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1. Introduction

A fundamental problem in representation theory is the construction of
all (irreducible, smooth, complex) representations of certain matrix groups,
called p-adic groups (defined in Section 2), which include groups such as
the general linear group (GLn(F )), the group of n × n matrices of deter-
minant one (SLn(F )), the subgroup of SLn(F ) consisting of matrices that
preserve an inner product (SOn(F )) and the subgroup of SL2n(F ) consist-
ing of matrices that preserve a symplectic form (Sp2n(F )). Here F denotes a
non-archimedean local field, e.g. the p-adic numbers Qp, a notion that we will
introduce in Section 2.2 and that plays a central role in number theory. The
building blocks for these representations are called supercuspidal represen-
tations (defined in Section 2.4) and until not too long ago surprisingly little
was known about these representations for general p-adic groups. A con-
struction of supercuspidal representations of p-adic groups lays not only the
foundation for work within the representation theory of p-adic groups but
also allows for a plethora of applications far beyond this area, for example
to advance different incarnations of the Langlands program, including the
local, global and relative Langlands program.

In 1977, a Symposium in Pure Mathematics was held in Corvallis that
led to famous Proceedings. One of the articles in the Proceedings was en-
titled “Representations of p-adic groups: A survey”, written by Cartier
([Car79b]). We quote from the introduction of this article:

“The main goal of this article will be the description and
study of the principal series and the spherical functions.
There shall be almost no mention of two important lines
of research which are still actively pursued today:
(a) [...]
(b) Explicit construction of absolutely cuspidal representa-
tions [nowadays usually called “supercuspidal representa-
tions”]. Here important progress has been made by Shin-
tani [Shi68], Gérardin [Gér75] and Howe (forthcoming
papers in the Pacific J. Math.). One can expect to meet
here difficult and deep arithmetical questions which are
barely uncovered.”
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The present survey will focus on the developments of an explicit construc-
tion of supercuspidal representations. It will provide an introduction to
the groundbreaking methods introduced since the above Symposium had
happened to tackle the construction of supercuspidal representations for
general p-adic groups and conclude with new developments of the last five
years. Thereby the present survey complements the above survey by Cartier,
which focuses on how to reduce the classification of representations of p-adic
groups to the back then unknown construction of supercuspidal represen-
tations. (We will not assume that the reader has read the above survey by
Cartier.)

Since the work mentioned in the above quote that started about 50 years
ago, mathematicians have tried to construct these mysterious supercuspidal
representations. To mention a few, in 1979, Carayol ([Car79a, Car79])
gave a construction of all supercuspidal representations of the general linear
group GLn(F ) for n a prime number, initially different from p, the residue
field characteristic of F (i.e. the “p” in “p-adic”). In 1986, Moy ([Moy86a])
proved that Howe’s construction ([How77]) from the 1970s exhausts all
supercuspidal representations of GLn(F ) if n is coprime to p. In the early
1990s, Bushnell and Kutzko extended these constructions to obtain all super-
cuspidal representations of GLn(F ) for arbitrary n ([BK93]). These results
play a crucial role in the representation theory of GLn(F ). Similar methods
have been exploited by Stevens ([Ste08]) around 15 years ago to construct
all supercuspidal representations of classical groups for p �= 2, i.e. orthog-
onal, symplectic and unitary groups. His work was preceded by a series of
partial results by Moy ([Moy86b] for U(2, 1), [Moy88] for GSp4), Mor-
ris ([Mor91] and [Mor92]) and Kim ([Kim99]). Moreover, Zink ([Zin92])
treated division algebras over non-archimedean local fields of characteristic
zero, Broussous ([Bro98]) treated division algebras without restriction on
the characteristic, and Sécherre and Stevens ([SS08]) completed the case of
all inner forms of GLn(F ) about 15 years ago. The construction of super-
cuspidal representations for inner forms of GLn(F ) plays a key role in the
explicit description of the local Jacquet–Langlands correspondence, which
is an instance of Langlands functoriality.

For arbitrary reductive groups the story is less complete. The introduc-
tion of the Moy–Prasad filtration in the 1990s spurred remarkable progress.
The work of Moy and Prasad built upon the innovative Bruhat–Tits theory
introduced in the 1970s/1980s: In [BT72, BT84], Bruhat and Tits defined
a building B(G,F ) associated to a p-adic group G(F ) on which the p-adic
group G(F ) acts. For each point x in B(G,F ), they constructed a compact
subgroup Gx,0 of G(F ), called a parahoric subgroup, which is (up to finite
index and center) the stabilizer Gx of the point x in G. In [MP94, MP96],
Moy and Prasad defined a filtration of these parahoric subgroups by smaller
normal subgroups

Gx,0 � Gx,s1 � Gx,s2 � Gx,s3 � . . . ,
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where 0 < s1 < s2 < . . . are real numbers depending on x. These sub-
groups play a crucial role in the study and construction of supercuspidal
representations and will be introduced in Section 3 below.

For example, if we take G = SL2 over the field F = Qp, the p-adic num-
bers, with ring of integers Zp, then the Bruhat–Tits building is an infinite
tree with valency p+ 1, see Figure 1 (for p = 2). Let y be the barycenter of

Figure 1. Bruhat–Tits building for SL2(Q2).

a maximal facet, i.e. the center of an edge of the infinite tree, and x a ver-
tex of the the edge. Then (by choosing an appropriate basis) the associated
Moy–Prasad filtrations at the points x and y look like the following (where
we intersect the displayed matrices with SL2(Qp)):

Gx,0 =

(
Zp Zp

Zp Zp

)
Gy,0 =

(
Zp pZp

Zp Zp

)
Gy,0.5 =

(
1 + pZp pZp

Zp 1 + pZp

)
Gx,1 =

(
1 + pZp pZp

pZp 1 + pZp

)
Gy,1 =

(
1 + pZp p2Zp

pZp 1 + pZp

)
Gy,1.5 =

(
1 + p2Zp p2Zp

pZp 1 + p2Zp

)
Gx,2 =

(
1 + p2Zp p2Zp

p2Zp 1 + p2Zp

)
Gy,2 =

(
1 + p2Zp p3Zp

p2Zp 1 + p2Zp

)
...

...

Based on this filtration, Moy and Prasad introduced in [MP94, MP96]
the notion of depth of a representation, which measures the first occurrence of
a nonzero fixed vector in a given representation. The precise definition will be
introduced in Section 3.4. In [MP96], Moy and Prasad gave a classification
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of depth-zero representations, showing, roughly speaking, that they corre-
spond to representations of finite groups of Lie type, the group Gy,0/Gy,0+.
A similar result was obtained around the same time by Morris ([Mor99]).
We will discuss depth-zero representations in more detail in Section 4.4.

In 1998, Adler used the Moy–Prasad filtration to provide a construction
of positive-depth supercuspidal representations for general p-adic groups
(that split over a tamely ramified extension), which was generalized by
Yu ([Yu01]) in 2001. Since then, Yu’s construction has been widely used,
e.g. to study the Howe correspondence ([LM18]), to understand distinc-
tion of representations of p-adic groups, i.e. the question if the restric-
tion of a representation to a subgroup contains the trivial representation
([HM08, HL12, Hak13, Zha15, Zha20]), to obtain character formulas
([AS09, DS16, Spi18, Spi, FKS]) and to construct an explicit local Lang-
lands correspondence ([Kal19, Kal]). We will sketch Yu’s construction in
Section 4.

Given the importance of having an explicit construction of supercuspi-
dal representations, Kim ([Kim07]) achieved the subsequent breakthrough
in 2007 by proving that if F has characteristic zero and the prime num-
ber p is “very large”, then all supercuspidal representations arise from Yu’s
construction. Last year, in 2021, it has been shown ([Fin21d]) via very dif-
ferent techniques that Yu’s construction provides us with all supercuspidal
representations only under the minor assumption that p does not divide the
order of the (absolute) Weyl group of the (tame) p-adic group, an invari-
ant attached to the p-adic group that we will introduce in Section 2.1. In
particular, the result also works for fields F of positive characteristic. We
will provide some more details in Section 5. Based on [Fin21c], we expect
this result to be essentially optimal (when considering also types for non-
supercuspidal Bernstein blocks and treating all inner forms together, the
details of which we omit from this survey).

Table 1. Order of irreducible Weyl groups ([Bou02, VI.4.5–VI.4.13])

type An (n ≥ 1) Bn, Cn (n ≥ 2) Dn (n ≥ 3) E6 E7

order (n+ 1)! 2n · n! 2n−1 · n! 27 · 34 · 5 210 · 34 · 5 · 7
type E8 F4 G2

order 214 · 35 · 52 · 7 27 · 32 22 · 3

In fact, in 2014, Reeder and Yu ([RY14]) gave a new construction of
some supercuspidal epipelagic representations of tame semisimple groups,
which generalizes the simple supercuspidal representations previously con-
structed by Gross and Reeder ([GR10]). Epipelagic representations are
representations of smallest positive depth. The papers of Fintzen–Romano
([FR17], special case) and Fintzen ([Fin21b], general case) show that the
input for Reeder and Yu’s construction also exists for small primes p, which
provided examples of positive-depth supercuspidal representations that do
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not arise from Yu’s construction. It is current work in progress to provide a
more general construction that also works for small p.

In this survey, we will focus on the known construction of supercuspi-
dal representations under the assumption that p does not divide the order
of the Weyl group. While Yu ([Yu01, Fin21a]) showed how to construct
a supercuspidal representation from a given input (spelled out in Section
4.1), Hakim and Murnaghan ([HM08]) answered the questions of which in-
puts yield the same supercuspidal representations (see Section 4.5 for the
answer), which thus leads to a parametrization of supercuspidal represen-
tations. However, it was recently suggested by Fintzen, Kaletha and Spice
([FKS]) to twist Yu’s construction by a quadratic character, i.e. a charac-
ter of an appropriate compact open subgroup appearing in the construction
that takes values in {±1}. While at first glance this just looks like changing
the parametrization of supercuspidal representations, the existence of the
quadratic character has far-reaching consequences. For example, it allowed
to calculate formulas for the Harish-Chandra character of these supercusp-
idal representations ([FKS, Spi]), to write down a candidate for the local
Langlands correspondence for simple supercuspidal representations ([Kal])
and to prove that the local Langlands correspondence for regular supercus-
pidal representations introduced by Kaletha ([Kal19]) satisfies the desired
character identities ([FKS]).

2. What are p-adic groups and representations of p-adic groups?

This section will give an introduction to p-adic groups. Those who un-
derstand the following sentence may skip this section: A p-adic group is the
group of F -points of a connected reductive group over a non-archimedean
local field F . Those who see the notion of a reductive group for the first
time are encouraged to pay particular attention to the examples we intro-
duce below. Reading the remainder of the survey focusing on a few examples
rather than the general notion should allow the reader to get some feel for
the topic. We also warn the reader that we have not chosen the most gen-
eral and most modern treatment, but instead an approach that requires less
prerequisites and space. Some of the definitions we make are often not used
as initial definitions in text books but rather stated as being an equivalent
characterization in later theorems.

2.1. Reductive groups over algebraically closed fields. Let k be
an algebraically closed field. In this section we give an overview of the
notion of a reductive group and its important structural properties. For
more details, see, for example, the classical text books on Linear Alge-
braic Groups [Bor91, Hum75, Spr09] or Brian Conrad’s lecture notes
([Con17a, Con17b]) for a more modern treatment.

Definition 2.1.1. A linear algebraic group over k is a reduced Zariski-
closed subgroup of the general linear group GLn over k for some integer n.
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(Equivalently, a linear algebraic group is a smooth affine group scheme
over k.)

Let G be (the k-points of a) linear algebraic group over k. To simplify
notation, in this section we will not distinguish between the linear algebraic
groups and their k-points, but still secretly remember the variety structure
when talking about k-points. When we talk about subgroups in this section,
we always mean reduced closed subvarieties that are also subgroups (in
other words closed subgroupschemes endowed with the reduced subscheme
structure) unless explicitly stated otherwise.

Let us begin with a list of examples of linear algebraic groups to keep in
mind throughout the survey:

• the general linear group GLn(k), i.e. n×n invertible matrices with
entries in k

• the special linear group SLn(k), i.e. matrices of determinant one
• the subgroup Nn(k) of GLn(k) consisting of matrices of the follow-

ing shape ⎛⎜⎜⎜⎜⎜⎝
1 � � . . . �
0 1 � . . . �

0
. . .

. . .
. . . �

0 . . . 0 1 �
0 . . . 0 0 1

⎞⎟⎟⎟⎟⎟⎠
• the subgroup Bn(k) of GLn(k) consisting of matrices of the follow-

ing shape ⎛⎜⎜⎜⎜⎜⎝
� � � . . . �
0 � � . . . �

0
. . .

