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BOUNDS AND CONSTRUCTIONS FOR METERING SCHEMES∗

CARLO BLUNDO† , ANNALISA DE BONIS†, AND BARBARA MASUCCI†

Abstract. Metering schemes are cryptographic protocols to count the number of visits received

by web sites. These measurement systems may be used to decide the amount of money to be paid

to web sites hosting advertisements. Indeed, the amount of money paid by the publicity agencies to

the web sites depends on the number of clients which visited the sites. In this paper we consider

two generalizations of the metering scheme proposed by Naor and Pinkas (Vol. 1403 of LNCS, pp.

576–590). In their scheme a web site is paid if and only if the number of clients which visit the site

is greater than a fixed threshold. We consider ramp metering schemes and metering schemes with

pricing, that is, a scheme providing a tradeoff between the security and the complexity of information

distribution and a scheme allowing to count the exact number of visits received by each server so that

each server can be paid a proportional amount of money, respectively. We provide lower bounds on

the size of the information distributed to clients and servers by these metering schemes and present

schemes which achieve these lower bounds.

1. Introduction. Most of the revenues of web sites come from advertisement
payments. Web advertisers must have a way to measure the exposure of their ads
by obtaining usage statistics about web sites which contain their ads. Indeed, the
amount of money charged to display ads depends on the number of visits received by
the web site. Consequently, advertisers should prevent the web sites from inflating
the count of their visits in order to demand more money. In a typical scenario there
is an audit agency whose task is to measure the interaction between a large number
of servers and clients. Hence, the audit agency should dispose of a mechanism which
ensures the validity and accuracy of usage measurements against fraud attempts by
servers (web sites) and clients (visitors).

Even though metering originated in the field of web advertisements, there are
several other applications of secure metering schemes.

• Network accounting: Network pricing is very complicated since the infor-
mation transmitted through the Internet is divided into packets which travel
separately and are routed through many different networks. Metering schemes
can provide an effective and secure measurement of the number of packets
routed by a network through several different networks.

• Target audience: Metering schemes can be used to measure the usage of a
web site by a special category of users. A metering scheme can be used,
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for example, by an editor of text books who pays a web site to host her
advertisements and is interested in knowing how many professors visited the
site. In return, the professors receive updates on the leatest releases.

• Toll free connection: Many companies offer toll free numbers to their cus-
tomers. Similarly, they might agree to pay for the cost required to access
their web sites. Franklin and Malkhi [6] suggested to use metering schemes
as a method to measure the amount of money that the companies should pay
to the users’ ISPs.

Currently, there is no standard method for web metering. The most employed
measurement method to learn about the exposure of ads on the Internet is the pay-
per-click method, which is based on the number of click-through on banners and other
ads. Advertisers typically install a software, called the click-through payment program,
at web servers hosting their ads, in order to collect access information. The security
of this method has been analyzed in [1] and [13] where several protocols have been
described to detect hit inflation attacks which artificially inflate the number of click-
throughs. Currently used alternative to pay-per-click programs are pay-per-lead and
pay-per-sale programs, where servers are paid only for visits from users who perform
some substantial activity or make purchases at the web sites. It is virtually impossible
for servers to mount useful hit inflation attacks on these schemes, since simple clicks
are worthless to servers. However, these programs are susceptible to a different form
of fraud, known as hit shaving, where the server fails to report that the user visit is
actually associated with a lead or a sale.

Franklin and Malkhi [6] first proposed metering schemes where clients are involved
in the computation of a timing function upon visiting a web server. The results of
this computation are saved by the server along with the record of the visits, as an
indication of the amount of computation performed.

Subsequently, Naor and Pinkas [10] proposed metering schemes where any server
provides the audit agency with a short proof of the visits it has received. Their
metering schemes involve an initialization phase during which clients receive some
secret information from the audit agency. Such information is used to compute a
message which is sent to the visited server. After collecting these messages from
different clients each server is able to compute the proof. Clearly, such schemes
require clients to register with the audit agency in order to participate in the metering
process. Such registration may have several advantages for clients. For example, after
registration the clients may access to additional services, such as receiving news on
topics of interest, getting information on upcoming promotions, downloading coupons,
participating in a forum, sending through a web site free SMS (Short Message Service),
disposing of free disk space and mailbox, and many others. Moreover, registration
does not require clients to disclose their real identity. The metering schemes in [10]
are supposed to be active for at most τ time frames and during these time frames are
secure against corrupt servers that cooperate in order to inflate their count of visits.
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In particular, Naor and Pinkas have considered metering schemes where any server is
able to compute its proof for a certain time frame if and only if it has been visited in
that time frame by a number of clients greater than or equal to some threshold h.

In this paper we introduce two generalizations of Naor and Pinkas metering
schemes [10]: ramp metering schemes [5] and metering schemes with pricing [2]. In
the following we briefly discuss the motivations for introducing our generalizations.
Both these kinds of metering schemes involve distributing information to clients and
servers. Since such information distribution affects the overall communication com-
plexity, a major goal is to construct metering schemes whose overhead to the overall
communication is as small as possible. With this motivations, we decided mainly to
focus on the communication complexity of such metering schemes.

Ramp Metering Schemes

In the schemes proposed by Naor and Pinkas [10] the audit agency sends to each
client a polynomial of degree sτ − 1 over GF (q), where s is the maximum size of a
coalition of corrupt servers and τ is the number of time frames in which the scheme
is active. For any time frame, the client sends to the visited server the value obtained
by evaluating its polynomial at a certain point. The proof consists of a single point
in GF (q) and can be computed if and only if the server has received at least h client
visits.

Given the high complexity of the above said distribution mechanism, a natural
step is to trade complexity for security. Hence, we consider a more flexible situation
where a server which receives less than h visits is able to gain some partial information
about its proof. This loss of security is paid back by the smaller quantity of informa-
tion distributed to parties. More precisely, we introduce ramp metering schemes [5],
in which there are two thresholds ` and h, where ` < h ≤ n, and any server can be in
three different situations in a given time frame t: 1) the server is visited by a number
of clients greater than or equal to h. In this case the server is able to calculate its
proof; 2) the server is visited by a number of clients smaller than or equal to `. In
this case the server has no information about its proof; 3) the server is visited by a
number of clients between `+1 and h−1. In this case the server has some information
about its proof, but this information does not enable it to compute the proof.

Ramp metering schemes provide a separation between the capacity of the servers
of computing their proofs, which is specified by the parameter h, and the security of
the scheme, which is specified by the parameter `. The model considered by Naor and
Pinkas [10] does not provide such a separation, since in that model the capacity of the
servers of computing their proofs and the security of the scheme are specified by the
same parameter h. Ramp metering schemes are particularly useful for advertisement
applications in which web sites are paid only if they perform a very large number
of services. In such a case it might be convenient to find a compromise between the
security requirements and the complexity of information distribution.
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We provide lower bounds on the size of the information distributed to clients and
servers in ramp metering schemes. We also present a scheme which achieves these
bounds. The size of the information distributed to clients and that of the information
distributed to servers decrease linearly with the difference h − `. The lower is the
difference h − `, the smaller is the range of values k < h such that a server which
receives k visits is able to gain some information about its proof. Hence, for any value
of the difference h − `, our scheme provides a distinct tradeoff between security and
the complexity of information distribution.

Metering Schemes with Pricing

Metering schemes proposed by Naor and Pinkas [10] can be used to check if a
server received at least h visits, where h is a predefined parameter of the schemes.
Indeed, in their schemes a server that has received a number of visits less than h is
in the same situation as a server which has received no visit, i.e., it has absolutely
no information about its proof. Consequently, the audit agency will pay nothing to a
server that has been visited by less than h clients.

In order to have a more flexible payment system which enables to count the exact
number of visits that a server has received in any time frame, we introduce metering
schemes with pricing [2]. In these schemes there are two thresholds ` and h, where
` < h ≤ n, and any server can be in three different situations in a given time frame
t: 1) the server is visited by a number of clients greater than or equal to h. In this
case the audit agency would pay all the negotiated amount for the exposure of the
ads; 2) the server is visited by a number of clients smaller than or equal to `. In
this case the audit agency would pay nothing; 3) the server is visited by a number of
clients between ` + 1 and h − 1. In this case the audit agency would pay a smaller
sum growing with the number of the visits. Recently the authors of [9] proposed a
metering scheme with pricing within a different model than the one considered in
this paper and in [2]. In their scheme there is an interaction between servers and the
audit agency during the whole metering process. In our scheme, as well as in that by
Naor and Pinkas [10], the audit agency communicates only with the clients and this
interaction is restricted only to the initialization phase.

We provide lower bounds on the size of the information distributed to clients and
servers in metering schemes with pricing. We also present a scheme which achieves
these bounds.

2. The Scenario. A metering scheme consists of n clients, say C1, . . . , Cn, m

servers, say S1, . . . ,Sm, and an audit agency A, whose task is to measure the inter-
action between the clients and the servers. We assume that the scheme is active for
τ time frames and that the audit agency is interested in the number of clients which
visit each server during any time frame t = 1, . . . , τ. A visit can be defined in several
different ways according to the measurement context. For example, it might be a page
hit, a session lasting more than a fixed threshold of time or any similar definition (it
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is beyond the scope of this paper to define what should be considered as a visit). Any
client visit to a server during a time frame is called a regular operation.

