
COMMUNICATIONS IN INFORMATION AND SYSTEMS c© 2003 International Press
Vol. 3, No. 1, pp. 47-60, June 2003 004

ON A NEW NON-SHANNON TYPE INFORMATION INEQUALITY∗

ZHEN ZHANG†

Abstract. Recently, K. Makarychev, Y. Makarychev, A. Romashchenko and N. Vereshchagin

proved a new non-Shannon-type information inequality [3] involving 5 random variables which can

be viewed as a natural generalization of the ZY98 inequality. In this article, we give a simple proof of

a further generalized version of this new inequality and explain its information theoretical meaning

by formulating two information theoretical optimization problems. The first is the approximate

representation of the mutual information of two random variables (AR problem) and the second is

the approximately independent coverings of the mutual information of two random variables (AIC

problem). Two information quantities coefar(Z, U) and coefaic(Z, U) are defined for a pair of random

variables (Z, U) which measure the effectiveness of the optimal AR and the optimal AIC of I(Z; U).

This new inequality implies that the sum of these two coefficients is at least 1. This result shows

that these two information theoretical optimization problems are contradictory in the sense that

the solutions of these two problems can not be good (the corresponding coefficient is close to 0)

simultaneously. Two regions Rar and Ripc are defined which are related to the case of the existence

of independent perfect coverings and the case that the mutual information is not approximately

representable, respectively. We proved that

Ripc ⊂ Rar.

1. Introduction. The entropy function HΩn associated with n discrete random
variables Ωn = {Xi : i = 1, 2, . . . , n} is defined as a mapping

HΩn : 2{1,2,...,n} → R+

where for any α ⊆ {1, 2, . . . , n}, α 6= φ,

HΩn(α)
4
= H({Xi : i ∈ α})

and

HΩn(φ)
4
= 0.

The Shannon’s basic inequalities refer to the following fundamental properties of
entropy function:

• If F is an entropy function, then for any two subsets α, β ∈ {1, 2, . . . , n},

(1) F (α ∪ β) + F (α ∩ β) ≤ F (α) + F (β),

• α ⊂ β implies

(2) F (α) ≤ F (β),
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•

(3) F (φ) = 0.

Let Fn be the set of all functions defined on 2{1,2,...,n} taking values in [0,∞).
Define

Γn
def= {F ∈ Fn : F satisfies (1),(2) and (3)}.

Definition 1. A function F ∈ F is called constructible if and only if there exist
n jointly distributed random variables Ωn such that F = HΩn

.
Define

(4) Γ∗n = {F ∈ Fn : F is constructible}.

Definition 2. A function F is called asymptotically constructible if and only if
F ∈ Γ

∗
n, the closure of the set Γ∗n.

We have for any n, Γ
∗
n ⊆ Γn. This means that Γn characterizes some properties

of entropy function. It is known in [1] that Γ∗2 = Γ2 and Γ
∗
3 = Γ3. In 1998, Z. Zhang

and R. W. Yeung discovered Γ
∗
4 6= Γ4 in [2], which is done by proving a so-called

non-Shannon-type information inequality.
Theorem 1. (ZY98 Inequality) For any 4 discrete random variables X, Y, Z and

U ,

(5) I(Z; U) ≤ I(Z; U |X)+I(Z; U |Y )+I(X; Y )+I(X; Z|U)+I(X;U |Z)+I(Z;U |X),

(6) I(Z; U) ≤ I(Z; U |X)+I(Z;U |Y )+I(X; Y )+I(Y ; Z|U)+I(Y ; U |Z)+I(Z; U |Y ).

This inequality has been generalized to any number of random variables in [2].
It has been shown that there exists vectors in Γ4 for which (6) is not satisfied. In
other word, (6) is not provable by basic inequalities for the set of random variables
{X, Y, Z, U}. Although (6) has been found useful in some practical problems, for in-
stance in the theory of fault-tolerant distributed data base [4], its information theoret-
ical meaning has not been fully understood. All well-known information inequalities
such as basic inequalities and data processing inequality have clear intuitive infor-
mation theoretical meanings. The intuitive meanings of these inequalities help us
in their applications in various information theoretical problems. Therefore, to give
ZY98 inequality and other non-Shannon-type inequalities clear information theoreti-
cal explanations is very important. This is the main goal of this paper.