. . .
. . . �

0 . . . 0 � �
0 . . . 0 0 �

⎞⎟⎟⎟⎟⎟⎠
• the orthogonal group On(k) = {A ∈ GLn(k) | tAA = 1}, where

tA denotes the transpose of A and 1 denotes the identity matrix
consisting of ones on the diagonal and zeros everywhere else

• the special orthogonal group SOn(k) = {A ∈ On(k) | det(A) = 1}
• the symplectic group Sp2n(k) = {A ∈ GLn(k) | tAJA = J}, where

J =

(
0n×n wn

wn 0n×n

)
with wn =

⎛⎜⎜⎜⎝
1

. .
.

1
1

⎞⎟⎟⎟⎠
In representation theory we often restrict to a subclass of linear algebraic

groups, called reductive groups. In order to define them, we need to introduce
the notion of unipotent groups and unipotent radicals.
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Definition 2.1.2. A (closed reduced) subgroup G of GLn(k) is called
unipotent if G is conjugate to a subgroup of

Nn(k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
1 � � . . . �
0 1 � . . . �

0
. . .

. . .
. . . �

0 . . . 0 1 �
0 . . . 0 0 1

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⊂ GLn(k)

Definition 2.1.3. The unipotent radical (RG)u (or RuG) of a linear
algebraic group G is the maximal connected unipotent normal subgroup of
G.

Definition 2.1.4. A linear algebraic group G is reductive if its unipotent
radical is trivial.

Examples of reductive groups include GLn(k), SLn(k), On(k), SOn(k),
Sp2n(k) and products of reductive groups. The group GL1 is often also called
the multiplicative group, because GL1(k) = k× (with group law multiplica-
tion), and we also denote it by Gm.

Examples of linear algebraic groups that are not reductive include the
groups Nn(k) and Bn(k) for n ≥ 2. In both cases their unipotent radical is
Nn(k), which is nontrivial. The group N2 is also called the additive group,
since N2(k) = k (with group law addition), and we also denote it by Ga.

Reductive groups have a rather rich structure, similarly to compact Lie
groups, which forms a basis for studying the representation theory of these
groups. A key tool to obtain this structure is to consider the following ob-
jects.

Definition 2.1.5. A torus is a product of multiplicative groups, i.e.
Gm × . . .×Gm = (Gm)n for some integer n. We say that a subgroup T of a
linear algebraic group G is a maximal torus if T is a torus and is not strictly
contained in a larger torus that is also a subgroup of G.

A crucial theorem for the structure theory is the uniqueness of maximal
tori up to conjugation.

Theorem 2.1.6. All maximal tori in G are conjugate.

For example, all maximal tori of GLn(k) are conjugate to the group of
diagonal matrices ⎧⎪⎨⎪⎩

⎛⎜⎝� . . .

�

⎞⎟⎠
⎫⎪⎬⎪⎭ .

Since linear algebraic groups are varieties we also have the powerful tool
of considering the tangent space of the variety at points of our choice. The
canonical point to choose is the identity element of the group G(k). Since
linear algebraic groups are not just varieties, but also groups, the tangent
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space T (G)e of the group G at the identity e can be equipped with the
structure of a Lie algebra. We denote the resulting Lie algebra by Lie(G)(k).
The Lie bracket for Lie(GLn)(k) = Matn×n(k) is given by [A,B] = AB −
BA for A,B ∈ Matn×n(k), which restricts to the Lie bracket for Lie(G)(k)
when G is a subgroup of GLn. We refer the reader to the literature for the
general abstract definition and to Table 2 for some examples. We will often
denote the Lie algebra Lie(G)(k) of G(k) also by g(k) and in general use
fraktur letters denote the Lie algebra, i.e. gln(k) will denote the Lie algebra
of GLn(k), etc.

Table 2. Examples of Lie algebras

G(k) Lie(G)(k) Lie bracket [·, ·]
GLn(k) Matn×n(k) [A,B] = AB −BA
SLn(k) Matn×n(k)trace=0 [A,B] = AB −BA
Sp2n(k) {A ∈ Matn×n(k) | JA+ tAJ = 0} [A,B] = AB −BA

The group G(k) acts on itself by conjugation. Taking the derivative of
this action, we obtain an action of G(k) on its Lie algebra g(k), which we
call the adjoint action and denote by Ad. For example, for g ∈ GLn(k) and
A ∈ Lie(GLn)(k) = Matn×n(k), we have

Ad(g)(A) = gAg−1.

Let T be a maximal torus of G. Then T (k) acts on g(k) via the (re-
striction to T (k) of the) adjoint action. This action is diagonalizable, i.e. we
can decompose g(k) into a sum of simultaneous eigenspaces for the action
of T (k). The “eigenvalues” in this setting are then characters of the torus.

For example, if G(k) = GLn(k), we may choose T to be the subgroup
consisting of diagonal matrices, i.e.

T (k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
t1

t2
. . .

tn

⎞⎟⎟⎟⎠ | t1, t2, . . . tn ∈ k×

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

and let Xi,j for 1 ≤ i, j ≤ n be the matrix with a one in position (i, j) and
zeros everywhere else. Then

Ad(diag(t1, t2, . . . , tn))(Xi,j) = tit
−1
j Xi,j

and gln(k) = ⊕1≤i,j≤nkXi,j .

Notation 2.1.7. We write X∗(T ) = Homk(T,Gm) for the homomor-
phisms from T to Gm as group varieties i.e. morphisms of algebraic varieties
that commute with the group action. The group law on Gm turns X∗(T )
into an abelian group.
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Note that if T � Gm, then X∗(Gm) � Homk(Gm,Gm) � Z (with the
group law on Z being addition), where the isomorphism is given by sending
an integer n ∈ Z to the element fn ∈ Homk(Gm,Gm) that satisfies fn(x) =
xn for x ∈ Gm(k) = k×. More generally, we have by definition that T � Gn

m

for some integer n, and hence
X∗(T ) � Homk(G

n
m,Gm) � Zn.

From now on we assume that G is a reductive group, and we write
g(k) = ⊕α∈X∗(T )gα(k), where

gα(k) = {X ∈ g(k) | Ad(t)(X) = α(t)X ∀t ∈ T (k)}.

Definition 2.1.8. The roots of G with respect to T are the elements
Φ(G,T ) = {α ∈ X∗(T ) \ {0} | dim gα(k) �= 0} ⊂ X∗(T ) ⊂ X∗(T )⊗Z R � Rn

for some integer n.

Fact 2.1.9.
(a) The subspace gα(k) for α ∈ Φ(G,T ) is one dimensional.
(b) The subset Φ(G,T ) of the real vector space X∗(T ) ⊗Z R forms a

root system, and this root system does not depend on the choice
of T .

While we will not use this fact later, we remark that G/Z(G), where
Z(G) denotes the scheme-theoretic center (a not necessarily reduced/smooth
subgroup), is uniquely determined by the root system.

Examples.

GLn(k): Let G(k) = GLn(k) with T the torus above consisting of diag-
onal matrices. Then Φ(G,T ) = {αi,j | 1 ≤ i, j ≤ n, i �= j}, where αi,j is the
character of T that satisfies

αi,j :

⎛⎜⎜⎜⎝
t1

t2
. . .

tn

⎞⎟⎟⎟⎠ �→ tit
−1
j .

Note that all roots of GL3(k) lie in a plane. Restricting our attention to
this plane the root system is drawn in Figure 2.

Sp2n(k): Let G(k) = Sp2n(k) with T the subgroup consisting of diagonal
matrices, i.e.

T (k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1
. . .

tn
t−1
n

. . .

t−1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
| t1, t2, . . . tn ∈ k×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
,
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Figure 2. Root system of GL3

Then Φ(G,T ) = {α±i,±j , α±i, α±n | 1 ≤ i < j ≤ n, i �= j}, where α±i,±j is
the character of T that satisfies

α±i,±j : diag(t1, . . . , tn, t
−1
n , . . . , t−1

1 ) �→ t±1
i t±1

j

and α±i is the character satisfying

α±i : diag(t1, . . . , tn, t
−1
n , . . . , t−1

1 ) �→ t±2
i .

Figure 3 shows the root system of Sp4.

Figure 3. Root system of Sp4

Definition 2.1.10. We call a subset Δ of Φ(G,T ) a basis of Φ(G,T ) if
every root α ∈ Φ(G,T ) can be written uniquely as a sum

∑
αi∈Δ niαi where

either all the ni are non-negative integers or all the ni are non-positive
integers.

For example, if G(k) = GLn(k) with T and Φ(G,T ) as above, then we
can choose

Δ = {αi,i+1 | 1 ≤ i ≤ n− 1}.
In order to classify and construct representations of reductive groups the

following subgroups will become important.
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Figure 4. Root system of GL3 with a choice of basis Δ =
{α1,2, α2,3} in red

Definition 2.1.11. A Borel subgroup is a maximal connected solvable
(closed reduced) subgroup of G. A parabolic subgroup is a (closed reduced)
subgroup of G that contains a Borel subgroup.

Fact 2.1.12. All Borel subgroups of a reductive group are conjugate.

For GLn(k), the Borel subgroups are the conjugates of

Bn(k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
� � � . . . �
0 � � . . . �

0
. . .

. . .
. . . �

0 . . . 0 � �
0 . . . 0 0 �

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
and the parabolic subgroups are conjugates of block upper triangular ma-
trices, e.g. matrices of the shape⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
� � � � � �
� � � � � �
0 0 � � � �
0 0 � � � �
0 0 � � � �
0 0 0 0 0 �

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
or

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
� � � � � �
� � � � � �
� � � � � �
0 0 0 � � �
0 0 0 � � �
0 0 0 � � �

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

The parabolic subgroups of a reductive group G that contain a fixed
Borel subgroup B ⊂ G are in one to one correspondence with subsets of a
basis Δ of Φ(G,T ).

Fact 2.1.13. Let P be a parabolic subgroup of G.
(i) P is reductive if and only if P = G.
(ii) There exists a Levi decomposition of the parabolic subgroup P , i.e.

we can write P as a semidirect product M � N , where M is a
reductive group and N is the unipotent radical of P . M is called a
Levi subgroup of P . Note that M is not unique in general.
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For example, the Levi decomposition P = M � N for a parabolic sub-
group of GLn(k) might look like the following⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
� � � � � �
� � � � � �
0 0 � � � �
0 0 � � � �
0 0 � � � �
0 0 0 0 0 �

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
� � 0 0 0 0
� � 0 0 0 0
0 0 � � � 0
0 0 � � � 0
0 0 � � � 0
0 0 0 0 0 �

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
�

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 � � � �
0 1 � � � �
0 0 1 0 0 �
0 0 0 1 0 �
0 0 0 0 1 �
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
In order to construct representations, we need to get an even better

handle on the structure of reductive groups. Apart from the tori, the below
defined root groups will play a crucial role. We fix a maximal torus T of
our reductive group G and recall that gα(k) = {X ∈ g(k) | Ad(t)(X) =
α(t)X ∀t ∈ T (k)}

Definition (Fact) 2.1.14. Let α ∈ Φ(G,T ). The root (sub)group Uα

is the unique (closed reduced) connected T -stable subgroup of G whose Lie
algebra is gα.

The root group Uα is isomorphic to the additive group Ga. For G = GLn,
the root subgroup Uαi,j (k) consists of those matrices that have ones on the
diagonal and zeros in all non-diagonal entries except for the (i, j)-entry. For
example, for G = GL2,

Uα1,2(k) =

{(
1 �
0 1

)}
.

Fact 2.1.15. Let B be a Borel subgroup containing a maximal torus T
of G. Then B = T � U and U is isomorphic as a variety (not necessarily
as a group) to the product variety

∏
α∈Φ+ Uα, where Φ+ denotes all those

roots that are a non-negative linear combination of roots in an appropriately
chosen basis Δ ⊂ Φ(G,T ).

Definition 2.1.16. We write N(T ) for the subgroup of G that normal-
izes the torus maximal torus T . The Weyl group W is defined to be the
quotient N(T )/T of the normalizer of T by the torus T .

The Weyl group is a finite group. More precisely, we have the following
fact.

Fact 2.1.17. The group W = N(T )/T is the Weyl group of the root
system Φ(G,T ), i.e. it is the subgroup of the isometries of the real vector
space X∗(T )⊗ZR generated by the reflections {sα |α ∈ Δ}, where sα denotes
the reflection about the hyperplane perpendicular to the root α and Δ is a
basis for Φ(G,T ).

If G = GLn, the Weyl group is isomorphic to the symmetric group Sn

on a set of n elements. If T is the torus consisting of diagonal matrices,
then representatives for the elements in the Weyl group can be chosen to be
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permutation matrices, e.g. for GL2 the nontrivial element in the Weyl group
can be represented by

(
0 1
1 0

)
.

It is a nice exercise to observe that the Weyl group of the symplectic
group Sp2n is isomorphic to the semidirect product Sn � (Z/2Z)n.

We conclude this section by stating an important decomposition of re-
ductive groups into locally closed subsets.

Theorem 2.1.18 (Bruhat decomposition). The group G is (as a set) the
disjoint union w∈WBnwB, where nw ∈ N(T ) is any element whose image
in W = N(T )/T is w and B denotes a Borel subgroup of G containing T .
Moreover, multiplication yields an isomorphism of varieties from

B × nw ×
∏

α∈Φ+

w−1(α)/∈Φ+

Uα
�−→ BnwB.