The general structure of a metering scheme is the following:
• Initialization

This step is performed once by the audit agency A. The audit agency A
chooses a random secret key and generates an initialization message for any
client, which is a function of this key and of the identity of the client. This
message is sent to any client through a private channel and should be kept
secret by the client.
For any i = 1, . . . , n, we denote by ci the information that the audit agency
A gives to the client Ci during the initialization phase. Moreover, we denote
by Ci the set of all possible values that ci can assume.

• Regular Operation in a Time Frame
Every time a client Ci visits a server Sj in a time frame t it uses its private
information to compute a message which is sent to the visited server. For
any i = 1, . . . , n, j = 1, . . . , m, and t = 1, . . . , τ , we denote by ct

i,j the
information that the client Ci sends to the server Sj during a visit in time
frame t. Moreover, we denote by Ct

i,j the set of all possible values that ct
i,j

can assume. For any j = 1, . . . , m and t = 1, . . . , τ , we denote with Xt
j,(dj)

the set of the dj client visits received by server Sj in time frame t.
• Proof Computation for a Time Frame

At the end of a time frame any server uses the information provided by client
visits during the time frame in order to compute its proof. Notice that the
proof can be computed only is the servers has received ”enough” (to be defined
later) client visits. Afterwards, the proof is sent to the audit agency.
For any j = 1, . . . , m and t = 1, . . . , τ , we denote by pt

j the proof computed
by the server Sj in time frame t. Moreover, we denote by P t

j the set of all
values that pt

j can assume. Given a set of server indices B = {j1, . . . , jβ} ⊆
{1, . . . , m}, where j1 < j2 < . . . < jβ , we denote by P t

B
the cartesian product

P t
j1
× · · · × P t

jβ
.

• Proof Verification for a Time Frame
During this stage the audit agency verifies if the proofs received by the servers
are consistent with its private information. In this case, the audit agency will
pay the server for its services, otherwise, the server will not get any money.

We consider a scenario with a certain number s of corrupt servers and a certain
number c of corrupt clients, which could cooperate in order to inflate the count of
the visits that a corrupt server receives. A corrupt client Ci can donate to a corrupt
server the whole information ci received by the audit agency during the initialization
phase. In time frame t, where t = 1, . . . , τ , a corrupt server can donate to another
corrupt server the information that it has received during time frames 1, . . . , t. For
any i = 1, . . . , n and t = 1, . . . , τ , we denote by V

[t]
j all the information received by a
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corrupt server Sj in time frames 1, . . . , t. This information includes the sets of client
visits received by server Sj in time frames 1, . . . , t. We also define V

[0]
j = ∅, for any

corrupt server Sj . Given a set of server indices B = {j1, . . . , jβ} ⊆ {1, . . . , m}, where
j1 < j2 < . . . < jβ , we denote by V [t]

B
the cartesian product V [t]

j1
× · · · × V [t]

jβ
.

In this paper with a boldface capital letter, say X, we denote a random variable
taking value on a set denoted with the corresponding capital letter X according to
some probability distribution {Pr

X
(x)}x∈X . The values such a random variable can

take are denoted with the corresponding lower letter. Given a random variable X we
denote with H(X) the Shannon entropy of {Pr

X
(x)}x∈X (for some basic properties

of entropy, consult the Appendix). Let d be an arbitrary positive integer and let
X1, . . . ,Xd be d random variables taking values on the sets X1, . . . , Xd, respectively.
For any subset V = {i1, . . . , iv} ⊆ {1, . . . , d}, with i1 ≤ . . . ≤ iv, we denote with X

V

the set Xi1×. . .×Xiv
and with X

V
the sequence of random variables Xi1 , . . . ,Xiv. We

formally define metering schemes in terms of entropy. We use the entropy approach
mainly because this leads to a compact and simple description of the schemes and
because the entropy approach takes into account all probability distributions on the
sets of the proofs generated by servers. For the reader’s convenience, the notation
introduced in this section is summarized in the Appendix.

2.1. Useful Lemmas. In order to prove our results we need the following two
technical lemmas.

Lemma 2.1. Let W and E be two random variables such that H(W|E) = 0.
Then, for any two random variables F and G, one has H(G|WEF) = H(G|EF).

Proof. Let us consider the mutual information I(W;G|EF). From Equations
(22) and (23) of Appendix one has

H(W|EF)−H(W|EFG) = H(G|EF)−H(G|WEF).

From Equation (24) of Appendix it follows that H(W|EFG) ≤ H(W|EF). Since
H(W|EF) = 0, then one gets H(G|WEF) = H(G|EF).

Lemma 2.2. Let α be a non negative number and let E, F, and G be three random
variables such that H(G|EF) = 0 and H(G|E) ≥ αH(G). Then, it holds that

H(F|E) ≥ αH(G) + H(F|EG).

Proof. Consider the mutual information I(F;G|E). From Equation (23) of Ap-
pendix it holds that

H(F|E)−H(F|EG) = H(G|E)−H(G|EF).

Since H(G|EF) = 0 and H(G|E) ≥ αH(G), then it follows that H(F|E) ≥ αH(G)+
H(F|EG).

3. Ramp Metering Schemes. In metering schemes proposed by Naor and
Pinkas [10] the audit agency chooses a random bivariate polynomial Q(x, y) having
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degree h − 1 in x and sτ − 1 in y over GF (q), where q is a large prime number.
Afterwards, the audit agency sends the polynomial Q(i, y) to any client Ci. When a
client Ci visits a server Sj in a time frame t it sends the value Q(i, j ◦ t) to Sj , where
“◦” denotes an operator mapping each pair (j, t), with j = 1, . . . ,m and t = 1, . . . , τ,

to an element of GF (q), having the property that no distinct two pairs (j, t) and (j′, t′)
are mapped to the same element. If a server Sj receives at least h visits from clients
in a time frame t, then it can interpolate the polynomial Q(x, j ◦ t) and compute its
proof as Q(0, j ◦ t).

Given the high complexity of the above said distribution mechanism, a natural
step is to trade complexity for security. Hence, we consider a more flexible situation
where a server which receives less than h visits is able to gain some partial infor-
mation about its proof. This loss of security is paid back by the smaller quantity
of information distributed to parties. We refer to these metering schemes, as ramp
metering schemes.

In ramp metering schemes there are two thresholds ` and h, where ` < h ≤ n,
and any server can be in three different situations in a given time frame t: 1) the
server is visited by a number of clients greater than or equal to h. In this case the
server is able to compute its proof; 2) the server is visited by a number of clients
smaller than or equal to `. In this case the server has no information about its proof
(for example, assuming that the proof belongs to a set F , the proof can be any value
in F ); 3) the server is visited by a number f of clients between ` + 1 and h − 1. In
this case the server could have some partial information about its proof (for example,
the server will know that the proof belongs to a set whose size is smaller than |F |).
Ramp metering schemes enable to reduce the size of the information distributed to
the parties by a factor of h − ` at the price of a loss in security. The lower is the
difference h − `, the smaller is the range of values k < h such that a server which
receives k visits is able to gain some information about its proof. Consequently, ramp
metering schemes are particularly useful for advertisement applications in which web
sites are paid only if they perform a very large number of services. In such a case it
might be convenient to find a compromise between the security requirements and the
complexity of information distribution.

We assume that the schemes are active for τ time frames and that the audit
agency is interested in the number of clients which visit each server during any time
frame t = 1, . . . , τ. Moreover, we assume that at most a certain number, say c with
c ≤ `, of clients and a certain number, say s with s ≤ m, of servers can be corrupt,
i.e., they can cooperate in order to inflate the count of visits received by servers.

Definition 3.1. An (n,m, τ, c, s, `, h) ramp metering scheme is a protocol to
measure the interaction between n clients and m servers during τ time frames in such
a way that the following properties are satisfied:

1. For any time frame t each client can compute the piece to be given to any
visited server:
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Formally, it holds that H(Ct
i,j |Ci) = 0 for i = 1, . . . , n, j = 1, . . . , m, and

t = 1, . . . , τ .
2. For any time frame t any server which has been visited by at least h clients

in time frame t can compute its proof for t:
Formally, it holds that H(Pt

j |Xt
j,(dj)

) = 0, where dj ≥ h, for j = 1, . . . ,m,
and t = 1, . . . , τ .

3. Let us consider a coalition of 0 ≤ α ≤ c corrupt clients Ci1 , . . . , Ciα and
1 ≤ β ≤ s corrupt servers Sj1 , . . . ,Sjβ

, and let B = {1, . . . , β}. Assume that
at some time frame t each server in the coalition has been visited by at most
` − α clients. Then, the servers in the coalition have no information about
their proofs for t:
Formally, it holds that

H(Pt
B
|Ci1 . . .Ciα

Xt
j1,(dj1 ) . . .Xt

jβ ,(djβ
)V

[t−1]
B

) = H(Pt
B
),

where α ≤ c ≤ ` and djv ≤ `− α, for v = 1, . . . , β and t = 1, . . . , τ.

