10.1 is applicable to S, which
must be flat, contrary to our assumption.

Having found that S is another area minimizing current with large
SingQ(S), we can apply the discussion above to some point p ∈ spt(S)\{0}.
We thus find a sequence Sp,rk such that limk Hm−2+α

∞ (SingQ(Sp,rk)) > 0. As
above, Sp,rk can be assumed to be converging to some tangent cone Z: if
it is flat, we then have achieved the conclusion of Proposition 10.2. Other-
wise Hm−2+α(SingQ(Z)) > 0 and we can restart with Z in place of S′: this
time, however, Z splits off a line. Iterating this procedure we keep “splitting
off” lines, until eventually we must reach a sequence as in the statement of
Proposition 10.2.

10.2. Persistence of multiplicity Q points. Having proved Propo-
sition 10.2, we are now in the position to attempt the strategy outlined
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few paragraphs above. Point (A) is obvious and we have to face point (B).
Let us fix a sequence as in Proposition 10.2 that it is converging to Q �π0�
where π0 = R

m × {0}. Thus, for a sufficiently large k, Theorem 9.3 applies
to T0,rk in the cylinder C4(0). Let fk be the corresponding approximating
maps fk : B1(0, π0) → AQ(R

n). It is not obvious, apriori, that we can apply
Theorem 9.9, since the excess Ek := E(T0,rk ,C4(0)) might converge to zero
too fast compared to rkA. Let us leave this technical problem aside: we then

could assume that uk := fk/E
1/2
k is converging to a Dir-minimizing map u∞.

Next, we can intuitively expect that u∞ has many points of multi-
plicity Q, in particular all the ones which are limits of sequences lying in
pπ0(DQ(T0,rk)). Namely, we expect that points in pπ0(DQ(T0,rk)) cluster to-
wards points where u∞ = Q �η ◦ u∞�. This intuition is correct. In fact we
can first prove the following

Theorem 10.3 (Persistence of Q-points, cf. [33, Theorem 1.7]). For

every δ̂, C� > 0, there is s̄ ∈]0, 12 [ such that, for every s < s̄, there exists

ε̂(s, C∗, δ̂) > 0 with the following property. If T is as in Theorem 9.3, E :=
E(T,C4 r(x)) < ε̂, r2A2 ≤ C�E and Θ(T, (p, q)) = Q at some (p, q) ∈
Cr/2(x), then the approximation f of Theorem 9.3 satisfies

(60)

∫
Bsr(p)

G(f,Q �η ◦ f�)2 ≤ δ̂smr2+mE .

For the proof of the latter theorem we refer to [33]: for a short explana-
tion, the reader might consult [72, Section 7.2.1] or [25].

Looking back at our u∞, which is the strong L2 limit of uk = fk/E
1/2
k ,

when p is a point in the domain of u∞ which is the limit of (the projections
onto π0 of) a sequence of (pk, qk) ∈ spt(Tk) with Θ(Tk, (pk, qk)) = Q, we
then have

lim
r→0

−
∫
Br(p)

G(u∞, Q �η ◦ u∞�)2 = 0 .

Since u∞ is Dir-minimizing and, hence, continuous, we have u∞(p) =
Q �η ◦ u∞(p)�. Now, we must have a set of points p with positive Hm−2+α

measures where this occurs. Since Theorem 7.9 tells us that the singular
set of u∞ has dimension at most m − 2, the only alternative left is that
u∞ is a classical harmonic single valued function counted Q times. That is,
once again the singularities have failed to survive in the limit. If we could
exclude this disappearance of the singularities, we would have reached a
contradiction and hence proved Theorem 3.4.

Let us look of what happens if we apply the analysis above when the
current T is the holomorphic curve of Example 5.4 in a neighborhood of 0.
It is obvious that (in complex coordinates) the procedure above will deliver
the map u∞(z) = 2

�
z2

�
: although the currents T0,r are singular at the

origin, u∞ is regular. If we compare our situation with the proof of Theorem
7.9 outlined in Section 8, it is quite obvious why we failed to capture the
singularity in the limit: we have not subtracted the “average of the sheets”,
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namely the regular part of our multiple valued function. The latter has
much higher energy than the branching singularity, which is a very small
perturbation: if we do not normalize our approximations in some way, we
fail to capture the singular behavior in the limit.

11. The center manifold

Summarizing the discussion of the previous section, we are confronted
with the following problem. Given a Q-valued Dir-minimizing function u =∑

i �ui�, the average of its sheets, namely η ◦u := 1
Q

∑
i ui, is a classical har-

monic function and after subtracting it from u we find a new Dir-minimizing
Q-valued function

ū :=
∑
i

�ui − η ◦ u� .

When ū is nontrivial, a point p where ū(p) = Q �0� is necessarily singular.
Loosely speaking we could say that ū is the “well-balanced part” of u. If an
area minimizing current T satisfies Assumption 9.2 we would like to have a
replacement for the average of the sheets η ◦ u and a replacement for the
well-balanced Q-valued map ū.

One possibility would be to apply Theorem 9.3: we then gain a corre-
sponding approximating Lipschitz map f : the average of its sheets, namely
η ◦ f , and its well-balanced part f̄ , are both well defined. However, we wish
to use these objects in a blow-up procedure: obviously η ◦ f and f̄ do not
serve our purposes, since f is a good approximation of the current only at
the scale of a certain given cylinder

We would rather like to localize the idea above. Clearly, this is only
possible in those regions (and those scales) where the current is sufficiently
flat. On the other hand we might not worry about those portions, or those
scales, at which the current is not sufficiently flat: in the blow-up procedure
we wish to capture the limiting behavior of the current around those points
belonging to SingQ(T ) and we already saw in the previous section, namely
in the proof of Proposition 10.2, that when a lot of points DQ(T ) cluster at
a certain scale, the current is necessarily rather flat.

11.1. The construction algorithm. Localizing the basic idea above
is a very delicate issue, which involves several parameters. First of all, to
fix ideas we will assume that our center manifold will be constructed in
a cylinder C of size comparable to 1 (namely the radius will be a fixed
geometric constant, certainly larger than 1), centered at the origin and with
basis parallel to π0 := R

m × {0}. We will assume that in the cylinder C the
ambient manifold Σ is very close to be flat: this “almost flatness” is measured
in a suitable norm (see [31, Assumption 1.3] for the precise definition):
recalling that the excess E(T,C) is a “quadratic” quantity, the square of the
latter norm will be compared to the excess and we will denote by m0 the
maximum of these two quantities. m0 is the first parameter we encounter:
it will be assumed to be “suitably small”, namely smaller than some ε2. The
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latter is however the last constant to be chosen: it can always be (safely)
assumed to be sufficiently small, no matter what the other parameters will
be required to satisfy.