2.2. p-adic numbers and other non-archimedean local fields.

Definition 2.2.1. The p-adic absolute value of a rational number ps · ab
with a and b non-zero integers coprime to p and s an arbitrary integer is
defined by ∣∣∣ps · a

b

∣∣∣
p
=

(
1

p

)s

and |0| = 0.

The p-adic absolute value on the rational numbers is a non-archimedean
absolute value, i.e. |x+ y|p ≤ max(|x|p , |y|p) for all rational numbers x and
y.

Definition 2.2.2. The p-adic integers Zp are the completion of the
integers Z by the p-adic absolute value |·|p.

The p-adic numbers Qp are the completion of the rational numbers Q

by the p-adic absolute value |·|p.

This means we can represent p-adic integers as a converging “power
series in p”:

a0 + a1 · p+ a2 · p2 + a3 · p3 + . . . for some integers ai (0 ≤ ai < p),

and we can write a p-adic number as a “Laurent series in p” (with only
finitely many terms with negative exponents):

a−n · p−n + . . .+ a0 + a1 · p+ a2 · p2 + . . . | ai (0 ≤ ai < p).

A ring closely related to the ring of p-adic integers is the ring of power
series Fp[[t]] with coefficients in a finite field Fp with p elements. We denote
its fraction field by Fp((t)). It is the field of formal Laurent series over Fp,
i.e. its elements can be written as

a−n · t−n + . . .+ a0 + a1 · t+ a2 · t2 + . . . | ai ∈ Fp,
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where we only allow finitely many non-zero coefficients for the negative
exponents of t. We equip the field Fp((t)) with the absolute value satisfying∣∣ts(a0 + a1 · t+ a2 · t2 + . . .)

∣∣
p
=

(
1

p

)s

for a0 ∈ Fp \ {0}, a1, a2, . . . ∈ Fp and any integer s.
Let E be a finite field extension of Qp or Fp((t)). Then we can extend

the absolute value |·|p (uniquely) to an absolute value on E, which we also
denote by |·|p. This absolute value allows us to equip E with a topology.

Definition 2.2.3. A non-archimedean local field is a finite field exten-
sion of Qp or Fp((t)) equipped with the topology arising from the absolute
value |·|p.

Notation 2.2.4. The ring of integers OE of E is the subring:
OE = {e ∈ E | |e|p ≤ 1}

and it has the maximal ideal
PE = {e ∈ E | |e|p < 1}.

An element �E ∈ PE whose p-adic absolute value is maximal among the
elements in PE is called a uniformizer.

2.3. p-adic groups. In this section we define reductive groups over
non-algebraically closed fields. Let F be either a non-archimedean local field
or a finite field, and fix an algebraic closure F of F . We will view all algebraic
field extensions of F as contained in F .

We first state the definition of a linear algebraic group over F and then
provide some explanation for those who have not seen the notion of geomet-
rically reduced closed F -subgroups before.

Definition 2.3.1. A linear algebraic group over F is a geometrically
reduced closed F -subgroup of the general linear group GLn over F for some
integer n. (Equivalently, a linear algebraic group is a smooth affine group
scheme over F .)

To explain what we mean by an F -subgroup, we note that the ring of
regular functions of GLn over F is given by

F [GLn] := F [xi,j , y | 1 ≤ i, j ≤ n]/(det(xi,j)y − 1),

which can be written as
F [GLn] = F [GLn]⊗F F ,

where
F [GLn] := F [xi,j , y | 1 ≤ i, j ≤ n]/(det(xi,j)y − 1).

Definition 2.3.2. An ideal I ⊂ F [GLn] is defined over F if I ∩F [GLn]
generates I as an ideal.
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This allows us to restate the definition of a linear algebraic group over
F .

Definition 2.3.3. A linear algebraic group over F is a reduced closed
subgroup of GLn over F that is defined as the set of zeros of some ideal
I ⊂ F [GLn] that is defined over F .

Let G be a linear algebraic group over F . For an algebraic field extension
F ′/F , we write G(F ′) for the F ′-points of G, i.e. the intersection G(F ) ∩
GLn(F

′). We denote by GF ′ the base change of G to F ′, which means that
we only remember that the group is defined over F ′ rather than F .

Definition 2.3.4. A linear algebraic group G over F is reductive if GF
is reductive, i.e. the unipotent radical (RGF )u of GF is trivial.

This allows us to now understand what we mean by a p-adic group. A
p-adic group is the group of F -points of a connected reductive group over a
non-archimedean local field F . We caution the reader that different authors
might mean different things by “p-adic groups”, e.g. some only work with
reductive groups over finite extensions of the p-adic numbers.

Examples of reductive groups over F include the groups GLn, SLn, On,
SOn, Sp2n that can all be defined by ideals over F . However, new interesting
phenoma arise over non-algebraic closed fields.

Definition 2.3.5. An F -torus (or a torus over F ) is a linear algebraic
group T over F such that TF is a torus, i.e. such that Tn

F
� Gn

m for some
integer n.

As over algebraically closed fields, we denote GL1 over F also by Gm.
Then for every field extension F ′/F , we have Gm(F ′) = (F ′)×. Taking
products of the multiplicative group Gm provides us with examples of tori,
which we call split tori.

Definition 2.3.6. An F -torus T is called split (or F -split) if T � Gn
m

for some integer n.

All tori over algebraically closed fields are split, however, over non-
algebraically closed fields, the theory is richer and becomes a key ingredient
for the construction of representations of p-adic groups. Here is an example
of a torus that is used in the construction of supercuspidal representations.

Example of a non-split torus. Let F = Qp, and let E be the
quadratic extension of Qp obtained by adjoining a squareroot √

p of p. We
define T to be the torus over F that is a subgroup of GL2 satisfying

T (F ) =

{(
a b
pb a

)
⊂ GL2(F )

}
.

Then
T (F ) =

{(
a b
pb a

)
⊂ GL2(F )

}
� E× �� (F×)2.
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An important result by Grothendieck that allows us to understand the
structure of reductive groups over F is the following.

Theorem 2.3.7. If G is a linear algebraic group, then there exists an
F -torus T ⊂ G such that TF is a maximal torus of GF .

Definition 2.3.8. A reductive group G over F is called split (or F -split)
if it contains a maximal torus that is split.

For split reductive groups we obtain an analogous structure theory to the
one discussed above over the algebraic closure. In particular, Borel subgroups
are defined over F , the Lie algebra of the reductive group decomposes into
the Lie algebra of a torus and one-dimensional sub-algebras gα(F ) on which
the torus acts via a root α, and root groups Uα are defined over F and
isomorphic to the additive group Ga over F .

2.4. Representations of p-adic groups. From now on let F be a
non-archimedean local field and let G be a connected reductive group over
F . We equip G(F ) with the topology arising from the topology of F , i.e.
a basis of open neighborhoods of the identity 1 in GLn(F ) consists of the
subgroups
1 +�Matn×n(OF ) ⊃ 1 +�2Matn×n(OF ) ⊃ 1 +�3Matn×n(OF ) ⊃ . . . ,

where � denotes a uniformizer of F . Then G(F ) is the group that we also
refer to as a p-adic group.

Definition 2.4.1. A smooth representation (π, V ) of G(F ) is
• a complex vector space V and
• a group homomorphism π : G(F ) → Aut(V )

such that for every v ∈ V the stabilizer Stab(v) = {g ∈ G(F ) |π(g)v = v}
of v in G(F ) is an open subset of G(F ).

We define smooth representations of closed subgroups of G(F ) (with
respect to the p-adic topology underlying the topological group G(F )) anal-
ogously.

In this survey we will focus on the irreducible smooth representations,
i.e. those smooth representations (π, V ) that have precisely two subrepre-
sentations (subspaces of V preserved under the action of G(F )): the trivial
representation on the zero dimensional vector space {0} and the represen-
tation (π, V ) itself.

An important finiteness property of smooth representations is the fol-
lowing.

Definition 2.4.2. A smooth representation (π, V ) of G(F ) is called
admissible if the space

V K := {v ∈ V |π(k)v = v ∀ k ∈ K}
of K-fixed vectors has finite dimension for every compact open subgroup K
of G(F ).
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An important fact for representations with complex coefficients is that
irreducible smooth representations are automatically admissible.

Fact 2.4.3. If (π, V ) is an irreducible smooth representation of G(F ),
then (π, V ) is admissible.

An important tool to construct representations is the induction. There
are two kinds of inductions that will play an important role for us.

Definition 2.4.4. Let H be a closed subgroup of G(F ) (with respect to
the p-adic topology underlying the topological group G(F )) and let (σ,W )
be a smooth representation of H.

The induced representation (R, Ind
G(F )
H W ) (also sometimes referred to

as smooth induction) is defined as follows:
• Ind

G(F )
H W is the space of functions f : G(F ) → W satisfying

(a) f(hg) = σ(h)f(g) for all h ∈ H, g ∈ G(F ), and
(b) there exists a compact open subgroup Kf ⊂ G(F ) such that

f(gk) = f(g) for all k ∈ Kf .
• The action of G(F ) on Ind

G(F )
H W is via right translation, i.e.

(R(g)(f))(x) = f(xg) ∀ g ∈ G(F ), f ∈ Ind
G(F )
H W,x ∈ G(F ).

We may also write (Ind
G(F )
H σ, Ind

G(F )
H W ) instead of (R, Ind

G(F )
H W ).

The compact induction of (σ,W ) from H to G(F ) is the subrepre-
sentation (R, c-ind

G(F )
H W ) of (R, Ind

G(F )
H W ) consisting of functions f ∈

Ind
G(F )
H W whose support has compact image in H\G(F ). We may also

write (c-ind
G(F )
H σ, c-ind

G(F )
H W ) instead of (R, c-ind

G(F )
H W ).

For the smooth induction, we are particularly interested in the following
special case.

Definition 2.4.5. Let P ⊂ G be a parabolic subgroup of G with Levi
decomposition P = M � N . Let (σ,W ) be a smooth representation of the
Levi subgroup M(F ). The parabolic induction (Ind

G(F )
P (F ) σ, Ind

G(F )
P (F ) W ) is de-

fined by inflating (i.e. extending) the representation σ to a representation of
P (F ) that is trivial on N(F ) and then inducing the resulting representation
from P (F ) to G(F ).

Remark 2.4.6. We caution the reader that some authors normalize the
parabolic induction by replacing σ(m) by σ(m)

∣∣detAdLie(N)(F )(m)
∣∣1/2 for

m ∈ M(F ). This normalized induction preserves unitarity. However, for our
applications, both parabolic inductions, the normalized and the unnormal-
ized one, work equally well.

This allows us to define supercuspidal representations.

Definition 2.4.7. An irreducible smooth representation (π, V ) of G(F )
is called supercuspidal if for all proper parabolic subgroups P � G with Levi
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subgroup M and all irreducible smooth representations (σ,W ) of M(F ) the
representation (π, V ) is not a subrepresentation of (IndG(F )

P (F ) σ, Ind
G(F )
P (F ) W ).

The following fact explains why we call the supercuspidal representations
the building blocks.

Fact 2.4.8. Let (π, V ) be an irreducible smooth representation of G.
Then there exists a parabolic subgroup P ⊆ G with Levi subgroup M and a
supercuspidal representation (σ,W ) of M(F ) such that (π, V ) is a subrepre-
sentation of (IndG(F )

P (F ) σ, Ind
G(F )
P (F ) W ).

It is a folklore conjecture that all supercuspidal representations arise
via compact induction from a representation of a compact-mod-center open
subgroup. In this survey we will outline how to construct all supercuspidal
representations via compact induction under some mild tameness assump-
tions. In order to do this, we will need to introduce some additional structure
theory. Though before doing so in the next section, let us mention the anal-
ogous definition of supercuspidal representations in the finite group case for
later use.

Definition 2.4.9. Let H be the Fq-points of a reductive group. An ir-
reducible representation (π, V ) of H is called cuspidal if the following equiv-
alent conditions are satisfied:

(a) There does not exist a proper parabolic subgroup P = MN of H
and a representation (σ,W ) of a Levi subgroup M such that V
embeds into the induced representation (IndHP σ, IndHP W ).

(b) There does not exist a proper parabolic subgroup P of H with
unipotent radical N such that the space of N -fixed vectors V N is
non-trivial.

We conclude this section by stating an equivalent definition of supercus-
pidal representations, for which we first introduce the contragredient repre-
sentation.

Definition 2.4.10. Let (π, V ) be a smooth representation of G(F ). We
denote by V ∗ the dual vector space of V with the (often not smooth) repre-
sentation π∗ given by

π∗(g)(λ)(v) = λ(π(g−1)v) for g ∈ G(F ), λ ∈ V ∗, v ∈ V.

The contragredient representation (π̃, Ṽ ) is the restriction of the representa-
tion (π∗, V ∗) to the subspace of smooth vectors Ṽ :=

⋃
K(V ∗)K , where the

union runs over all compact open subgroups K of G(F ).