4. Let us consider a coalition of 0 ≤ α ≤ c corrupt clients Ci1 , . . . , Ciα and
1 ≤ β ≤ s corrupt servers Sj1 , . . . ,Sjβ

, and let B = {1, . . . , β}. Assume that
at some time frame t each server Sjv in the coalition has been visited by djv

clients other than Ci1 , . . . , Ciα , with ` − α < djv < h − α. Then, the servers
in the coalition may have some information about their proofs for t:
Formally, it holds that

H(Pt
B
|Ci1 . . .CiαXt

j1,(dj1 ) . . .Xt
jβ ,(djβ

)V
[t−1]
B

)

≥ 1
h− `

β∑
v=1

[h− (α + djv )]H(Pt
jv
|Pt

j1 . . .Pt
jv−1),

where α ≤ c ≤ `, Xt
jv,(djv ) is a set of visits to Sjv from djv clients other than

Ci1 , . . . , Ciα and ` < djv + α < h, for v = 1, . . . , β and t = 1, . . . , τ .
We want to point out that our definition of corrupt servers is slightly different

from that given by Naor and Pinkas [10]. Indeed, in their model a corrupt server can
give to another corrupt server only the information collected during the previous time
frames, whereas in our model, which is closer to what can actually happen, a corrupt
server can give also the information provided by the visits received in the current time
frame.

3.1. Lower Bounds. In this section we provide lower bounds on the size of the
information distributed to clients by the audit agency during the setup of the scheme
and on the size of the information given by any client while visiting any server during
any time frame.

A Lower Bound on the Size of Clients’ Secret Information. Since our goal is to
prove a lower bound on the size of the information distributed to clients, we consider
the worst possible case that at any time frame t = 1, . . . , τ and for any corrupt
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server Sj the set V
[t]
j contains the maximum possible information, in other words, we

assume that in any time frame t′ = 1, . . . , t, corrupt servers receive visits from all
clients. Formally, it holds H(Ct′

i,j |V[t]
j ) = 0, for any i = 1, . . . , n, j = 1, . . . , m and

1 ≤ t′ ≤ t ≤ τ − 1. Consequently one has

(1) H(Pt′
j
|V[t]

j ) = 0, for any j = 1, . . . ,m and 1 ≤ t′ ≤ t ≤ τ − 1.

The next lemma will be a useful tool to prove a lower bound on the size of the
information distributed to clients in ramp metering schemes.

Lemma 3.2. LetM be an (n,m, τ, c, s, `, h) ramp metering scheme. Let C1, . . . , Cα

be a coalition of α ≤ c corrupt clients, let S1, . . . ,Sβ be a coalition of β ≤ s corrupt
servers, and let B = {1, . . . , β}. For j = 1, . . . , β and t = 1, . . . , τ , let Xt

j,(h−α) be
a set of visits from h − α clients other than C1, . . . , Cα to server Sj in time frame t.

Then it holds that

H(C1|C2 . . .CαXt
1,(h−α) . . .Xt

β,(h−α)V
[t−1]
B

)

≥ 1
h− `

H(Pt
B
) + H(C1|C2 . . .CαXt

1,(h−α) . . .Xt
β,(h−α)V

[t]
B

).

Proof. From (22) of Appendix we have

I(C1;Pt
B
|C2 . . .CαXt

1,(h−α) . . .Xt
β,(h−α)V

[t−1]
B

)

= H(Pt
B
|C2 . . .CαXt

1,(h−α) . . .Xt
β,(h−α)V

[t−1]
B

)

−H(Pt
B
|C1 . . .CαXt

1,(h−α) . . .Xt
β,(h−α)V

[t−1]
B

)

= H(C1|C2 . . .CαXt
1,(h−α) . . .Xt

β,(h−α)V
[t−1]
B

)

−H(C1|C2 . . .CαXt
1,(h−α) . . .Xt

β,(h−α)P
t
B
V[t−1]

B
).

From (19) of Appendix we have

H(Pt
B
|C1 . . .CαXt

1,(h−α) . . .Xt
β,(h−α)V

[t−1]
B

)

= H(Pt
1|C1 . . .CαXt

1,(h−α) . . .Xt
β,(h−α)V

[t−1]
B

)

+
β∑

j=2

H(Pt
j |Pt

1 . . .Pt
j−1C1 . . .CαXt

1,(h−α) . . .Xt
β,(h−α)V

[t−1]
B

)

≤ H(Pt
1|C1 . . .CαXt

1,(h−α))

+
β∑

j=2

H(Pt
j |C1 . . .CαXt

j,(h−α)) (from (24) of Appendix)

= 0 (from Property 2 of Definition 3.1).
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From Property 4 of Definition 3.1 we have that

H(Pt
B
|C2 . . .CαXt

1,(h−α) . . .Xt
β,(h−α)V

[t−1]
B

) ≥ h− (h− 1)
h− `

β∑

j=1

H(Pt
j |Pt

1 . . .Pt
j−1)

=
1

h− `
H(Pt

B
) (from (19) of Appendix).

Therefore, we have that

H(C1|C2 . . .CαXt
1,(h−α) . . .Xt

β,(h−α)V
[t−1]
B

)

≥ 1
h− `

H(Pt
B
) + H(C1|C2 . . .CαXt

1,(h−α) . . .Xt
β,(h−α)P

t
B
V[t−1]

B
)

=
1

h− `
H(Pt

B
) + H(C1|C2 . . .CαXt

1,(h−α) . . .Xt
β,(h−α)V

[t]
B

)

(from (1) of this section).

Lemma 3.3. LetM be an (n,m, τ, c, s, `, h) ramp metering scheme. Let C1, . . . , Cα

be a coalition of α ≤ c corrupt clients, let S1, . . . ,Sβ be a coalition of β ≤ s corrupt
servers, and let B = {1, . . . , β}. For j = 1, . . . , β and t = 1, . . . , τ , let Xt

j,(h−α) be
a set of visits from h − α clients other than C1, . . . , Cα to server Sj in time frame t.
Then, it holds that

H(C1|C2 . . .CαX1
1,(h−α) . . .X1

β,(h−α))

≥ 1
h− `

τ∑
t=1

H(Pt
B
) + H(C1|C2 . . .CαXτ

1,(h−α) . . .Xτ
β,(h−α)V

[τ ]
B

).

Proof. The proof is by induction on τ . For τ = 1 the lemma follows from Lemma
3.2. Now, suppose the lemma true for τ − 1, that is

H(C1|C2 . . .CαX1
1,(h−α) . . .X1

β,(h−α))

≥ 1
h− `

τ−1∑
t=1

H(Pt
B
) + H(C1|C2 . . .CαXτ−1

1,(h−α) . . .Xτ−1
β,(h−α)V

[τ−1]
B

).(2)

We have that

H(C1|C2 . . .CαXτ−1
1,(h−α) . . .Xτ−1

β,(h−α)V
[τ−1]
B

)

= H(C1|C2 . . .CαV[τ−1]
B

)

≥ H(C1|C2 . . .CαXτ
1,(h−α) . . .Xτ

β,(h−α)V
[τ−1]
B

) (from (24) of Appendix)

≥ 1
h− `

H(Pτ
B
) + H(C1|C2 . . .CαXτ

1,(h−α) . . .Xτ
β,(h−α)V

[τ ]
B

)(3)

(from Lemma 3.2).

Hence, the lemma follows from (2) and (3).
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The next theorem provides a lower bound on the size of the information dis-
tributed to clients in ramp metering schemes. The theorem states that the informa-
tion that must be kept secret by clients decreases linearly with the difference h − `

and grows linearly with the number of time frames the scheme must be active and
the size of the coalition of corrupt servers.

Theorem 3.4. Let M be an (n,m, τ, c, s, `, h) ramp metering scheme. Let
S1, . . . ,Sβ be a coalition of β ≤ s corrupt servers and let B = {1, . . . , β}. Then,
for any i = 1, . . . , n, it holds that

H(Ci) ≥ 1
h− `

τ∑
t=1

H(Pt
B
).

Proof. Let C1, . . . , Cα be a coalition of α ≤ c corrupt clients and, for j = 1, . . . , β

and t = 1, . . . , τ , let Xt
j,(h−α) be a set of visits from h−α clients other than C1, . . . , Cα

to server Sj in time frame t. We have

H(C1) ≥ H(C1|C2 . . .CαX1
1,(h−α) . . .X1

β,(h−α)) (from (24) of Appendix)

≥ 1
h− `

τ∑
t=1

H(Pt
B
) + H(C1|C2 . . .CαXτ

1,(h−α) . . .Xτ
β,(h−α)V

[τ ]
B

)

(from Lemma 3.3)

≥ 1
h− `

τ∑
t=1

H(Pt
B
) (from (18) of Appendix).

Notice that Definition 3.1 does not say anything on the entropies of random
variables Pt1

j1
and Pt2

j2
, for different j1, j2 ∈ {1, . . . , m} and t1, t2 ∈ {1, . . . , τ}. For

example, we could have either H(Pt1
j1

) > H(Pt2
j2

) or H(Pt1
j1

) ≤ H(Pt2
j2

). Our results
apply to the general case of arbitrary entropies on proofs, but for clarity we state our
results for the simpler case that H(Pt1

j1
) = H(Pt2

j2
), for all j1, j2 ∈ {1, . . . ,m} and

t1, t2 ∈ {1, . . . , τ}. We denote this common entropy by H(P).
The next corollary is an immediate consequence of Theorem 3.4.
Corollary 3.5. Let M be an (n,m, τ, c, s, `, h) ramp metering scheme. If the

proofs for the servers are pairwise statistically independent, then for any i = 1, . . . , n,
it holds that

H(Ci) ≥ sτ

h− `
H(P).