We further assume that the origin is in the support of the current and it
is a point of multiplicity Q. The classical “height bound” for area minimizing
currents implies then that the height of T in (a slightly smaller cylinder than)

C is comparable tom
1/2m
0 . This is due to Almgren himself in his first general-

ization of De Giorgi’s ε-regularity theorem, see [2], and it is proved nowadays
by a very elementary argument which uses the isoperimetric inequality and
the monotonicity formula. An important technical generalization of this can
be found in [31, Appendix A]: with a minor modification of the usual proof,
if one drops the assumption that there is a point of multiplicity Q, we can
prove the following “layering theorem”. To avoid lengthy technicalities we
give here a rough statement, referring to [31, Theorem A.1] for the precise
one.

Theorem 11.1 (Layered height bound). Let T satisfy Assumption 9.2
in the cylinder C4r(0, π0) and let E := E(T,C4r(0, π0). In a slightly smaller
cylinder Cρ(0, π0) the current is then supported in k ≤ Q disjoint layers of

the form Bρ(0, π0)×BCρE1/2m(yi, π
⊥
0 ): in each layer the density Θ(·, T ) does

not exceed a certain integer Qi by much and
∑

iQi = Q.

The “scales” of the construction will be discretized using a suitable Whit-
ney decomposition. We start by subdividing the square [−1, 1]m ⊂ π0 into
2−N0m cubes L: for each cube we let �(L) be half of the sidelength and
xL ∈ R

m denote its center, so that L = [x1L − �(L), x1L + �(L)] × . . . ×
[xmL − �(L), xmL + �(L)]. We have just encountered the second of the pa-
rameters of the construction, N0, which measures the fineness of our start-
ing grid. To each cube we associate a ball BL, whose choice is specified in
the following way. First the center of the ball BL is an arbitrarily chosen
pL ∈ spt(T )∩ ({xL}×π⊥

0 ). This might seem rather arbitrary but, when m0

is very small compared to N0, Theorem 11.1 guarantees that the relative dis-
tance between points of spt(T ) ∩ ({xL} × π⊥

0 ) is extremely small compared
to �(L). Since the radius is going to be 64rL := 64M0

√
m�(L), where M0 is

a very large constant, the fact that the center of BL might “wiggle” slightly
depending on the chosen pL has no effect on the rest of the discussion. Note
that we have encountered a third parameter M0, whose choice has priority
upon N0: if M0 is very large, N0 should be chosen accordingly large, so to
guarantee that at least our ball BL is contained in the original cylinder C.

We next set up a refinement procedure: starting with the initial grid of
dyadic cubes, denoted by CN0 , we subdivide each of them into 2m cubes H
of sidelength 2�(H) = �(L). Now, given our starting hypothesis, we know
that both the excess and the height in BL are small compared to π0. We
wish to keep refining the cubes H as long as the height and the excess in the
corresponding balls BH keep sufficiently small. However, the reference plane
might tilt as we refine the scales and we wish to keep track of this. For this
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reason, we denote by πL a given plane for which E(T,BL) = E(T,BL, πL)
and we define the height of T in the ball BL as h(T,BL) := h(T,BL, πL).

We then stop the refining procedure at some dyadic cube L if

(EX) The excess has become too large in BL;
(HT) The height has become too large in BL, although the excess has

remained small;
(NN) The refinement stopped at some cube J which touches L and has

double sidelength, although in L itself both the height and the
excess would be small enough to keep refining.

The reader familiar with Whitney’s (or Calderon-Zygmund) decompositions
will recognize that the latter condition is enforced to guarantee that, after
all the steps of the refinement procedure have been carried on, all nearby
cubes have comparable sides. Unfortunately the conditions (EX) and (HT)
taken alone do not guarantee this outcome (the troubles are indeed caused
by condition (EX)) and the extra (NN) is a source of a few technical com-
plications.

What do we expect from the decomposition above? Fix a point x ∈
[−1, 1]m. Only two situations might occur:

(NS) x does not belong to any cube where the refinement procedure
stopped;

(S) x ∈ L for some cube L where the refinement procedure stopped.

Let Γ be the set of points as in (NS). If the stopping conditions (EX) and
(HT) are sufficiently severe, we can expect that T (Γ×π⊥

0 ) is a Q multiple
of a portion of a (rather smooth) single valued graph.

Consider next a point x ∈ L as in (S). Although we stopped the re-
finement at L, at a slightly larger scale we still have a very small excess
and a very small height: both E(T,BL) and h(T,BL) are still rather small.
We thus can hope to apply the approximation Theorem 9.3 in a suitable
cylinder C32rL(pL, πL): we can then construct a good Lipschitz Q-valued
approximation fL : B8rL(pL, πL) → AQ(π

⊥
L ), which will be called the πL-

approximation in BL. Finally we take its average η ◦ hL and smooth it by
convolution with a kernel (which we take to be radial, although the impor-
tance of this assumption will become clear only in the next section). The
scale of the regularization cannot be larger than rL, otherwise all the infor-
mation would be lost: we choose indeed �(L) as scale for the convolution. The
regularized map is denoted by hL and will be called the tilted interpolating
function. Note that in the procedure above one point should be clarified: the
cylinder C32rL(pL, πL) is not contained in BL. However, through a careful
inductive argument, spt(T ) ∩ C32rL(pL, πL) can be shown to be contained
in BL.

We wish to patch the graphs of the various tilted interpolating functions
hL in a single submanifold (and we also hope that this submanifold will
glue smoothly with the portion of the current lying over Γ!). However, since
the graphs of hL are relative to different systems of coordinates, we need to
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parametrize them as graphs in a common coordinate system. Given condition
(EX), we can hope that along the refinement procedure the planes πL did
not tilt much. If this is the case the graph of each hL can be described by
the graph of some gL in the “original coordinates” π0 × π⊥

0 . We could then
glue the various gL together using a partition of unity.