Fact 2.4.11. An irreducible smooth representations (π, V ) of G(F ) is
supercuspidal if and only if the image in G(F )/Z(G(F )) of the support of
the function

G(F ) → C

g �→ λ(π(g)v)
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is compact for all v ∈ V , λ ∈ Ṽ , where Z(G(F )) denotes the center of
G(F ). Equivalently, we may ask this condition to be satisfied only for some
0 �= v ∈ V and 0 �= λ ∈ Ṽ .

3. An introduction to the Moy–Prasad filtration and
Bruhat–Tits theory

The Moy–Prasad filtration is a decreasing filtration of G(F ) by compact
open subgroups that are normal inside each other and whose intersection is
trivial. It is a refinement and generalization of the congruence filtration of
GLn(F ). One usually starts with the definition of a Bruhat–Tits building
that Bruhat and Tits ([BT72, BT84]) attached to the reductive group G
over F in 1972/1984, and then to each point in the Bruhat–Tits building,
Moy and Prasad ([MP94, MP96]) associated in 1994/1996 a filtration by
compact open subgroups. In this survey, we will take a different approach and
first introduce the Moy–Prasad filtration and use it to define the Bruhat–
Tits building.

We abbreviate the ring of integers OF of F by O and write Fq for the
residue field, which is defined to be the quotient O/PF . The residue field Fq

is a finite field with q elements for some power q of p. We fix a uniformizer
� ∈ PF , and we define the valuation val : F � Z ∪ {∞} by

val(x) =
log(|x|p)
log(|�|p)

∀x ∈ F \ {0} and val(0) = ∞.

Then
val(�) = 1 and O = {x ∈ F | val(x) ≥ 0}.

We extend this valuation to any finite field extension E of F using the same
formula. The valuation on E takes values in Q ∪ {∞}.

3.1. The split case. We assume in this subsection that G is split over
F . Let T be a split maximal torus of G. We recall that a Chevalley system
{Xα}α∈Φ(G,T ) consists of a non-trivial element Xα in the one dimensional
F -vector space gα(F ) for each root α of G with respect to T such that

Ad(wβ)(Xα) = ±Xsβ(α) , ∀α, β ∈ Φ(G,T ),

where wβ is an element of the normalizer N(T )(F ) of T determined by
Xβ whose image in the Weyl group (N(T )/T )(F ) is the simple reflection
sβ corresponding to β. For example, if G = SL2 and Xβ =

(
0 1
0 0

)
, then

wβ =
(

0 1
−1 0

)
. In general wβ is defined as follows. For every root β, we let

xβ : Ga
�−→ Uβ be the isomorphism whose derivative sends 1 ∈ F = Ga(F )

to Xβ , then
wβ = xβ(1)xβ(ε)xβ(1)

where ε ∈ {±1} is the unique element for which xβ(1)xβ(ε)xβ(1) lies in the
normalizer of T .
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For example, for GLn the collection {Xαi,j}1≤i,j≤n;i �=j consisting of the
matrices with all entries zero except for a one at position (i, j) forms a
Chevalley system.

This allows us to make the following definition, but we warn the reader
that we have not seen anyone else use the terminology “BT triple”.

Notation 3.1.1. A BT triple (T,Xα, xBT ) consists of
(i) a split maximal torus T of G,
(ii) a Chevalley system {Xα}α∈Φ(G,T ), and
(iii) xBT ∈ X∗(T )⊗Z R := HomF (Gm, T )⊗Z R.

Here HomF denotes homomorphisms in the category of F -group schemes,
i.e. HomF (Gm, T ) denotes the homomorphisms between the F -varieties Gm

and T that commute with the group action. Then HomF (Gm, T ) is a free Z-
module, hence HomF (Gm, T )⊗Z R is a finite-dimensional real vector space.
Moreover, we have a bilinear pairing between X∗(T ) := HomF (T,Gm) and
X∗(T ) = HomF (Gm, T ) obtained by identifying HomF (Gm,Gm) with Z. We
extend this map R-linearly in the second factor to obtain a map

〈·, ·〉 : X∗(T )×X∗(T )⊗Z R → R.

In particular, we may pair xBT with a root α ∈ Φ(G,T ) to obtain a real
number 〈α, xBT 〉.

We now fix a BT triple x = (T, {Xα}, xBT ) and define the Moy–Prasad
filtration attached to it.

Filtration of the torus.

We set

T (F )0 = {t ∈ T (F ) | val(χ(t)) = 0 ∀χ ∈ X∗(T ) = HomF (T,Gm)},

which is the maximal bounded subgroup of T (F ). For r ∈ R>0, we define

T (F )r = {t ∈ T (F )0 | val(χ(t)− 1) ≥ r ∀χ ∈ X∗(T )}.

For example, if G = GLn and T is the torus consisting of diagonal matrices,
then T (F )0 consists of diagonal matrices whose entries are all in O× and
T (F )r consists of diagonal matrices whose entries are all in 1 +��r	O.

Filtration of the root groups.

Let α ∈ Φ(G,T ). We recall that the isomorphism xα : Ga → Uα is
defined by requiring its derivative dxα to send 1 ∈ F = Ga(F ) to Xα. For
r ∈ R≥0, we define the filtration subgroups of Uα(F ) as follows

Uα(F )x,r := xα(�
�r−〈α,xBT 〉	O).

Let us consider the example of G = SL2 and T the torus consisting of
diagonal matrices.
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Example 1. Let x1 be the Bruhat–Tits triple
(
T,
{(

0 1
0 0

)
,
(
0 0
1 0

)}
, 0
)
. Let

α = α1,2, and hence −α = α2,1. Then xα(y) =
(
1 y
0 1

)
for y ∈ F = Ga(F ) and

Uα(F )x1,r =

(
1 ��r	O
0 1

)
and U−α(F )x1,r =

(
1 0

��r	O 1

)
.

Example 2. Let x2 be the Bruhat–Tits triple
(
T,
{(

0 1
0 0

)
,
(
0 0
1 0

)}
, 14 α̌
)
,

where α̌ is the coroot of α, i.e. the element of X∗(T ) that satisfies α̌(t) =(
t 0
0 t−1

)
for t ∈ F× = Gm(F ). Then

Uα(F )x2,r =

(
1 �

⌈
r− 1

2

⌉
O

0 1

)
and U−α(F )x2,r =

(
1 0

�
⌈
r+ 1

2

⌉
O 1

)
.

Filtration of G(F ).

We define the filtration subgroup G(F )x,r of G(F ) for r ∈ R≥0 to be the
subgroup generated by T (F )r and Uα(F )x,r for all roots α, i.e.

G(F )x,r = 〈T (F )r, Uα(F )x,r |α ∈ Φ(G,T )〉 .

If the ground field F is clear from the context, we may also abbreviate
G(F )x,r by Gx,r.

In the example of G = SL2 for the two Bruhat–Tits triples above, we
have for r > 0

Gx1,0 = SL2(O) , Gx1,r =

(
1 +��r	O ��r	O
��r	O 1 +��r	O

)
det=1

and

Gx2,0 =

(
O O
�O O

)
det=1

, Gx2,r =

(
1 +��r	O �

⌈
r− 1

2

⌉
O

�
⌈
r+ 1

2

⌉
O 1 +��r	O

)
det=1

.

Filtration of g(F ) and g∗(F ).

One can analogously define a filtration gx,r of the Lie algebra g(F ) and
a filtration g∗x,r of the F -linear dual g∗(F ) of the Lie algebra g(F ) as follows.
Let r be a real number, and recall that we write t for the Lie algebra of the
torus T . Then we set

t(F )r = {X ∈ t(F ) | val(dχ(X)) ≥ r ∀χ ∈ X∗(T )},

where dχ denotes the derivative of χ,

gα(F )x,r = ��r−〈α,xBT 〉	OXα ⊂ gα(F )

for α ∈ Φ(G,T ), and

g(F )x,r = t(F )r ⊕
⊕

α∈Φ(G,T )

gα(F )x,r.
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We define the filtration subspace g∗(F )x,r of the dual of the Lie algebra by
g∗(F )x,r = {X ∈ g∗(F ) |X(Y ) ∈ �O for all Y ∈ g(F )x,s with s > −r}.

If the ground field F is clear from the context, we may also abbreviate
g(F )x,r and g∗(F )x,r by gx,r and g∗x,r, respectively.

Properties of the Moy–Prasad filtration.

Definition 3.1.2. A parahoric subgroup of G is a subgroup of the form
Gx,0 for some BT triple x.

For r ∈ R≥0, we write Gx,r+ =
⋃

s>r Gx,s and gx,r+ =
⋃

s>r gx,s.
We collect a few facts about this filtration.

Fact 3.1.3. Let x be a BT triple.
(a) Gx,r is a normal subgroup of Gx,0 for all r ∈ R≥0.
(b) The quotient Gx,0/Gx,0+ is the group of Fq-points of a reductive

group Gx defined over the residue field Fq of F .
(c) For r ∈ R>0, the quotient Gx,r/Gx,r+ is abelian and can be identi-

fied with an Fq-vector space.
(d) Let r > 0. Since Gx,r is a normal subgroup of Gx,0, the group Gx,0

acts on Gx,r via conjugation. This action descends to an action
of the quotient Gx,0/Gx,0+ on the vector space Gx,r/Gx,r+ and the
resulting action is (the Fq-points of) a linear algebraic action, i.e.
corresponds to a morphism from Gx to GLdimFq (Gx,r/Gx,r+) over Fq.

(e) We have the following isomorphism that is often referred to as the
“Moy–Prasad isomorphism”: Gx,r/Gx,r+ � gx,r/gx,r+ for r ∈ R>0

and more general Gx,r/Gx,s � gx,r/gx,s for r, s ∈ R>0 with 2s ≥ r.

In fact we have a rather good understanding of the representations oc-
curring in (d). In [Fin21b] they are described explicitly in terms of Weyl
modules. Previously they were also realized using Vingberg–Levy theory by
Reeder and Yu ([RY14]), which was generalized in [Fin21b].

The Bruhat–Tits building.

Definition 3.1.4. The (reduced) Bruhat–Tits building B(G,F ) of G
over F is as a set the quotient of the set of BT triples by the following
equivalence relation: Two BT triple x1 and x2 are equivalent if and only if
Gx1,r = Gx2,r for all r ∈ R≥0.

As a consequence of the definition, for x ∈ B(G,T ), we may write Gx,r

for the Moy–Prasad filtration attached to any BT triple in the equivalence
class of x.

The Bruhat–Tits building B(G,F ) admits an action of G(F ) that is
determined by the property

Gg.x,r = gGx,rg
−1 ∀ r ∈ R≥0, g ∈ G(F ).

We will now equip the Bruhat–Tits building with more structure.
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Apartments as affine spaces.

Definition 3.1.5. For a split maximal torus T , we call the subset of
B(G,F ) that can be represented by BT triples whose first entry is the given
torus T , i.e.

A (T, F ) := {(T, {Xα}, xBT )}/∼ ⊂ B(G,F )

the apartment of T .

We fix a split maximal torus T and a Chevalley system {Xα}α∈Φ(G,T ).
Then it turns out that every element in A (T, F ) can be represented by
a BT triple whose first two entries are the torus T and the fixed Cheval-
ley system {Xα}α∈Φ(G,T ). Moreover, two BT triples (T, {Xα}, xBT,1) and
(T, {Xα}, xBT,2) are equivalent if and only if xBT,2−xBT,1 lies in the subspace
X∗(Z(G))⊗R, where Z(G) denotes the center of G. Note that X∗(Z(G))⊗R

is trivial when the center Z(G) of G is finite. Thus the set A (T, F ) is
isomorphic to X∗(T ) ⊗ R/X∗(Z(G)) ⊗ R, and we use this isomorphism to
equipp A (T, F ) with the structure of an affine space over the real vector
space X∗(T ) ⊗ R/X∗(Z(G)) ⊗ R. While the isomorphism of A (T, F ) with
X∗(T ) ⊗ R/X∗(Z(G)) ⊗ R depends on the choice of the Chevalley system
{Xα}α∈Φ(G,T ), the structure of A (T, F ) as an affine space does not. In fact,
the choice of a Chevalley system turns the affine space into a vector space
by choosing a base point.

Polysimplicial structure on apartments.

Let T be a split maximal torus of G. For α ∈ Φ(G,T ), we define the
following set of hyperplanes of the apartment A (T, F ):

Ψα :=

{
hyperplanes H⊂A (T, F ) satisfying Uα(F )x,0=Uα(F )y,0 ∀x, y∈H

Uα(F )x,0 �=Uα(F )x,0+ ∀x∈H

}
.

We set
Ψ :=

⋃
α∈Φ(G,T )

Ψα

and use these hyperplanes to turn the apartment A (T, F ) into the geo-
metric realization of a polysimplicial complex. This means the connected
components of the complement of the union of the hyperplanes in Ψ are the
maximal dimensional polysimplices, which are also called chambers.

We record the following facts that will become useful later when con-
structing supercuspidal representations.