Recently, K. Makarychev, Y. Makarychev, A. Romashchenko and N. Vereshchagin
generalized ZY98 inequality to a new non-Shannon-type information inequality [3]
involving 5 random variables.
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Theorem 2. Let {X, Y, Z, U, V } be 5 discrete random variables. Then

(7) I(Z; U) ≤ I(Z; U |X)+I(Z; U |Y )+I(X; Y )+I(Z; V |U)+I(Z;U |V )+I(U ; V |Z).

This inequality is further generalized to any number of random variables as fol-
lows:

Theorem 3. Let {X1, X2, · · · , Xn, Z, U, V } be n + 3 discrete random variables
where n ≥ 2. Then

(8) nI(Z; U ; V ) ≤
n∑

i=1

I(Z;U |Xi) +
n∑

i=1

H(Xi)−H(X1, · · · , Xn) + I(Z, U ;V ).

We will call it the new inequality in this article.

2. A Proof of a Conditional Version of the New Inequality. This new
inequality has the following conditional version:

Theorem 4. Let {X1, X2, · · · , Xn, Z, U, V, Y } be n+4 discrete random variables
where n ≥ 2. Then
(9)

nI(Z; U ;V |Y ) ≤
n∑

i=1

I(Z; U |Xi, Y )+
n∑

i=1

H(Xi|Y )−H(X1, · · · , Xn|Y )+I(Z, U ;V |Y ).

The proof of this inequality is given below. This proof follows completely the
method in the original paper [2], whereas the proof of the new inequality in [3] is
quite different and much more complicated.

Proof. Let V1 be a random variables jointly distributed with X1, · · · , Xn, Y, Z, U .
The joint distribution is given by

p(x1, · · · , xn, y, z, u, v1) =

{
p(x1,··· ,xn,y,z,u)p(y,z,u,v1)

p(y,z,u) p(y, z, u) > 0,

0 p(z, u) = 0

where p(x1, · · · , xn, y, z, u) is the marginal of p(x1, · · · , xn, y, z, u, v), the joint distri-
bution of X1, · · · , Xn, Y, Z, U, V , and p(y, z, u, v1) is identical to the marginal p(y, z,
u, v) of p(x1, · · · , xn, y, z, u, v). From Lemma 2 of [2], we have for any i : 1 ≤ i ≤ n

I(Z;U |Y )− I(Z; U |Xi, Y )− I(Z; U |V, Y ) ≤ I(Xi; V1|Y ).
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These imply that

nI(Z;U |Y )−
n∑

i=1

I(Z;U |Xi, Y )− nI(Z;U |V, Y )

≤
n∑

i=1

I(Xi; V1|Y )

= I(Xn; V1|Y ) +
n∑

i=2

I(Xi; Xi−1; V1|Y )

≤ I(Z, U ;V |Y ) +
n∑

i=2

I(Xi; Xi−1|Y )

= I(Z, U ;V |Y ) +
n∑

i=1

H(Xi|Y )−H(Xn|Y ).

In the proof, Xi stands for (X1, · · · , Xi). Rearranging the terms in the above expres-
sion, we obtain the desired inequality. ¤

This inequality in the unconditional case of 5 random variables has a clear intuitive
information theoretical meaning which is discussed in the following sections.

3. Perfect Covering and Perfect Representation of Mutual Information

between Two Random Variables. Let Z and U be two random variables. A
perfect covering of the mutual information between Z and U is a random variable V

jointly distributed with Z and U having the property that

(10) I(Z; U |V ) = 0.

The Venn diagram in Figure 1 shows an explanation of this concept.

 

Z                   U 
                                                     
 
                                          
 
 
           V 
          

Fig. 1. Illustration of perfect covering
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For instance, Z is a perfect covering of the mutual information between Z and U

because I(Z;U |Z) = 0.
A random variable is called a perfect representation of the mutual information

between Z and U iff
1) V is a perfect covering of the mutual information between Z and U ;
2)

(11) H(V |Z) = H(V |U) = 0.

By Venn diagram in Figure 2, this is the case where the region corresponding to V is
the intersection of the region for Z and U .

Z             U 

Fig. 2. Illustration of perfect representation

This notion has been used by P. Gács and J. Köner in [6], although they did not
introduce the name of perfect representation, as a necessary and sufficient condition
for the common information of two random variables defined in their paper to be
equal to the mutual information .