11.2. Identification of the scales. Of course we need to give a precise
quantification for the conditions (EX) and (HT). An intuition which has
guided our understanding is the following: if we are under the assumption
Q = 1, when the ε-regularity theorem is applicable and therefore T is a
Lipschitz graph, so the refinement procedure should never stop at any cube
and Γ should in fact coincide with [−1, 1]m. We know from the discussion
in Section 4.1 that the decay can be expected to be almost quadratic. We
thus set the condition in (EX) as

(61) E(T,BL) > Cem0�(L)
2−2δ2 ,

where δ2 is a small number and Ce a large one.
We then expect the height to be comparable to �(L)1+1/m because of

Theorem 11.1. We set therefore the height condition as

(62) h(T,BL) > Chm
1/2m
0 �(L)1+β2 ,

where β2 is a positive parameter smaller than 1
m . It must be noticed that,

if on the (EX) condition it is vital to choose δ2 rather small and use the full
power of De Giorgi’s idea, cf. Remark 4.3, in the height condition we do not
need β2 to be close to 1

m : it suffices that β2 can be chosen sufficiently large,
in particular compared to δ2.

We have now introduced all the parameters of the construction and we
want to specify their choice. The exponent β2 is the first to be chosen and
it must be positive but smaller than 1

m . In fact in [31] the exponent is
chosen even smaller, compared to the exponent γ1 of Theorem 9.3: this is
however needed only much later, specifically in the proof of Theorem 13.2.
The exponent δ2 is chosen next: it must be positive but small, compared to
β2 and (more importantly, see below) compared to γ1 in Theorem 9.3. After
δ2 we can choose M0: M0 must be chosen very large, depending on δ2. The
reason is the following: if we consider two balls BL and BH , where H is a
“son” of L (namely it is contained in L and has half sidelength), we would
like to treat them as concentric, although the reason will come only in the
next section. Since the distance between the centers is comparable to �(L),
the balls will be “close to concentric” provided M0 is very large.

Next, N0 should be chosen larger depending on M0 in such a way that
the ballsBL are anyway not large compared to the initial cylinderC. Finally,
since the stopping conditions are written in terms of �(L) rather than the
radii of the balls BL, Ce and Ch must be taken large so that the refining
procedure goes on for at least a few steps before stopping. However Ch will
be chosen even larger compared to Ce. The reason is the following. Thanks to
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Theorem 11.1, if Ch is relatively large compared to Ce, at any cube L where
the refining procedure has stopped by the (HT) condition the current will

form at least two separate “layers” of thickness smaller than �(L)1+(1−δ2)/m

and parallel to πL. In turn, this “layered” structure will be inherited by the
graph of the πL approximation, which plays a crucial role in some estimates.

We could summarize the discussion above in the following theorem (again,
the statement is very far from being precise; the reader might consult [72,
Section 5.2] or [25] for a more thorough explanation and [31, Theorem 1.17]
for all the details).

Theorem 11.2 (Center manifold).The construction outlined above yields
a function ϕ : π0 → π⊥

0 which is C3,κ for some positive κ > 0 and has small

‖ · ‖C3,κ norm (indeed ‖Dϕ‖C2,κ ≤ Cm
1/2
0 ). The graph of ϕ is the center

manifold relative to π0 in the cylinder C.

To keep our discussion simple we have avoided several subtle points.
We just mention one that plays a crucial role: for currents T which are
area minimizing in some submanifold Σ we will need that the graph of ϕ is
contained in Σ.

11.3. The C3 estimate for the center manifold. Theorem 11.2 is
probably the most complicated part of the proof of Theorem 3.4. However
it is important to notice that Theorem 11.2 alone does not encode the full
strength of the construction described above: we will see in the next section
that the graph of ϕ is indeed a very good substitute for the “average of the
sheets of a Q-valued graph”. For instance, the algorithm can be applied even
under the assumption that the density of T equals Q ‖T‖-almost everywhere
inC: in this case the refinement procedure never stops, Γ equals [−1, 1]m and
finally spt(T ) ∩ [−1, 1]m × π⊥

0 ⊂ Gr(ϕ). Namely, by the constancy theorem
T ([−1, 1]m × π⊥

0 ) = QGϕ and thus we have gained two more derivatives
in the conclusion of Theorem 4.2.

The latter surprising conclusion, namely that with a “purely geometric
construction” it is possible to improve the classical ε-regularity theorem by 2
derivatives, is already observed in the introduction of Almgren’s monograph.
It is however possible to find a rather fast shortcut to this conclusion since
multiple valued functions are not needed. A self-contained “elementary”
proof has in fact been given in [28]. The latter reference contains, in a highly
simplified setting, the most important estimates which hide behind Theorem
11.2. In this paragraph we will give a rough idea of the C3 regularity of ϕ,
but we will touch the aspect only superficially. The interested reader can
consult the much deeper discussion given in the survey [25].

We start by introducing the notation W for the dyadic cubes where the
refinement procedure has stopped. Coming to Theorem 11.2, it is obvious
that we need to prove a uniform C3,κ estimate on gL for any L ∈ W . This
alone will not suffice: an elementary inspection of the partition of unity used
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to “glue” the gL’s together in ϕ show that, when L and H are two neigh-
boring cubes in W , we need the estimate ‖Dl(gL − gH)‖C0 ≤ C�(H)3−l+κ

for every l ∈ {0, 1, 2, 3}. However, leaving aside the “interaction” between
nearby cubes, let us focus on ‖gL‖C3 and, to simplify the matter even fur-
ther, let us in fact look at ‖hL‖C3 . It is rather plausible that if we could
prove a uniform bound on ‖hL‖C3 for the tilted interpolating functions hL,
this will not be destroyed by the change to the coordinates π0 × π⊥

0 .
Let us therefore fix L ∈ W and let L = Li ⊂ Li+1 ⊂ . . . ⊂ LN0 be a

chain of dyadic cubes where Lj−1 is the father of Lj for every j. Now hLN0

is the convolution of a Lipschitz function at a scale which is obviously com-
parable with 1 (since �(LN0) = 21−N0 and N0 is a fixed “constant”, although
rather large). Thus ‖DkhLN0

‖C0 is in fact bounded a-priori with a constant

depending only on k (and on all the other parameters of the construction).
We next want to study how the norm ‖DkhLj‖C0 might increase compared

to ‖DkhLj−1‖C0 : the hope is that this can be bounded by some power of
�(Lj), leading in turn to a convergent geometric series when k ∈ {0, 1, 2, 3}.
This would then give a uniform bound on ‖hL‖C3 .