If the random variable P is uniformly distributed in a finite field F , then H(P) =
log |F |. Consequently, the size of the information owned by a client is lower bounded
by sτ(h− `)−1 log |F |, and from (17) of Appendix, it follows that

(4) log |Ci| ≥ sτ

h− `
log |F |, for i = 1, . . . , n.

In Section 3.2 we will present an (n,m, τ, c, s, `, h) ramp metering scheme which
achieves this bound.
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A Lower Bound on the Size of Servers’ Secret Information. In the following we
provide a lower bound on the size of the information given to servers by clients in
ramp metering schemes. To prove the bound we need the following lemma.

Lemma 3.6. Let M be an (n,m, τ, c, s, `, h) ramp metering scheme. For j =
1, . . . , m and t = 1, . . . , τ , let Xt

j,(h−1) be a set of visits from h− 1 clients other than
Ci to server Sj in time frame t. For any i = 1, . . . , n, j = 1, . . . ,m, and t = 1, . . . , τ ,
it holds that

H(Ct
i,j |Xt

j,(h−1)) ≥
1

h− `
H(Pt

j) + H(Ct
i,j |Xt

j,(h−1)P
t
j).

Proof. From (22) of Appendix we have

I(Ct
i,j ;P

t
j |Xt

j,(h−1)) = H(Ct
i,j |Xt

j,(h−1))−H(Ct
i,j |Xt

j,(h−1)P
t
j)

= H(Pt
j |Xt

j,(h−1))−H(Pt
j |Xt

j,(h−1)C
t
i,j).

From Property 2 of Definition 3.1 it holds

H(Pt
j |Xt

j,(h−1)C
t
i,j) = 0,

whereas, from Property 4 of Definition 3.1 we get

H(Pt
j |Xt

j,(h−1)) ≥
1

h− `
H(Pt

j).

Hence, we obtain

H(Ct
i,j |Xt

j,(h−1)) ≥
1

h− `
H(Pt

j) + H(Ct
i,j |Xt

j,(h−1)P
t
j).

The next theorem provides a lower bound on the size of the information dis-
tributed to servers from clients in ramp metering schemes. It implicitly shows that
the size of the information each client has to give out when visiting a server de-
creases linearly with the difference h − `. Since H(Ct

i,j) ≥ H(Ct
i,j |Xt

j,(h−1)) and
H(Ct

i,j |Xt
j,(h−1)P

t
j) ≥ 0, the theorem immediately follows from Lemma 3.6.

Theorem 3.7. Let M be an (n,m, τ, c, s, `, h) ramp metering scheme. For any
i = 1, . . . , n, j = 1, . . . , m, and t = 1, . . . , τ , it holds that

H(Ct
i,j) ≥

1
h− `

H(Pt
j).

If the variable Pt
j is uniformly distributed in a finite field F , then H(Pt

j) = log |F |.
Consequently, the size of the information distributed by any client to any server is
lower bounded by (h− `)−1 log |F | and from (17) it follows that

(5) log |Ct
i,j | ≥

1
h− `

log |F |, for i = 1, . . . , n, j = 1, . . . ,m, and t = 1, . . . , τ.

In Section 3.2 we will present an (n,m, τ, c, s, `, h) ramp metering scheme which
achieves this bound. Notice that lower bounds on the size of the information dis-
tributed to parties in the threshold model considered by Naor and Pinkas [10] can be
derived setting ` = h− 1 in Equations (4) and (5).
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3.2. A Protocol for Ramp Metering Schemes. In this section we present
a ramp metering scheme which achieves the bounds (4) and (5) of Section 3.1. The
scheme is a generalization of Shamir’s secret-sharing scheme [14].

Let q > n + h − ` be a large prime number. In the following, we use the term
regular visit to indicate visits performed by non-corrupt clients. Moreover, we denote
by “◦” an operator mapping each pair (j, t), with j = 1, . . . , m and t = 1, . . . , τ, to
an element of GF (q), having the property that no distinct two pairs (j, t) and (j′, t′)
are mapped to the same element. Let f1, . . . , fh−` be preselected elements of GF (q)
distinct from 1, . . . , n, which are known to any client and any server. The scheme is
the following:

Initialization:
• The audit agencyA chooses h−` polynomials P1(y), . . . , Ph−`(y)

of degree sτ − 1 over GF (q).
• Let Q(x, y) be a bivariate polynomial over GF (q) of degree h−1

in x and degree sτ − 1 in y, such that Q(fr, y) = Pr(y), for r =
1, . . . , h − `. (It is easy to construct such a random polynomial
by using Lagrange polynomials.)

• The audit agency A sends the polynomial Q(i, y) to each client
Ci.

Regular Operation for Time Frame t:
When the client Ci visits the server Sj in time frame t, it sends the value
Q(i, j ◦ t) to Sj .

Proof Generation and Verification for Time Frame t:
• Assume that the server Sj has been visited by at least h different

clients in time frame t.
• Then, it can perform a Lagrange interpolation on the polynomial

Q(x, j ◦ t) and compute the proof (P1(j ◦ t), . . . , Ph−`(j ◦ t)).
• The server Sj sends the proof (P1(j ◦ t), . . . , Ph−`(j ◦ t)) to the

audit agency.
• The audit agency A verifies the proof by evaluating the polyno-

mial Q(x, y) at the points (f1, j ◦ t), . . . , (fh−`, j ◦ t).

Fig. 1. An (n, m, τ, c, s, `, h) ramp metering scheme.

Analysis of the Scheme. It is immediate to verify that the scheme satisfies Prop-
erty 1 of Definition 3.1. Indeed, for any i = 1, . . . , n, the information given by the
audit agency to the client Ci consists of the univariate polynomial Q(i, y) and for any
j = 1, . . . , m and t = 1, . . . , τ , the information given to the server Sj by client Ci in
time frame t is obtained by evaluating the univariate polynomial Q(i, y) at j ◦ t.

It is also easy to verify that the scheme satisfies Property 2 of Definition 3.1.
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Assume that the server Sj has been visited by h clients in time frame t. Then, Sj

knows h points of the polynomial Q(x, j ◦t) and can perform a Lagrange interpolation
on it. Hence, it can compute its proof (Q(f1, j ◦ t), . . . , Q(fh−`, j ◦ t)), by evaluating
the polynomial Q(x, j ◦ t) in the points f1, . . . , fh−`, which are known to all parties.

To prove that our scheme satisfies Property 3 of Definition 3.1, we consider the
worst possible case that in any time frame t = 1, . . . , τ, all corrupt clients decide
to cooperate with all corrupt servers and that corrupt servers have collected the
maximum possible information during the previous time frames 1, . . . , t− 1. In other
words, for any time frame t = 1, . . . , τ, we assume that each corrupt client Ci gives its
polynomial Q(i, y) to all corrupt servers, and that any corrupt server Sj knows the
polynomial Q(x, j ◦ t) for t′ = 1, . . . , t − 1. Without loss of generality, let S1, . . . ,Ss

be a coalition of s corrupt servers which decide to cooperate in some time frame t,
with 1 ≤ t ≤ τ. We need to prove that for any time frame t = 1, . . . , τ, the coalition
of corrupt servers is not able to compute the proof (Q(f1, j ◦ t), . . . , Q(fh−`, j ◦ t)), for
any j = 1, . . . , s if each server in the coalition receives less than `− c regular visits in
time frame t. In order to compute Q(fr, j ◦ t), for r = 1, . . . , h − ` and j = 1, . . . , s,
the corrupt servers should be able to interpolate either the polynomial Q(x, j ◦ t)
or the bivariate polynomial Q(x, y). The information that a corrupt client Ci gives
to a corrupt server is equivalent to the sτ coefficients of its polynomial Q(i, y). For
j = 1, . . . , s, the information collected by each corrupt server Sj during the previous
time frames is equivalent to the h coefficients of the polynomials Q(x, j ◦ t′), for any
t′ = 1, . . . , t−1. Suppose that in time frame t, the server Sj , j ∈ {1, . . . , s}, receives gt

j

regular visits. Then, the overall information on Q(x, y) held by the servers S1, . . . ,Ss

consists of

(6) csτ + s(t− 1)h +
s∑

j=1

gt
j − cs(t− 1)

points. The first term of (6) corresponds to the information given by the c corrupt
clients, the second term corresponds to the information collected by all servers in
the coalition during the previous time frames, the third term corresponds to the
information provided by the client visits in time frame t, and the last term represents
the information which has been counted twice. We will prove that the servers in the
coalition are unable to interpolate the polynomial Q(x, y) if each server in the coalition
receives less than `−c regular visits. Notice that if gt

j ≤ `−c, for any t = 1, . . . , τ and
j = 1, . . . , s, then expression (6) is less than or equal to hsτ − s(h− `). Consequently,
for any choice of s(h−`) values av,j in GF (q), where v = 1, . . . , h−` and j = 1, . . . , s,
there is a polynomial R(x, y) which is consistent with the information held by the
servers in the coalition and such that R(fv, j ◦ t) = av,j for v = 1, . . . , h − ` and
j = 1, . . . , s. Hence, the corrupt servers S1, . . . ,Ss have probability at most 1/qs(h−`)

of guessing their proofs for time frame t. Notice that instead of computing all the
coefficients of the polynomial Q(x, j ◦ t) and then evaluating the polynomial in the
point 0, the servers could only compute the free coefficients of the polynomial.