As an example for the existence of perfect representation of the mutual informa-
tion of two random variables, let X, Y, W be three independent random variables, and
let

Z = (X, W ) U = (Y, W ).

Then V = W is a perfect representation of the mutual information between Z and U .
Equation (11) implies that V is both a function of Z and a function of U .

Perfect covering exists for any pair of random variables (Z, U) while perfect rep-
resentation does not exist for most pairs of random variables.

Another concept associated with perfect covering is whether there exist two in-
dependent perfect coverings of the mutual information between two random variables
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Z and U , i.e., whether there exist two random variables X and Y such that

I(Z; U |X) = 0, I(Z;U |Y ) = 0, I(X; Y ) = 0.

The following is a non-trivial example of the existence of independent perfect cover-
ings. Let the joint probability mass function of two binary random variables Z and
U be

P (Z = 0, U = 0) =
1
2
, P (Z = 0, U = 1) =

1
4
,

P (Z = 1, U = 0) =
1
4
, P (Z = 1, U = 1) = 0.

Define the joint distribution of Z,U,X, Y by the following conditional probabilities

P (X = 0, Y = 1|Z = 0, U = 0) =
1
2
, P (X = 1, Y = 0|Z = 0, U = 0) =

1
2
,

P (X = 1, Y = 1|Z = 1, U = 0) = 1, P (X = 0, Y = 0|Z = 0, U = 1) = 1.

Then the joint distribution of X,Y is uniform which implies that

I(X; Y ) = 0.

We also have that p(Z = 0|X = 0) = 1, P (U = 0|X = 1) = 1, P (Z = 0|Y = 0) = 1
and P (U = 0|Y = 1) = 1. These properties imply that

I(Z; U |X) = I(Z; U |Y ) = 0.

For a given pair of random variables Z and U , whether there exists a pair of
independent perfect coverings of their mutual information is an interesting problem.
The following definition seems fundamental for this concept. Given r1, r2 satisfying
0 < r1 < 1 and max{1− r1, r1} ≤ r2 < 1, does there exist a pair of random variables
(Z,U) satisfying the following conditions?
1) There exists a pair of independent perfect coverings for the mutual information of
Z, U ,
2)

H(Z)
H(Z) + H(U)

= r1,

3)

H(Z,U)
H(Z) + H(U)

= r2.

Define

Ripc = {(r1, r2) : the answer to the above question is “yes”}.
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The determination ofRipc is crucial for the study of the concept of independent perfect
coverings of mutual information. The example above shows that r1 = 1

2 , r2 = 1.5
2 log 3− 4

3

is in Ripc.

The region Ripc has the following basic properties:

1. Ripc is convex,
2. (r1, r2) ∈ Ripc and 1 > r3 > r2 imply that (r1, r3) ∈ Ripc,
3. the region Ripc is symmetric with respect to r1 = 1

2 .
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Fig. 3. Illustration of the Region Ripc

4. Approximate Representation and Coverings of Mutual Information

between Two Random Variables.

4.1. Approximate Representation of Mutual Information. While the in-
dependent perfect coverings and perfect representation of mutual information are two
very restrictive concepts, we may want to relax the requirements slightly so that
broader concepts can be introduced.

For a pair of random variables Z and U , the effectiveness of a third random
variable V as an approximate covering of I(Z; U) can be measured by the conditional
mutual information I(Z;U |V ). To define the concept of approximate representation
of the mutual information, we may relax the requirements of (10) to

H(V |Z,U) = 0
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and use H(V |Z),H(U |Z) to measure the effectiveness of V as a function of Z and of
U , respectively. Then the total effectiveness of V as an approximate representation
of I(Z;U) can be measured by

I(Z;U |V ) + H(V |Z) + H(V |U)

= I(Z;U |V ) + H(V |Z)−H(V |Z, U) + H(V |U)−H(V |Z,U)

= I(Z;U |V ) + I(V ; U |Z) + I(V ;Z|U).

From the above expression, we may measure this effectiveness by

W (Z,U, V )
4
= I(Z; U |V ) + I(U ; V |Z) + I(Z; V |U)

without requiring H(V |Z, U) = 0. ( This modification in the definition of this effec-
tiveness measure is justified in Theorem proved below.)