Ideally we would like to compute ‖Dk(hLj − hLj−1)‖C0 . This is however
not really possible, since the two functions are defined according to two
different coordinate systems (namely πLj × π⊥

Lj
and πLj−1 × π⊥

Lj−1
). Let us

however assume, for the sake of argument, that πLj = πLj−1 =: π. Moreover,
to simplify the notation let us denote Lj by J and Lj−1 by H.

Under this assumption, hJ is the convolution of η◦fJ and hH the convo-
lution of η ◦fH . We know that both fH and fJ approximate very accurately
the area minimizing current T , at two scales which are comparable by a
factor 2. Thus, for both graphs GfJ and GfH the first variation is close to 0,
which in turn, given the smallness of the excess of the current at that scale,
should imply that both η ◦ fJ and η ◦ fH are almost harmonic.

The latter discussion is correct but must be quantified. It is not difficult
to see that it can be translated into an estimate for Δ(η◦fJ) and Δ(η◦fH) in
some negative Sobolev space (more precisely we use the W−1,1 norm, cf. [31,
Proposition 5.1]). To simplify the matter even further, let us assume that
both η◦fH and η◦fJ are in fact harmonic. The regularization by convolution
will then not change the two functions, because the convolution kernel is
radial. Thus we would have ‖Dk(hH − hJ)‖C0 = ‖Dk(η ◦ fH − η ◦ fJ)‖C0 .
On the other hand, again by the mean-value formula for harmonic function,
we could estimate

(63) ‖Dk(hH − hJ)‖C0 ≤ C

�(H)m+k
‖η ◦ fH − η ◦ fJ‖L1 .

Let us now recall that the graph of fH coincides with the current T , except
for a set of measure C�(H)mE(T,BH)1+γ1 . In turn the excess E(T,BH) is
of size �(H)2−2δ1 . Since an analogous consideration holds for J in place of
H, we conclude that the two maps fH and fJ coincides except for a set
of measure at most �(H)m+(2−2δ1)(1+γ1). On the other hand the “heights of
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both maps” is of order �(H)1+β2 , i.e. the available estimate for the heights
h(T,BH) and h(T,BL). Combining these observations, we conclude that

‖η ◦ fH − η ◦ fJ‖L1 ≤ C�(H)m+3+κ .

Inserting the latter inequality in (63) we would then conclude

‖Dk(hH − hJ)‖C0 ≤ C�(H)3+κ−k .

12. The approximation on the normal bundle of the center
manifold

To carry on our program for proving Theorem 3.4 by “blow-up”, we now
need to approximate again our area minimizing current in a cylinder where
the excess is small, taking advantage of the center manifold. Let M = Gr(ϕ)
be the center manifold constructed in the previous section and let us make
some first considerations.

First of all, by the C3,κ estimates, we know that in a sufficiently small
neighborhood U of M there is a C2,κ orthogonal projection p : U → M
which to each p ∈ U assigns the unique point q = p(p) such that p− q is

normal to TqM. In fact, since ‖Dϕ‖C2,κ ≤ Cm
1/2
0 and m0 can be chosen

arbitrarily small, the “thickness” of U can be assumed to be of any given

size, say 1. In turn, since the height of T in C is of order m
1/2m
0 , we can cer-

tainly assume that spt(T C1/2(0)) ⊂ U. It is also not difficult to see that

T is a Q-fold covering of M, namely (p�(T C1/2)) C1/4 = Q
�
M∩C1/4

�
(we need to restrict slightly the radius of the cylinder to avoid “boundary
effects”). We could define a “curvilinear excess” compared toM with the fol-
lowing procedure: at each point p ∈ spt(T ) we measure the distance between
�T (p) and the oriented tangent plane to M at the projection p(p). We then
integrate the square of this quantity over spt(T )∩C1/2. The corresponding
formula is ∫

C1/2

|�T (p)− �Tp(p)M|2 d‖T‖(p) .

It is no surprise that the latter is controlled by the “straight excess” in the
cylinder C, simply because the tilt between TqM and π0 is controlled by

‖Dϕ‖C0 , for which in turn we have the bound Cm
1/2
0 . Thus, as it happens

with the “straight excess” we can expect to be able to approximate T effi-
ciently with a multivalued map N defined on M and taking values in the
normal bundle of M.

To be more precise, we are looking for an approximating map F : M →
AQ(R

m+n) with the properties that

• F (q) =
∑

i �Fi(q)� where Fi(q) ∈ U and p(Fi(q)) = q for every
q ∈ M;

• for most q’s, namely for q’s belonging to a certain closed subset
K ⊂ M, we have “F (q) = spt(T )∩(q+TqM)⊥”; the latter identity
is under quotation marks because the real requirement is that the
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normal slice of the current T coincides with F (q), namely F (q) =
〈T,p, q〉 (cf. Section 9.3).

The normal part of the map F is then the multivalued map N(q) :=∑
i �Fi(q)− q�: the latter is our normal approximation. We will require that

the map F be Lipschitz and to its image (or, equivalently, to the graph of
N) we can associate naturally an integer rectifiable current, which will be
denoted by TF . We wish not only to construct the map N , but also to keep
various related quantities under control: certainly its Lipschitz constant, its
height, the size of K and the difference in mass between TF and T . More-
over, we certainly expect that these estimates will depend, locally, upon the
scale at which the refining of the Whitney decomposition described in the
previous section stopped. We wish therefore to introduce “Whitney” regions
on M: they will be denoted by L and, loosely speaking, each such L is a
suitable enlargement of the portion of the graph of M lying over a cube
L ∈ W .

However, before coming to the precise statements concerning these es-
timates, we should make one further important consideration. Our plan is
to show that N is close to a Dir-minimizing Q-valued map and that a large
singular set for T induces a large singular set on the latter map. The first
point was, in “straight coordinates”, an effect of the Taylor expansion of the
area functional of a graph. Thus, it makes sense to compare the mass of TF

with that of Q �M�.
Theorem 12.1 (Expansion of M(TF ), cf. [30, Theorem 3.2]). If M, F

and N are as above and the Lipschitz constant of N is sufficiently small,
then

M(TF ) = QHm(M)−Q

∫
M
〈H,η ◦N〉+ 1

2

∫
M

|DN |2 +H.O.T.,(64)

where H is the mean curvature vector of M and H.O.T. contains higher
order terms, namely expressions that are at least trilinear in N or bilinear
in N but multiplied by a small factor.