BOUNDS AND CONSTRUCTIONS FOR METERING SCHEMES 15

In similar way we can easily prove that the scheme satisfies Property 4 of Definition
3.1. Notice that if gt

j ≤ r, with `− c < r < h− c, for any t = 1, . . . , τ and j = 1, . . . , s,
then expression (6) is less than or equal to hsτ − s(h− r − c). Consequently, for any
choice of s(h− r− c) values av,j in GF (q), where v = 1, . . . , h− r− c and j = 1, . . . , s,
there is a polynomial R(x, y) which is consistent with the information held by the
servers in the coalition and such that R(fv, j ◦ t) = av,j for v = 1, . . . , h − r − c

and j = 1, . . . , s. Hence, the corrupt servers S1, . . . ,Ss have probability at most
1/qs(h−r−c) of guessing their proofs for time frame t. Hence, the information that the
servers have on their proofs for time frame increases linearly with respect to the value
r.

Efficiency of the Scheme. It is easy to see that the scheme meets the bounds (4)
and (5) of Section 3.1. Indeed, during the initialization phase the audit agency sends
to each client Ci a polynomial Q(i, y) of degree sτ − 1 over GF (q). Hence, the bound
(4) is tight. During a regular operation in time frame t each server Sj receives from
a client Ci the value Q(i, j ◦ t), which is a point in GF (q). Hence, the bound (5) is
tight.

In our ramp metering scheme the proof has size (h− `) log q, while the size of the
information distributed to clients and servers does not depend on the difference h− `.
On the other hand, if we use a proof of size (h− `) log q in Naor and Pinkas metering
schemes then the size of the information distributed to the parties is increased of a
factor (h− `).

4. Metering Schemes with Pricing. In ramp metering schemes any server
that receives less than h client visits gets some partial information about its proof,
but is not able to compute it. Consequently, the server does not receive any money
from the audit agency, as in Naor-Pinkas schemes [10]. In this section we introduce
metering schemes with pricing. These schemes enable a more flexible payment system
than ramp metering schemes and Naor-Pinkas schemes. Indeed, these schemes allow
to count the exact number of visits received by each server, which is paid accordingly.

As in ramp metering schemes considered in Section 3, in metering schemes with
pricing there are two thresholds ` and h, where ` < h ≤ n, and any server can be in
three different situations in a given time frame t: 1) the server is visited by a number
of clients greater than or equal to h. In this case the server receives a full payment of
the negotiated amount of money; 2) the server is visited by a number of clients smaller
than or equal to `. In this case the server receives no money; 3) the server is visited by
a number f of clients between `+1 and h−1. In this case the server receives a partial
payment of the negotiated amount of money, which grows with the number of clients
which have been served. To this aim, a server which has been visited by a number
f of clients between ` + 1 and h should be able to provide the audit agency with a
proof of the number of visits it has received. A server which has been visited by more
than h clients would provide the agency with the same proof it would have provided
if it had received h visits. For any j = 1, . . . ,m, t = 1, . . . , τ , and f = ` + 1, . . . , h, we
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denote with pt
j,f the proof computed by the server Sj when it has been visited by f

distinct clients in time frame t. We refer to such a proof as the f -proof of Sj in time
frame t. Moreover, we denote with P t

j,f the set of all values that pt
j,f can assume.

For any r = ` + 1, . . . , h, we define Lr = {` + 1, . . . , r} and we denote by pt
j,Lr

the
proofs pt

j,`+1 . . . pt
j,r. Moreover, we denote with P t

j,Lr
the set of all values that pt

j,Lr

can assume. We also define Lr = ∅, for any r < ` + 1. To simplify the notation, we
define P t

j,L`
= ∅, for any j = 1, . . . , m and t = 1, . . . , τ.

As in ramp metering schemes, we assume that at most a certain number, say c

with c ≤ `, of clients and a certain number, say s with s ≤ m, of servers can be
corrupt, i.e., they can cooperate in order to inflate the count of visits received by
servers.

Definition 4.1. An (n,m, τ, c, s, `, h) metering scheme with pricing is a protocol
to measure the interaction between n clients and m servers during τ time frames in
such a way that the following properties are satisfied:

1. For any time frame t = 1, . . . , τ each client can compute the piece to be given
to any visited server:
Formally, it holds that H(Ct

i,j |Ci) = 0 for i = 1, . . . , n, j = 1, . . . , m, and
t = 1, . . . , τ .

2. For any time frame t = 1, . . . , τ and any z = ` + 1, . . . , h, any server which
has been visited by z different clients in time frame t, can compute its (`+1)-
proof,. . . ,z-proof for time frame t:
Formally, it holds that H(Pt

j,Lz
|Xt

j,(z)) = 0 for j = 1, . . . ,m, t = 1, . . . , τ ,
and z = ` + 1, . . . , h.

3. Let us consider a coalition of α ≤ c corrupt clients Ci1 , . . . , Ciα , and 1 ≤ β ≤ s

corrupt servers Sj1 , . . . ,Sjβ
, and let B = {1, . . . , β}. Assume that at some

time frame t each server in the coalition has been visited by at most f − α

clients, with f < h. Then,for any z = f +1, . . . , h the servers in the coalition
have no information about their z-proofs for t:
Formally, it holds that

H(Pt
B,z|Ci1 . . .CiαXt

j1,(dj1 ) . . .Xt
jβ ,(djβ

)V
[t−1]
B ) = H(Pt

B,z)

for f < z ≤ h, t = 1, . . . , τ , 0 ≤ α ≤ c, and djv + α ≤ f, for v = 1, . . . , β.

4.1. Lower Bounds. In this section we provide lower bounds on the size of
the information distributed to clients by the audit agency and on the size of the
information given to servers by clients. The next lemma immediately follows from
Definition 4.1.

Lemma 4.2. Let M be an (n,m, τ, c, s, `, h) metering scheme with pricing. Let
A = {1, . . . , α} be a set of client indices and let B = {1, . . . , β} be a set of server
indices. Then, for any time frame t = 1, . . . , τ , it holds that

H(Ct
A,B
|C

A
) = 0.
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Proof. We have that

H(Ct
A,B
|C

A
) ≤

α∑

i=1

β∑

j=1

H(Ct
i,j |CA

) (from Eq. (21) of Appendix)

≤
α∑

i=1

β∑

j=1

H(Ct
i,j |Ci) (from Eq. (24) of Appendix)

= 0 (from Property 1 of Definition 4.1).

Hence, the lemma holds.
A Lower Bound on the Size of Clients’ Secret Information. Since our goal is to

prove a lower bound on the size of the information distributed to clients we consider
the worst possible case that, at any time frame t = 1, . . . , τ and for any corrupt
server Sj , the sets V

[1]
j , . . . , V

[t−1]
j contain the maximum possible information. In

other words, corrupt servers receive visits from all clients during the previous time
frames 1, . . . , t− 1. Formally, it holds that

(7) H(Ct′
i,j |V[t]

j ) = 0, for any i = 1, . . . , n, j = 1, . . . , m, and 1 ≤ t′ ≤ t ≤ τ − 1.

Consequently, one has

(8) H(Pt′
j,Lh

|V[t]
j ) = 0, for any j = 1, . . . ,m, and 1 ≤ t′ ≤ t ≤ τ − 1.

In the following we present a lower bound on the size of the information given to
clients by the audit agency during the initialization phase. The following technical
lemma will be used in the proof of Lemma 4.4.

Lemma 4.3. Let M be an (`, h, n,m, τ, c, s) metering scheme with pricing. Let
Ci1 , . . . , Cic be the corrupt clients and let B, with |B| = β ≤ s, be a set of indices of
corrupt servers. For any j ∈ B, t = 1, . . . , τ , and z = `− c, . . . , h− c, let Xt

j,(z) be a
set of visits from z clients other than Ci1 , . . . , Cic to server Sj in time frame t. Then,
for any v = 1, . . . , c, t = 1, . . . , τ, and r = ` + 1, . . . , h, it holds that

H(Civ |C{i1,...,ic}\{iv}X
t
B,(r−c−1)P

t
B,Lr−1

V[t−1]
B )

≥ H(Pt
B,r) + H(Civ |C{i1,...,ic}\{iv}X

t
B,(r−c)P

t
B,Lr

V[t−1]
B ).