Fact 3.1.6. Let x ∈ A (T, F ) ⊂ B(G,F ).
(a) The root system of Gx is given by Φ(Gx) = {α ∈ Φ(G,T ) |x ∈

H for some H ∈ Ψα}.
(b) Let y ∈ A (T, F ). Then the image of Gx,0 ∩Gy,0 in Gy,0/Gy,0+ is a

parabolic subgroup Px,y and the image of Gx,0+∩Gy,0 in Gy,0/Gy,0+
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Figure 5. Excerpt of an apartment for SL3 with hyperplanes

is the unipotent radical of Px,y. If x �= y and y is a vertex, i.e. a
polysimplex of minimal dimension, then Px,y is a proper parabolic
subgroup.

3.2. The non-split (tame) case. We first assume that G splits over
an unramified Galois field extension E over F . In that case all the above
definitions can be descended to G by taking Gal(E/F )-fixed points of the
corresponding objects for GE . More precisely, we set

G(F )x,r = G(E)Gal(E/F )
x,r ,

where G(E)x,r is defined using the valuation on E that extends the valuation
val on F . As in the split case, we may abbreviate G(F )x,r by Gx,r.

Via the action of Gal(E/F ) on G(E) and hence on its filtration sub-
groups, we obtain an action of Gal(E/F ) on the Bruhat–Tits building
B(G,E) and we define

B(G,F ) = B(G,E)Gal(E/F ).

More generally, if we only assume that G splits over a tamely ramified
Galois field extension E over F , then we have for r > 0

Gx,r = G(F )x,r = G(E)Gal(E/F )
x,r ,
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where G(E)x,r is defined using the valuation on E that extends the valu-
ation val on F and Uα(E)x,r = xα(�

�e(r−〈α,xBT 〉)	
E OE) with e the ramifica-

tion index of the field extension E over F . Defining the parahoric subgroup
G(F )x,0 is slightly more subtle in general. It is a finite index subgroup of
G(E)

Gal(E/F )
x,0 . The parahoric subgroup G(F )x,0 being occasionally a slightly

smaller group than G(E)
Gal(E/F )
x,0 will ensure that G(F )x,0/G(F )x,0+ are the

Fq-points of a connected reductive group rather than a potentially discon-
nected group. More precisely, the parahoric subgroup G(F )x,0 is defined by

Gx,0 = G(F )x,r = G(E)Gal(E/F )
x,r ∩G(F )0

for some explicitly constructed normal subgroup G(F )0 ⊂ G(F ). We refer
the interested reader to the literature, e.g. [KP], for the precise definition
of G(F )0 and only note that G(F )0 = G(F ) if G is simply connected semi-
simple, e.g. for G = SLn we have SLn(F )0 = SLn(F ).

As in the unramified setting, using the action of Gal(E/F ) on G(E) and
hence on its filtration subgroups, we obtain an action of Gal(E/F ) on the
Bruhat–Tits building B(G,E) and we define

B(G,F ) = B(G,E)Gal(E/F ).

Similarly, we have for the Lie algebra

gx,r = g(F )x,r = (g(E)x,r)
Gal(E/F ).

We note that the above definitions rely on the extension E over F being
tame, but are independent of the choice of E.

Aside 3.2.1. If G splits only over a wildly ramified extension E/F , then
the space of fixed vectors of the Galois action on the Bruhat–Tits building
over E might be larger than the Bruhat–Tits building defined over F (which
we have not introduced in that generality in this survey).

3.3. The enlarged Bruhat–Tits building. In some circumstances
it is more convenient to work with the enlarged Bruhat–Tits building. The
enlarged Bruhat–Tits building B̃(G,F ) is defined as the product of the
reduced Bruhat–Tits building B(G,F ) with X∗(Z(G))⊗Z R, i.e.

B̃(G,F ) = B(G,F )×X∗(Z(G))⊗Z R.

This means that if the center of G is finite, then the reduced and the non-
reduced Bruhat–Tits buildings are the same. In general, an important dif-
ference is that stabilizers in G(F ) of points in the enlarged Bruhat–Tits
building are compact while stabilizers of points in the reduced Bruhat–Tits
building contain the center of G(F ) and are compact-mod-center. For the en-
larged building, the apartments Ã (S, F ) correspond to maximal split tori S
and are affine spaces under the action of X∗(S)⊗ZR. For a point x ∈ B̃(G,F )
we denote by [x] the image of x in B(G,F ) (by projection on the first factor)
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and we define Gx,r := G[x],r for r ∈ R≥0 and gx,r := g[x],r and g∗x,r := g∗[x],r
for r ∈ R.

3.4. The depth of a representation. The Moy–Prasad filtration al-
lows us to introduce the notion of the depth of a representation, initially
defined by Moy and Prasad in [MP94, MP96]. Our definition is slightly
different but equivalent to theirs.

Definition 3.4.1. Let (π, V ) be an irreducible smooth representation
of G. The depth of (π, V ) is the smallest non-negative real number r such
that V Gx,r+ �= {0} for some x ∈ B(G,F ).

4. Construction of supercuspidal representations

As discussed in the introduction, mathematicians have worked on the
construction of supercuspidal representations the past 50 years. Here we will
present the construction of supercuspidal representations by Yu ([Yu01])
from 2001, with a twist introduced by Fintzen, Kaletha and Spice ([FKS])
in 2021. Contrary to earlier works, this construction applies to all p-adic
groups that split over a tamely ramified extension and is exhaustive if p
does not divide the order of the (absolute) Weyl group of the p-adic group.
Yu’s construction is a generalization of a construction by Adler ([Adl98]),
which in turn was inspired by work of Howe, Morris, Moy and unpublished
work of Jabon.

4.1. The input for the construction. We fix for the rest of the
paper an additive character ϕ : F → C× (i.e. a group homomorphism from
the group F (equipped with addition) to the group C× (equipped with
multiplication)) that is nontrivial on O and trivial on �O and we assume
that p �= 2.

Definition 4.1.1. A subgroup G′ of G is a twisted Levi subgroup if G′
E

is a Levi subgroup of GE for some finite field extension E over F .

If G′ is a twisted Levi subgroup of G, and we assume that G′ splits over
a tamely ramified field extension of F , then we have an embedding of the
enlarged Bruhat–Tits building B̃(G′, F ) of G′ into the enlarged Bruhat–
Tits building B̃(G,F ) of G. This embedding is unique up to translation
by X∗(Z(G′))⊗Z R. Below we will fix such embeddings when working with
twisted Levi subgroups to view B̃(G′, F ) as a subset of B̃(G,F ).

The input for the construction of supercuspidal representations by Yu
(following the notation of [Fin21a]) is a tuple ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ,
(φi)1≤i≤n) for some non-negative integer n where

(a) G = G1 ⊇ G2 � G3 � . . . � Gn+1 are twisted Levi subgroups of G
that split over a tamely ramified extension of F ,

(b) x ∈ B̃(Gn+1, F ) ⊂ B̃(G,F ),
(c) r1 > r2 > . . . > rn > 0 are real numbers,
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(d) ρ is an irreducible representation of (Gn+1)[x] that is trivial on
(Gn+1)x,0+,

(e) φi, for 1 ≤ i ≤ n, is a character (i.e. a one-dimensional representa-
tion) of Gi+1(F ) of depth ri

satisfying the following conditions
(i) Z(Gn+1)/Z(G) is anisotropic, i.e. its F -points are a compact group,
(ii) the image [x] of the point x in B(Gn+1, F ) is a vertex, i.e. a polysim-

plex of minimal dimension
(iii) ρ|(Gn+1)x,0 is a cuspidal representation of the reductive group

(Gn+1)x,0/(Gn+1)x,0+,
(iv) φi is (Gi, Gi+1)-generic relative to x of depth ri for all 1 ≤ i ≤ n

with Gi �= Gi+1,
where generic characters are defined below. We will call a tuple satisfying
the above conditions a Yu datum.

Aside 4.1.2. Our conventions for the notation (following [Fin21a]) differ
slightly from those in [Yu01]. In particular, Yu’s notation for the twisted
Levi sequence is G0 � G1 � G2 � . . . � Gd. The reader can find a translation
between the two different notations in [Fin21a, Remark 2.4].

In order to define generic character (following [Fin, §2.1], which is based
on [Yu01, §9], but is slightly more general for small primes), we first define
the notion of generic elements in the dual of the Lie algebra and then use
the Moy–Prasad isomorphism to obtain the notion of generic characters.

Let G′ � G be a twisted Levi subgroup that splits over a tamely ramified
extension of F , and denote by (Lie∗(G′))G

′
(F ) the subspace of the linear dual

of Lie(G′)(F ) that is fixed by (the dual of) the adjoint action of G′(F̄ ).

Definition 4.1.3. Let x ∈ B̃(G′, F ) and r ∈ R>0.
(a) An element X of (Lie∗(G′))G

′
(F ) ⊂ Lie∗(G′)(F ) is called G-generic

of depth r (or (G,G′)-generic of depth r) if the following three
conditions hold.

(GE0) For some (equivalently, every) point x ∈ B̃(G′, F ), we have
X ∈ Lie∗(G′)x,−r.

(GE1) val(X(Hα)) = −r for all α ∈ Φ(GF̄ , TF̄ ) \Φ(G′
F̄
, TF̄ ) for some

maximal torus T of G′, where Hα := dα̌(1) ∈ g(F̄ ) with dα̌
the derivative of the coroot α̌ ∈ HomF̄ (Gm, TF̄ ) of α.

(GE2) (GE2) of [Yu01, §8] holds, where we refer the reader to
[Yu01] for details. Condition (GE1) implies (GE2) if p is
not a torsion prime for the dual root datum of G, i.e., in par-
ticular, if p does not divide the order of the (absolute) Weyl
group of G. Hence, by assuming that p is large enough, the
reader may ignore Condition (GE2).

(b) A character φ of G′(F ) is called G-generic (or (G,G′)-generic)
relative to x of depth r if φ is trivial on G′

x,r+, non-trivial on G′
x,r
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and the restriction of φ to G′
x,r/G

′
x,r+ � g′x,r/g

′
x,r+ is given by ϕ◦X

for some (G,G′)-generic element X of depth r.

For example, if F = Q17, G = GL2 and G′ is the diagonal torus T . Then

Hα1,2 = −Hα2,1 =

(
1 0
0 −1

)
and the elements

X :

(
A 0
0 B

)
�→ A and X ′ :

(
A 0
0 B

)
�→ A−B

are G-generic of depth 0. The elements

X :

(
A 0
0 B

)
�→ A+B and X ′ :

(
A 0
0 B

)
�→ A− 16B

are also contained in Lie∗(T )x,0 \Lie∗(T )x,0+ (for any x ∈ B̃(T, F )), but are
not G-generic of depth r for any real number r.

4.2. The construction of supercuspidal representations à la Yu.
In this section we outline how Yu ([Yu01]) constructs from a Yu datum

((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ, (φi)1≤i≤n)

a compact-mod-center open subgroup K̃ and a representation ρ̃ of K̃ such
that c-ind

G(F )

K̃
ρ̃ is an irreducible supercuspidal representation of G(F ).

The compact-mod-center open subgroup K̃ is given by

K̃ = (G1)x, r1
2
(G2)x, r2

2
. . . (Gn)x, rn

2
(Gn+1)[x],

where (Gn+1)[x] denotes the stabilizer in Gn+1(F ) of the point [x] in the
(reduced) Bruhat–Tits building B(Gn+1, F ).

The representation ρ̃ is a tensor product of two representations ρ and κ,
ρ̃ = ρ⊗ κ,

where ρ also denotes the extension of the representation ρ of (Gn+1)[x] to K̃
that is trivial on (G1)x, r1

2
(G2)x, r2

2
. . . (Gn)x, rn

2
. The representation κ is built

out of the characters φ1, . . . , φn. If n = 0, then κ is trivial and we are in the
setting of depth-zero representations.

We will first sketch the construction of κ in the case n = 1, i.e. when
the Yu datum is of the form ((G = G1 ⊃ G2 = Gn+1), x, (r1), ρ, (φ1)). To
simplify notation, we write r = r1 and φ = φ1, and we assume G1 �= G2. In
this case K̃ = Gx, r

2
(G2)[x].

Step 1 (extending the character φ as far as possible): The first
step consists of extending the character φ to a character φ̂ of Gx, r

2
+(G2)[x].

This is done by sending the root groups outside G2 to 1. More precisely, φ̂
is the unique character of Gx, r

2
+(G2)[x] that satisfies

• φ̂|(G2)[x] = φ, and
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• φ̂|Gx, r2+
factors through

Gx, r
2
+/Gx,r+ � gx, r

2
+/gx,r+ = (g2(F )⊕ r(F ))x, r

2
+/(g2(F )⊕ r(F ))x,r+

→ (g2)x, r
2
+/(g2)x,r+ � (G2)x, r

2
+/(G2)x,r+,

on which it is induced by φ. Here we used the Moy–Prasad isomor-
phism and r(F ) is defined to be

r(F ) = g(F ) ∩
⊕

α∈Φ(GE ,TE)\Φ((G2)E ,TE)

g(E)α

for some maximal torus T of G2 that splits over a tamely ramified
extension E of F with x ∈ Ã (TE , E), and the surjection g2(F ) ⊕
r(F ) � g2(F ) sends r(F ) to zero.