Notice in particular that there is a nonvanishing linear term in the expan-
sion. In order to show that N is quasi-harmonic, we therefore need 〈H,η◦N〉
to be much smaller than |DN |2. We can certainly expect so, given that the
center manifold should be “well-centered”. However, this adds an additional
quantity which should be kept under control in a special way, namely the
average η ◦N .

12.1. The construction of N . In order to simplify the next dis-
cussions, we will denote by Φ the map x �→ (x,ϕ(x)), i.e. the graphical
parametrization of the center manifold M. A simple consequence of the re-
finining algorithm used to construct the center manifold is that on Φ(Γ) the
current T coincides completely with M. More precisely, 〈T,p, p〉 = Q �p�
whenever p ∈ Φ(Γ). Hence we will obviously set N(p) = Q �0� for any such
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p: it remains therefore to define N on each region of the form Φ(L) when
L ∈ W .

Let us fix L ∈ W . Going back to the construction of the center mani-
fold, we discover that we already have a rather accurate graphical approx-
imation of T in the region of our interest, since we already defined the
πL-approximation fL. If fL were a classical single valued function, we could
simply parametrize its graph on the normal bundle of M. Indeed the tangent
planes to the graph of fL are certainly close to πL and on the other hand
M is constructed patching a suitable smoothing of the average η ◦fL. Thus,
in the cylinder C6rL(pL, πL), the angle between a generic tangent plane to
the graph of fL and a generic tangent plane to M is rather small. In the
Q-valued setting “reparametrizing” graphs is a much more subtle issue than
in the classical single valued setting . However it is not very hard to prove
a suitable theorem (see [30, Theorem 5.1]) which allows to describe the
graph of fL through a Lipschitz map NL on the normal bundle of M. Note
moreover that NL can be defined on a domain much larger than Φ(L).

We next have to face a new difficulty: if L and H are two nearby cubes,
the maps NL and NH do not necessarily agree on the intersection of their
domains. However, recall that the graphs of fL and fH coincide with the
current T except for two sets of small measure. Thus the values of NL and
NH coincide on a very large portion of the intersection of their domains. In
turn, the construction algorithm ensures that each H intersects only a finite
number of other cubes in W : such number is bounded a-priori by a geometric
constant (for instance, when m = 2 each square of W can intersect at most
12 other squares of W ). So, after removing from each Φ(L) all those points
where NL does not coincide with all the NH related to neighboring cubes,
we reach a uniquely defined map N on a rather large subset of M\Φ(Γ).

We now wish to extend this map to a Lipschitz one defined on all M.
It is not difficult to see that N is already globally Lipschitz on its domain
of definition and that it approaches the value Q �0� on sequences of points
converging to Φ(Γ): this is because the height of fL (and thus that of NL)
is controlled by C�(L)1+β2 and cubes in W close to Γ necessarily have small
sidelength. However, it does not serve our purposes to give a global Lipschitz
extension of N which does not respect the local properties of the map. In
particular we desire an extension that on each Whitney region L has small
Lipschitz constant: the smaller the scale, the smaller should be the Lipschitz
constant. To achieve this property we follow an elementary idea, which we
next describe in the special case of dimension m = 2. As a matter of fact,
since Φ is Lipschitz we can, for the sake of our discussion, assume that Φ(L)
is flat and coincides with the square L. We fix the four points A,B,C and
D which are the four vertices of the square. We first wish to extend N to
four small neighborhoods of these points; such neighborhoods will be called
U(A), U(B), U(C) and U(D) and we will fix them to be disks centered at
the respective points with radius �(L)/4.
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Take for instance A: the latter point is a common vertex for four squares
H1, H2, H3, L of W . We then consider the intersection of the domain of N
with H1 ∪ H2 ∪ H3 ∪ L: if we restrict the map N to this set and consider
its Lipschitz constant, we can then use the Lipschitz extension theorem for
multivalued functions to extend it to a neighborhood U(A) of A, without in-
creasing such constant by much. We proceed and extend the map separately
to neighborhoods of A, B, C and D. However when we extend the map to
the neighborhood U(B) we disregard what we did in the neighborhood of
A and we only take into consideration the “original” N : having chosen such
neighborhoods sufficiently small the distance between two points p and q
lying in different ones (say, U(A) and U(B)) is larger than �(L)/2 and the
height of the extension is no larger than C�(L)1+β2 , thus providing auto-
matically a good Lipschitz bound on U(A)∪U(B). This procedure can then
be repeated for all squares and we have a new map N ′ which is evidently
defined in a neighborhood of any vertex of any L ∈ W .

With the same principle we extendN ′ to neighborhoods U(AB), U(BC),
U(CD), U(DA) of the corresponding sides of the square L. This seems
more problematic because, for instance, U(AB) and U(BC) intersect in
a neighborhood of B. However N ′ is already defined on U(A) ∪ U(B) ∪
U(C) ∪ U(D). Thus we need to extend it to the sets V (AB) = U(AB) \
(U(A) ∪ U(B)) and V (BC) = U(BC) \ (U(B) ∪ U(C)). The latter can be
now assumed to be disjoint and separated by a distance of the order c0�(L)
for some c0 > 0: it just suffices to choose the thickness of the neighborhoods
U(AB) and U(BC) much smaller than the thickness of the neighborhoods
U(A), U(B) and U(C). We can then literally argue as above and gain a
second extension of the map, namely N ′′, which is defined on the boundary
of any square L of W . At this point the third (and final) extension is achieved
by considering each square separately.

12.2. The estimates on each Whitney region L. We are now ready
to state the main estimates on the approximating map N .

Theorem 12.2 (Local estimates for the M-normal approximation, cf.
[31, Theorem 2.4]). Let γ2 :=

γ1
4 , with γ1 the constant of [33, Theorem 1.4].

The M-normal approximation can be constructed so to satisfy the following
estimates on every Whitney region L associated to a cube L ∈ W , with
constants C = C(β2, δ2,M0, N0, Ce, Ch):

Lip(N |L) ≤ Cmγ2
0 �(L)γ2 and ‖N |L‖C0 ≤ Cm

1/2m
0 �(L)1+β2 ,(65)

|L \ K|+ ‖TF − T‖(p−1(L)) ≤ Cm1+γ2
0 �(L)m+2+γ2 ,(66) ∫

L
|DN |2 ≤ Cm0 �(L)

m+2−2δ2 .(67)
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Moreover, for any a > 0 and any Borel V ⊂ L, we have (for C = C(β2, δ2,
M0, N0, Ce, Ch))
(68)∫
V
|η◦N | ≤ Cm0

(
�(L)3+

β2/3 + a �(L)2+
γ2/2
)
|V|+C

a

∫
V
G
(
N,Q �η ◦N� )2+γ2 .