Proof. For the sake of simplicity and w.l.o.g., we will assume {i1, . . . , ic} =
{1, . . . , c} and B = {1, . . . , β}, and will prove the lemma for Civ = C1. Let us
consider the random variables A = Pt

B,Lr−1
, A′ = Ct

2,B , . . . ,Ct
c,B , D = C1, E =

C2 . . .CcXt
B,(r−c)P

t
B,Lr−1

V[t−1]
B , E′ = C2 . . .CcXt

B,(r−c)V
[t−1]
B , and F = Pt

B,r. One
has

H(Ct
2,B , . . . ,Ct

c,B |C2 . . .CcXt
B,(r−c)V

[t−1]
B )

≤ H(Ct
2,B , . . . ,Ct

c,B |C2 . . .Cc) (from (24) of Appendix)

= 0 (from Lemma 4.2).
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Hence, A′ and E′ satisfy the hypothesis of Lemma 2.1, and one has H(A|E′) =
H(A|A′E′). For r = ` + 2, . . . , h, one gets

H(Pt
B,Lr−1

|C2 . . .CcXt
B,(r−c)V

[t−1]
B )

= H(Pt
B,Lr−1

|Ct
2,B . . .Ct

c,BC2 . . .CcXt
B,(r−c)V

[t−1]
B ) (from Lemma 2.1)

≤ H(Pt
B,Lr−1

|Ct
2,B . . .Ct

c,BXt
B,(r−c)) (from (24) of Appendix)

≤
β∑

j=1

H(Pt
j,Lr−1

|Ct
2,B . . .Ct

c,BXt
B,(r−c)) (from (21) of Appendix)

≤
β∑

j=1

H(Pt
j,Lr−1

|Ct
2,j . . .Ct

c,jX
t
j,(r−c)) (from (24) of Appendix)

= 0 (from Property 2 of Definition 4.1).

Since P t
B,L`

= ∅, then the above equality trivially holds also for r = ` + 1. Hence,
the random variables A and E′ satisfy the hypothesis of Lemma 2.1, and one has
H(F|AE′) = H(F|E′). Consequently, for any r = ` + 1, . . . , h, one gets

H(Pt
B,r|Pt

B,Lr−1
C2 . . .CcXt

B,(r−c)V
[t−1]
B )

= H(Pt
B,r|C2 . . .CcXt

B,(r−c)V
[t−1]
B ) (from Lemma 2.1)

= H(Pt
B,r) (from Property 3 of Definition 4.1).

Let A′′ = Ct
1,B . . .Ct

c,B and E′′ = C1 . . .Cc. From Lemma 4.2 it holds that A′′ and
E′′ satisfy the hypothesis of Lemma 2.1. Hence, one has H(F|E′′) = H(F|A′′E′′),
and consequently, for any r = ` + 1, . . . , h, one gets

H(Pt
B,r|C1 . . .CcXt

B,(r−c)P
t
B,Lr−1

V[t−1]
B )

= H(Pt
B,r|C1 . . .CcCt

1,B . . .Ct
c,BXt

B,(r−c)P
t
B,Lr−1

V[t−1]
B ) (from Lemma 2.1))

≤ H(Pt
B,r|Ct

1,B . . .Ct
c,BXt

B,(r−c)) (from (24) of Appendix)

≤
β∑

j=1

H(Pt
j,r|Ct

1,B . . .Ct
c,BXt

B,(r−c)) (from (21) of Appendix)

≤
β∑

j=1

H(Pt
j,r|Ct

1,j . . .Ct
c,jX

t
j,(r−c)) (from (24) of Appendix)

= 0 (from Property 2 of Definition 4.1).

Hence, one has that D, E and F satisfy the hypothesis of Lemma 2.2. Consequently,
one has H(D|E) = H(F) + H(D|EF), and for any r = ` + 1, . . . , h, one gets

H(C1|C2 . . .CcXt
B,(r−c)P

t
B,Lr−1

V[t−1]
B )

= H(Pt
B,r) + H(C1|C2 . . .CcXt

B,(r−c)P
t
B,Lr−1

Pt
B,rV

[t−1]
B ) (from Lemma 2.2)

= H(Pt
B,r) + H(C1|C2 . . .CcXt

B,(r−c)P
t
B,Lr

V[t−1]
B ).
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The lemma follows from the above equality and from (24) of Appendix which implies

H(C1|C2 . . .CcXt
B,(r−c−1)P

t
B,Lr−1

V[t−1]
B )

≥ H(C1|C2 . . .CcXt
B,(r−c)P

t
B,Lr−1

V[t−1]
B ).

Hence, the lemma holds.
The next lemma states that the uncertainty that a coalition of β corrupt servers

and c− 1 corrupt clients has at time frame t− 1 about the secret information held by
another client is lower bounded by the uncertainty about the proofs that the coalition
of corrupt servers can reconstruct in time frame t. In other words, for the coalition
the task of ”guessing” the secret information held by any other client is at least as
hard as the task of “guessing” its proofs for time frame t.

Lemma 4.4. Let M be an (n,m, τ, c, s, `, h) metering scheme with pricing. Let
Ci1 , . . . , Cic

be the corrupt clients and let B, with |B| = β ≤ s, be a set of indices of
corrupt servers. For any v = 1, . . . , c and t = 1, . . . , τ, it holds that

H(Civ |C{i1,...,ic}\{iv}V
[t−1]
B ) ≥ H(Pt

B,Lh
) + H(Civ |C{i1,...,ic}\{iv}V

[t]
B ).

Proof. For the sake of simplicity and w.l.o.g., we will assume {i1, . . . , ic} =
{1, . . . , c} and B = {1, . . . , β}, and prove the lemma for Civ = C1. Starting from
H(C1|C2 . . .CcXt

B,(`−c)P
t
B,L`

V[t−1]
B ) and iteratively applying Lemma 4.3, we get

H(C1|C2 . . .CcXt
B,(`−c)P

t
B,L`

V[t−1]
B )

≥
h∑

r=`+1

H(Pt
B,r) + H(C1|C2 . . .CcXt

B,(h−c)P
t
B,Lh

V[t−1]
B ).(9)

Let us consider the two random variables A = Xt
B,(h−c)P

t
B,Lh

and E = V[t]
B . Using

equations (7) and (8), one can prove that H(Xt
B,(h−c)P

t
B,Lh

|V[t]
B ) = 0.

Hence, A and E satisfy the hypothesis of Lemma 2.1, and one has

H(C1|C2 . . .CcXt
B,(h−c)P

t
B,Lh

V[t−1]
B )

≥ H(C1|C2 . . .CcXt
B,(h−c)P

t
B,Lh

V[t]
B ) (from (24) of Appendix )

= H(C1|C2 . . .CcV
[t]
B ) (from Lemma 2.1).(10)

It follows that

H(C1|C2 . . .CcXt
B,(`−c)P

t
B,L`

V[t−1]
B )

≥
h∑

r=`+1

H(Pt
B,r) + H(C1|C2 . . .CcV

[t]
B ) (from (9)–(10))

≥ H(Pt
B,Lh

) + H(C1|C2 . . .CcV
[t]
B ) (from (21) of Appendix).
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Then, the lemma follows from the above inequality and from (24) of Appendix which
implies

H(C1|C2 . . .CcV
[t−1]
B ) ≥ H(C1|C2 . . .CcXt

B,(`−c)P
t
B,L`

V[t−1]
B ).

The next theorem provides a lower bound on the information distributed to clients
in metering schemes with pricing. The theorem implies Corollary 4.6, which states
that the information that must be kept secret by clients grows linearly with the
number of time frames the scheme must be active, the size of coalition of servers, and
the “granularity” (i.e., h− `) of the system itself.

Theorem 4.5. Let M be an (n,m, τ, c, s, `, h) metering scheme with pricing. Let
B, with |B| = β ≤ s, be a set of indices of corrupt servers. For any i = 1, . . . , n, it
holds that

H(Ci) ≥
τ∑

t=1

H(Pt
B,Lh

), for i = 1, . . . , n.

Proof. W.l.o.g. we will assume that C1, . . . , Cc are the corrupt clients and prove
the bound for C1.
Starting from H(C1|C2 . . .CcV

[0]
B ) and iteratively applying Lemma 4.4, we get

(11) H(C1|C2 . . .CcV
[0]
B ) ≥

τ∑
t=1

H(Pt
B,Lh

) + H(C1|C2 . . .CcV
[τ ]
B ).

Hence, one has

H(C1) ≥ H(C1|C2 . . .CcV
[0]
B ) (from (24) of Appendix)

≥
τ∑

t=1

H(Pt
B,Lh

) (from (11) and (18) of Appendix) .

Then, the theorem follows.
Notice that in Section 2 we did not say anything on the entropies of random

variables Pt
j,f and Pt

j,Lf
, for j ∈ {1, . . . , m}, f ∈ {`+1, . . . , h}, and t ∈ {1, . . . , τ}. Our

results apply to the general case of arbitrary entropies, but for clarity, we state the next
corollary for the simpler case that H(Pt1

j1,f1
) = H(Pt2

j2,f2
) and H(Pt1

j1,Lf
) = H(Pt2

j2,Lf
),

for all j1, j2 ∈ {1, . . . ,m}, f1, f2, f ∈ {`+1, . . . , h}, and t1, t2 ∈ {1, . . . , τ}. We denote
these common entropies by H(P) and H(PLf

), respectively. If the proof sequences of
the corrupt servers are statistically independent, then the following corollary holds.