Step 2 (Heisenberg representation): As second step we extend the
(one-dimensional) representation φ̂|Gx, r2+(G2)x, r2

to a representation (ω, Vω)

of Gx, r
2
. We write V r

2
for the quotient

V r
2
= Gx, r

2
/(Gx, r

2
+(G2)x, r

2
)

and we view V r
2

as an Fp-vector space. (It can also be viewed as an Fq-vector
space, but here we only consider the underlying Fp-vector space structure.)
Then one can show that the pairing

〈g, h〉 := φ̂(ghg−1h−1), g, h ∈ Gx, r
2

defines a non-degenerate symplectic form on V r
2

= Gx, r
2
/(Gx, r

2
+(G2)x, r

2
)

when we choose an identification between the p-th roots of unity in C× and
Fp.

Now the theory of Heisenberg representations implies that there ex-
ists a unique irreducible representation (ω, Vω) of Gx, r

2
that restricted to

Gx, r
2
+(G2)x, r

2
acts via φ̂ (times identity), and the dimension of Vω is

√
#V r

2
=

p
(dimFp V r

2
)/2.

Step 3 (Weil representation): The final step of the construction con-
sists of extending the action of Gx, r

2
on Vω via ω to an action of K̃ =

Gx, r
2
(G2)[x] on Vω by defining an action of (G2)[x] on Vω that is compatible

with ω. In order to obtain this action, we first observe that (G2)[x] acts on
V r

2
via conjugation and that this action preserves the symplectic form 〈·, ·〉.

This provides a morphism from (G2)[x] to the group Sp(V r
2
) of symplectic

isomorphisms of V r
2
. Now the Weil representation is a representation of the

symplectic group Sp(V r
2
) on the space Vω of the Heisenberg representation

of the symplectic vector space that is compatible with the Heisenberg rep-
resentation in the following sense. Using the composition of the morphism
(G2)[x] → Sp(V r

2
) with the Weil representation tensored with the character

φ allows us to extend the representation (ω, Vω) from Gx, r
2

to Gx, r
2
(G2)[x].
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We denote the resulting representation of K̃ = Gx, r
2
(G2)[x] also by (ω, Vω)

and set (κ, Vκ) = (ω, Vω).
This concludes the construction of κ and hence ρ̃ = ρ⊗ κ in the case of

n = 1. For a more general Yu datum ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ, (φi)1≤i≤n)
with n > 1 we construct from each character φi (1 ≤ i ≤ n) a representation
(ωi, Vωi) analogous to the construction of (ω, Vω) above. Then we define κ
to be the tensor product of all those representations, i.e.

(κ, Vκ) =

⎛⎝ ⊗
1≤i≤n

ωi,
⊗

1≤i≤n

Vωi

⎞⎠ .

For the details we refer the reader to [Fin21a, §2.5], which is based on
[Yu01].

Theorem 4.2.1 ([Yu01, Fin21a]). The representation c-ind
G(F )

K̃
ρ̃ is a

supercuspidal smooth irreducible representation of G(F ).

We will sketch the structure of the proof in the next section.

4.3. The proof that the representations are supercuspidal. It is
a nice exercise to deduce from Fact 2.4.11 the following lemma.

Lemma 4.3.1. If c-indG(F )

K̃
ρ̃ is irreducible, then c-ind

G(F )

K̃
ρ̃ is a super-

cuspidal representation of G(F ).

This means it suffices to show that c-ind
G(F )

K̃
ρ̃ is irreducible, for which

the standard approach is via Fact 4.3.3 below. In order to state the fact, we
need to introduce some notation.

Let K be a compact-mod-center open subgroup of G(F ) that contains
the center Z(G(F )) and let (σ,W ) be a smooth representation of K.

Notation 4.3.2. For g ∈ G(F ), we write gσ for the representation of
gK := gKg−1 satisfying gσ(h) = σ(g−1hg) for h ∈ gK.

We say that g intertwines (σ,W ) if HomgK∩K(gσ|gK∩K , σ|gK∩K) �= {0}.

Fact 4.3.3. Suppose g ∈ G(F ) intertwines (σ,W ) if and only if g ∈ K.
Then c-ind

G(F )
K σ is irreducible.

This result relies on the Mackey decomposition.

Lemma 4.3.4 (Mackey decomposition). If K ′ is a compact-mod-center
open subgroup of G, then the restriction of c-indG(F )

K σ to K ′ decomposes as
a representation of K ′ as follows

(c-ind
G(F )
K σ)|K′ =

⊕
K′\G(F )/K

IndK
′

gK∩K′
gσ|gK∩K′
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The proof of the lemma is left as an exercise for the reader.
Sketch of the structure of the proof of Theorem 4.2.1. In

order to prove that c-indG(F )

K̃
ρ̃ is supercuspidal it suffices to prove that it is

irreducible by Lemma 4.3.1. First one notes that ρ̃ itself is irreducible. We
assume that an element g ∈ G(F ) intertwines ρ̃. Now the main task is to
show that g ∈ K̃ so that we can apply Fact 4.3.3. This is done in two steps.

Step 1. We show recursively that g ∈ K̃Gn+1K̃ using that the characters
φi are generic.

The key part for this step is [Yu01, Theorem 9.4], which in the example
of n = 1 spelled out above implies the following lemma.

Lemma 4.3.5 ([Yu01]). Suppose that g intertwines φ̂|Gx, r2+
. Then g ∈

Gx, r
2
G2(F )Gx, r

2
.

As mentioned above, this lemma crucially uses the fact that φ is (G,G2)-
generic relative to x of depth r (if G1 �= G2) and we refer to [Yu01, Theo-
rem 9.4] for the proof.

Step 2. By Step 1 we may assume that g ∈ Gn+1(F ). Step 2 consists of
showing that then g ∈ (Gn+1)[x] using the structure of the Weil–Heisenberg
representation and that ρ|(Gn+1)x,0 is cuspidal.

The reader interested in the full details of the proof is encouraged to read
[Fin21a, §3], which refers to precise statements in [Yu01] that allow an easy
backtracking within [Yu01] if the reader is interested in all the details that
make the complete proof. While Section 3 of [Fin21a] is only about four
pages long, we do not see a merit in copy+pasting it here. Instead we present
readers who are only interested in a glimpse of an idea of the proof of Step 2
with the proof in the depth-zero case, i.e. the n = 0 case, in this survey. This
case has been known already much earlier ([MP96, Mor99]) and does not
require an intricate study of the Weil–Heisenberg representations, but on
the other hand shows the importance played by ρ|(Gn+1)x,0 being cuspidal.

4.4. Depth-zero supercuspidal representations. In this section,
we consider the special case of depth-zero supercuspidal representations,
which are precisely those arising from a datum as above with n = 0, except
we do not need to assume that G splits over a tamely ramified field extension.
The following theorem, a special case of Theorem 4.2.1, is due to Moy and
Prasad ([MP94, MP96]) and independently due to Morris ([Mor99]).

Theorem 4.4.1 ([MP94, MP96, Mor99]). Let x ∈ B(G,F ) be a ver-
tex. Let (ρ, Vρ) be an irreducible smooth representation of the stabilizer Gx

of x that is trivial on Gx,0+ and such that ρ|Gx,0 is a cuspidal representa-
tion of the reductive group Gx,0/Gx,0+. Then c-ind

G(F )
Gx

ρ is a supercuspidal
irreducible representation of G(F ).

The above authors also showed that all depth-zero supercuspidal (irre-
ducible smooth) representations are of the form as in Theorem 4.4.1.
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Proof of Theorem 4.4.1. By Lemma 4.3.1 and Fact 4.3.3 it suffices
to show that an element g ∈ G(F ) intertwines (ρ, Vρ) if and only if g ∈ Gx.
Since all g ∈ Gx intertwine (ρ, Vρ), it remains to show the other direction of
the implication. Hence we assume g ∈ G(F ) intertwines (ρ, Vρ), i.e. we can
choose a nontrivial element

f ∈ HomGx∩gGxg−1(gσ, σ) �� {0}.
Since σ is trivial when restricted to Gx,0+, the representation gσ is trivial
when restricted to gGx,0+g

−1 = Gg.x,0+. Hence Gg.x,0+ ∩Gx,0 acts trivially
on the image Im(f) of f . If g /∈ Gx, then g.x �= x and hence by Fact 3.1.6(b)
(which also holds for not necessarily split reductive groups), the image of
Gg.x,0+∩Gx,0 in Gx,0/Gx,0+ is the unipotent radical N of a proper parabolic
subgroup of Gx,0/Gx,0+. Thus

{0} �� Im(f) ⊂ V N
ρ ,

which contradicts that (ρ, Vρ) is cuspidal. �

4.5. A parameterization of supercuspidal representations. In
Section 4.2 we outlined how to attach supercuspidal representations to a
Yu datum, that was described in Section 4.1. In Section 5 we will see that
under mild assumptions this provides us with all supercuspidal smooth irre-
ducible representations. In order to parameterize all supercuspidal smooth
irreducible representations it therefore remains to understand which Yu data
yield the same representation. This has been resolved by Hakim and Mur-
naghan ([HM08]) up to a hypothesis that was removed by Kaletha ([Kal19,
§ 3.5]). Hakim and Murnaghan define an equivalence relation on the Yu
data, which they call G(F )-equivalence and the key result is that two su-
percuspidal representations arising from Yu’s construction are equivalent if
and only if the input Yu data are G(F )-equivalent. In order to define the
G(F )-equivalence, Hakim and Murnaghan introduced the following three
transformations of Yu data.

Definition 4.5.1 (Elementary transformation). A Yu datum
((Gi)1≤i≤n+1, x

′, (ri)1≤i≤n, ρ
′, (φi)1≤i≤n) is obtained from a Yu datum

((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ, (φi)1≤i≤n) via an elementary transformation if
[x] = [x′] and ρ � ρ′.

Definition 4.5.2 (G-conjugation). We say that a Yu datum is a ob-
tained from the Yu datum ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ, (φi)1≤i≤n) via G(F )-
conjugation if it is of the form

((gGig
−1)1≤i≤n+1, x, (ri)1≤i≤n,

gρ, (gφi)1≤i≤n)

for some g ∈ G(F ).

While the above two operations clearly yield isomorphic representations,
there is a third operation on the Yu datum that does not change the iso-
morphism class of the resulting supercuspidal representation.



34 JESSICA FINTZEN

Definition 4.5.3 (Refactorization). A Yu datum ((Gi)1≤i≤n+1, x,
(ri)1≤i≤n, ρ

′, (φ′
i)1≤i≤n) is a refactorization of a Yu datum ((Gi)1≤i≤n+1, x,

(ri)1≤i≤n, ρ, (φi)1≤i≤n) if the following two conditions are satisfied.
(i) For 1 ≤ i ≤ n, we have∏

1≤j≤i

φj |(Gi+1)x,ri+1+
=
∏

1≤j≤i

φ′
j |(Gi+1)x,ri+1+

,

where we set rn+1 = 0, and
(ii)

ρ⊗
∏

1≤j≤n

φj |(Gn+1)[x] = ρ′ ⊗
∏

1≤j≤n

φ′
j |(Gn+1)[x] .

These three operations together allow us to define the desired equivalence
relation on the Yu data.

Definition 4.5.4. Two Yu data are G(F )-equivalent if one can be trans-
formed into the other via a finite sequence of refactorizations, G(F )-conjuga-
tions and elementary transformations.

The following theorem shows that this is the equivalence relation we
were looking for.

Theorem 4.5.5 ([HM08, Kal19]). Two Yu data ((Gi)1≤i≤n+1, x,
(ri)1≤i≤n, ρ, (φi)1≤i≤n) and ((G′

i)1≤i≤n+1, x
′, (r′i)1≤i≤n, ρ

′, (φ′
i)1≤i≤n) yield

isomorphic supercuspidal representations of G(F ) if and only if they are
G(F )-equivalent.

For a proof, see [HM08, Theorem 6.6] and [Kal19, Corollary 3.5.5.].

4.6. A twist of Yu’s construction. Let ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ,
(φi)1≤i≤n) be a Yu datum. Instead of associating to this Yu datum the
representation c-ind

G(F )

K̃
ρ̃ constructed by Yu, a new suggestion by Fintzen,

Kaletha and Spice ([FKS]) consists of associating the representation
c-ind

G(F )

K̃
(ερ̃) for an explicitly constructed character ε : K̃ → {±1}. We re-

fer the reader to [FKS, p. 15] for the definition of ε as it is rather involved.
There are multiple reasons for the introduction of this quadratic twist in the
parametrization. For example, it restores the validity of Yu’s original proof
([Yu01]) that c-ind

G(F )

K̃
(ερ̃) is a supercuspidal irreducible representation,

which is not valid for the non-twisted version as it relied on a misprinted
statement in [Gér77]. In particular, we restore the validity of the inter-
twining results [Yu01, Proposition 14.1 and Theorem 14.2] for the twisted
construction that form the heart of Yu’s proof. Instead of stating the results
in full generality, which would involve introducing additional notation, we
state its implication in the setting that we already introduced above.