The three estimates (65), (66) and (67) are indeed all simple conse-
quences of the analogous estimate for the πL-approximation fL, taking into
account that in BL we have a specified control on the size of the excess and
of the height. The estimate (68) is instead more subtle, but its reason is also
rather obvious: the center manifold M is indeed very close to the graph of
η ◦ fL by construction and thus η ◦NL must be very small.

12.3. The splitting before tilting phenomenon. The final impor-
tant conclusions on the center manifold are given by two estimates which
are somewhat of a dual nature to those of Theorem 12.2. Ignoring for the
moment the special cubes L which stopped because of the condition (NN),
we must remember that all other cubes must have stopped for one of the
following two very precise reasons:

(h) either the eight in BL exceeds Chm
1/2m
0 �(L)1+β2 ;

(e) or the excess in BL exceeds Cem0�(L)
2−2δ2 .

In the first occasion recall the layered height bound of Theorem 11.1. This
theorem shows that T in (a suitable subset of) BL splits in at least two
currents which are contained in two layers parallel to πL and separated by

a distance comparable to the height in BL, say
1
2Chm

1/2m
0 �(L)1+β2 . Thus,

anywhere in a region of diameter C�(L) which includes L (where C will
depend on the constant M0) we can expect |N | to be at least as large as
1
4Chm

1/2m
0 �(L)1+β2 . Thus, on every region Ω of measure c�(L)m close to L,

the size of
∫
Ω |N |2 is at least C�(L)m+2+2β2 . We refer the reader to [31,

Proposition 3.1] (see also [72, Section 5.5]) for the precise statement.
In the second case, namely when (e) above holds) we would like to say

that
∫
Ω |DN |2 is at least C�(L)m+2−2δ2 for any region Ω which is a ball in

M of radius c�(L), sufficiently close to L. This is true but much more subtle
and illustrated through a principle which, inspired by a pioneering paper of
Rivière, cf. [63], we call the splitting before tilting phenomenon.

Recall that, if H is the father of L, the excess in BH is smaller than
Cem0�(H)2−2δ2 . If the parameter M0 is chosen very large, BL and BH are
almost concentric and the radius of BL is twice the radius of BH . On the
other hand we know that, in BL, the current T can be approximated by
a Dir-minimizing Q-valued map. If the latter were too close to a multiple
copy (with multiplicity Q) of a classical single valued harmonic function,
then the argument illustrated in Section 4.1 tells us that the excess in BL

should be almost 1
4 of that in BH , cf. Remark 4.3. But this is not the case

because the ratio is instead at least 2−2+2δ2 : although small, the parameter
δ2 makes here a big difference! Thus in BL T is close to a “non-classical”
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Dir-minimizer f =
∑

i �fi�, more precisely we can certainly assume that
the Dirichlet energy of f̄ =

∑
i �fi − η ◦ fi� is a non-negligible fraction of

the Dirichlet energy of f . For such maps we have the important property
that their energy must be sufficiently large on any region. Passing now to
the “curvilinear coordinates” we can infer the same conclusion for

∫
Ω |DN |2

whenever Ω is a region of a suitable size sufficiently close to L. For the
precise statement we refer the reader to [31, Proposition 3.4] (see also [72,
Section 5.5]).

13. The frequency function again

We are now ready to discuss the proof of Theorem 3.4. We assume by
contradiction that the theorem is false and, recalling Proposition 10.2, we
fix an area minimizing current T of dimension m, a plane π0 (which without
loss of generality we assume to be Rm×{0}) an integer Q > 0 and a sequence
of radii rk ↓ 0 with the following properties:

• The excess E(T0,rk ,C8(π0, 0)) converges to 0 as k ↑ ∞;
• The point 0 is singular, Θ(T, 0) = Q and
Hm−2+α

∞ (B1 ∩ SingQ(T0,rk)) ≥ η > 0.

13.1. A sequence of center manifolds. We wish to approximate
the current with an M-normal approximation N over a center manifold M.
A first attempt could be the following: for some r sufficiently large, the
excess E(T0,r,Cr(π0, 0)) will be sufficiently small (and, in case T is area
minimizing in a Riemannian submanifold Σ, Σ0,r will be sufficiently flat).
Assuming without loss of generality that r = 1, we can then construct a
center manifold M and an M-normal approximation. However, we have no
guarantee that this approximation is accurate at very small scales around 0.
This would certainly be the case if 0 belonged to the contact set Γ described
in Section 11.1, but of course it might be the case that 0 belongs to some cube
L ∈ W where the refining procedure has stopped. If this is the case, then
at a certain small scale around 0 the graph of N might have a completely
different behavior than T .

If we set t1 := 1, we can then distinguish two situations. In the first one
0 ∈ Γ and we are thus satisfied with our center manifold and our approx-
imating map, which we denote by M1 and N1. In the second one at some
distance s1 from the origin we encounter the first cube of size sufficiently
large compared to s1, say c̄ss1 for some specified constant c̄s (this number
turns out to be 1/(16

√
m) in our proof, cf. [32, Section 2]: its precise value

is however not important, as long as it is a fixed parameter which does not
depend upon those which enter in the construction of the center manifold).
We can assume that s1 is (much) smaller than t1: we just need to set the
parameter N0 in the construction of the center manifold accordingly large.

At the scale s1 the pair (M1, N1), i.e. the center manifold and the corre-
sponding approximation, is not anymore serving our purposes. Now consider
T0,s1 : the latter current might or might not have sufficiently small excess to
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construct another center manifold. In the first case we set t2 = s1, otherwise
we let t2 be the first radius smaller than s1 at which the excess goes below
the desired threshold. We then construct the pair (M2, N2) taking T0,t2 as
reference area minimizing current.

The procedure above delivers a sequence, or a finite number, of intervals
]si, ti[ which we call intervals of flattening. If they are finitely many then the
endpoint of one of them is sl0 = 0. It turns out that, for k sufficiently large,
each radius rk belongs to one of such intervals, which will be denoted by Il(k).
For each interval of flattening Il we have a center manifold Ml and an Ml-
normal approximation Nl. Similarly, all the relevant objects needed in their
constructions, like the family W l of cubes in the corresponding Whitney
decompositions, will be indexed with l.