The effectiveness of the optimal approximate representation is given by

W (Z,U) = inf
V

W (Z, U, V ).

Theorem 5.

Let (Zn, Un) be n independently and identically distributed copies of (Z,U).
1. Let V be a random variable jointly distributed with Z, U . Then there exists

V (n) = f(Zn, Un), such that

lim
n→∞

1
n

H(V (n)|Zn) = I(V ;U |Z)

lim
n→∞

1
n

H(V (n)|Un) = I(V ;Z|U)

lim
n→∞

1
n

I(Zn;Un|V (n)) = I(Z;U |V ).

2. W (Zn, Un) = nW (Z, U).
Proof. Let V, U, Z take their values from finite sets V,U ,Z . We prove the

following Lemma:
Lemma 1. Let (Zn, Un) be n i.i.d. copies of (Z, U). Then for any ε > 0, when n

is sufficiently large, there exists

2n(I(V ;Z,U)+ε)

elements (this set is denoted by V0) in Vn and a function

fn : Zn × Un → V0

such that the random variable V (n) = fn(Zn, Un) has the following properties:
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1.

I(Zn; Un|V (n)) ≤ n(I(Z; U |V ) + ε)

2.

H(V (n)|Zn) ≤ n(I(V ; U |Z) + ε)

3.

H(V (n)|Un) ≤ n(I(V ;Z|U) + ε).

If this lemma is proved, then the first conclusion of the theorem is true. We prove
this lemma by random coding argument. Let 2n(I(V ;Z,U)+2ε) elements are selected
from the ε-typical set A

(n)
ε (V ) independently with uniform distribution. Then by

standard argument it is easy to verify that

Pe
4
= P{(zn, un) : there doesn’t exist vn ∈ V0,

s.t.(zn, un, vn) ∈ A(n)
ε (Z,U, V )} −→n→∞ 0

where A
(n)
ε (Z,U, V ) is the set of ε-typical sequences for random variables Z, U, V .

Define f(z
n, un) as randomly selected element vn of V0 with respect to uniform dis-

tribution over all elements that satisfy (zn, un, vn) ∈ A
(n)
ε (Z, U, V ) if there exists one,

otherwise define f(z
n, un) as a fixed element vn

0 of V0. In the following, the expected
value operator is taken with respect to the joint distribution of the random function
fn and other random variables involved. We have

EH(V (n)|Zn) ≤ log E[|{vn ∈ V0 : (vn, Zn) are jointly ε-typical}|+ 1]

≤ log(2n(I(V ;Z,U)+2ε) · 2−nH(V )+O(ln n) · 2n(H(V |Z)+ε))

≤ n(I(V ; U |Z) + 4ε).

Similarly, we can prove

H(V (n)|Un) ≤ n(I(V ; Z|U) + 4ε).

We also have,

EI(Zn;Un|V (n)) = E[H(v(n)|Zn) + H(v(n)|Un)

+H(Zn) + H(Un)−H(V (n))−H(Zn, Un, V (n))]

≤ n(I(V ;U |Z) + 4ε + I(V ;Z|U) + 4ε)

−n(I(V ; Z,U)− 2ε) + n(H(Z) + H(U)−H(Z, U))

= n(I(Z;U)|V ) + 10ε).
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Re-scaling the parameter ε, the lemma is proved. In the proof, we used the fact that
EH(V (n)) ≥ n(I(V ;Z, U)− 2ε) which is proved as follows. We have

H(Zn, Un|V (n)) ≤ n(H(Z, U |V ) + ε) + nPeH(Z,U).

For large n, this is at most n(H(Z,U |V ) + 2ε)). This is because Zn, Un and V (n) are
jointly ε-typical unless V (n) is the fixed element vn

0 . Therefore

H(V (n)) ≤ nH(Z, U)− n(H(Z, U |V ) + 2ε))

= n(I(V ;Z,U)− 2ε).