Proposition 4.6.1 ([Yu01, FKS]). Let ((G = G1 � G2 = Gn+1), x,
(r1 = r), ρ, (φ1 = φ)) be a Yu datum from which we construct a represen-
tation κ of K̃ = Gx, r

2
(G2)[x] as in Section 4.2. Then for g ∈ G2(F ), we
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have
dimCHom

K̃∩gK̃g−1(εκ,
g(εκ)) = 1.

This result also holds in a more general setting in which we drop the
assumption that Z(G2)/Z(G) is anisotropic. We refer the reader to [FKS,
Corollary 4.1.11 and Corollary 4.1.12] for the detailed statements and proofs.

Applications of the existence of the above quadratic character ε : K̃ →
{±1} include being able (under some assumptions on F ) to provide a char-
acter formula for the supercuspidal representations c-ind

G(F )

K̃
(ερ̃) ([Spi18,

Spi, FKS]), to suggest a local Langlands correspondence for all supercus-
pidal Langlands parameters ([Kal]) and to prove the stability and many
instances of the endoscopic character identities for the resulting supercus-
pidal L-packets that such a local Langlands correspondence is predicted to
satisfy ([FKS]).

5. Exhaustiveness of the construction of supercuspidal
representations

In the previous section we have seen how to construct supercuspidal
smooth irreducible representations of a p-adic group G(F ). In this section
we will see that under some minor assumptions the above construction by
Yu provides us with all supercuspidal smooth irreducible representations.

5.1. Exhaustiveness result.
Theorem 5.1.1 ([Kim07, Fin21d]). Suppose that G splits over a tamely

ramified field extension of F and that p does not divide the order of the (ab-
solute) Weyl group of G. Then every supercuspidal smooth irreducible rep-
resentation of G(F ) arises from Yu’s construction, i.e. via Theorem 4.2.1.

This result was shown by Kim ([Kim07]) in 2007 under the additional
assumptions that F has characteristic zero and that p is “very large”. Her
approach was very different from the recent approach in [Fin21d]. Kim
proves statements about a measure one subset of all smooth irreducible
representations of G(F ) by matching summands of the Plancherel formula
for the group and the Lie algebra, while the recent approach in [Fin21d]
is more explicit and can be used to recursively exhibit a Yu datum for
the construction of the given representation. We will give a sketch of the
latter approach. The proof consists of two main steps. The first step is to
prove that every supercuspidal smooth irreducible representation of G(F )
contains a (maximal) datum as defined in [Fin21d], which we recall below,
and which can be viewed as a skeleton of a Yu datum. The second step
consists of obtaining a Yu datum from that maximal datum and showing
that the representation we started with is isomorphic to the one constructed
from this Yu datum.

We assume from now on that G splits over a tamely ramified field ex-
tension of F and that p does not divide the order of the (absolute) Weyl
group of G.



36 JESSICA FINTZEN

5.2. The datum as in [Fin21d]. A (maximal) datum as defined in
[Fin21d] is at the same time a skeleton for a Yu datum and a much more
refined version of the so called unrefined minimal K-type introduced by Moy
and Prasad ([MP94, MP96]).

Definition 5.2.1. Let n ∈ Z≥0. A datum of G of length n is a tu-
ple (x, (Xi)1≤i≤n, (ρ0, Vρ0)) such that it can be extended to a tuple, called
extended datum,

(x, (ri)1≤i≤n, (Xi)1≤i≤n, (Gi)1≤i≤n+1, (ρ0, Vρ0))

where
(a) G = G1 ⊇ G2 � G3 � . . . � Gn+1 are twisted Levi subgroups of G,
(b) x ∈ B̃(Gn+1, F ) ⊂ B̃(G,F ),
(c) r1 > r2 > . . . > rn > 0 are real numbers,
(d) (ρ0, Vρ0) is an irreducible representation of (Gder

n+1)[x],0/(G
der
n+1)[x],0+,

where Gder
n+1 denotes the derived subgroup of Gn+1,

(e) Xi ∈ g∗x,−ri \ g∗x,(−ri)+
for 1 ≤ i ≤ n

satisfying the following conditions for all 1 ≤ i ≤ n

(i) Xi ∈ g∗i := Lie(Gi)
∗(F ) ⊂ g∗(F ),

(ii) Xi is generic of depth −ri at x ∈ B̃(Gi, F ) as an element of g∗i
(under the action of Gi),

(iii) Gi+1 = CentGi(Xi).

Here we use the following definition of “generic”, which will imply the
genericity conditions required for a Yu datum.

Definition 5.2.2. We say that an element X ∈ g∗(F ) is generic of depth
r at x ∈ B̃(G,F ) if the G-orbit of X is closed and if there exists a tamely
ramified extension E over F and a split maximal torus T ⊂ CentG(X)×F E
such that

• x ∈ Ã (T,E) ∩ B̃(G,F ),
• X ∈ g∗x,r,
• for every α ∈ Φ(GE , TE), we have X(Hα) = 0 or val(X(Hα)) = r,

where Hα = dα̌(1), and
• if X(Hα) = 0 for all α ∈ Φ(G,T ), then X /∈ g∗x,r+.

Given a datum, we write Hi for the derived subgroup of Gi for 1 < i ≤
n− 1, and we write H1 = G1 if G1 = G2 and otherwise we write H1 for the
derived subgroup of G1. We choose a maximal torus T of Gi+1 such that
x ∈ Ã (T,E), where E denotes a finite tamely ramified extension of F of
ramification degree e over which T splits. Then we define for a non-negative
real number r

(Hi)x,r := Hi(F ) ∩ (Gi)x,r , (Hi)x, r
2
+ := Hi(F ) ∩ (Gi)x, r

2
+
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and

(Hi)x,r, r
2
+

:= H(F )∩
〈
T (E)r, Uα(E)x,r, Uβ(E)x, r

2

∣∣∣∣α∈Φ((Gi+1)E , TE)⊂Φ(GE , TE),

β∈Φ((Gi)E , TE) \ Φ((Gi+1)E , TE)

〉
.

This definition is independent of the choice of T and E ([Yu01, p. 585 and
p. 586]). We define the subalgebras hi, (hi)x, r

2
+ and (hi)x,r, r

2
+ of g analo-

gously.
Let (π, V ) be a smooth irreducible representation of G(F ). We set rn+1 =

0 and say that a datum (x, (Xi)1≤i≤n, (ρ0, Vρ0)) of G is contained in (π, V )

if V ∪1≤i≤n+1((Hi)x,ri+) contains a subspace V ′ such that
• (π|(Hn+1)x,0 , V

′) is isomorphic to (ρ0, Vρ0) as a representation of
(Hn+1)x,0/(Hn+1)x,0+ and

• (Hi)x,ri,
ri
2
+/(Hi)x,ri+ � (hi)x,ri,

ri
2
+/(hi)x,ri+ acts on V ′ via the

character ϕ ◦Xi for 1 ≤ i ≤ n,
where ϕ : F → C∗ is the additive character of F that is trivial on �O that
we fixed above.

We caution the reader that at this stage the representation (ρ0, Vρ0) is
more like a place holder and is not the same as the representation ρ that
forms part of a Yu datum. In fact, retrieving ρ from ρ0 is a key task in the
second step of the proof that all supercuspidal representations arise form
Yu’s construction. In the first step the main focus is on constructing the
generic elements Xi recursively.

Theorem 5.2.3 ([Fin21d]). Let (π, V ) be a smooth irreducible repre-
sentation of G(F ), and recall that we assume that G splits over a tamely
ramified field extension and p does not divide the order of the (absolute)
Weyl group of G. Then (π, V ) contains a datum.

Note that we do not assume that (π, V ) is supercuspidal. This result
works without the assumption of supercuspidality and will lead to the notion
of types in general, which we will not elaborate in this survey. As mentioned
above, the proof proceeds recursively, i.e. by first showing the existence of a
suitable element X1 so that the action of (H1)x,r1, r12 +/(H1)x,r1+ is given by
ϕ◦X1. Let us denote the resulting character of (H1)x,r1, r12 + by χ1 and assume
G is semisimple for now for simplicity, which implies H1 = G1 = G. Then
(Gx,r1 , χ1|Gx,r1

) is an unrefined minimal K-type of depth r1 contained in
(π, V ) as introduced by Moy and Prasad. However, the genericity condition
imposed on X1 described above is slightly stronger than the non-degeneracy
condition that Moy and Prasad imposed on a pair (Gx,r1 , χ1|Gx,r1

) to be
called an unrefined minimal K-type. The slightly stronger condition is cru-
cial for the recursion steps to work and to eventually recover a Yu datum.
After proving the existence of a suitable element X1, the proof consists of
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recursively finding X2, X3, . . ., but additional difficulties arise when con-
structing X2 from ensuring that not only should the action of (H2)x′,r2,

r2
2
+

be given by X2, but also the action of (H1)x′,r1,
r1
2
+ should still be given by

X1. As our notation indicates, the initial point x ∈ B̃(G,F ) used to find X1

might not be suitable and has to be changed to a different point x′ to achieve
this result. The required arguments to show that the recursion works form
a significant part of [Fin21d] and we refer the reader to [Fin21d, Proof of
Theorem 6.1] for the details.

5.3. Recovering a Yu datum from a supercuspidal represen-
tation. Let (π, V ) be a smooth irreducible supercuspidal representation of
G(F ). The second step in the proof of Theorem 5.1.1 consists of refining a
datum contained in (π, V ) to obtain a Yu datum from which (π, V ) can be
constructed. To this end, we start with a maximal datum rather than an ar-
bitrary datum. We call a datum (x, (Xi)1≤i≤n, (ρ0, Vρ0)) contained in (π, V )
a maximal datum for (π, V ) if given another datum (x′, (Xi)1≤i≤n, (ρ

′
0, V

′
ρ0))

contained in (π, V ), we have that the dimension of the facet of B̃(Gn+1, F )

that contains x is at least the dimension of the facet of B̃(Gn+1, F ) that con-
tains x′. A maximal datum provides a twisted tame Levi sequence
(Gi)1≤i≤n+1, a point x ∈ B̃(Gn+1, F ) and real numbers r1 > r2 > . . . >
rn > 0, and it remains to find an appropriate irreducible representation ρ of
(Gn+1)[x] and characters φi of Gi+1(F ) that together form a Yu datum and
whose associated representation is isomorphic to (π, V ). The characters φi

are constructed recursively from the elements Xi and their genericity prop-
erties result from the Xi being generic. The construction of ρ and the proof
that ρ is cuspidal uses the theory of Weil–Heisenberg representations to-
gether with the property of the datum being a maximal datum for (π, V ). We
refer the reader to [Fin21d, § 7] for the details. So far we have not used that
(π, V ) is supercuspidal, and indeed, for readers who know about types, we
remark that we obtain for every smooth irreducible representation of G(F )
an input for the construction of a type by Kim and Yu ([KY17]) for the cor-
responding Bernstein block. When (π, V ) is supercuspidal we can prove that
the remaining conditions for a Yu datum are satisfied ([Fin21d, § 8]) and
through the way that the Yu datum is obtained we ensure that the resulting
representation ρ̃ of K̃ constructed by Yu is contained in (π|

K̃
, V ). Using

Frobenius reciprocity we deduce that (π, V ) is isomorphic to c-ind
G(F )

K̃
ρ̃.

