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Comparison of two algorithms of direct
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It has been shown that the residue-residue contacts in protein ter-
tiary structures can be inferred from sequence coevolution infor-
mation by using direct coupling analysis (DCA). This has greatly
advanced protein structure prediction. However, current DCA al-
gorithms still give many false positives and need further improve-
ments. Here we analyze two popular algorithms of DCA: mean-
field approximation (mfDCA) and pseudo-likelihood maximization
(plmDCA). We compare their performances and suggest a simple
method to reduce the false positives.

1. Introduction

During evolution, the residues in direct contact in protein tertiary structures
are more likely correlated through co-evolution in order to maintain their
structures and functions [IH3]. These coevolutionary pairwise residue cou-
plings have been used to identify binding sites and predict tertiary structures
of protein and RNA [4H10]. For examples, Spyridon Vicatos et al. effectively
predicted pairs of residues that are distant in sequence but close in its 3D
structure using evolutionary information-derived correlated mutations anal-
ysis [11].

Accuracies of contact predictions strongly depend on the used models.
For examples, mutual information (MI) of a multiple sequence alignment
(MSA) was used as a measurement of pair correlations [12]. The short-
age of this measure is that the predicted contacts contain many pairwise
residues that are not in direct contacts in tertiary structure, resulting in
many false positives[2, [13]. To solve this problem, direct coupling analysis
(DCA) has been proposed to disentangle direct contacts from indirect ones
[2]. There are different versions of DCA that use different approximations
and algorithms. For examples, Weigt et al. identified direct residue contacts
in protein-protein interaction by using message passing (mpDCA)[5]. Marcos
et al. proposed a fast algorithm based on mean-field approximation (mfDCA)
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to calculate direct interactions (DI) scores as measure of residue couplings
strength[I]. Later, alternative method using pseudo-likelihood maximiza-~
tion (plm) approximation was proposed to identify intra- or inter- protein
residue-residue contacts [I14] and it used more accurate pseudo-likelihood
approach to find the maximum entropy set of conserved interactions and to
calculate the coupling parameters. However, these DCA algorithms still give
many false positives and need further improvements.

In the present paper we give a detailed analysis of the performance of
plmDCA and mfDCA in contact inference in order to find a way of picking
out more true positives.

2. Methods and materials
2.1. Database of proteins

In this work, we select 17 proteins from different families. These proteins are
chosen according to following criteria: (i) Covering the four main structural
classes (o, B, /8, and a + ) of proteins; (ii) There are enough homol-
ogous sequences in their families, at least ten times more than the values
of sequence lengths, to ensure the reliability of the DCA results (Table 1);
(iii) Sequence lengths spans widely range but are less than three hundred to
ensure reliability of multiple sequence alignment (MSA) and accessibility of
computation.

2.2. Multiple sequence alignment (MSA)

MSA for a given protein sequence is required for protein residue contacts
prediction. We generated MSAs for a given protein sequence using JackHM-
MER [15] or HHblits [16] to search the UniProt database [17] or Pfam do-
main database [18] with a specific number of iterations. To obtain inclusive
of alignments, a “balanced” inclusiveness was used to find a good tradeoff
between sequence count and coverage. Specially, a bit score threshold of
0.5 * monomer sequence length was chosen as homolog inclusion criterion,
rather than a fixed E-value threshold, for getting alignments of consistent
evolutionary depths across all the proteins [19].

2.3. Co-evolutionary coupling prediction and computation

The co-evolved couplings between residues were inferred by using EVcou-
plings online server [4]: http://evfold.org/evfold-web/evfold.do. The
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score was calculated on the alignment of concatenated sequences using a
global probability model through pseudo-likelihood maximization [14] and
mean-field approximation approach [I], respectively. In the alignment, the
columns having more than 70% of gaps were deleted.

To estimate the accuracy of the DCA predictions, they are compared
to the residue contacts in the native structures. The native contacts are
the residue pairs that are separated by at least four amino acid sequences
and with center distance less than 10A. We use the precision (PPV) to
measure the performance of using plmDCA or mfDCA to predict contacts.
It is defined as follows:

TP

~ TP + FP’

where TP denotes true positive, FP false positive.