13.2. The frequency function. We have now gained a sequence of
center manifoldsMl(k) and of approximations Nl(k). Let us rescale the center

manifolds by a factor rk/tl(k), so to gain a sequence of manifolds M̄k and

maps N̄k at “scale 1”, which should give rather good approximations of
Tk := T0,rk . We fix for convenience a “central point” for each center manifold
Ml: it will be the point pl lying in the plane {0} × R

n. Correspondingly
p̄k := pl(k)tl(k)/rk is the central point of M̄k. The geodesic balls with center
q and radius ρ will be denoted by Bρ(q) in any of these manifolds. We next
normalize further the maps N̄k dividing them by their “L2 norm”, namely
by

(69) hk :=

(∫
B1(p̄l(k))

|N̄k|2
)1/2

,

i.e. we set

(70) N b
k :=

N̄k

hk
.

Observe that hk must be positive: by the discussion in Section 12.3, it can
vanish only if W l(k) is empty. However in the latter case T0,rk would coincide
with Q copies of the (smooth) manifold M̄k, which cannot be the case
because 0 is a singular point.

We wish to take a limit for (a suitable subsequence of) N b
k: since M̄k

“flattens” (i.e. converges to π0) we hope that the limit N b
∞ is a Q-valued

map which has L2 norm equal to 1, because the convergence is strong in L2.
Such strong convergence will be achieved if we could prove that the rescaled
maps have bounded Dirichlet energy, namely if we had an inequality of type

(71)

∫
B1(p̄k)

|DN b
k|2 ≤ C ,
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for some constant C which does not depend on k. In turn this bound corre-
sponds to a “reverse Sobolev” inequality for the Nl(k), i.e.∫

Br(pl(k))
|DNl(k)|2 ≤ Cr−2

∫
Br(pl(k))

|Nl(k)|2 .

Recalling Section 8.3 this is precisely the type of information that the
monotonicity of the frequency function yields for the blow-ups of the Dir-
minimizing Q-valued functions. In the case at hand we know that Nl(k) must
be close to a Dir-minimizing function because it approximates well an area
minimizing current. We can therefore hope that the frequency function of
Nl(k) is almost monotone.

We thus consider the Lipschitz (piecewise linear) function φ : [0 +∞[→
[0, 1] given by

φ(r) :=

⎧⎪⎨
⎪⎩
1 for r ∈ [0, 12 ],

2− 2r for r ∈ ]12 , 1],

0 for r ∈ ]1,+∞[.

For every interval of flattening Ij =]sj , tj ], let Nj be the normal approxima-
tion of Tj .

Definition 13.1 (Frequency functions, cf. [32, Definition 3.1]). For ev-
ery r ∈]0, 3] we define:

Dj(r) :=

∫
Mj

φ

(
dj(p)

r

)
|DNj |2(p)

and

Hj(r) := −
∫
Mj

φ′
(
dj(p)

r

)
|Nj |2(p)
dj(p)

dp ,

where dj(p) is the geodesic distance on Mj between p and pj . Finally we set

Ij(r) :=
rDj(r)

Hj(r)
.

The following is the main analytical estimate of the proof of Theorem
3.4, which allows us to exclude infinite order of contact among the different
sheets of a minimizing current.

Theorem 13.2 (Main frequency estimate, cf. [32, Theorem 3.2]). There
exists a geometric constant C0 such that, for every [a, b] ⊂ [

sj
tj
, 1] with

Hj |[a,b] > 0, we have

(72) Ij(a) ≤ C0(1 + Ij(b)).

Obviously if we can find an upper bound for Ij(1) independent of j, we
would gain that the frequency function is always bounded and this would
give the desired reverse Sobolev inequality. If the intervals of flattening are
finite, then there is nothing to prove. What happens however if the intervals
are not finite? Consider some “starting point” tj . It essentially can be of two
kinds:
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• tj = sj−1; in this case the center manifold Mj−1 had ceased to be
“good” at scale sj−1 and we encounter a cube L ∈ W j−1 which is
of size sj−1/tj−1 where the refining procedure has stopped. It is the
first scale at which we encounter a large cube close to 0: for this
very precise reason it is not difficult to show that it must necessar-
ily be a cube where either the excess or the height condition fails.
But then the discussion in Section 12.3 implies that the approxi-
mating map Nj−1 is well separated at this scale: this means that
the denominator of the frequency function Ij−1 is not too small
compared to the numerator. It remains to transfer this information
to the frequency function Ij : note however that at the scale which
interests us there is a large overlap between the graphs of (suitable
rescalings of) Nj and Nj−1 since they both approximate the same
piece of the same current.

• tj < sj−1; in this case the excess of T0,sj is not small enough to
construct a center manifold. tj is then the first radius at which the
excess goes below the desired threshold. As such we also know that
E(T,Btj ) cannot be too small, i.e. the current cannot be too close
to a flat plain at the scale tj . But then we can expect that the
denominator Hj(1) is not too small compared to the numerator
Dj(1).

This discussion can be made rigorous and we refer the reader to [32, Theo-
rem 5.1] for the details.

13.3. The monotonicity of the frequency function. We close this
section with an idea of how Theorem 13.2 is proved. Recalling the proofs of
Theorem 8.4 and Theorem 8.6, the monotonicity of the corresponding quan-
tity for Dir-minimizing functions rely on two identities which correspond
to “internal” and “external” variations, cf. Proposition 8.2. In turn both
variations can be interpreted as suitable deformations of the graphs of the
functions. We then know that:

• The variations of the Dirichlet energy for Nj is close to the variation
of the mass of its graph;

• The variation of the mass of the graph of Nj is close to the variation
of the mass of T0,tj , which in turn is 0 because it is area minimizing
(this must be suitably adjusted if the minimizing property is inside
some ambient manifold Σ).

We thus can write down identities which correspond to those of Propo-
sition 8.2 but will include several error terms. We wish to control these error
terms, hoping to derive, for instance, an inequality of the form

d

dr
Ij(r) ≥ −E(r)Ij(r) ,
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which in turn gives the monotonicity of Ij(r)e
∫ r
0 E(τ)dτ . In fact the inequality

which we derive is somewhat weaker, but still good enough to show Theo-
rem 13.2.