Selected notation

Ad, 9
κ, 29
g∗(F )x,r, 23
gx,r+, 23
ϕ, 27

ρ̃, 29
B̃(G,F ), 26
(Gn+1)[x], 29
(Hi)x,r, r

2
+, 37

Bn, 7
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G(F )x,r, 22, 25
Gx,r+, 23
Gx,r, 22
Nn, 7
Uα, 13
Uα(F )x,r, 21
X∗(T ), 9, 21
X∗(T ), 21
Xi,j , 9
Ind

G(F )
H , 18

Φ(G,T ), 10
Φ+, 13
SOn, 7
Sp2n, 7
c-ind

G(F )
H , 18

φ̂, 29
Fp((t)), 14

Fp[[t]], 14
Ga, 8
Gm, 8
Qp, 14
Zp, 14
OE , 15
PE , 15
g(F )x,r, 23, 26
g∗x,r, 23
gα, 10
gx,r, 23, 26
On, 7
A (T, F ), 24
B(G,F ), 23
K̃, 29
gσ, 31
gK, 31
[x], 27

Selected definitions

(G,G′)-generic, 29
G-generic, 29
G(F )-conjugation, 33
G(F )-equivalent, 34
p-adic absolute value, 14
p-adic group, 16

adjoint action, 9
apartment, 24

basis of a root system, 11
Borel subgroup, 12
Bruhat–Tits building, 23
BT triple, 21

chamber, 24
Chevalley system, 20
compactly induced representation,

18
cuspidal representation, 19

datum, 36
depth, 27

elementary transformation, 33

enlarged Bruhat–Tits building, 26

generic, 29, 36
generic character, 29

induced representation, 18
intertwine, 31
irreducible smooth representation, 17

Levi decomposition, 12
Levi subgroup, 12
linear algebraic group, 7
linear algebraic group over F , 15

Mackey decomposition, 32
maximal datum, 38
maximal torus, 8

non-archimedean absolute value, 14
non-archimedean local field, 15

p-adic integers, 14
p-adic numbers, 14
parabolic induction, 18
parabolic subgroup, 12



40 JESSICA FINTZEN

parahoric, 23

reductive group, 8, 16
refactorization, 34
residue field, 20
ring of integers, 15
root group, 13
roots, 10

smooth induction, 18
smooth representation, 17
split reductive group, 17

split torus, 16
supercuspidal representation, 19

torus, 8, 16
twisted Levi subgroup, 27

uniformizer, 15
unipotent, 8
unipotent radical, 8

Weyl group, 13

Yu datum, 28

References
[Adl98] Jeffrey D. Adler, Refined anisotropic K-types and supercuspidal representations,

Pacific J. Math. 185 (1998), no. 1, 1–32. MR 1653184
[AS09] Jeffrey D. Adler and Loren Spice, Supercuspidal characters of reductive p-adic

groups, Amer. J. Math. 131 (2009), no. 4, 1137–1210. MR2543925
[BK93] Colin J. Bushnell and Philip C. Kutzko, The admissible dual of GL(N) via

compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton
University Press, Princeton, NJ, 1993. MR1204652

[Bor91] Armand Borel, Linear algebraic groups, Second, Graduate Texts in Mathemat-
ics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012

[Bou02] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Math-
ematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French
original by Andrew Pressley. MR1890629

[Bro98] Paul Broussous, Extension du formalisme de Bushnell et Kutzko au cas d’une
algèbre à division, Proc. London Math. Soc. (3) 77 (1998), no. 2, 292–326.
MR1635145

[BT72] F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études
Sci. Publ. Math. 41 (1972), 5–251. MR 0327923

[BT84] F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en
groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ.
Math. 60 (1984), 197–376. MR 0756316

[Car79] Henri Carayol, Représentations cuspidales du groupe linéaire, Ann. Sci. Éc.
Norm. Supér., Serie 4 17 (1984), no. 2, 191–225. MR 0760676

[Car79a] Henri Carayol, Représentations supercuspidales de GLn, C. R. Acad. Sci. Paris
Sér. A-B 288 (1979), no. 1, A17–A20. MR522009

[Car79b] P. Cartier, Representations of p-adic groups: a survey, Automorphic forms, rep-
resentations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ.,
Corvallis, Ore., 1977), Part 1, 1979, pp. 111–155. MR546593

[Con17a] Brian Conrad, Algebraic Groups I, 2017. Course notes available at Open
Math Notes; Reference number: OMN:201701.110662, https://www.ams.org/
open-math-notes/files/course-material/OMN-201701-110662-1-Course_notes-
v3.pdf.

[Con17b] Brian Conrad, Algebraic Groups II, 2017. Course notes available at Open
Math Notes; Reference number: OMN:201701.110662, https://www.ams.org/
open-math-notes/files/course-material/OMN-201701-110663-1-Course_notes-
v5.pdf.

https://www.ams.org/open-math-notes/files/course-material/OMN-201701-110662-1-Course_notes-v3.pdf
https://www.ams.org/open-math-notes/files/course-material/OMN-201701-110662-1-Course_notes-v3.pdf
https://www.ams.org/open-math-notes/files/course-material/OMN-201701-110663-1-Course_notes-v5.pdf
https://www.ams.org/open-math-notes/files/course-material/OMN-201701-110663-1-Course_notes-v5.pdf


REPRESENTATIONS OF p-ADIC GROUPS 41

[DS16] Stephen DeBacker and Loren Spice, Stability of character sums for positive-
depth, supercuspidal representations, 2016. Journal für die reine und ange-
wandte Mathematik (Crelles Journal). ISSN (Online) 1435–5345, ISSN (Print)
0075-4102, DOI: 10.1515/crelle-2015-0094, published online February 2016.
MR 3849622

[Fin21a] Jessica Fintzen, On the construction of tame supercuspidal representations,
Compos. Math. 157 (2021), no. 12, 2733–2746. MR4357723

[Fin21b] Jessica Fintzen, On the Moy-Prasad filtration, J. Eur. Math. Soc. (JEMS) 23
(2021), no. 12, 4009–4063. MR4321207

[Fin21c] Jessica Fintzen, Tame tori in p-adic groups and good semisimple elements, Int.
Math. Res. Not. IMRN 19 (2021), 14882–14904. MR4324731

[Fin21d] Jessica Fintzen, Types for tame p-adic groups, Ann. of Math. (2) 193 (2021),
no. 1, 303–346. MR4199732

[Fin] Jessica Fintzen, Tame cuspidal representations in non-defining characteristics.
Preprint, available at https://arxiv.org/pdf/1905.06374.pdf. MR 4460255

[FKS] Jessica Fintzen, Tasho Kaletha, and Loren Spice, A twisted Yu con-
struction, Harish-Chandra characters, and endoscopy. Preprint, available at
https://arxiv.org/pdf/2106.09120v2.pdf.

[FR17] Jessica Fintzen and Beth Romano, Stable vectors in Moy-Prasad filtrations,
Compos. Math. 153 (2017), no. 2, 358–372. MR3705228

[Gér75] Paul Gérardin, Construction de séries discrètes p-adiques, Lecture Notes in
Mathematics, Vol. 462, Springer-Verlag, Berlin-New York, 1975. Sur les séries
discrètes non ramifiées des groupes réductifs déployés p-adiques. MR0396859

[Gér77] Paul Gérardin, Weil representations associated to finite fields, J. Algebra 46
(1977), no. 1, 54–101. MR0460477

[GR10] Benedict H. Gross and Mark Reeder, Arithmetic invariants of discrete Lang-
lands parameters, Duke Math. J. 154 (2010), no. 3, 431–508. MR2730575

[Hak13] Jeffrey Hakim, Tame supercuspidal representations of GLn distinguished by or-
thogonal involutions, Represent. Theory 17 (2013), 120–175. MR3027804

[HL12] Jeffrey Hakim and Joshua Lansky, Distinguished tame supercuspidal represen-
tations and odd orthogonal periods, Represent. Theory 16 (2012), 276–316.
MR2925798

[HM08] Jeffrey Hakim and Fiona Murnaghan, Distinguished tame supercuspidal rep-
resentations, Int. Math. Res. Pap. IMRP 2 (2008), Art. ID rpn005, 166.
MR2431732

[How77] Roger E. Howe, Tamely ramified supercuspidal representations of Gln, Pacific
J. Math. 73 (1977), no. 2, 437–460. MR0492087

[Hum75] James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics,
No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR0396773

[Kal19] Tasho Kaletha, Regular supercuspidal representations, J. Amer. Math. Soc. 32
(2019), no. 4, 1071–1170. MR4013740

[Kal] Tasho Kaletha, Supercuspidal L-packets. Preprint, available at
https://arxiv.org/pdf/1912.03274v2.pdf.

[Kim07] Ju-Lee Kim, Supercuspidal representations: an exhaustion theorem, J. Amer.
Math. Soc. 20 (2007), no. 2, 273–320 (electronic). MR 2276772

[Kim99] Ju-Lee Kim, Hecke algebras of classical groups over p-adic fields and supercus-
pidal representations, Amer. J. Math. 121 (1999), no. 5, 967–1029. MR1713299

[KP] Tasho Kaletha and Gopal Prasad, Bruhat–Tits theory: a new approach. Draft.
MR 4520154

[KY17] Ju-Lee Kim and Jiu-Kang Yu, Construction of tame types, Representation the-
ory, number theory, and invariant theory, 2017, pp. 337–357. MR3753917

https://arxiv.org/pdf/1905.06374.pdf
https://arxiv.org/pdf/2106.09120v2.pdf
https://arxiv.org/pdf/1912.03274v2.pdf


42 JESSICA FINTZEN

[LM18] Hung Yean Loke and Jia-Jun Ma, Local theta correspondences between supercus-
pidal representations, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no. 4, 927–991.
MR3861566

[Mor91] Lawrence Morris, Tamely ramified supercuspidal representations of classical
groups. I. Filtrations, Ann. Sci. École Norm. Sup. (4) 24 (1991), no. 6, 705–738.
MR1142907

[Mor92] Lawrence Morris, Tamely ramified supercuspidal representations of classical
groups. II. Representation theory, Ann. Sci. École Norm. Sup. (4) 25 (1992),
no. 3, 233–274. MR1169131

[Mor99] Lawrence Morris, Level zero G-types, Compositio Math. 118 (1999), no. 2,
135–157. MR1713308

[Moy86a] Allen Moy, Local constants and the tame Langlands correspondence, Amer. J.
Math. 108 (1986), no. 4, 863–930. MR853218

[Moy86b] Allen Moy, Representations of U(2, 1) over a p-adic field, J. Reine Angew. Math.
372 (1986), 178–208. MR863523

[Moy88] Allen Moy, Representations of G Sp(4) over a p-adic field. I, II, Compositio
Math. 66 (1988), no. 3, 237–284, 285–328. MR948308

[MP94] Allen Moy and Gopal Prasad, Unrefined minimal K-types for p-adic groups,
Invent. Math. 116 (1994), no. 1-3, 393–408. MR 1253198

[MP96] Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal K-types,
Comment. Math. Helv. 71 (1996), no. 1, 98–121. MR 1371680

[RY14] Mark Reeder and Jiu-Kang Yu, Epipelagic representations and invariant theory,
J. Amer. Math. Soc. 27 (2014), no. 2, 437–477. MR3164986

[Shi68] Takuro Shintani, On certain square-integrable irreducible unitary representa-
tions of some p-adic linear groups, J. Math. Soc. Japan 20 (1968), 522–565.
MR233931

[Spi18] Loren Spice, Explicit asymptotic expansions for tame supercuspidal characters,
Compos. Math. 154 (2018), no. 11, 2305–2378. MR3867302

[Spi] Loren Spice, Explicit asymptotic expansions in p-adic harmonic analysis II.
Preprint, available at https://arxiv.org/pdf/2108.12935.pdf.

[Spr09] T. A. Springer, Linear algebraic groups, second, Modern Birkhäuser Classics,
Birkhäuser Boston, Inc., Boston, MA, 2009. MR2458469

[SS08] Vincent Sécherre and Shaun Stevens, Représentations lisses de GLm(D). IV.
Représentations supercuspidales, J. Inst. Math. Jussieu 7 (2008), no. 3, 527–574.
MR2427423

[Ste08] Shaun Stevens, The supercuspidal representations of p-adic classical groups,
Invent. Math. 172 (2008), no. 2, 289–352. MR2390287

[Yu01] Jiu-Kang Yu, Construction of tame supercuspidal representations, J. Amer.
Math. Soc. 14 (2001), no. 3, 579–622 (electronic). MR 1824988

[Zha15] Lei Zhang, Distinguished tame supercuspidal representations of symmetric pairs
(Sp4n(F ), Sp2n(E)), Manuscripta Math. 148 (2015), no. 1-2, 213–233. With an
appendix by Dihua Jiang and the author. MR3377755

[Zha20] Chong Zhang, Distinguished regular supercuspidal representations, Math. Ann.
376 (2020), no. 3-4, 1561–1598. MR4081123

[Zin92] Ernst-Wilhelm Zink, Representation theory of local division algebras, J. Reine
Angew. Math. 428 (1992), 1–44. MR1166506

Universität Bonn, Bonn, Germany and University of Cambridge, Cam-

bridge, UK and Duke University, Durham, NC, USA

Email address: fintzen@math.uni-bonn.de

https://arxiv.org/pdf/2108.12935.pdf

	1. Introduction
	2. What are p-adic groups and representations of p-adic groups?
	2.1. Reductive groups over algebraically closed fields
	2.2. p-adic numbers and other non-archimedean local fields
	2.3. p-adic groups
	2.4. Representations of p-adic groups

	3. An introduction to the Moy–Prasad filtration and Bruhat–Tits theory
	3.1. The split case
	. Properties of the Moy–Prasad filtration
	. The Bruhat–Tits building
	3.2. The non-split (tame) case
	3.3. The enlarged Bruhat–Tits building
	3.4. The depth of a representation

	4. Construction of supercuspidal representations
	4.1. The input for the construction
	4.2. The construction of supercuspidal representations à la Yu
	4.3. The proof that the representations are supercuspidal
	4.4. Depth-zero supercuspidal representations
	4.5. A parameterization of supercuspidal representations
	4.6. A twist of Yu's construction

	5. Exhaustiveness of the construction of supercuspidal representations
	5.1. Exhaustiveness result
	5.2. The datum as in Fi-exhaustion
	5.3. Recovering a Yu datum from a supercuspidal representation

	. Selected notation
	. Selected definitions
	. References