PPV

2.4. Construction of evolutionary trees

The evolutionary tree, so called phylogenetic tree, expresses phylogenetic
relationships between proteins during their evolution. We here focus on the
distance-based evolutionary tree constructed from amino acid sequence data
using Molecular Evolutionary Genetics Analysis (MEGA) [20], which recon-
structs evolutionary tree though evolutionary distances between amino acid
sequences. For obtaining the tree that can best reflect the differences among
a given number of aligned sequences, the bootstrap method is used to gener-
ate sequences sets [2I]. We then adopt the popular Neighbor-Joining (N-J)
method [22] which have showed a high performance in obtaining correct
tree as implementation algorithm for construction of distance-based phylo-
genetic tree. The bootstrap resampling’s were repeated 600 times and then
the bootstrap probability that a particular tree topology occurs during the
resampling’s was evaluated.

3. Results and discussion
3.1. Precision of plmDCA and mfDCA

We analyzed 17 proteins from four structure classes: o, 3, o/, and o +
(Table 1). Figure 1 shows scatter plots of plmDCA and mfDCA scores
against residue-residue distances for all pairs of residues of four examples
from different structure classes. The scatter plots show two clear features:
(i) All distributions show a dense low-score noise background with a long
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Figure 1: Residue-residue distances of all pairs (sequence separation greater
than four) against their DCA scores for four proteins. The horizontal line
is the contact distance cutoff at 10A. From top to bottom the PDB ID’s of
the four proteins are 1FIN, 5PTI, 10DD and 3TGI, respectively.

high-score tail. In the latter, the pairs are almost exclusively at a residue-
residue distance below 10A. Thus, most pairs are located within the noise
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Protein | o ily ID | PDB ID | Length(ry | Nwmber of Plam ) HHblits | plm-JackHEMMER | mf-HHblits | mf-JackEMMER
Types sequences

o PF00486 | 10DD 100 47731 0.85 0.88 0.64 0.63
PF00307 | 1BKR 108 21792 0.72 0.89 0.63 0.73
8 PF00089 | 3TGI 230 26418 0.97 0.98 0.94 0.94
PF00018 | 2HDA 59 23159 0.93 0.91 0.85 0.82
PF00028 | 2072 213 68258 0.98 0.91 0.88 0.89
o/B | PFO00TL | 5P21 166 44451 0.91 0.88 0.67 0.74
PF00072 | 1E6K 130 176760 0.95 0.91 0.79 0.72
PF00085 | 1RQM 105 34820 0.92 0.94 0.80 0.84
PF00075 | 1F21 152 6832 0.96 0.95 0.87 0.88
PF00069 | 1FIN 298 236455 0.98 0.94 0.87 0.74
a+p | PFO2602 | 1JR2 260 4806 0.89 0.91 0.71 0.76
PF00014 | 5PTI 58 11819 0.83 0.95 0.80 0.82
PF00158 | INY6 247 20350 0.85 0.86 0.65 0.70
PF00254 | 1R9H 118 19610 0.97 0.98 0.90 0.96
PF00076 | 1G2E 167 131391 0.94 0.92 0.76 0.80
PF00059 | 2IT6 132 17879 0.96 0.98 0.82 0.85
PF00013 | 1WVN 74 36796 0.96 0.96 0.75 0.75
Mean 0.93 0.93 0.78 0.80

Table 1: The mean precisions (Top L) for 17 tested proteins calculated by
using plmDCA and mfDCA on HHblits and JackHHMER, alignments.

background and only a small number of TP pairs are in the high-scoring tail.
Furthermore, the transition between the noise background and long tail is
sharp. This is in agreement with the previous result [19]. (ii) In the region
of noise background the relation of the residue-residue distance to the DCA
score is multi-values, i.e., the pairs with diverse residue-residue distances (in
which most pairs are false positives) have the same or almost the same DCA
score, while in the long tails it is or is close to one to one, i.e., different pairs
usually have different scores. These features indicate that most pairs in the
long high-score tail are native contacts but the FPs increase sharply when
transiting from the long tail to the noise background. Therefore, it is impor-
tant to select a proper cutoff of the DCA score to reduce the false positives,
e.g., greater than 0.2 for plmDCA [19] and 0.05 for mfDCA. However, the
long-tail regions are different for different proteins and so it is not the best
way to use a constant cutoff. In the following we will suggest a simple way to
pick out the TPs. (iii) The shapes of plmDCA and mfDCA distributions are
similar but the former is usually denser than the latter in long-tail region.
This may be why plmDCA has higher precision than mfDCA.
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The performance of plmDCA and mfDCA can also be seen from the
relations of their precisions to the top predictions (Figure 2). We can see
that the precisions of plmDCA are generally higher than those of mfDCA.
For example, for 1FIN the precision of plmDCA is about 10% higher than
that of mfDCA. Similar results for the rest 16 tested proteins are in Table
1. It is also noted that the precisions of both plmDCA and mfDCA not
necessarily decrease monotonically with the top number. This implies that
FPs can also have higher scores than TPs, even in the long tails. Thus,
taking the first top pairs unnecessarily gives high precisions.