Corollary 4.6. In any (n, m, τ, c, s, `, h) metering scheme with pricing in which
the proofs of corrupt servers are statistically independent, it holds that

H(Ci) ≥ sτH(PLh
), for i = 1, . . . , n.

If for any server Sj the random variables Pt
j,`+1, . . . ,P

t
j,h are statistically inde-

pendent, i.e.,

H(Pt
j,Lh

) =
h∑

f=`+1

H(Pt
j,f ),
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then Corollary 4.6 implies H(Ci) ≥ sτ(h− `)H(P), for i = 1, . . . , n. Moreover, if the
random variable P is uniformly distributed in a finite field F then H(P) = log |F |.
Consequently, the size of the information owned by a client is lower bounded by
sτ(h− `) log |F | and from Eq. (17) it follows that

(12) log |Ci| ≥ sτ(h− `) log |F |, for i = 1, . . . , n.

In Section 4.2 we will present an (n,m, τ, c, s, `, h) metering scheme with pricing which
achieves it.

A Lower Bound on the Size of Servers’ Secret Information. In the following we
provide a lower bound on the size of the information given to servers by clients in
metering schemes with pricing. To prove the bound we need the following lemma.

Lemma 4.7. Let M be an (n,m, τ, c, s, `, h) metering scheme with pricing. For
j = 1, . . . ,m, t = 1, . . . , τ , and r = ` + 1, . . . , h, let Xt

j,(r−1) be a set of visits from
r − 1 clients other than Ci to server Sj in time frame t. Then, for any i = 1, . . . , n,
j = 1, . . . , m, t = 1, . . . , τ , and r = ` + 1, . . . , h, it holds that

H(Ct
i,j |Xt

j,(r−1)P
t
j,Lr−1

) ≥ H(Pt
j,r) + H(Ct

i,j |Xt
j,(r)P

t
j,Lr

).

Proof. Let A′ = Pt
j,Lr−1

, D = Ct
i,j , E = Xt

j,(r−1)P
t
j,Lr−1

, E′ = Xt
j,(r−1),

and F = Pt
j,r. If ` + 2 ≤ r ≤ h, then from Property 2 of Definition 4.1 one has

H(Pt
j,Lr−1

|Xt
j,(r−1)) = 0. If r = `+1 then P t

j,L`
= ∅ and consequently H(Pt

j,L`
|Xj,(`))

= 0. Hence, one has that the random variables A′ and E′ satisfy the hypothesis of
Lemma 2.1 and consequently H(F|A′E′) = H(F|E′). Then, it results that

H(Pt
j,r|Xt

j,(r−1)P
t
j,Lr−1

) = H(Pt
j,r|Xt

j,(r−1)) (from Lemma 2.1)

≥ H(Pt
j,r|Xt

j,(r−1)V
[t−1]
j ) (from (24) of Appendix)

= H(Pt
j,r) (from Property 3 of Definition 4.1).

From the above inequality and from (24) of Appendix which implies

H(Pt
j,r|Xt

j,(r−1)P
t
j,Lr−1

) ≤ H(Pt
j,r),

it follows that

(13) H(Pt
j,r|Xt

j,(r−1)P
t
j,Lr−1

) = H(Pt
j,r).

Moreover, it results that

H(Pt
j,r|Xt

j,(r−1)C
t
i,jP

t
j,Lr−1

) ≤ H(Pt
j,r|Xt

j,(r−1)C
t
i,j) (from (24) of Appendix)

= 0 (from Property 2 of Definition 4.1).(14)

Equations (13)–(14) imply that the random variables D, E, and F satisfy the hypoth-
esis of Lemma 2.2, and consequently one has H(D|E) = H(F) + H(D|EF). Hence,
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one gets

H(Ct
i,j |Xt

j,(r−1)P
t
j,Lr−1

) = H(Pt
j,r) + H(Ct

i,j |Xt
j,(r−1)P

t
j,Lr−1

Pt
j,r) (from Lemma 2.2)

= H(Pt
j,r) + H(Ct

i,j |Xt
j,(r−1)P

t
j,Lr

)

≥ H(Pt
j,r) + H(Ct

i,j |Xt
j,(r)P

t
j,Lr

) (from (24) of Appendix).

Thus, the lemma follows.
The next theorem provides another lower bound on the communication com-

plexity of metering schemes with pricing. It implicitly shows that the size of the
information each client has to give out when visiting a server is lower bounded by the
size of the proofs the server could reconstruct.

Theorem 4.8. In any (n,m, τ, c, s, `, h) metering scheme with pricing it holds
that

H(Ct
i,j) ≥ H(Pt

j,Lh
),

for any i = 1, . . . , n, j = 1, . . . , m, and t = 1, . . . , τ .
Proof. Starting from H(Ct

i,j |Xt
j,(`)P

t
j,L`

) and iteratively applying Lemma 4.7, one
gets

H(Ct
i,j |Xt

j,(`)P
t
j,L`

) ≥
h∑

r=`+1

H(Pt
j,r) + H(Ct

i,j |Xt
j,(h)P

t
j,Lh

)

≥ H(Pt
j,Lh

) + H(Ct
i,j |Xt

j,(h)P
t
j,Lh

) (from (20) of Appendix)

≥ H(Pt
j,Lh

) (from (18) of Appendix).

The theorem follows from the above inequality and from (18) of Appendix.
If for any server Sj the variables Pt

j,`+1, . . . ,P
t
j,h are statistically independent then

Theorem 4.8 implies H(Ct
i,j) ≥

∑h
f=`+1 H(Pt

j,f ), for any i = 1, . . . , n, j = 1, . . . , m,
and t = 1, . . . , τ . Moreover if Pt

j,`+1, . . . ,P
t
j,h are uniformly distributed in a finite

field F , one has

(15) log |Ct
i,j | ≥ (h− `) log |F |, for i = 1, . . . , n, j = 1, . . . ,m, and t = 1, . . . , τ.

4.2. A Protocol for Metering Schemes with Pricing. In this section we
present an unconditionally secure (n,m, τ, c, s, `, h) metering scheme with pricing
achieving the bounds (12) and (15) of Section 4.1. The proofs are points of a fi-
nite field GF (q) where q is a large prime.

Analysis of the Scheme. It is immediate to verify that the scheme satisfies Prop-
erty 1 of Definition 4.1. Indeed, for any i = 1, . . . , n, the information given by the audit
agency to the client Ci consists of the univariate polynomials P`+1(i, y), . . . , Ph(i, y),
and for any j = 1, . . . ,m, the information given to the server Sj by client Ci is obtained
by evaluating the univariate polynomials P`+1(i, y), . . . , Ph(i, y) at j ◦ t.

It is also easy to verify that the scheme satisfies Property 2 of Definition 4.1.
Assume that a server Sj has been visited by f, with ` + 1 ≤ f ≤ h, clients in time
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Initialization:
• The audit agency A chooses h− ` random bivariate polynomials

P`+1(x, y), . . . , Ph(x, y) over GF (q), where, for z = ` + 1, . . . , h,

the polynomial Pz(x, y) is of degree z− 1 in x and degree sτ − 1
in y.

• A sends the h−` univariate polynomials P`+1(i, y), . . . , Ph(i, y),
which are of degree sτ − 1, to each client Ci.

Regular Operation for Time Frame t:

When the client Ci visits the server Sj in time frame t, it sends the h− `

points P`+1(i, j ◦ t), . . . , Ph(i, j ◦ t) to Sj .

Proof Generation and Verification for Time Frame t:
• Assume that the server Sj has been visited by a number z of

clients, ` < z ≤ h, in time frame t.
• The server Sj performs a Lagrange interpolation of the polyno-

mial Pz(x, j ◦ t) and computes the value Pz(0, j ◦ t). This value
constitutes the z-proof of Sj , i.e., the proof that Sj has received
z visits.

• The server Sj sends the pair (Pz(0, j ◦ t), z) to the audit agency.
• The audit agency verifies the proof by evaluating the polynomial

Pz(x, y) at the point (0, j ◦ t).

Fig. 2. An (n, m, τ, c, s, `, h) metering scheme with pricing.

frame t. Then, the server knows f points of each of the polynomials P`+1(x, j ◦
t), . . . , Pf (x, j ◦ t). Since these polynomials are all of degree less than or equal to f −1
in x, then the server can compute their coefficients by using Lagrange interpolation.
In particular, it can compute its f -proof for t by evaluating the polynomial Pf (x, j ◦t)
at 0. If the server Sj has been visited by a number of clients greater than or equal to
h in time frame t, then it can reconstruct all the h− ` polynomials. Hence, the server
can reconstruct all the proofs for the time frame t.

To prove that our scheme satisfies Property 3 of Definition 4.1, we consider the
worst possible case that in any time frame t = 1, . . . , τ, all corrupt clients decide
to cooperate with all corrupt servers and that corrupt servers have collected the
maximum possible information during the previous time frames 1, . . . , t− 1. In other
words, for any time frame t = 1, . . . , τ, we assume that each corrupt client Ci gives
its polynomials P`+1(i, y), . . . , Ph(i, y) to all corrupt servers, and that any corrupt
server Sj knows the polynomials P`+1(x, j ◦ t′), . . . , Ph(x, j ◦ t′), for t′ = 1, . . . , t− 1.