In order to control the error terms, we localize them in each Whitney
region L of Mj , since the “contact set” Γ thus not contribute to them. We
then use the estimates in Theorem 12.2 to bound such error terms with
suitable powers of �(L). In turn we bound such powers with

∫
Ω |N2

j | or with∫
Ω |DNj |2, following the discussion in Section 12.3, where Ω is a suitable
domain close to L. Observe the following crucial fact: we have some freedom
in the choice of the domain Ω for each cube L, because Ω just needs to have
essentially comparable size and be at a comparable distance. This freedom
is fundamental, since the error terms must be controlled finally at the very
same scale r, namely an inequality of the form

d

dr
Ij(r) ≥ −E(r)Ij(s) for some s(r) > r ,

is completely useless for our purposes, even if s(r) is only slightly larger than
r. For a more careful description on how these difficulties are overcome we
refer the reader to [72, Sections 5.7, 6.1 and 6.2].

14. The persistence of singularities

We have now finally gained our “blown-up” map N b
∞ and we know that

it is a Q-valued map on B1(0, π0). Note that the estimate (68) (and the
lower bounds discussed in Section 12.3) deliver the extra information that
η◦N b

∞ ≡ 0. This also helps us in the Taylor expansion of the area functional
to conclude that N b

∞ is Dir-minimizing, cf. Theorem 12.1 (we are of course
ignoring the complications given by the ambient Riemannian manifold Σ).
We now wish to succeed where the strategy outlined in Section 10 failed, i.e.
in showing that the blown-up map N b

∞ must “remember” the singularities
of the rescaled currents. Note however that we just need to show that the
lower bound

Hm−2+α
∞ (B1 ∩ SingQ(T0,rk)) ≥ η > 0

induces a similar lower bound on the Hausdorff measure of the set of points
p where N b

∞(p) = Q
�
η ◦N b

∞(p)
�
. Indeed, from such a lower bound and

Theorem 7.9 we would conclude thatN b
∞ is a classical single valued harmonic

function counted Q times. On the other hand η ◦N b
∞ ≡ 0 would then imply

N b
∞ ≡ Q �0�. This would finally contradict what we concluded from the

previous section, namely that ∫
|N b

∞|2 = 1 .

Hence, consider the closed sets DQ(T0,rk ∩ B̄1) and let Γ be their Hausdorff
limit (after extraction of a subsequence). We wish to show that most points
in Γ are points of “multiplicity Q” for N b

∞, or briefly Q-points for N b
∞.
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Recall that N b
∞ is continuous (because Dir-minimizing). Thus a state-

ment analogous to Theorem 10.3 would guarantee that all points of Γ are
Q-points for N b

∞. However such a theorem is not available at present. We
rather show that the subset of points of Γ which fail to be Q-points of N b

∞
must be a set of Hm−2+α-measure, which however is enough for our pur-
poses. We finish therefore this survey by sketching the argument.

Indeed we will follow a slightly different strategy. Summarizing what
achieved so far,N b

∞ is a nontrivial Dir-minimizing map which has η◦N b
∞ ≡ 0.

Thus the set of points of multiplicity Q for N b
∞ coincides with the closed set

of p where N b
∞(p) = Q �0�. Such set must have Hm−2+α measure zero. We

can then identify a closed set Λ for which, at the same time, we have

• For some positive ϑ∑
i

|N b
∞,i − η ◦N b

∞,i|2 ≥ 2ϑ everywhere on Λ

• Λ is the Hausdorff limit of closed subsets Λk of DQ(T0,rk) with
Hm−2+α measure larger than η

2 .

By the Hölder continuity of N b
∞ there must be a fixed constant σ̄ such

that

−
∫
Bσ(q)

∑
i

|N b
∞,i − η ◦N b

∞,i|2 ≥ ϑ > 0 ∀q ∈ Λ , ∀σ < σ̄.

We now fix a positive σ < σ̄, whose choice will be specified only at the very
end.

By L2 convergence, for k large we inherit the inequality

(73) −
∫
Bσ(q)

∑
i

|N̄k,i − η ◦ N̄k|2 ≥
ϑ

2
h2
k > 0 ∀q ∈ pM̄k

(Λk) ,

where pM̄k
denotes the orthogonal projection onto M̄k. Now observe that,

for k large enough, it is also true that for any q ∈ pM̄k
(Λk) there is a point

p ∈ DQ(T0,tl(k)) which is in the proximity of q, at a scale much smaller than
σ.

A very favorable situation is when q belongs to the contact set where
T0,rk coincides withQ

�
M̄k

�
(which in particular implies that q itself belongs

to DQ(T0,tl(k))): in this case

lim
ρ↓0

−
∫
Bρ(q)

∑
i

|N̄k,i − η ◦ N̄k,i|2 = 0

On the other hand, even if this is not the case, it is possible to argue that
for some radius ρ << σ the integral above goes below the threshold ϑ

4h
2
k,

namely

(74) −
∫
Bρ(q)

∑
i

|N̄k,i − η ◦ N̄k|2 ≤
ϑ

4
h2
k .
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Now, the reader familiar with Morrey spaces will realize that (73) and
(74) force the existence of some intermediate radius t(q) ∈]ρ, σ[ with

(75)
c0 ϑ

σα
h2
k ≤ 1

t(q)m−2+α
,

∫
Bt(q)(q)

|DN̄k|2,

where c0 is a universal constant.
For each p ∈ Λk let t(p) be t(pM̄k

(p)). Now using an elementary covering
argument we can cover Λk with balls B10t(pi)(pi) in such a way that the balls

B2t(pi)(pi) are disjoint. Being M̄k almost flat it is not difficult to see that
even the balls Bt(qi)(qi) := Bt(pi)(pM̄k

(pi)) must be disjoint. Since Λk has

Hm−2+α measure larger than η/2, we achieve

η

2
≤
∑
i

ωm−2+α(10t(qi))
m−2+α ≤

∑
i

Cσα

h2
k

∫
Bt(qi)

(qi)
|DN̄k|2

≤Cσα

h2
k

∫
B1(p̄k)

|DN̄k|2 ≤ Cσα .(76)

In the last inequality we have used that h2
k, the L

2 norm of N̄k, controls the
Dirichlet energy, recall (69), (70) and (71). Although the constant C in (76)
depends upon the sequence of rescalings, the current T and several other
parameters, it does not depend upon σ and η. Thus for a suitable choice of
σ we reach a contradiction.
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E-mail address: delellis@math.uzh.ch