Figure 2: Comparison of precision of predictions of contact residue pairs
using different schemes. In the figure “hhblits” and “jackhmmer” indi-
cate that the multiple sequences alignments are generated by HHblits and
JackHMMER, algorithms, respectively. “plm” and “mf” denote plmDCA
and mfDCA, respectively. Upper left: PF00069 (pdb:1FIN: chain A), upper
right: PF00014 (pdb:5PTI), lower left: PF00089 (pdb:3GTI), lower right:
PF00486 (pdb:10DD).

In above we used two kinds of algorithms of multiple sequence alignment:
HHblits and JackHMMER. Table 1 shows that HHblits and JackHMMER
have comparable precisions, although the former has a higher precision in
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some cases (see Figure 2). In a previous work, it showed that plmDCA has
a larger advantage on HHblits alignment than on Pfam alignment based
on HMMER algorithm [I4]. This may be that HHblits is more sensitive
sequence-search than PSI-BLAST and more accurate aligned sequences com-
pared to HMMER [16]. Our results above show that plmDCA (mfDCA) on
HHblits and JackHMMER alignments have similar performance. Figure 3
shows the evolutionary trees of the members in the MSAs of one of the 17
proteins generated by the two alignment algorithms. It shows that the evolu-
tionary trees given by the two algorithms have different features: the tree by
HHblits contains less offsprings (left in Figure 3), but that by JackHMMER
has more, i.e, the MSA generated by HHblits distributes more uniformly
among different species than that by JackHMMER. It needs further study
to understand why these different features of evolutionary trees give similar
precisions.

plm-HHblits mf-HHblits Number of Number of plm+mf

PDB ; . common TP non-common

Number of Number of o -

pairs with | TP | PPV | pairs with | TP | PPV | P2 C{“mf;lm ;ﬁfﬁf;ﬁ, TP | PPV

score > 0.2 score > 0.05
10DD 134 99 | 0.74 26 16 | 0.62 14 8542 101 | 0.73
1BKR 59 36 | 0.61 228 93 | 041 33 3460 93 | 0.40
3TGI 239 225 | 0.94 61 58 | 0.95 57 14+3 226 | 0.94
2HDA 48 40 | 0.83 31 26 | 0.84 23 8+5 43 | 0.81
2072 148 140 | 0.95 41 38 | 0.93 35 8+3 143 | 0.93
5P21 95 80 | 0.84 21 14 | 0.67 11 1547 83 | 0.81
1E6K 233 182 | 0.78 40 31 | 0.78 30 5149 183 | 0.78
1RQM 82 72 | 0.88 22 19 | 0.86 16 10+3 75 | 0.88
1F21 104 97 | 0.93 84 72 | 0.86 60 7+12 109 | 0.88
1FIN 299 272 | 0.91 41 37 | 09 36 27+4 273 | 0.91
1JR2 95 88 | 0.93 58 43 | 0.72 38 T+15 93 | 0.84
5PTI 48 41 | 0.85 59 42 | 0.71 41 T+17 42 | 0.60
INY6 207 161 | 0.78 51 33 | 0.65 30 46+17 164 | 0.68
1R9H 121 108 | 0.89 75 64 | 0.85 61 13+11 111 | 0.88
1G2E 138 125 | 0.91 14 12 | 0.86 12 1342 125 | 0.91
21T6 98 89 | 0.91 39 33 | 0.85 31 9+6 91 | 091
1WVN 46 44 | 0.96 56 28 | 0.5 20 2428 52 | 0.64

Mean 0.86 0.76 0.80

Table 2: Overlapping of predicted

mfDCA.

contact pairs between plmDCA

and
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Figure 3: Parts of topological structure of evolutionary tree constructed
by MSAs produced from HHblits (left, 2207 sequences) and JackHMMER
(right, 5092 sequences), respectively. PF00307 family (PDB 1BKR) is ex-
ampled here as a target sequence.