To prove the second conclusion, we observe that if V (n) is a random variable
satisfying W (Zn, Un, V (n)) ≤ W (Zn, Un) + ε, then

I(Zn; Un|V (n)) + I(Zn; V (n)|Un) + I(Un; V (n)|Zn)

= H(Zn|V (n)) + H(Un|V (n))−H(Zn, Un|V (n)) +

H(Zn|Un)−H(Zn|Un, V (n)) + H(Un|Zn)−H(Un|Zn, V (n))

=
n∑

i=1

(H(Zi|Zi−1, V (n)) + H(Ui|U i−1, V (n))−H(Zi, Ui|Zi−1, U i−1, V (n)) +

H(Zi|Ui)−H(Zi|Zi−1, Un, V (n)) + H(Ui|Zi)−H(Ui|U i−1, Zn, V (n)))

≥
n∑

i=1

[H(Zi|Vi) + H(Ui|Vi)−H(Zi, Ui|Vi) +

H(Zi|Ui)−H(Zi|Vi, Ui) + H(Ui|Zi)−H(Ui|Zi, Vi)]

=
n∑

i=1

W (Zi, Ui, Vi)

≥ nW (Z, U)

where Vi = (Zi−1, U i−1, V (n)). Since ε is arbitrary, this implies

W (Zn, Un) ≥ nW (Z, U).

Apparently,

W (Zn, Un) ≤ nW (Z, U).

The theorem is proved. ¤
This theorem shows that W (Z,U) is single-letterizable. Although we have aban-

doned the requirements that V is a function of Z and U in the definition of W (Z, U, V ),
when n i.i.d. copies are considered, we proved that V (n) is a function of Zn, Un.

Theorem 6.

W (Z, U) ≤ min{H(Z|U),H(U |Z), I(Z; U)}.
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Proof. Taking V as a random variable independent of Z, U gives W (Z,U, V ) =
I(Z; U).
Taking V = Z gives W (Z, U, V ) = H(Z|U)
and taking V = U gives W (Z,U, V ) = H(U |Z). These special values of W (Z,U, V )
prove the theorem. ¤

Since W (Z, U) ≤ I(U ;Z), we can define

coefar(Z, U)
4
=

{
W (Z,U)
I(Z;U) I(Z; U) > 0,

1 otherwise.

Dividing by I(U ;Z) eliminates the impact of the quantity I(U ; Z) on the measurement
of effectiveness for the approximate representation. We call coefar the coefficient of
optimal approximate representation of I(Z; U). We have

0 ≤ coefar ≤ 1

Definition 3. If coefar(Z, U) = 1, we say that the mutual information of Z and
U is not approximately representable.

Define

Rar
4
= {(r1, r2) : 1 > r1 > 0, max{r1, 1− r1} ≤ r2 ≤ 1, ∃(Z,U) s.t.

H(Z)
H(Z) + H(U)

= r1,
H(Z,U)

H(Z) + H(U)
= r2,

and I(U ; Z) is not approximately representable.}

The determination of Rar is a fundamental problem for the concept of approximate
representation of the mutual information between two random variables. We list some
basic properties of this region as follows:

1. 1 ≥ r3 > r2, and (r1, r2) ∈ Rar ⇒ (r1, r3) ∈ Rar,
2. Rar is convex.

4.2. Approximately Independent Coverings of Mutual Information. As
we know, the concept of independent perfect coverings of the mutual information is
a very restrictive concept. For most pairs of random variables (Z,U), independent
perfect coverings do not exist. To relax the requirements of the concept, we first allow
approximate coverings. Let X,Y be two approximate coverings of I(Z; U). Then the
sum I(Z; U |X) + I(Z; U |Y ) can be used to measure the covering effectiveness. Next
we allow that X and Y be dependent and I(X; Y ) is used to measure the dependence
of X and Y . Then

T (Z, U ;X,Y )
4
= I(Z; U |X) + I(Z;U |Y ) + I(X; Y )
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can be used to measure the effectiveness of the pair (X, Y ) as approximately indepen-
dent coverings (AIC) of I(Z; U). Define

T (Z, U)
4
= inf

X,Y
T (Z, U ;X,Y )

This information quantity measures how efficient the optimal AIC of I(Z; U) can be.
Theorem 7.

0 ≤ T (Z, U) ≤ I(Z;U).

Proof. Taking X = Z and Y = U gives T (Z, U ;X, Y ) = I(Z; U), which implies
T (Z, U) ≤ I(Z;U). Meanwhile, T (Z, U) ≥ 0 is obvious.