Without loss of generality, let S1, . . . ,Ss be a coalition of corrupt servers. In order
to prove that our scheme satisfies Property 3 of Definition 4.1, we need to prove that
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for any time frame t = 1, . . . , τ, and for any z = ` + 1, . . . , h, the coalition of corrupt
servers S1, . . . ,Ss is not able to calculate the proofs Pz(0, 1 ◦ t), . . . , Pz(0, js ◦ t) if
each server in the coalition receives less than z − c regular visits in time frame t.

In order to calculate Pz(0, j ◦ t), the servers should be able to interpolate either the
polynomial Pz(x, j ◦ t) or the bivariate polynomial Pz(x, y). The information that a
corrupt client Ci gives to a corrupt server is equivalent to the sτ coefficients of each of
the polynomials P`+1(i, y), . . . , Ph(i, y). For j = 1, . . . , s, the information collected by
each corrupt server Sj during the previous time frames is equivalent to the coefficients
of the polynomials P`+1(x, j ◦ t′), . . . , Ph(x, j ◦ t′), for any t′ = 1, . . . , t − 1. Suppose
that in time frame t, the server Sj , j ∈ {1, . . . , s}, receives gt

j regular visits. Then,
the overall information on Pz(x, y) held by the servers S1, . . . ,Ss consists of

(16) csτ + s(t− 1)z +
s∑

j=1

gt
j − cs(t− 1)

points. The first term of (16) corresponds to the information given by the c corrupt
clients, the second term corresponds to the information collected by all servers in
the coalition during the previous time frames, the third term corresponds to the
information provided by the client visits in time frame t, and the last term represents
the information which has been counted twice. For any z = `+1, . . . , h, we will prove
that the servers in the coalition are unable to interpolate the polynomial Pz(x, y) if
each server in the coalition receives less than z − c regular visits. Notice that, for
any j = 1, . . . , s, t = 1, . . . , τ and z = ` + 1, . . . , h, if gt

j < z − c, then expression
(16) is strictly less than zsτ. Consequently, for any choice of a ∈ GF (q) and for any
j = 1, . . . , s, there is a polynomial R(x, y) which is consistent with the information
held by the servers in the coalition and such that R(0, j ◦ t) = a. Hence, the corrupt
servers S1, . . . ,Ss have probability at most 1/q of guessing the z-proof Pz(0, j ◦ t), for
any j = 1, . . . , s and any time frame t = 1, . . . , τ. Notice that instead of computing
all the coefficients of the polynomial Pz(x, j ◦ t) and then evaluating the polynomial
in the point 0, the servers could only compute the free coefficients of the polynomial.

From the above discussion it follows that both in the case when S1 . . . ,Ss are
trying to interpolate the bivariate polynomial Pz(x, y), and in the case when S1 . . . ,Ss

are trying to interpolate the polynomial Pz(x, j ◦ t), the probability that they guess
one of the z-proofs Pz(0, 1 ◦ t), . . . , Pz(0, s ◦ t) is at most 1/q. Consequently, the
probability that a coalition of s corrupt servers guesses the whole vector of proofs
(Pz(0, 1 ◦ t), . . . , Pz(0, s ◦ t)) is at most 1/qs.

Efficiency of the Scheme. It is easy to see that the scheme meets the bounds (12)
and (15) of Section 4.1. Indeed, the size of the information given to any client is
(h − `)sτ log q, whereas the size of the information that each server receives from a
client during a regular visit is (h− `) log q.

Hence, our protocol is optimal both with respect to the size of the information
distributed to clients and with respect to the size of information given to servers by
clients.
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5. Conclusions. In this paper we have introduced two generalizations of Naor
and Pinkas metering schemes [10]: ramp metering schemes [5] and metering schemes
with pricing [2]. We have analyzed the efficiency of these schemes in terms of the
information exchanged among the parties. In the following we summarize the com-
parison between Naor and Pinkas metering schemes [10] and our schemes. As for
ramp metering schemes, they enable to reduce the size of the information distributed
to the parties by a factor of h − ` at the price of a loss in security. The lower is the
difference h − `, the smaller is the range of values k < h such that a server which
receives k visits is able to gain some information about its proof. As for metering
schemes with pricing they provide a more flexible payment system at the expense of
an increasement of a factor h−` in the overall communication complexity, where h−`

is the number of different payments associated to client visits.
We have assumed that clients provide correct shares when they visit servers. Naor

and Pinkas [10] have also considered the case when clients try to disrupt the metering
process sending incorrect information to the visited servers. This problem has been
also addressed by Ogata and Kurosawa [12], who proposed a scheme in which any
server can verify with non-negligible probability that the shares received by clients
are correct. Moreover, we have assumed that the schemes can be used for a fixed
number τ of time frames, which is a parameter of the schemes. Naor and Pinkas [10]
have also proposed schemes that can be used for a number of time frames which is not
fixed a priori. The security of their schemes is based on the assumed intractability of
the computational Diffie-Hellman problem.

Acknowledgements. We would like to thank the anonymous referees for their
useful comments.

Appendix. Information Theory Background. In this Appendix we review
the basic concepts of Information Theory used in our definitions and proofs. For a
complete treatment of the subject the reader is advised to consult [4].

Given a probability distribution {Pr
X
(x)}x∈X on a set X, the Shannon entropy

of X, denoted by H(X), is defined as

H(X) = −
∑

x∈X

Pr
X
(x) log Pr

X
(x)

(all logarithms in this paper are to the base 2). The entropy H(X) is a measure of the
average uncertainty one has about which element of the set X has been chosen when
the choices of the elements from X are made according to the probability distribution
{Pr

X
(x)}x∈X . It is well known that H(X) is a good approximation to the average

number of bits needed to faithfully represent the elements of X.
The entropy satisfies the following property:

(17) 0 ≤ H(X) ≤ log |X|,
where H(X) = 0 if and only if there exists x0 ∈ X such that Pr

X
(x0) = 1; whereas,

H(X) = log |X| if and only if Pr
X
(x) = 1/|X|, for all x ∈ X.



26 CARLO BLUNDO, ANNALISA DE BONIS, AND BARBARA MASUCCI

Given two sets X and Y and a joint probability distribution on their cartesian
product, the conditional entropy H(X|Y), is defined as

H(X|Y) = −
∑

y∈Y

∑

x∈X

Pr
Y

(y)Pr(x|y) log Pr(x|y).

From the definition of conditional entropy it is easy to see that

(18) H(X|Y) ≥ 0.

We have that H(X|Y) = 0 when the value chosen from Y completely determines the
value chosen from X; whereas, H(X|Y) = H(X) means that choices from X and Y

are independent, that is, the probability that the value x has been chosen from X

given that from Y we have chosen y is the same as the a priori probability of choosing
x from X. Therefore, knowing the values chosen from Y does not enable a Bayesian
opponent to modify an a priori guess regarding which element has been chosen from
X.

Given n sets X1, . . . , Xn and a joint probability distribution on their cartesian
product, the entropy of X1 . . .Xn satisfies

(19) H(X1 . . .Xn) = H(X1) +
n∑

i=2

H(Xi|X1 . . .Xi−1)

and

(20) H(X1 . . .Xn) ≤
n∑

i=1

H(Xi).

Given n+1 sets X1, . . . , Xn, Y and a joint probability distribution on their carte-
sian product, the entropy of X1 . . .Xn given Y satisfies

(21) H(X1 . . .Xn|Y) ≤
n∑

i=1

H(Xi|Y).

Given three sets X, Y, Z and a joint probability distribution on their cartesian
product, the conditional mutual information I(X;Y|Z) between X and Y given Z is

I(X;Y|Z) = H(X|Z)−H(X|ZY)(22)

and satisfies the following properties:

(23) I(X;Y|Z) = I(Y;X|Z)

and I(X;Y|Z) ≥ 0. Since the conditional mutual information is always non-negative
we get

(24) H(X|Z) ≥ H(X|ZY).
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Parameters and Variables Frequently Used in the Paper.

`, h thresholds

n number of clients

m number of servers

τ number of time frames

c number of corrupt clients

s number of corrupt servers

Ci information distributed to client Ci

Ct
i,j visit from client Ci to server Sj in time frame t

B = {j1, . . . , jβ} indices of the corrupt servers, β ≤ s

Ct
i,B visits from client Ci to servers Sj1 , . . . ,Sjβ

in time frame t

Xt
j,(dj)

visits from dj clients to server Sj in time frame t

Xt
B,(z) visits from z clients to servers Sj1 , . . . ,Sjβ

in time frame t

V[t]
j information collected by server Sj in time frames 1, . . . , t

V[t]
B information collected by servers Sj1 , . . . ,Sjβ

in time frames
1, . . . , t

Pt
j,f f -proof for server Sj , where f ∈ {` + 1, . . . , h}

Pt
B,f f -proofs for servers Sj1 , . . . ,Sjβ

Lr = {` + 1, . . . , r} indices of proofs, where r ∈ {` + 1, . . . , h}

Pt
j,Lr

(` + 1)-proof,. . . r-proof for server Sj

Pt
B,Lr

(` + 1)-proofs,. . . r-proofs for servers Sj1 , . . . ,Sjβ
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