3.2. Overlapping of plmDCA and mfDCA results

It is interesting to know how the predicted coupled pairs for plmDCA and
mfDCA overlap with each other. In order to ensure the consistency in com-
parison, we used the same alignment tool HHblits to generate MSAs for both
plmDCA and mfDCA. Table 2 shows that a large part of the top-ranked
residue pairs given by plmDCA and mfDCA are the same and a small part
of them are different. For example, there are usually a few dozens of different
contact residue pairs given by the two methods. This result suggests that
combining two methods may obtain more TPs.
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3.3. Distribution of the types of predicted contact residue pairs

We analyzed the distribution of different types of contacts given by plmDCA
and mfDCA (Figure 4). The residues can be divided into four types: polar-
uncharged, polar-positive, polar-negative and nonpolar, respectively. They
can form twelves types of contacts. We can see from Figure 4 that the
contacts of nonpolar-nonpolar, polar-uncharged-nonpolar and/or polar-un-
charged-polar-uncharged types are generally much more than other types
of contacts. The middle and right of Figure 4 correspond to the pairs with
plmDCA scores of larger than 0.2 and mfDCA scores of larger than 0.05,
respectively. It is clear that the distributions of the pair types predicted by
plmDCA are similar to those of native contacts while those by mfDCA are
very different. However, the latter shows no bias to a special type of con-
tacts but behaves differently for different proteins. This result also indicates
that a part of the predicted interacting residue pairs of two methods are
different and suggests again that combining two methods may obtain more
true positives

3.4. A way to reduce false positives

Sometime knowing a few contacts can greatly increase the accuracy of pre-
diction of proteins and their complex structures [23], 24]. The results above
suggest a simple way to infer a small set of true residue contacts with higher
accuracy. Inspiring from Figure 1, we can plot the histograms of DCA scores
for a protein. If we properly choose the bin size, the distribution of the his-
togram has a long tail of large DCA scores and most bins in the long tail
contain only a few pairs (Figure 5). The pairs in these bins most probably
are the true contacts. Table 3 shows the results with the bin sizes of 0.01.
In these tables only those bins with only one pair and the score larger than
0.2 for plmDCA and 0.05 for mfDCA are counted. The precision is 86% for
mfDCA and 94% for plmDCA. Table 3 also shows the results that count the
bins with no more than 2 pairs and having the score larger than 0.1. In this
case the precision of plmDCA is still 94% but the number of TPs increases
significantly. If we can have high precision for both DCA algorithms we can
obtain more TPs by combining them.
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Figure 4: Distribution of different contact types. The left corresponds to
native contacts, the middle the contacts predicted by plmDCA with the
values of larger than 0.2 and the right by mfDCA with the values of larger
than 0.05.
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mf>0.05 plm>0.2 plm>0.1

PDB ID | number | precision | numbers | precision | number | precision

10DD | 4/6 0.67 22/24 092 | 43/52 | 0.83
1IBKR | 2/3 0.67 7/8 0.86 | 10/12 | 0.83
3TGI | 10/10 | 1.00 30/31 097 | 41/43 | 0.95
2HDA | 3/3 1.00 18/19 095 | 32/33 | 0.97
2072 4/4 1.00 15/16 094 | 19/19 | 1.00
5P21 2/3 0.67 16/16 1.00 | 27/28 | 0.96
IE6K | 4/4 1.00 23/24 096 | 45/48 | 0.94
1IRQM | 6/7 0.86 20/21 095 | 34/37 | 0.92
1F21 4/4 1.00 19/19 1.00 | 30/31 | 097
IFIN 4/4 1.00 30/30 1.00 | 50/50 | 1.00
1JR2 5/5 1.00 15/15 1.00 | 29/29 | 1.00

5PTI | 9/11 0.82 13/16 0.81 | 26/30 | 0.87

INY6 3/5 0.60 16/17 0.94 37/45 0.82
1R9H 7/7 1.00 26/28 0.93 49/54 0.91
1G2E 2/4 0.50 14/14 1.00 22/22 1.00
2IT6 5/6 0.83 5/6 0.83 31/32 0.97
1WVN 2/2 1.00 13/14 0.93 29/30 0.97
Mean 0.86 0.94 0.94

Table 3: Precisions of plmDCA and mfDCA from histograms with bin size
of 0.01.

4. Conclusion

In this work, we compared the performance of two popular DCA algorithms
(plmDCA and mfDCA) in inferring direct interacting residue pairs in pro-
tein tertiary structures. We showed that the direct interacting residue pairs
inferred by both algorithms show similar distance-score distributions with
long tails in high score region. Furthermore, the two algorithms give a part
of different inferred residue pairs. These results suggest two ways to obtain
more true positives.
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Figure 5: The histogram of the DCA scores with bin size of 0.01 for the
protein 3GTI. The vertical dot line indicates the score of 0.1.
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