Currently, we do not know whether T (Z, U) is single-letterizable. That is, we do
not know whether it is true that, for n i.i.d copies (Zn, Un) of (Z, U), T (Zn, Un) =
nT (Z, U). Obviously, we have

T (Zn, Un) ≤ nT (Z, U).

So we define

T̃ (Z, U)
4
= lim

n→∞
1
n

T (Zn, Un).

Since T̃ (Z, U) ≤ I(Z; U), we define the coefficient of the optimal approximately inde-
pendent coverings of I(Z;U) as

0 ≤ coefaic(Z, U)
4
=

T̃ (Z, U)
I(Z;U)

≤ 1.

5. An Information Theoretical Explanation of the New Inequality. The
new inequality can be recast in the form

I(Z; U) ≤ I(Z; U |X) + I(Z;U |Y ) + I(X; Y ) + I(Z;V |U) + I(Z; U |V ) + I(U ; V |Z)

which is also correct for n i.i.d copies (Zn, Un) of (Z, U), i.e.,

I(Zn; Un) ≤ I(Zn; Un|X(n)) + I(Zn;Un|Y (n)) + I(X(n);Y (n)) +

I(Zn; V (n)|Un) + I(Zn;Un|V (n)) + I(Un; V (n)|Zn).

Since this is true for any triplet X(n), Y (n), V (n), we obtain

I(Zn;Un) ≤ nT̃ (Z, U) + nW (Z, U).

Dividing by nI(Z;U), we obtain the following theorem
Theorem 8.

coefar(Z,U) + coefaiac(Z,U) ≥ 1.
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This theorem shows that the approximate representation (AR) problem and the
approximately independent coverings (AIC) problem are contradictory in the sense
that one of the two problems has a good solution (the corresponding coefficient is close
to zero) implies that the solution for the other problem is poor ( the corresponding
coefficient is close to 1). Finally, we have the following relationship between Rar and
Ripc:

Theorem 9.

Ripc ⊆ Rar.

Proof. If (r1, r2) ∈ Ripc, there exists (Z,U) for which coefaiac(Z, U) = 0 and

H(Z)
H(Z) + H(U)

= r1,
H(Z,U)

H(Z) + H(U)
= r2.

Then we have coefar(Z, U) ≥ 1. Since coefar(Z, U) ≤ 1 always holds, we have

coefar(Z, U) = 1 ⇒ (r1, r2) ∈ Rar

¤
The following is a new conditional information inequality.
Theorem 10. I(U ;Z|X) + I(U ; Z|Y ) + I(X; Y ) = 0 implies that

H(Z, U) ≥ 3
4
(H(Z) + H(U)).

Proof. H(Z, U) < 3
4 (H(Z) + H(U)) implies that coefar(U,Z) < 1 by Theorem 6.

This contradicts the condition that coefaic(U,Z) = 0. ¤
This result is not the best possible. There exists an absolute constant C > 0.75

for which the following result is true
Theorem 11. I(U ;Z|X) + I(U ; Z|Y ) + I(X; Y ) = 0 implies

H(Z, U) ≥ C(H(Z) + H(U)).

We believe that the best constant C is

C =
3

4h2(0.25)
= 0.9248.

A proof has not been found.

6. Discussion. In this article, we provided a simple proof for a recently found
non-Shannon-type information inequality. We formulated two optimization problems
of information quantities, the AR problem and AIC problem. We defined two in-
formation quantities coefar(Z, U) and coefaic(Z, U) for a pair of random variables
(Z,U) and proved that coefar(Z, U) + coefaiac(Z, U) ≥ 1. Two related regions Rar

and Ripc are also defined and we proved that Ripc ⊆ Rar. We propose the following
open problems:
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1. Determine the regions Rar and Ripc (We believe that Rar 6= Ripc) ;
2. Use the new inequality to derive a better inner bound for Γ∗4;
3. Determine the constant C.
4. Using the conditional version of the new inequality, we can generalize all con-

cepts introduced in the paper to their conditional versions. The key results
in the paper can be easily generalized, too. A particularly interesting obser-
vation is that for a pair of random variables Z and U , there always exists a
random variable W such that coefaic(Z,U |W ) = 0. For instance, W = (Z, U)
will work. Many questions can be raised based on this observation. We men-
tion the following as an example. Determine

inf{H(W ) : coefaic(Z,U |W ) = 0}.
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